1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PAGEMAP_H 3 #define _LINUX_PAGEMAP_H 4 5 /* 6 * Copyright 1995 Linus Torvalds 7 */ 8 #include <linux/mm.h> 9 #include <linux/fs.h> 10 #include <linux/list.h> 11 #include <linux/highmem.h> 12 #include <linux/compiler.h> 13 #include <linux/uaccess.h> 14 #include <linux/gfp.h> 15 #include <linux/bitops.h> 16 #include <linux/hardirq.h> /* for in_interrupt() */ 17 #include <linux/hugetlb_inline.h> 18 19 struct folio_batch; 20 21 unsigned long invalidate_mapping_pages(struct address_space *mapping, 22 pgoff_t start, pgoff_t end); 23 invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode) 25 { 26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 27 S_ISLNK(inode->i_mode)) 28 invalidate_mapping_pages(inode->i_mapping, 0, -1); 29 } 30 int invalidate_inode_pages2(struct address_space *mapping); 31 int invalidate_inode_pages2_range(struct address_space *mapping, 32 pgoff_t start, pgoff_t end); 33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count); 34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count); 35 int filemap_invalidate_pages(struct address_space *mapping, 36 loff_t pos, loff_t end, bool nowait); 37 38 int write_inode_now(struct inode *, int sync); 39 int filemap_fdatawrite(struct address_space *); 40 int filemap_flush(struct address_space *); 41 int filemap_fdatawait_keep_errors(struct address_space *mapping); 42 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); 43 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 44 loff_t start_byte, loff_t end_byte); 45 int filemap_invalidate_inode(struct inode *inode, bool flush, 46 loff_t start, loff_t end); 47 filemap_fdatawait(struct address_space * mapping)48 static inline int filemap_fdatawait(struct address_space *mapping) 49 { 50 return filemap_fdatawait_range(mapping, 0, LLONG_MAX); 51 } 52 53 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); 54 int filemap_write_and_wait_range(struct address_space *mapping, 55 loff_t lstart, loff_t lend); 56 int __filemap_fdatawrite_range(struct address_space *mapping, 57 loff_t start, loff_t end, int sync_mode); 58 int filemap_fdatawrite_range(struct address_space *mapping, 59 loff_t start, loff_t end); 60 int filemap_check_errors(struct address_space *mapping); 61 void __filemap_set_wb_err(struct address_space *mapping, int err); 62 int filemap_fdatawrite_wbc(struct address_space *mapping, 63 struct writeback_control *wbc); 64 int kiocb_write_and_wait(struct kiocb *iocb, size_t count); 65 filemap_write_and_wait(struct address_space * mapping)66 static inline int filemap_write_and_wait(struct address_space *mapping) 67 { 68 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); 69 } 70 71 /** 72 * filemap_set_wb_err - set a writeback error on an address_space 73 * @mapping: mapping in which to set writeback error 74 * @err: error to be set in mapping 75 * 76 * When writeback fails in some way, we must record that error so that 77 * userspace can be informed when fsync and the like are called. We endeavor 78 * to report errors on any file that was open at the time of the error. Some 79 * internal callers also need to know when writeback errors have occurred. 80 * 81 * When a writeback error occurs, most filesystems will want to call 82 * filemap_set_wb_err to record the error in the mapping so that it will be 83 * automatically reported whenever fsync is called on the file. 84 */ filemap_set_wb_err(struct address_space * mapping,int err)85 static inline void filemap_set_wb_err(struct address_space *mapping, int err) 86 { 87 /* Fastpath for common case of no error */ 88 if (unlikely(err)) 89 __filemap_set_wb_err(mapping, err); 90 } 91 92 /** 93 * filemap_check_wb_err - has an error occurred since the mark was sampled? 94 * @mapping: mapping to check for writeback errors 95 * @since: previously-sampled errseq_t 96 * 97 * Grab the errseq_t value from the mapping, and see if it has changed "since" 98 * the given value was sampled. 99 * 100 * If it has then report the latest error set, otherwise return 0. 101 */ filemap_check_wb_err(struct address_space * mapping,errseq_t since)102 static inline int filemap_check_wb_err(struct address_space *mapping, 103 errseq_t since) 104 { 105 return errseq_check(&mapping->wb_err, since); 106 } 107 108 /** 109 * filemap_sample_wb_err - sample the current errseq_t to test for later errors 110 * @mapping: mapping to be sampled 111 * 112 * Writeback errors are always reported relative to a particular sample point 113 * in the past. This function provides those sample points. 114 */ filemap_sample_wb_err(struct address_space * mapping)115 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) 116 { 117 return errseq_sample(&mapping->wb_err); 118 } 119 120 /** 121 * file_sample_sb_err - sample the current errseq_t to test for later errors 122 * @file: file pointer to be sampled 123 * 124 * Grab the most current superblock-level errseq_t value for the given 125 * struct file. 126 */ file_sample_sb_err(struct file * file)127 static inline errseq_t file_sample_sb_err(struct file *file) 128 { 129 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); 130 } 131 132 /* 133 * Flush file data before changing attributes. Caller must hold any locks 134 * required to prevent further writes to this file until we're done setting 135 * flags. 136 */ inode_drain_writes(struct inode * inode)137 static inline int inode_drain_writes(struct inode *inode) 138 { 139 inode_dio_wait(inode); 140 return filemap_write_and_wait(inode->i_mapping); 141 } 142 mapping_empty(struct address_space * mapping)143 static inline bool mapping_empty(struct address_space *mapping) 144 { 145 return xa_empty(&mapping->i_pages); 146 } 147 148 /* 149 * mapping_shrinkable - test if page cache state allows inode reclaim 150 * @mapping: the page cache mapping 151 * 152 * This checks the mapping's cache state for the pupose of inode 153 * reclaim and LRU management. 154 * 155 * The caller is expected to hold the i_lock, but is not required to 156 * hold the i_pages lock, which usually protects cache state. That's 157 * because the i_lock and the list_lru lock that protect the inode and 158 * its LRU state don't nest inside the irq-safe i_pages lock. 159 * 160 * Cache deletions are performed under the i_lock, which ensures that 161 * when an inode goes empty, it will reliably get queued on the LRU. 162 * 163 * Cache additions do not acquire the i_lock and may race with this 164 * check, in which case we'll report the inode as shrinkable when it 165 * has cache pages. This is okay: the shrinker also checks the 166 * refcount and the referenced bit, which will be elevated or set in 167 * the process of adding new cache pages to an inode. 168 */ mapping_shrinkable(struct address_space * mapping)169 static inline bool mapping_shrinkable(struct address_space *mapping) 170 { 171 void *head; 172 173 /* 174 * On highmem systems, there could be lowmem pressure from the 175 * inodes before there is highmem pressure from the page 176 * cache. Make inodes shrinkable regardless of cache state. 177 */ 178 if (IS_ENABLED(CONFIG_HIGHMEM)) 179 return true; 180 181 /* Cache completely empty? Shrink away. */ 182 head = rcu_access_pointer(mapping->i_pages.xa_head); 183 if (!head) 184 return true; 185 186 /* 187 * The xarray stores single offset-0 entries directly in the 188 * head pointer, which allows non-resident page cache entries 189 * to escape the shadow shrinker's list of xarray nodes. The 190 * inode shrinker needs to pick them up under memory pressure. 191 */ 192 if (!xa_is_node(head) && xa_is_value(head)) 193 return true; 194 195 return false; 196 } 197 198 /* 199 * Bits in mapping->flags. 200 */ 201 enum mapping_flags { 202 AS_EIO = 0, /* IO error on async write */ 203 AS_ENOSPC = 1, /* ENOSPC on async write */ 204 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 205 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 206 AS_EXITING = 4, /* final truncate in progress */ 207 /* writeback related tags are not used */ 208 AS_NO_WRITEBACK_TAGS = 5, 209 AS_RELEASE_ALWAYS = 6, /* Call ->release_folio(), even if no private data */ 210 AS_STABLE_WRITES = 7, /* must wait for writeback before modifying 211 folio contents */ 212 AS_INACCESSIBLE = 8, /* Do not attempt direct R/W access to the mapping */ 213 /* Bits 16-25 are used for FOLIO_ORDER */ 214 AS_FOLIO_ORDER_BITS = 5, 215 AS_FOLIO_ORDER_MIN = 16, 216 AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS, 217 }; 218 219 #define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1) 220 #define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN) 221 #define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX) 222 #define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK) 223 224 /** 225 * mapping_set_error - record a writeback error in the address_space 226 * @mapping: the mapping in which an error should be set 227 * @error: the error to set in the mapping 228 * 229 * When writeback fails in some way, we must record that error so that 230 * userspace can be informed when fsync and the like are called. We endeavor 231 * to report errors on any file that was open at the time of the error. Some 232 * internal callers also need to know when writeback errors have occurred. 233 * 234 * When a writeback error occurs, most filesystems will want to call 235 * mapping_set_error to record the error in the mapping so that it can be 236 * reported when the application calls fsync(2). 237 */ mapping_set_error(struct address_space * mapping,int error)238 static inline void mapping_set_error(struct address_space *mapping, int error) 239 { 240 if (likely(!error)) 241 return; 242 243 /* Record in wb_err for checkers using errseq_t based tracking */ 244 __filemap_set_wb_err(mapping, error); 245 246 /* Record it in superblock */ 247 if (mapping->host) 248 errseq_set(&mapping->host->i_sb->s_wb_err, error); 249 250 /* Record it in flags for now, for legacy callers */ 251 if (error == -ENOSPC) 252 set_bit(AS_ENOSPC, &mapping->flags); 253 else 254 set_bit(AS_EIO, &mapping->flags); 255 } 256 mapping_set_unevictable(struct address_space * mapping)257 static inline void mapping_set_unevictable(struct address_space *mapping) 258 { 259 set_bit(AS_UNEVICTABLE, &mapping->flags); 260 } 261 mapping_clear_unevictable(struct address_space * mapping)262 static inline void mapping_clear_unevictable(struct address_space *mapping) 263 { 264 clear_bit(AS_UNEVICTABLE, &mapping->flags); 265 } 266 mapping_unevictable(struct address_space * mapping)267 static inline bool mapping_unevictable(struct address_space *mapping) 268 { 269 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 270 } 271 mapping_set_exiting(struct address_space * mapping)272 static inline void mapping_set_exiting(struct address_space *mapping) 273 { 274 set_bit(AS_EXITING, &mapping->flags); 275 } 276 mapping_exiting(struct address_space * mapping)277 static inline int mapping_exiting(struct address_space *mapping) 278 { 279 return test_bit(AS_EXITING, &mapping->flags); 280 } 281 mapping_set_no_writeback_tags(struct address_space * mapping)282 static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 283 { 284 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 285 } 286 mapping_use_writeback_tags(struct address_space * mapping)287 static inline int mapping_use_writeback_tags(struct address_space *mapping) 288 { 289 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 290 } 291 mapping_release_always(const struct address_space * mapping)292 static inline bool mapping_release_always(const struct address_space *mapping) 293 { 294 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags); 295 } 296 mapping_set_release_always(struct address_space * mapping)297 static inline void mapping_set_release_always(struct address_space *mapping) 298 { 299 set_bit(AS_RELEASE_ALWAYS, &mapping->flags); 300 } 301 mapping_clear_release_always(struct address_space * mapping)302 static inline void mapping_clear_release_always(struct address_space *mapping) 303 { 304 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags); 305 } 306 mapping_stable_writes(const struct address_space * mapping)307 static inline bool mapping_stable_writes(const struct address_space *mapping) 308 { 309 return test_bit(AS_STABLE_WRITES, &mapping->flags); 310 } 311 mapping_set_stable_writes(struct address_space * mapping)312 static inline void mapping_set_stable_writes(struct address_space *mapping) 313 { 314 set_bit(AS_STABLE_WRITES, &mapping->flags); 315 } 316 mapping_clear_stable_writes(struct address_space * mapping)317 static inline void mapping_clear_stable_writes(struct address_space *mapping) 318 { 319 clear_bit(AS_STABLE_WRITES, &mapping->flags); 320 } 321 mapping_set_inaccessible(struct address_space * mapping)322 static inline void mapping_set_inaccessible(struct address_space *mapping) 323 { 324 /* 325 * It's expected inaccessible mappings are also unevictable. Compaction 326 * migrate scanner (isolate_migratepages_block()) relies on this to 327 * reduce page locking. 328 */ 329 set_bit(AS_UNEVICTABLE, &mapping->flags); 330 set_bit(AS_INACCESSIBLE, &mapping->flags); 331 } 332 mapping_inaccessible(struct address_space * mapping)333 static inline bool mapping_inaccessible(struct address_space *mapping) 334 { 335 return test_bit(AS_INACCESSIBLE, &mapping->flags); 336 } 337 mapping_gfp_mask(struct address_space * mapping)338 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 339 { 340 return mapping->gfp_mask; 341 } 342 343 /* Restricts the given gfp_mask to what the mapping allows. */ mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)344 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 345 gfp_t gfp_mask) 346 { 347 return mapping_gfp_mask(mapping) & gfp_mask; 348 } 349 350 /* 351 * This is non-atomic. Only to be used before the mapping is activated. 352 * Probably needs a barrier... 353 */ mapping_set_gfp_mask(struct address_space * m,gfp_t mask)354 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 355 { 356 m->gfp_mask = mask; 357 } 358 359 /* 360 * There are some parts of the kernel which assume that PMD entries 361 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then, 362 * limit the maximum allocation order to PMD size. I'm not aware of any 363 * assumptions about maximum order if THP are disabled, but 8 seems like 364 * a good order (that's 1MB if you're using 4kB pages) 365 */ 366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 367 #define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER 368 #else 369 #define PREFERRED_MAX_PAGECACHE_ORDER 8 370 #endif 371 372 /* 373 * xas_split_alloc() does not support arbitrary orders. This implies no 374 * 512MB THP on ARM64 with 64KB base page size. 375 */ 376 #define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1) 377 #define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER) 378 379 /* 380 * mapping_max_folio_size_supported() - Check the max folio size supported 381 * 382 * The filesystem should call this function at mount time if there is a 383 * requirement on the folio mapping size in the page cache. 384 */ mapping_max_folio_size_supported(void)385 static inline size_t mapping_max_folio_size_supported(void) 386 { 387 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 388 return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER); 389 return PAGE_SIZE; 390 } 391 392 /* 393 * mapping_set_folio_order_range() - Set the orders supported by a file. 394 * @mapping: The address space of the file. 395 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive). 396 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive). 397 * 398 * The filesystem should call this function in its inode constructor to 399 * indicate which base size (min) and maximum size (max) of folio the VFS 400 * can use to cache the contents of the file. This should only be used 401 * if the filesystem needs special handling of folio sizes (ie there is 402 * something the core cannot know). 403 * Do not tune it based on, eg, i_size. 404 * 405 * Context: This should not be called while the inode is active as it 406 * is non-atomic. 407 */ mapping_set_folio_order_range(struct address_space * mapping,unsigned int min,unsigned int max)408 static inline void mapping_set_folio_order_range(struct address_space *mapping, 409 unsigned int min, 410 unsigned int max) 411 { 412 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 413 return; 414 415 if (min > MAX_PAGECACHE_ORDER) 416 min = MAX_PAGECACHE_ORDER; 417 418 if (max > MAX_PAGECACHE_ORDER) 419 max = MAX_PAGECACHE_ORDER; 420 421 if (max < min) 422 max = min; 423 424 mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) | 425 (min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX); 426 } 427 mapping_set_folio_min_order(struct address_space * mapping,unsigned int min)428 static inline void mapping_set_folio_min_order(struct address_space *mapping, 429 unsigned int min) 430 { 431 mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER); 432 } 433 434 /** 435 * mapping_set_large_folios() - Indicate the file supports large folios. 436 * @mapping: The address space of the file. 437 * 438 * The filesystem should call this function in its inode constructor to 439 * indicate that the VFS can use large folios to cache the contents of 440 * the file. 441 * 442 * Context: This should not be called while the inode is active as it 443 * is non-atomic. 444 */ mapping_set_large_folios(struct address_space * mapping)445 static inline void mapping_set_large_folios(struct address_space *mapping) 446 { 447 mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER); 448 } 449 450 static inline unsigned int mapping_max_folio_order(const struct address_space * mapping)451 mapping_max_folio_order(const struct address_space *mapping) 452 { 453 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 454 return 0; 455 return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX; 456 } 457 458 static inline unsigned int mapping_min_folio_order(const struct address_space * mapping)459 mapping_min_folio_order(const struct address_space *mapping) 460 { 461 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 462 return 0; 463 return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN; 464 } 465 466 static inline unsigned long mapping_min_folio_nrpages(struct address_space * mapping)467 mapping_min_folio_nrpages(struct address_space *mapping) 468 { 469 return 1UL << mapping_min_folio_order(mapping); 470 } 471 472 /** 473 * mapping_align_index() - Align index for this mapping. 474 * @mapping: The address_space. 475 * @index: The page index. 476 * 477 * The index of a folio must be naturally aligned. If you are adding a 478 * new folio to the page cache and need to know what index to give it, 479 * call this function. 480 */ mapping_align_index(struct address_space * mapping,pgoff_t index)481 static inline pgoff_t mapping_align_index(struct address_space *mapping, 482 pgoff_t index) 483 { 484 return round_down(index, mapping_min_folio_nrpages(mapping)); 485 } 486 487 /* 488 * Large folio support currently depends on THP. These dependencies are 489 * being worked on but are not yet fixed. 490 */ mapping_large_folio_support(struct address_space * mapping)491 static inline bool mapping_large_folio_support(struct address_space *mapping) 492 { 493 /* AS_FOLIO_ORDER is only reasonable for pagecache folios */ 494 VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON, 495 "Anonymous mapping always supports large folio"); 496 497 return mapping_max_folio_order(mapping) > 0; 498 } 499 500 /* Return the maximum folio size for this pagecache mapping, in bytes. */ mapping_max_folio_size(const struct address_space * mapping)501 static inline size_t mapping_max_folio_size(const struct address_space *mapping) 502 { 503 return PAGE_SIZE << mapping_max_folio_order(mapping); 504 } 505 filemap_nr_thps(struct address_space * mapping)506 static inline int filemap_nr_thps(struct address_space *mapping) 507 { 508 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 509 return atomic_read(&mapping->nr_thps); 510 #else 511 return 0; 512 #endif 513 } 514 filemap_nr_thps_inc(struct address_space * mapping)515 static inline void filemap_nr_thps_inc(struct address_space *mapping) 516 { 517 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 518 if (!mapping_large_folio_support(mapping)) 519 atomic_inc(&mapping->nr_thps); 520 #else 521 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 522 #endif 523 } 524 filemap_nr_thps_dec(struct address_space * mapping)525 static inline void filemap_nr_thps_dec(struct address_space *mapping) 526 { 527 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 528 if (!mapping_large_folio_support(mapping)) 529 atomic_dec(&mapping->nr_thps); 530 #else 531 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 532 #endif 533 } 534 535 struct address_space *folio_mapping(struct folio *); 536 struct address_space *swapcache_mapping(struct folio *); 537 538 /** 539 * folio_file_mapping - Find the mapping this folio belongs to. 540 * @folio: The folio. 541 * 542 * For folios which are in the page cache, return the mapping that this 543 * page belongs to. Folios in the swap cache return the mapping of the 544 * swap file or swap device where the data is stored. This is different 545 * from the mapping returned by folio_mapping(). The only reason to 546 * use it is if, like NFS, you return 0 from ->activate_swapfile. 547 * 548 * Do not call this for folios which aren't in the page cache or swap cache. 549 */ folio_file_mapping(struct folio * folio)550 static inline struct address_space *folio_file_mapping(struct folio *folio) 551 { 552 if (unlikely(folio_test_swapcache(folio))) 553 return swapcache_mapping(folio); 554 555 return folio->mapping; 556 } 557 558 /** 559 * folio_flush_mapping - Find the file mapping this folio belongs to. 560 * @folio: The folio. 561 * 562 * For folios which are in the page cache, return the mapping that this 563 * page belongs to. Anonymous folios return NULL, even if they're in 564 * the swap cache. Other kinds of folio also return NULL. 565 * 566 * This is ONLY used by architecture cache flushing code. If you aren't 567 * writing cache flushing code, you want either folio_mapping() or 568 * folio_file_mapping(). 569 */ folio_flush_mapping(struct folio * folio)570 static inline struct address_space *folio_flush_mapping(struct folio *folio) 571 { 572 if (unlikely(folio_test_swapcache(folio))) 573 return NULL; 574 575 return folio_mapping(folio); 576 } 577 page_file_mapping(struct page * page)578 static inline struct address_space *page_file_mapping(struct page *page) 579 { 580 return folio_file_mapping(page_folio(page)); 581 } 582 583 /** 584 * folio_inode - Get the host inode for this folio. 585 * @folio: The folio. 586 * 587 * For folios which are in the page cache, return the inode that this folio 588 * belongs to. 589 * 590 * Do not call this for folios which aren't in the page cache. 591 */ folio_inode(struct folio * folio)592 static inline struct inode *folio_inode(struct folio *folio) 593 { 594 return folio->mapping->host; 595 } 596 597 /** 598 * folio_attach_private - Attach private data to a folio. 599 * @folio: Folio to attach data to. 600 * @data: Data to attach to folio. 601 * 602 * Attaching private data to a folio increments the page's reference count. 603 * The data must be detached before the folio will be freed. 604 */ folio_attach_private(struct folio * folio,void * data)605 static inline void folio_attach_private(struct folio *folio, void *data) 606 { 607 folio_get(folio); 608 folio->private = data; 609 folio_set_private(folio); 610 } 611 612 /** 613 * folio_change_private - Change private data on a folio. 614 * @folio: Folio to change the data on. 615 * @data: Data to set on the folio. 616 * 617 * Change the private data attached to a folio and return the old 618 * data. The page must previously have had data attached and the data 619 * must be detached before the folio will be freed. 620 * 621 * Return: Data that was previously attached to the folio. 622 */ folio_change_private(struct folio * folio,void * data)623 static inline void *folio_change_private(struct folio *folio, void *data) 624 { 625 void *old = folio_get_private(folio); 626 627 folio->private = data; 628 return old; 629 } 630 631 /** 632 * folio_detach_private - Detach private data from a folio. 633 * @folio: Folio to detach data from. 634 * 635 * Removes the data that was previously attached to the folio and decrements 636 * the refcount on the page. 637 * 638 * Return: Data that was attached to the folio. 639 */ folio_detach_private(struct folio * folio)640 static inline void *folio_detach_private(struct folio *folio) 641 { 642 void *data = folio_get_private(folio); 643 644 if (!folio_test_private(folio)) 645 return NULL; 646 folio_clear_private(folio); 647 folio->private = NULL; 648 folio_put(folio); 649 650 return data; 651 } 652 attach_page_private(struct page * page,void * data)653 static inline void attach_page_private(struct page *page, void *data) 654 { 655 folio_attach_private(page_folio(page), data); 656 } 657 detach_page_private(struct page * page)658 static inline void *detach_page_private(struct page *page) 659 { 660 return folio_detach_private(page_folio(page)); 661 } 662 663 #ifdef CONFIG_NUMA 664 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order); 665 #else filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)666 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 667 { 668 return folio_alloc_noprof(gfp, order); 669 } 670 #endif 671 672 #define filemap_alloc_folio(...) \ 673 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__)) 674 __page_cache_alloc(gfp_t gfp)675 static inline struct page *__page_cache_alloc(gfp_t gfp) 676 { 677 return &filemap_alloc_folio(gfp, 0)->page; 678 } 679 readahead_gfp_mask(struct address_space * x)680 static inline gfp_t readahead_gfp_mask(struct address_space *x) 681 { 682 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 683 } 684 685 typedef int filler_t(struct file *, struct folio *); 686 687 pgoff_t page_cache_next_miss(struct address_space *mapping, 688 pgoff_t index, unsigned long max_scan); 689 pgoff_t page_cache_prev_miss(struct address_space *mapping, 690 pgoff_t index, unsigned long max_scan); 691 692 /** 693 * typedef fgf_t - Flags for getting folios from the page cache. 694 * 695 * Most users of the page cache will not need to use these flags; 696 * there are convenience functions such as filemap_get_folio() and 697 * filemap_lock_folio(). For users which need more control over exactly 698 * what is done with the folios, these flags to __filemap_get_folio() 699 * are available. 700 * 701 * * %FGP_ACCESSED - The folio will be marked accessed. 702 * * %FGP_LOCK - The folio is returned locked. 703 * * %FGP_CREAT - If no folio is present then a new folio is allocated, 704 * added to the page cache and the VM's LRU list. The folio is 705 * returned locked. 706 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 707 * folio is already in cache. If the folio was allocated, unlock it 708 * before returning so the caller can do the same dance. 709 * * %FGP_WRITE - The folio will be written to by the caller. 710 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 711 * * %FGP_NOWAIT - Don't block on the folio lock. 712 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 713 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin() 714 * implementation. 715 */ 716 typedef unsigned int __bitwise fgf_t; 717 718 #define FGP_ACCESSED ((__force fgf_t)0x00000001) 719 #define FGP_LOCK ((__force fgf_t)0x00000002) 720 #define FGP_CREAT ((__force fgf_t)0x00000004) 721 #define FGP_WRITE ((__force fgf_t)0x00000008) 722 #define FGP_NOFS ((__force fgf_t)0x00000010) 723 #define FGP_NOWAIT ((__force fgf_t)0x00000020) 724 #define FGP_FOR_MMAP ((__force fgf_t)0x00000040) 725 #define FGP_STABLE ((__force fgf_t)0x00000080) 726 #define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */ 727 728 #define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE) 729 730 /** 731 * fgf_set_order - Encode a length in the fgf_t flags. 732 * @size: The suggested size of the folio to create. 733 * 734 * The caller of __filemap_get_folio() can use this to suggest a preferred 735 * size for the folio that is created. If there is already a folio at 736 * the index, it will be returned, no matter what its size. If a folio 737 * is freshly created, it may be of a different size than requested 738 * due to alignment constraints, memory pressure, or the presence of 739 * other folios at nearby indices. 740 */ fgf_set_order(size_t size)741 static inline fgf_t fgf_set_order(size_t size) 742 { 743 unsigned int shift = ilog2(size); 744 745 if (shift <= PAGE_SHIFT) 746 return 0; 747 return (__force fgf_t)((shift - PAGE_SHIFT) << 26); 748 } 749 750 void *filemap_get_entry(struct address_space *mapping, pgoff_t index); 751 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 752 fgf_t fgp_flags, gfp_t gfp); 753 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 754 fgf_t fgp_flags, gfp_t gfp); 755 756 /** 757 * filemap_get_folio - Find and get a folio. 758 * @mapping: The address_space to search. 759 * @index: The page index. 760 * 761 * Looks up the page cache entry at @mapping & @index. If a folio is 762 * present, it is returned with an increased refcount. 763 * 764 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 765 * this index. Will not return a shadow, swap or DAX entry. 766 */ filemap_get_folio(struct address_space * mapping,pgoff_t index)767 static inline struct folio *filemap_get_folio(struct address_space *mapping, 768 pgoff_t index) 769 { 770 return __filemap_get_folio(mapping, index, 0, 0); 771 } 772 773 /** 774 * filemap_lock_folio - Find and lock a folio. 775 * @mapping: The address_space to search. 776 * @index: The page index. 777 * 778 * Looks up the page cache entry at @mapping & @index. If a folio is 779 * present, it is returned locked with an increased refcount. 780 * 781 * Context: May sleep. 782 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 783 * this index. Will not return a shadow, swap or DAX entry. 784 */ filemap_lock_folio(struct address_space * mapping,pgoff_t index)785 static inline struct folio *filemap_lock_folio(struct address_space *mapping, 786 pgoff_t index) 787 { 788 return __filemap_get_folio(mapping, index, FGP_LOCK, 0); 789 } 790 791 /** 792 * filemap_grab_folio - grab a folio from the page cache 793 * @mapping: The address space to search 794 * @index: The page index 795 * 796 * Looks up the page cache entry at @mapping & @index. If no folio is found, 797 * a new folio is created. The folio is locked, marked as accessed, and 798 * returned. 799 * 800 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found 801 * and failed to create a folio. 802 */ filemap_grab_folio(struct address_space * mapping,pgoff_t index)803 static inline struct folio *filemap_grab_folio(struct address_space *mapping, 804 pgoff_t index) 805 { 806 return __filemap_get_folio(mapping, index, 807 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 808 mapping_gfp_mask(mapping)); 809 } 810 811 /** 812 * find_get_page - find and get a page reference 813 * @mapping: the address_space to search 814 * @offset: the page index 815 * 816 * Looks up the page cache slot at @mapping & @offset. If there is a 817 * page cache page, it is returned with an increased refcount. 818 * 819 * Otherwise, %NULL is returned. 820 */ find_get_page(struct address_space * mapping,pgoff_t offset)821 static inline struct page *find_get_page(struct address_space *mapping, 822 pgoff_t offset) 823 { 824 return pagecache_get_page(mapping, offset, 0, 0); 825 } 826 find_get_page_flags(struct address_space * mapping,pgoff_t offset,fgf_t fgp_flags)827 static inline struct page *find_get_page_flags(struct address_space *mapping, 828 pgoff_t offset, fgf_t fgp_flags) 829 { 830 return pagecache_get_page(mapping, offset, fgp_flags, 0); 831 } 832 833 /** 834 * find_lock_page - locate, pin and lock a pagecache page 835 * @mapping: the address_space to search 836 * @index: the page index 837 * 838 * Looks up the page cache entry at @mapping & @index. If there is a 839 * page cache page, it is returned locked and with an increased 840 * refcount. 841 * 842 * Context: May sleep. 843 * Return: A struct page or %NULL if there is no page in the cache for this 844 * index. 845 */ find_lock_page(struct address_space * mapping,pgoff_t index)846 static inline struct page *find_lock_page(struct address_space *mapping, 847 pgoff_t index) 848 { 849 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 850 } 851 852 /** 853 * find_or_create_page - locate or add a pagecache page 854 * @mapping: the page's address_space 855 * @index: the page's index into the mapping 856 * @gfp_mask: page allocation mode 857 * 858 * Looks up the page cache slot at @mapping & @offset. If there is a 859 * page cache page, it is returned locked and with an increased 860 * refcount. 861 * 862 * If the page is not present, a new page is allocated using @gfp_mask 863 * and added to the page cache and the VM's LRU list. The page is 864 * returned locked and with an increased refcount. 865 * 866 * On memory exhaustion, %NULL is returned. 867 * 868 * find_or_create_page() may sleep, even if @gfp_flags specifies an 869 * atomic allocation! 870 */ find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)871 static inline struct page *find_or_create_page(struct address_space *mapping, 872 pgoff_t index, gfp_t gfp_mask) 873 { 874 return pagecache_get_page(mapping, index, 875 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 876 gfp_mask); 877 } 878 879 /** 880 * grab_cache_page_nowait - returns locked page at given index in given cache 881 * @mapping: target address_space 882 * @index: the page index 883 * 884 * Same as grab_cache_page(), but do not wait if the page is unavailable. 885 * This is intended for speculative data generators, where the data can 886 * be regenerated if the page couldn't be grabbed. This routine should 887 * be safe to call while holding the lock for another page. 888 * 889 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 890 * and deadlock against the caller's locked page. 891 */ grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)892 static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 893 pgoff_t index) 894 { 895 return pagecache_get_page(mapping, index, 896 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 897 mapping_gfp_mask(mapping)); 898 } 899 900 extern pgoff_t __folio_swap_cache_index(struct folio *folio); 901 902 /** 903 * folio_index - File index of a folio. 904 * @folio: The folio. 905 * 906 * For a folio which is either in the page cache or the swap cache, 907 * return its index within the address_space it belongs to. If you know 908 * the page is definitely in the page cache, you can look at the folio's 909 * index directly. 910 * 911 * Return: The index (offset in units of pages) of a folio in its file. 912 */ folio_index(struct folio * folio)913 static inline pgoff_t folio_index(struct folio *folio) 914 { 915 if (unlikely(folio_test_swapcache(folio))) 916 return __folio_swap_cache_index(folio); 917 return folio->index; 918 } 919 920 /** 921 * folio_next_index - Get the index of the next folio. 922 * @folio: The current folio. 923 * 924 * Return: The index of the folio which follows this folio in the file. 925 */ folio_next_index(struct folio * folio)926 static inline pgoff_t folio_next_index(struct folio *folio) 927 { 928 return folio->index + folio_nr_pages(folio); 929 } 930 931 /** 932 * folio_file_page - The page for a particular index. 933 * @folio: The folio which contains this index. 934 * @index: The index we want to look up. 935 * 936 * Sometimes after looking up a folio in the page cache, we need to 937 * obtain the specific page for an index (eg a page fault). 938 * 939 * Return: The page containing the file data for this index. 940 */ folio_file_page(struct folio * folio,pgoff_t index)941 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index) 942 { 943 return folio_page(folio, index & (folio_nr_pages(folio) - 1)); 944 } 945 946 /** 947 * folio_contains - Does this folio contain this index? 948 * @folio: The folio. 949 * @index: The page index within the file. 950 * 951 * Context: The caller should have the page locked in order to prevent 952 * (eg) shmem from moving the page between the page cache and swap cache 953 * and changing its index in the middle of the operation. 954 * Return: true or false. 955 */ folio_contains(struct folio * folio,pgoff_t index)956 static inline bool folio_contains(struct folio *folio, pgoff_t index) 957 { 958 return index - folio_index(folio) < folio_nr_pages(folio); 959 } 960 961 /* 962 * Given the page we found in the page cache, return the page corresponding 963 * to this index in the file 964 */ find_subpage(struct page * head,pgoff_t index)965 static inline struct page *find_subpage(struct page *head, pgoff_t index) 966 { 967 /* HugeTLBfs wants the head page regardless */ 968 if (PageHuge(head)) 969 return head; 970 971 return head + (index & (thp_nr_pages(head) - 1)); 972 } 973 974 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 975 pgoff_t end, struct folio_batch *fbatch); 976 unsigned filemap_get_folios_contig(struct address_space *mapping, 977 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); 978 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 979 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch); 980 981 struct page *grab_cache_page_write_begin(struct address_space *mapping, 982 pgoff_t index); 983 984 /* 985 * Returns locked page at given index in given cache, creating it if needed. 986 */ grab_cache_page(struct address_space * mapping,pgoff_t index)987 static inline struct page *grab_cache_page(struct address_space *mapping, 988 pgoff_t index) 989 { 990 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 991 } 992 993 struct folio *read_cache_folio(struct address_space *, pgoff_t index, 994 filler_t *filler, struct file *file); 995 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index, 996 gfp_t flags); 997 struct page *read_cache_page(struct address_space *, pgoff_t index, 998 filler_t *filler, struct file *file); 999 extern struct page * read_cache_page_gfp(struct address_space *mapping, 1000 pgoff_t index, gfp_t gfp_mask); 1001 read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)1002 static inline struct page *read_mapping_page(struct address_space *mapping, 1003 pgoff_t index, struct file *file) 1004 { 1005 return read_cache_page(mapping, index, NULL, file); 1006 } 1007 read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)1008 static inline struct folio *read_mapping_folio(struct address_space *mapping, 1009 pgoff_t index, struct file *file) 1010 { 1011 return read_cache_folio(mapping, index, NULL, file); 1012 } 1013 1014 /* 1015 * Get the offset in PAGE_SIZE (even for hugetlb pages). 1016 */ page_to_pgoff(struct page * page)1017 static inline pgoff_t page_to_pgoff(struct page *page) 1018 { 1019 struct page *head; 1020 1021 if (likely(!PageTransTail(page))) 1022 return page->index; 1023 1024 head = compound_head(page); 1025 /* 1026 * We don't initialize ->index for tail pages: calculate based on 1027 * head page 1028 */ 1029 return head->index + page - head; 1030 } 1031 1032 /* 1033 * Return byte-offset into filesystem object for page. 1034 */ page_offset(struct page * page)1035 static inline loff_t page_offset(struct page *page) 1036 { 1037 return ((loff_t)page->index) << PAGE_SHIFT; 1038 } 1039 1040 /** 1041 * folio_pos - Returns the byte position of this folio in its file. 1042 * @folio: The folio. 1043 */ folio_pos(struct folio * folio)1044 static inline loff_t folio_pos(struct folio *folio) 1045 { 1046 return page_offset(&folio->page); 1047 } 1048 1049 /* 1050 * Get the offset in PAGE_SIZE (even for hugetlb folios). 1051 */ folio_pgoff(struct folio * folio)1052 static inline pgoff_t folio_pgoff(struct folio *folio) 1053 { 1054 return folio->index; 1055 } 1056 linear_page_index(struct vm_area_struct * vma,unsigned long address)1057 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 1058 unsigned long address) 1059 { 1060 pgoff_t pgoff; 1061 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 1062 pgoff += vma->vm_pgoff; 1063 return pgoff; 1064 } 1065 1066 struct wait_page_key { 1067 struct folio *folio; 1068 int bit_nr; 1069 int page_match; 1070 }; 1071 1072 struct wait_page_queue { 1073 struct folio *folio; 1074 int bit_nr; 1075 wait_queue_entry_t wait; 1076 }; 1077 wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)1078 static inline bool wake_page_match(struct wait_page_queue *wait_page, 1079 struct wait_page_key *key) 1080 { 1081 if (wait_page->folio != key->folio) 1082 return false; 1083 key->page_match = 1; 1084 1085 if (wait_page->bit_nr != key->bit_nr) 1086 return false; 1087 1088 return true; 1089 } 1090 1091 void __folio_lock(struct folio *folio); 1092 int __folio_lock_killable(struct folio *folio); 1093 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf); 1094 void unlock_page(struct page *page); 1095 void folio_unlock(struct folio *folio); 1096 1097 /** 1098 * folio_trylock() - Attempt to lock a folio. 1099 * @folio: The folio to attempt to lock. 1100 * 1101 * Sometimes it is undesirable to wait for a folio to be unlocked (eg 1102 * when the locks are being taken in the wrong order, or if making 1103 * progress through a batch of folios is more important than processing 1104 * them in order). Usually folio_lock() is the correct function to call. 1105 * 1106 * Context: Any context. 1107 * Return: Whether the lock was successfully acquired. 1108 */ folio_trylock(struct folio * folio)1109 static inline bool folio_trylock(struct folio *folio) 1110 { 1111 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0))); 1112 } 1113 1114 /* 1115 * Return true if the page was successfully locked 1116 */ trylock_page(struct page * page)1117 static inline bool trylock_page(struct page *page) 1118 { 1119 return folio_trylock(page_folio(page)); 1120 } 1121 1122 /** 1123 * folio_lock() - Lock this folio. 1124 * @folio: The folio to lock. 1125 * 1126 * The folio lock protects against many things, probably more than it 1127 * should. It is primarily held while a folio is being brought uptodate, 1128 * either from its backing file or from swap. It is also held while a 1129 * folio is being truncated from its address_space, so holding the lock 1130 * is sufficient to keep folio->mapping stable. 1131 * 1132 * The folio lock is also held while write() is modifying the page to 1133 * provide POSIX atomicity guarantees (as long as the write does not 1134 * cross a page boundary). Other modifications to the data in the folio 1135 * do not hold the folio lock and can race with writes, eg DMA and stores 1136 * to mapped pages. 1137 * 1138 * Context: May sleep. If you need to acquire the locks of two or 1139 * more folios, they must be in order of ascending index, if they are 1140 * in the same address_space. If they are in different address_spaces, 1141 * acquire the lock of the folio which belongs to the address_space which 1142 * has the lowest address in memory first. 1143 */ folio_lock(struct folio * folio)1144 static inline void folio_lock(struct folio *folio) 1145 { 1146 might_sleep(); 1147 if (!folio_trylock(folio)) 1148 __folio_lock(folio); 1149 } 1150 1151 /** 1152 * lock_page() - Lock the folio containing this page. 1153 * @page: The page to lock. 1154 * 1155 * See folio_lock() for a description of what the lock protects. 1156 * This is a legacy function and new code should probably use folio_lock() 1157 * instead. 1158 * 1159 * Context: May sleep. Pages in the same folio share a lock, so do not 1160 * attempt to lock two pages which share a folio. 1161 */ lock_page(struct page * page)1162 static inline void lock_page(struct page *page) 1163 { 1164 struct folio *folio; 1165 might_sleep(); 1166 1167 folio = page_folio(page); 1168 if (!folio_trylock(folio)) 1169 __folio_lock(folio); 1170 } 1171 1172 /** 1173 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal. 1174 * @folio: The folio to lock. 1175 * 1176 * Attempts to lock the folio, like folio_lock(), except that the sleep 1177 * to acquire the lock is interruptible by a fatal signal. 1178 * 1179 * Context: May sleep; see folio_lock(). 1180 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received. 1181 */ folio_lock_killable(struct folio * folio)1182 static inline int folio_lock_killable(struct folio *folio) 1183 { 1184 might_sleep(); 1185 if (!folio_trylock(folio)) 1186 return __folio_lock_killable(folio); 1187 return 0; 1188 } 1189 1190 /* 1191 * folio_lock_or_retry - Lock the folio, unless this would block and the 1192 * caller indicated that it can handle a retry. 1193 * 1194 * Return value and mmap_lock implications depend on flags; see 1195 * __folio_lock_or_retry(). 1196 */ folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1197 static inline vm_fault_t folio_lock_or_retry(struct folio *folio, 1198 struct vm_fault *vmf) 1199 { 1200 might_sleep(); 1201 if (!folio_trylock(folio)) 1202 return __folio_lock_or_retry(folio, vmf); 1203 return 0; 1204 } 1205 1206 /* 1207 * This is exported only for folio_wait_locked/folio_wait_writeback, etc., 1208 * and should not be used directly. 1209 */ 1210 void folio_wait_bit(struct folio *folio, int bit_nr); 1211 int folio_wait_bit_killable(struct folio *folio, int bit_nr); 1212 1213 /* 1214 * Wait for a folio to be unlocked. 1215 * 1216 * This must be called with the caller "holding" the folio, 1217 * ie with increased folio reference count so that the folio won't 1218 * go away during the wait. 1219 */ folio_wait_locked(struct folio * folio)1220 static inline void folio_wait_locked(struct folio *folio) 1221 { 1222 if (folio_test_locked(folio)) 1223 folio_wait_bit(folio, PG_locked); 1224 } 1225 folio_wait_locked_killable(struct folio * folio)1226 static inline int folio_wait_locked_killable(struct folio *folio) 1227 { 1228 if (!folio_test_locked(folio)) 1229 return 0; 1230 return folio_wait_bit_killable(folio, PG_locked); 1231 } 1232 wait_on_page_locked(struct page * page)1233 static inline void wait_on_page_locked(struct page *page) 1234 { 1235 folio_wait_locked(page_folio(page)); 1236 } 1237 1238 void folio_end_read(struct folio *folio, bool success); 1239 void wait_on_page_writeback(struct page *page); 1240 void folio_wait_writeback(struct folio *folio); 1241 int folio_wait_writeback_killable(struct folio *folio); 1242 void end_page_writeback(struct page *page); 1243 void folio_end_writeback(struct folio *folio); 1244 void wait_for_stable_page(struct page *page); 1245 void folio_wait_stable(struct folio *folio); 1246 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn); 1247 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb); 1248 void __folio_cancel_dirty(struct folio *folio); folio_cancel_dirty(struct folio * folio)1249 static inline void folio_cancel_dirty(struct folio *folio) 1250 { 1251 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1252 if (folio_test_dirty(folio)) 1253 __folio_cancel_dirty(folio); 1254 } 1255 bool folio_clear_dirty_for_io(struct folio *folio); 1256 bool clear_page_dirty_for_io(struct page *page); 1257 void folio_invalidate(struct folio *folio, size_t offset, size_t length); 1258 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio); 1259 1260 #ifdef CONFIG_MIGRATION 1261 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst, 1262 struct folio *src, enum migrate_mode mode); 1263 #else 1264 #define filemap_migrate_folio NULL 1265 #endif 1266 void folio_end_private_2(struct folio *folio); 1267 void folio_wait_private_2(struct folio *folio); 1268 int folio_wait_private_2_killable(struct folio *folio); 1269 1270 /* 1271 * Add an arbitrary waiter to a page's wait queue 1272 */ 1273 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter); 1274 1275 /* 1276 * Fault in userspace address range. 1277 */ 1278 size_t fault_in_writeable(char __user *uaddr, size_t size); 1279 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size); 1280 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); 1281 size_t fault_in_readable(const char __user *uaddr, size_t size); 1282 1283 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 1284 pgoff_t index, gfp_t gfp); 1285 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 1286 pgoff_t index, gfp_t gfp); 1287 void filemap_remove_folio(struct folio *folio); 1288 void __filemap_remove_folio(struct folio *folio, void *shadow); 1289 void replace_page_cache_folio(struct folio *old, struct folio *new); 1290 void delete_from_page_cache_batch(struct address_space *mapping, 1291 struct folio_batch *fbatch); 1292 bool filemap_release_folio(struct folio *folio, gfp_t gfp); 1293 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 1294 int whence); 1295 1296 /* Must be non-static for BPF error injection */ 1297 int __filemap_add_folio(struct address_space *mapping, struct folio *folio, 1298 pgoff_t index, gfp_t gfp, void **shadowp); 1299 1300 bool filemap_range_has_writeback(struct address_space *mapping, 1301 loff_t start_byte, loff_t end_byte); 1302 1303 /** 1304 * filemap_range_needs_writeback - check if range potentially needs writeback 1305 * @mapping: address space within which to check 1306 * @start_byte: offset in bytes where the range starts 1307 * @end_byte: offset in bytes where the range ends (inclusive) 1308 * 1309 * Find at least one page in the range supplied, usually used to check if 1310 * direct writing in this range will trigger a writeback. Used by O_DIRECT 1311 * read/write with IOCB_NOWAIT, to see if the caller needs to do 1312 * filemap_write_and_wait_range() before proceeding. 1313 * 1314 * Return: %true if the caller should do filemap_write_and_wait_range() before 1315 * doing O_DIRECT to a page in this range, %false otherwise. 1316 */ filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1317 static inline bool filemap_range_needs_writeback(struct address_space *mapping, 1318 loff_t start_byte, 1319 loff_t end_byte) 1320 { 1321 if (!mapping->nrpages) 1322 return false; 1323 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 1324 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 1325 return false; 1326 return filemap_range_has_writeback(mapping, start_byte, end_byte); 1327 } 1328 1329 /** 1330 * struct readahead_control - Describes a readahead request. 1331 * 1332 * A readahead request is for consecutive pages. Filesystems which 1333 * implement the ->readahead method should call readahead_page() or 1334 * readahead_page_batch() in a loop and attempt to start I/O against 1335 * each page in the request. 1336 * 1337 * Most of the fields in this struct are private and should be accessed 1338 * by the functions below. 1339 * 1340 * @file: The file, used primarily by network filesystems for authentication. 1341 * May be NULL if invoked internally by the filesystem. 1342 * @mapping: Readahead this filesystem object. 1343 * @ra: File readahead state. May be NULL. 1344 */ 1345 struct readahead_control { 1346 struct file *file; 1347 struct address_space *mapping; 1348 struct file_ra_state *ra; 1349 /* private: use the readahead_* accessors instead */ 1350 pgoff_t _index; 1351 unsigned int _nr_pages; 1352 unsigned int _batch_count; 1353 bool _workingset; 1354 unsigned long _pflags; 1355 }; 1356 1357 #define DEFINE_READAHEAD(ractl, f, r, m, i) \ 1358 struct readahead_control ractl = { \ 1359 .file = f, \ 1360 .mapping = m, \ 1361 .ra = r, \ 1362 ._index = i, \ 1363 } 1364 1365 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 1366 1367 void page_cache_ra_unbounded(struct readahead_control *, 1368 unsigned long nr_to_read, unsigned long lookahead_count); 1369 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 1370 void page_cache_async_ra(struct readahead_control *, struct folio *, 1371 unsigned long req_count); 1372 void readahead_expand(struct readahead_control *ractl, 1373 loff_t new_start, size_t new_len); 1374 1375 /** 1376 * page_cache_sync_readahead - generic file readahead 1377 * @mapping: address_space which holds the pagecache and I/O vectors 1378 * @ra: file_ra_state which holds the readahead state 1379 * @file: Used by the filesystem for authentication. 1380 * @index: Index of first page to be read. 1381 * @req_count: Total number of pages being read by the caller. 1382 * 1383 * page_cache_sync_readahead() should be called when a cache miss happened: 1384 * it will submit the read. The readahead logic may decide to piggyback more 1385 * pages onto the read request if access patterns suggest it will improve 1386 * performance. 1387 */ 1388 static inline page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1389 void page_cache_sync_readahead(struct address_space *mapping, 1390 struct file_ra_state *ra, struct file *file, pgoff_t index, 1391 unsigned long req_count) 1392 { 1393 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1394 page_cache_sync_ra(&ractl, req_count); 1395 } 1396 1397 /** 1398 * page_cache_async_readahead - file readahead for marked pages 1399 * @mapping: address_space which holds the pagecache and I/O vectors 1400 * @ra: file_ra_state which holds the readahead state 1401 * @file: Used by the filesystem for authentication. 1402 * @folio: The folio which triggered the readahead call. 1403 * @req_count: Total number of pages being read by the caller. 1404 * 1405 * page_cache_async_readahead() should be called when a page is used which 1406 * is marked as PageReadahead; this is a marker to suggest that the application 1407 * has used up enough of the readahead window that we should start pulling in 1408 * more pages. 1409 */ 1410 static inline page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,unsigned long req_count)1411 void page_cache_async_readahead(struct address_space *mapping, 1412 struct file_ra_state *ra, struct file *file, 1413 struct folio *folio, unsigned long req_count) 1414 { 1415 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index); 1416 page_cache_async_ra(&ractl, folio, req_count); 1417 } 1418 __readahead_folio(struct readahead_control * ractl)1419 static inline struct folio *__readahead_folio(struct readahead_control *ractl) 1420 { 1421 struct folio *folio; 1422 1423 BUG_ON(ractl->_batch_count > ractl->_nr_pages); 1424 ractl->_nr_pages -= ractl->_batch_count; 1425 ractl->_index += ractl->_batch_count; 1426 1427 if (!ractl->_nr_pages) { 1428 ractl->_batch_count = 0; 1429 return NULL; 1430 } 1431 1432 folio = xa_load(&ractl->mapping->i_pages, ractl->_index); 1433 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1434 ractl->_batch_count = folio_nr_pages(folio); 1435 1436 return folio; 1437 } 1438 1439 /** 1440 * readahead_page - Get the next page to read. 1441 * @ractl: The current readahead request. 1442 * 1443 * Context: The page is locked and has an elevated refcount. The caller 1444 * should decreases the refcount once the page has been submitted for I/O 1445 * and unlock the page once all I/O to that page has completed. 1446 * Return: A pointer to the next page, or %NULL if we are done. 1447 */ readahead_page(struct readahead_control * ractl)1448 static inline struct page *readahead_page(struct readahead_control *ractl) 1449 { 1450 struct folio *folio = __readahead_folio(ractl); 1451 1452 return &folio->page; 1453 } 1454 1455 /** 1456 * readahead_folio - Get the next folio to read. 1457 * @ractl: The current readahead request. 1458 * 1459 * Context: The folio is locked. The caller should unlock the folio once 1460 * all I/O to that folio has completed. 1461 * Return: A pointer to the next folio, or %NULL if we are done. 1462 */ readahead_folio(struct readahead_control * ractl)1463 static inline struct folio *readahead_folio(struct readahead_control *ractl) 1464 { 1465 struct folio *folio = __readahead_folio(ractl); 1466 1467 if (folio) 1468 folio_put(folio); 1469 return folio; 1470 } 1471 __readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1472 static inline unsigned int __readahead_batch(struct readahead_control *rac, 1473 struct page **array, unsigned int array_sz) 1474 { 1475 unsigned int i = 0; 1476 XA_STATE(xas, &rac->mapping->i_pages, 0); 1477 struct page *page; 1478 1479 BUG_ON(rac->_batch_count > rac->_nr_pages); 1480 rac->_nr_pages -= rac->_batch_count; 1481 rac->_index += rac->_batch_count; 1482 rac->_batch_count = 0; 1483 1484 xas_set(&xas, rac->_index); 1485 rcu_read_lock(); 1486 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 1487 if (xas_retry(&xas, page)) 1488 continue; 1489 VM_BUG_ON_PAGE(!PageLocked(page), page); 1490 VM_BUG_ON_PAGE(PageTail(page), page); 1491 array[i++] = page; 1492 rac->_batch_count += thp_nr_pages(page); 1493 if (i == array_sz) 1494 break; 1495 } 1496 rcu_read_unlock(); 1497 1498 return i; 1499 } 1500 1501 /** 1502 * readahead_page_batch - Get a batch of pages to read. 1503 * @rac: The current readahead request. 1504 * @array: An array of pointers to struct page. 1505 * 1506 * Context: The pages are locked and have an elevated refcount. The caller 1507 * should decreases the refcount once the page has been submitted for I/O 1508 * and unlock the page once all I/O to that page has completed. 1509 * Return: The number of pages placed in the array. 0 indicates the request 1510 * is complete. 1511 */ 1512 #define readahead_page_batch(rac, array) \ 1513 __readahead_batch(rac, array, ARRAY_SIZE(array)) 1514 1515 /** 1516 * readahead_pos - The byte offset into the file of this readahead request. 1517 * @rac: The readahead request. 1518 */ readahead_pos(struct readahead_control * rac)1519 static inline loff_t readahead_pos(struct readahead_control *rac) 1520 { 1521 return (loff_t)rac->_index * PAGE_SIZE; 1522 } 1523 1524 /** 1525 * readahead_length - The number of bytes in this readahead request. 1526 * @rac: The readahead request. 1527 */ readahead_length(struct readahead_control * rac)1528 static inline size_t readahead_length(struct readahead_control *rac) 1529 { 1530 return rac->_nr_pages * PAGE_SIZE; 1531 } 1532 1533 /** 1534 * readahead_index - The index of the first page in this readahead request. 1535 * @rac: The readahead request. 1536 */ readahead_index(struct readahead_control * rac)1537 static inline pgoff_t readahead_index(struct readahead_control *rac) 1538 { 1539 return rac->_index; 1540 } 1541 1542 /** 1543 * readahead_count - The number of pages in this readahead request. 1544 * @rac: The readahead request. 1545 */ readahead_count(struct readahead_control * rac)1546 static inline unsigned int readahead_count(struct readahead_control *rac) 1547 { 1548 return rac->_nr_pages; 1549 } 1550 1551 /** 1552 * readahead_batch_length - The number of bytes in the current batch. 1553 * @rac: The readahead request. 1554 */ readahead_batch_length(struct readahead_control * rac)1555 static inline size_t readahead_batch_length(struct readahead_control *rac) 1556 { 1557 return rac->_batch_count * PAGE_SIZE; 1558 } 1559 dir_pages(struct inode * inode)1560 static inline unsigned long dir_pages(struct inode *inode) 1561 { 1562 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1563 PAGE_SHIFT; 1564 } 1565 1566 /** 1567 * folio_mkwrite_check_truncate - check if folio was truncated 1568 * @folio: the folio to check 1569 * @inode: the inode to check the folio against 1570 * 1571 * Return: the number of bytes in the folio up to EOF, 1572 * or -EFAULT if the folio was truncated. 1573 */ folio_mkwrite_check_truncate(struct folio * folio,struct inode * inode)1574 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio, 1575 struct inode *inode) 1576 { 1577 loff_t size = i_size_read(inode); 1578 pgoff_t index = size >> PAGE_SHIFT; 1579 size_t offset = offset_in_folio(folio, size); 1580 1581 if (!folio->mapping) 1582 return -EFAULT; 1583 1584 /* folio is wholly inside EOF */ 1585 if (folio_next_index(folio) - 1 < index) 1586 return folio_size(folio); 1587 /* folio is wholly past EOF */ 1588 if (folio->index > index || !offset) 1589 return -EFAULT; 1590 /* folio is partially inside EOF */ 1591 return offset; 1592 } 1593 1594 /** 1595 * page_mkwrite_check_truncate - check if page was truncated 1596 * @page: the page to check 1597 * @inode: the inode to check the page against 1598 * 1599 * Returns the number of bytes in the page up to EOF, 1600 * or -EFAULT if the page was truncated. 1601 */ page_mkwrite_check_truncate(struct page * page,struct inode * inode)1602 static inline int page_mkwrite_check_truncate(struct page *page, 1603 struct inode *inode) 1604 { 1605 loff_t size = i_size_read(inode); 1606 pgoff_t index = size >> PAGE_SHIFT; 1607 int offset = offset_in_page(size); 1608 1609 if (page->mapping != inode->i_mapping) 1610 return -EFAULT; 1611 1612 /* page is wholly inside EOF */ 1613 if (page->index < index) 1614 return PAGE_SIZE; 1615 /* page is wholly past EOF */ 1616 if (page->index > index || !offset) 1617 return -EFAULT; 1618 /* page is partially inside EOF */ 1619 return offset; 1620 } 1621 1622 /** 1623 * i_blocks_per_folio - How many blocks fit in this folio. 1624 * @inode: The inode which contains the blocks. 1625 * @folio: The folio. 1626 * 1627 * If the block size is larger than the size of this folio, return zero. 1628 * 1629 * Context: The caller should hold a refcount on the folio to prevent it 1630 * from being split. 1631 * Return: The number of filesystem blocks covered by this folio. 1632 */ 1633 static inline i_blocks_per_folio(struct inode * inode,struct folio * folio)1634 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio) 1635 { 1636 return folio_size(folio) >> inode->i_blkbits; 1637 } 1638 #endif /* _LINUX_PAGEMAP_H */ 1639