1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   *
4   * Copyright SUSE Linux Products GmbH 2010
5   *
6   * Authors: Alexander Graf <agraf@suse.de>
7   */
8  
9  #ifndef __ASM_KVM_BOOK3S_64_H__
10  #define __ASM_KVM_BOOK3S_64_H__
11  
12  #include <linux/string.h>
13  #include <asm/bitops.h>
14  #include <asm/book3s/64/mmu-hash.h>
15  #include <asm/cpu_has_feature.h>
16  #include <asm/ppc-opcode.h>
17  #include <asm/pte-walk.h>
18  
19  /*
20   * Structure for a nested guest, that is, for a guest that is managed by
21   * one of our guests.
22   */
23  struct kvm_nested_guest {
24  	struct kvm *l1_host;		/* L1 VM that owns this nested guest */
25  	int l1_lpid;			/* lpid L1 guest thinks this guest is */
26  	int shadow_lpid;		/* real lpid of this nested guest */
27  	pgd_t *shadow_pgtable;		/* our page table for this guest */
28  	u64 l1_gr_to_hr;		/* L1's addr of part'n-scoped table */
29  	u64 process_table;		/* process table entry for this guest */
30  	long refcnt;			/* number of pointers to this struct */
31  	struct mutex tlb_lock;		/* serialize page faults and tlbies */
32  	struct kvm_nested_guest *next;
33  	cpumask_t need_tlb_flush;
34  	short prev_cpu[NR_CPUS];
35  	u8 radix;			/* is this nested guest radix */
36  };
37  
38  /*
39   * We define a nested rmap entry as a single 64-bit quantity
40   * 0xFFF0000000000000	12-bit lpid field
41   * 0x000FFFFFFFFFF000	40-bit guest 4k page frame number
42   * 0x0000000000000001	1-bit  single entry flag
43   */
44  #define RMAP_NESTED_LPID_MASK		0xFFF0000000000000UL
45  #define RMAP_NESTED_LPID_SHIFT		(52)
46  #define RMAP_NESTED_GPA_MASK		0x000FFFFFFFFFF000UL
47  #define RMAP_NESTED_IS_SINGLE_ENTRY	0x0000000000000001UL
48  
49  /* Structure for a nested guest rmap entry */
50  struct rmap_nested {
51  	struct llist_node list;
52  	u64 rmap;
53  };
54  
55  /*
56   * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
57   *			     safe against removal of the list entry or NULL list
58   * @pos:	a (struct rmap_nested *) to use as a loop cursor
59   * @node:	pointer to the first entry
60   *		NOTE: this can be NULL
61   * @rmapp:	an (unsigned long *) in which to return the rmap entries on each
62   *		iteration
63   *		NOTE: this must point to already allocated memory
64   *
65   * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
66   * rmap entry in the memslot. The list is always terminated by a "single entry"
67   * stored in the list element of the final entry of the llist. If there is ONLY
68   * a single entry then this is itself in the rmap entry of the memslot, not a
69   * llist head pointer.
70   *
71   * Note that the iterator below assumes that a nested rmap entry is always
72   * non-zero.  This is true for our usage because the LPID field is always
73   * non-zero (zero is reserved for the host).
74   *
75   * This should be used to iterate over the list of rmap_nested entries with
76   * processing done on the u64 rmap value given by each iteration. This is safe
77   * against removal of list entries and it is always safe to call free on (pos).
78   *
79   * e.g.
80   * struct rmap_nested *cursor;
81   * struct llist_node *first;
82   * unsigned long rmap;
83   * for_each_nest_rmap_safe(cursor, first, &rmap) {
84   *	do_something(rmap);
85   *	free(cursor);
86   * }
87   */
88  #define for_each_nest_rmap_safe(pos, node, rmapp)			       \
89  	for ((pos) = llist_entry((node), typeof(*(pos)), list);		       \
90  	     (node) &&							       \
91  	     (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?     \
92  			  ((u64) (node)) : ((pos)->rmap))) &&		       \
93  	     (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?      \
94  			 ((struct llist_node *) ((pos) = NULL)) :	       \
95  			 (pos)->list.next)), true);			       \
96  	     (pos) = llist_entry((node), typeof(*(pos)), list))
97  
98  struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
99  					  bool create);
100  void kvmhv_put_nested(struct kvm_nested_guest *gp);
101  int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
102  
103  /* Encoding of first parameter for H_TLB_INVALIDATE */
104  #define H_TLBIE_P1_ENC(ric, prs, r)	(___PPC_RIC(ric) | ___PPC_PRS(prs) | \
105  					 ___PPC_R(r))
106  
107  /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
108  #define PPC_MIN_HPT_ORDER	18
109  #define PPC_MAX_HPT_ORDER	46
110  
111  #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
svcpu_get(struct kvm_vcpu * vcpu)112  static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
113  {
114  	preempt_disable();
115  	return &get_paca()->shadow_vcpu;
116  }
117  
svcpu_put(struct kvmppc_book3s_shadow_vcpu * svcpu)118  static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
119  {
120  	preempt_enable();
121  }
122  #endif
123  
124  #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
125  
kvm_is_radix(struct kvm * kvm)126  static inline bool kvm_is_radix(struct kvm *kvm)
127  {
128  	return kvm->arch.radix;
129  }
130  
kvmhv_vcpu_is_radix(struct kvm_vcpu * vcpu)131  static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
132  {
133  	bool radix;
134  
135  	if (vcpu->arch.nested)
136  		radix = vcpu->arch.nested->radix;
137  	else
138  		radix = kvm_is_radix(vcpu->kvm);
139  
140  	return radix;
141  }
142  
143  unsigned long kvmppc_msr_hard_disable_set_facilities(struct kvm_vcpu *vcpu, unsigned long msr);
144  
145  int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb);
146  
147  #define KVM_DEFAULT_HPT_ORDER	24	/* 16MB HPT by default */
148  #endif
149  
150  /*
151   * Invalid HDSISR value which is used to indicate when HW has not set the reg.
152   * Used to work around an errata.
153   */
154  #define HDSISR_CANARY	0x7fff
155  
156  /*
157   * We use a lock bit in HPTE dword 0 to synchronize updates and
158   * accesses to each HPTE, and another bit to indicate non-present
159   * HPTEs.
160   */
161  #define HPTE_V_HVLOCK	0x40UL
162  #define HPTE_V_ABSENT	0x20UL
163  
164  /*
165   * We use this bit in the guest_rpte field of the revmap entry
166   * to indicate a modified HPTE.
167   */
168  #define HPTE_GR_MODIFIED	(1ul << 62)
169  
170  /* These bits are reserved in the guest view of the HPTE */
171  #define HPTE_GR_RESERVED	HPTE_GR_MODIFIED
172  
try_lock_hpte(__be64 * hpte,unsigned long bits)173  static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
174  {
175  	unsigned long tmp, old;
176  	__be64 be_lockbit, be_bits;
177  
178  	/*
179  	 * We load/store in native endian, but the HTAB is in big endian. If
180  	 * we byte swap all data we apply on the PTE we're implicitly correct
181  	 * again.
182  	 */
183  	be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
184  	be_bits = cpu_to_be64(bits);
185  
186  	asm volatile("	ldarx	%0,0,%2\n"
187  		     "	and.	%1,%0,%3\n"
188  		     "	bne	2f\n"
189  		     "	or	%0,%0,%4\n"
190  		     "  stdcx.	%0,0,%2\n"
191  		     "	beq+	2f\n"
192  		     "	mr	%1,%3\n"
193  		     "2:	isync"
194  		     : "=&r" (tmp), "=&r" (old)
195  		     : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
196  		     : "cc", "memory");
197  	return old == 0;
198  }
199  
unlock_hpte(__be64 * hpte,unsigned long hpte_v)200  static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
201  {
202  	hpte_v &= ~HPTE_V_HVLOCK;
203  	asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
204  	hpte[0] = cpu_to_be64(hpte_v);
205  }
206  
207  /* Without barrier */
__unlock_hpte(__be64 * hpte,unsigned long hpte_v)208  static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
209  {
210  	hpte_v &= ~HPTE_V_HVLOCK;
211  	hpte[0] = cpu_to_be64(hpte_v);
212  }
213  
214  /*
215   * These functions encode knowledge of the POWER7/8/9 hardware
216   * interpretations of the HPTE LP (large page size) field.
217   */
kvmppc_hpte_page_shifts(unsigned long h,unsigned long l)218  static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
219  {
220  	unsigned int lphi;
221  
222  	if (!(h & HPTE_V_LARGE))
223  		return 12;	/* 4kB */
224  	lphi = (l >> 16) & 0xf;
225  	switch ((l >> 12) & 0xf) {
226  	case 0:
227  		return !lphi ? 24 : 0;		/* 16MB */
228  		break;
229  	case 1:
230  		return 16;			/* 64kB */
231  		break;
232  	case 3:
233  		return !lphi ? 34 : 0;		/* 16GB */
234  		break;
235  	case 7:
236  		return (16 << 8) + 12;		/* 64kB in 4kB */
237  		break;
238  	case 8:
239  		if (!lphi)
240  			return (24 << 8) + 16;	/* 16MB in 64kkB */
241  		if (lphi == 3)
242  			return (24 << 8) + 12;	/* 16MB in 4kB */
243  		break;
244  	}
245  	return 0;
246  }
247  
kvmppc_hpte_base_page_shift(unsigned long h,unsigned long l)248  static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
249  {
250  	return kvmppc_hpte_page_shifts(h, l) & 0xff;
251  }
252  
kvmppc_hpte_actual_page_shift(unsigned long h,unsigned long l)253  static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
254  {
255  	int tmp = kvmppc_hpte_page_shifts(h, l);
256  
257  	if (tmp >= 0x100)
258  		tmp >>= 8;
259  	return tmp;
260  }
261  
kvmppc_actual_pgsz(unsigned long v,unsigned long r)262  static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
263  {
264  	int shift = kvmppc_hpte_actual_page_shift(v, r);
265  
266  	if (shift)
267  		return 1ul << shift;
268  	return 0;
269  }
270  
kvmppc_pgsize_lp_encoding(int base_shift,int actual_shift)271  static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
272  {
273  	switch (base_shift) {
274  	case 12:
275  		switch (actual_shift) {
276  		case 12:
277  			return 0;
278  		case 16:
279  			return 7;
280  		case 24:
281  			return 0x38;
282  		}
283  		break;
284  	case 16:
285  		switch (actual_shift) {
286  		case 16:
287  			return 1;
288  		case 24:
289  			return 8;
290  		}
291  		break;
292  	case 24:
293  		return 0;
294  	}
295  	return -1;
296  }
297  
compute_tlbie_rb(unsigned long v,unsigned long r,unsigned long pte_index)298  static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
299  					     unsigned long pte_index)
300  {
301  	int a_pgshift, b_pgshift;
302  	unsigned long rb = 0, va_low, sllp;
303  
304  	b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
305  	if (a_pgshift >= 0x100) {
306  		b_pgshift &= 0xff;
307  		a_pgshift >>= 8;
308  	}
309  
310  	/*
311  	 * Ignore the top 14 bits of va
312  	 * v have top two bits covering segment size, hence move
313  	 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
314  	 * AVA field in v also have the lower 23 bits ignored.
315  	 * For base page size 4K we need 14 .. 65 bits (so need to
316  	 * collect extra 11 bits)
317  	 * For others we need 14..14+i
318  	 */
319  	/* This covers 14..54 bits of va*/
320  	rb = (v & ~0x7fUL) << 16;		/* AVA field */
321  
322  	/*
323  	 * AVA in v had cleared lower 23 bits. We need to derive
324  	 * that from pteg index
325  	 */
326  	va_low = pte_index >> 3;
327  	if (v & HPTE_V_SECONDARY)
328  		va_low = ~va_low;
329  	/*
330  	 * get the vpn bits from va_low using reverse of hashing.
331  	 * In v we have va with 23 bits dropped and then left shifted
332  	 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
333  	 * right shift it with (SID_SHIFT - (23 - 7))
334  	 */
335  	if (!(v & HPTE_V_1TB_SEG))
336  		va_low ^= v >> (SID_SHIFT - 16);
337  	else
338  		va_low ^= v >> (SID_SHIFT_1T - 16);
339  	va_low &= 0x7ff;
340  
341  	if (b_pgshift <= 12) {
342  		if (a_pgshift > 12) {
343  			sllp = (a_pgshift == 16) ? 5 : 4;
344  			rb |= sllp << 5;	/*  AP field */
345  		}
346  		rb |= (va_low & 0x7ff) << 12;	/* remaining 11 bits of AVA */
347  	} else {
348  		int aval_shift;
349  		/*
350  		 * remaining bits of AVA/LP fields
351  		 * Also contain the rr bits of LP
352  		 */
353  		rb |= (va_low << b_pgshift) & 0x7ff000;
354  		/*
355  		 * Now clear not needed LP bits based on actual psize
356  		 */
357  		rb &= ~((1ul << a_pgshift) - 1);
358  		/*
359  		 * AVAL field 58..77 - base_page_shift bits of va
360  		 * we have space for 58..64 bits, Missing bits should
361  		 * be zero filled. +1 is to take care of L bit shift
362  		 */
363  		aval_shift = 64 - (77 - b_pgshift) + 1;
364  		rb |= ((va_low << aval_shift) & 0xfe);
365  
366  		rb |= 1;		/* L field */
367  		rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
368  	}
369  	/*
370  	 * This sets both bits of the B field in the PTE. 0b1x values are
371  	 * reserved, but those will have been filtered by kvmppc_do_h_enter.
372  	 */
373  	rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;	/* B field */
374  	return rb;
375  }
376  
hpte_rpn(unsigned long ptel,unsigned long psize)377  static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
378  {
379  	return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
380  }
381  
hpte_is_writable(unsigned long ptel)382  static inline int hpte_is_writable(unsigned long ptel)
383  {
384  	unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
385  
386  	return pp != PP_RXRX && pp != PP_RXXX;
387  }
388  
hpte_make_readonly(unsigned long ptel)389  static inline unsigned long hpte_make_readonly(unsigned long ptel)
390  {
391  	if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
392  		ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
393  	else
394  		ptel |= PP_RXRX;
395  	return ptel;
396  }
397  
hpte_cache_flags_ok(unsigned long hptel,bool is_ci)398  static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
399  {
400  	unsigned int wimg = hptel & HPTE_R_WIMG;
401  
402  	/* Handle SAO */
403  	if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
404  	    cpu_has_feature(CPU_FTR_ARCH_206))
405  		wimg = HPTE_R_M;
406  
407  	if (!is_ci)
408  		return wimg == HPTE_R_M;
409  	/*
410  	 * if host is mapped cache inhibited, make sure hptel also have
411  	 * cache inhibited.
412  	 */
413  	if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
414  		return false;
415  	return !!(wimg & HPTE_R_I);
416  }
417  
418  /*
419   * If it's present and writable, atomically set dirty and referenced bits and
420   * return the PTE, otherwise return 0.
421   */
kvmppc_read_update_linux_pte(pte_t * ptep,int writing)422  static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
423  {
424  	pte_t old_pte, new_pte = __pte(0);
425  
426  	while (1) {
427  		/*
428  		 * Make sure we don't reload from ptep
429  		 */
430  		old_pte = READ_ONCE(*ptep);
431  		/*
432  		 * wait until H_PAGE_BUSY is clear then set it atomically
433  		 */
434  		if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
435  			cpu_relax();
436  			continue;
437  		}
438  		/* If pte is not present return None */
439  		if (unlikely(!pte_present(old_pte)))
440  			return __pte(0);
441  
442  		new_pte = pte_mkyoung(old_pte);
443  		if (writing && pte_write(old_pte))
444  			new_pte = pte_mkdirty(new_pte);
445  
446  		if (pte_xchg(ptep, old_pte, new_pte))
447  			break;
448  	}
449  	return new_pte;
450  }
451  
hpte_read_permission(unsigned long pp,unsigned long key)452  static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
453  {
454  	if (key)
455  		return PP_RWRX <= pp && pp <= PP_RXRX;
456  	return true;
457  }
458  
hpte_write_permission(unsigned long pp,unsigned long key)459  static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
460  {
461  	if (key)
462  		return pp == PP_RWRW;
463  	return pp <= PP_RWRW;
464  }
465  
hpte_get_skey_perm(unsigned long hpte_r,unsigned long amr)466  static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
467  {
468  	unsigned long skey;
469  
470  	skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
471  		((hpte_r & HPTE_R_KEY_LO) >> 9);
472  	return (amr >> (62 - 2 * skey)) & 3;
473  }
474  
lock_rmap(unsigned long * rmap)475  static inline void lock_rmap(unsigned long *rmap)
476  {
477  	do {
478  		while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
479  			cpu_relax();
480  	} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
481  }
482  
unlock_rmap(unsigned long * rmap)483  static inline void unlock_rmap(unsigned long *rmap)
484  {
485  	__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
486  }
487  
slot_is_aligned(struct kvm_memory_slot * memslot,unsigned long pagesize)488  static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
489  				   unsigned long pagesize)
490  {
491  	unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
492  
493  	if (pagesize <= PAGE_SIZE)
494  		return true;
495  	return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
496  }
497  
498  /*
499   * This works for 4k, 64k and 16M pages on POWER7,
500   * and 4k and 16M pages on PPC970.
501   */
slb_pgsize_encoding(unsigned long psize)502  static inline unsigned long slb_pgsize_encoding(unsigned long psize)
503  {
504  	unsigned long senc = 0;
505  
506  	if (psize > 0x1000) {
507  		senc = SLB_VSID_L;
508  		if (psize == 0x10000)
509  			senc |= SLB_VSID_LP_01;
510  	}
511  	return senc;
512  }
513  
is_vrma_hpte(unsigned long hpte_v)514  static inline int is_vrma_hpte(unsigned long hpte_v)
515  {
516  	return (hpte_v & ~0xffffffUL) ==
517  		(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
518  }
519  
520  #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
521  /*
522   * Note modification of an HPTE; set the HPTE modified bit
523   * if anyone is interested.
524   */
note_hpte_modification(struct kvm * kvm,struct revmap_entry * rev)525  static inline void note_hpte_modification(struct kvm *kvm,
526  					  struct revmap_entry *rev)
527  {
528  	if (atomic_read(&kvm->arch.hpte_mod_interest))
529  		rev->guest_rpte |= HPTE_GR_MODIFIED;
530  }
531  
532  /*
533   * Like kvm_memslots(), but for use in real mode when we can't do
534   * any RCU stuff (since the secondary threads are offline from the
535   * kernel's point of view), and we can't print anything.
536   * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
537   */
kvm_memslots_raw(struct kvm * kvm)538  static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
539  {
540  	return rcu_dereference_raw_check(kvm->memslots[0]);
541  }
542  
543  extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
544  extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
545  
546  extern void kvmhv_rm_send_ipi(int cpu);
547  
kvmppc_hpt_npte(struct kvm_hpt_info * hpt)548  static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
549  {
550  	/* HPTEs are 2**4 bytes long */
551  	return 1UL << (hpt->order - 4);
552  }
553  
kvmppc_hpt_mask(struct kvm_hpt_info * hpt)554  static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
555  {
556  	/* 128 (2**7) bytes in each HPTEG */
557  	return (1UL << (hpt->order - 7)) - 1;
558  }
559  
560  /* Set bits in a dirty bitmap, which is in LE format */
set_dirty_bits(unsigned long * map,unsigned long i,unsigned long npages)561  static inline void set_dirty_bits(unsigned long *map, unsigned long i,
562  				  unsigned long npages)
563  {
564  
565  	if (npages >= 8)
566  		memset((char *)map + i / 8, 0xff, npages / 8);
567  	else
568  		for (; npages; ++i, --npages)
569  			__set_bit_le(i, map);
570  }
571  
set_dirty_bits_atomic(unsigned long * map,unsigned long i,unsigned long npages)572  static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
573  					 unsigned long npages)
574  {
575  	if (npages >= 8)
576  		memset((char *)map + i / 8, 0xff, npages / 8);
577  	else
578  		for (; npages; ++i, --npages)
579  			set_bit_le(i, map);
580  }
581  
sanitize_msr(u64 msr)582  static inline u64 sanitize_msr(u64 msr)
583  {
584  	msr &= ~MSR_HV;
585  	msr |= MSR_ME;
586  	return msr;
587  }
588  
589  #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
copy_from_checkpoint(struct kvm_vcpu * vcpu)590  static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
591  {
592  	vcpu->arch.regs.ccr  = vcpu->arch.cr_tm;
593  	vcpu->arch.regs.xer = vcpu->arch.xer_tm;
594  	vcpu->arch.regs.link  = vcpu->arch.lr_tm;
595  	vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
596  	vcpu->arch.amr = vcpu->arch.amr_tm;
597  	vcpu->arch.ppr = vcpu->arch.ppr_tm;
598  	vcpu->arch.dscr = vcpu->arch.dscr_tm;
599  	vcpu->arch.tar = vcpu->arch.tar_tm;
600  	memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
601  	       sizeof(vcpu->arch.regs.gpr));
602  	vcpu->arch.fp  = vcpu->arch.fp_tm;
603  	vcpu->arch.vr  = vcpu->arch.vr_tm;
604  	vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
605  }
606  
copy_to_checkpoint(struct kvm_vcpu * vcpu)607  static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
608  {
609  	vcpu->arch.cr_tm  = vcpu->arch.regs.ccr;
610  	vcpu->arch.xer_tm = vcpu->arch.regs.xer;
611  	vcpu->arch.lr_tm  = vcpu->arch.regs.link;
612  	vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
613  	vcpu->arch.amr_tm = vcpu->arch.amr;
614  	vcpu->arch.ppr_tm = vcpu->arch.ppr;
615  	vcpu->arch.dscr_tm = vcpu->arch.dscr;
616  	vcpu->arch.tar_tm = vcpu->arch.tar;
617  	memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
618  	       sizeof(vcpu->arch.regs.gpr));
619  	vcpu->arch.fp_tm  = vcpu->arch.fp;
620  	vcpu->arch.vr_tm  = vcpu->arch.vr;
621  	vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
622  }
623  #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
624  
625  extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
626  			     unsigned long gpa, unsigned int level,
627  			     unsigned long mmu_seq, u64 lpid,
628  			     unsigned long *rmapp, struct rmap_nested **n_rmap);
629  extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
630  				   struct rmap_nested **n_rmap);
631  extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
632  					   unsigned long clr, unsigned long set,
633  					   unsigned long hpa, unsigned long nbytes);
634  extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
635  				const struct kvm_memory_slot *memslot,
636  				unsigned long gpa, unsigned long hpa,
637  				unsigned long nbytes);
638  
639  static inline pte_t *
find_kvm_secondary_pte_unlocked(struct kvm * kvm,unsigned long ea,unsigned * hshift)640  find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea,
641  				unsigned *hshift)
642  {
643  	pte_t *pte;
644  
645  	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
646  	return pte;
647  }
648  
find_kvm_secondary_pte(struct kvm * kvm,unsigned long ea,unsigned * hshift)649  static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea,
650  					    unsigned *hshift)
651  {
652  	pte_t *pte;
653  
654  	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
655  		"%s called with kvm mmu_lock not held \n", __func__);
656  	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
657  
658  	return pte;
659  }
660  
find_kvm_host_pte(struct kvm * kvm,unsigned long mmu_seq,unsigned long ea,unsigned * hshift)661  static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq,
662  				       unsigned long ea, unsigned *hshift)
663  {
664  	pte_t *pte;
665  
666  	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
667  		"%s called with kvm mmu_lock not held \n", __func__);
668  
669  	if (mmu_invalidate_retry(kvm, mmu_seq))
670  		return NULL;
671  
672  	pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift);
673  
674  	return pte;
675  }
676  
677  extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
678  					unsigned long ea, unsigned *hshift);
679  
680  int kvmhv_nestedv2_vcpu_create(struct kvm_vcpu *vcpu, struct kvmhv_nestedv2_io *io);
681  void kvmhv_nestedv2_vcpu_free(struct kvm_vcpu *vcpu, struct kvmhv_nestedv2_io *io);
682  int kvmhv_nestedv2_flush_vcpu(struct kvm_vcpu *vcpu, u64 time_limit);
683  int kvmhv_nestedv2_set_ptbl_entry(unsigned long lpid, u64 dw0, u64 dw1);
684  int kvmhv_nestedv2_parse_output(struct kvm_vcpu *vcpu);
685  int kvmhv_nestedv2_set_vpa(struct kvm_vcpu *vcpu, unsigned long vpa);
686  
687  int kmvhv_counters_tracepoint_regfunc(void);
688  void kmvhv_counters_tracepoint_unregfunc(void);
689  int kvmhv_get_l2_counters_status(void);
690  void kvmhv_set_l2_counters_status(int cpu, bool status);
691  
692  #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
693  
694  #endif /* __ASM_KVM_BOOK3S_64_H__ */
695