1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/unaligned.h>
32 
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 #include <linux/usb/func_utils.h>
37 
38 #include <linux/aio.h>
39 #include <linux/kthread.h>
40 #include <linux/poll.h>
41 #include <linux/eventfd.h>
42 
43 #include "u_fs.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46 
47 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
48 #define MAX_ALT_SETTINGS	2		  /* Allow up to 2 alt settings to be set. */
49 
50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
51 
52 MODULE_IMPORT_NS(DMA_BUF);
53 
54 /* Reference counter handling */
55 static void ffs_data_get(struct ffs_data *ffs);
56 static void ffs_data_put(struct ffs_data *ffs);
57 /* Creates new ffs_data object. */
58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
59 	__attribute__((malloc));
60 
61 /* Opened counter handling. */
62 static void ffs_data_opened(struct ffs_data *ffs);
63 static void ffs_data_closed(struct ffs_data *ffs);
64 
65 /* Called with ffs->mutex held; take over ownership of data. */
66 static int __must_check
67 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
68 static int __must_check
69 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
70 
71 
72 /* The function structure ***************************************************/
73 
74 struct ffs_ep;
75 
76 struct ffs_function {
77 	struct usb_configuration	*conf;
78 	struct usb_gadget		*gadget;
79 	struct ffs_data			*ffs;
80 
81 	struct ffs_ep			*eps;
82 	u8				eps_revmap[16];
83 	short				*interfaces_nums;
84 
85 	struct usb_function		function;
86 	int				cur_alt[MAX_CONFIG_INTERFACES];
87 };
88 
89 
ffs_func_from_usb(struct usb_function * f)90 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
91 {
92 	return container_of(f, struct ffs_function, function);
93 }
94 
95 
96 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)97 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
98 {
99 	return (enum ffs_setup_state)
100 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
101 }
102 
103 
104 static void ffs_func_eps_disable(struct ffs_function *func);
105 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
106 
107 static int ffs_func_bind(struct usb_configuration *,
108 			 struct usb_function *);
109 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
110 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
111 static void ffs_func_disable(struct usb_function *);
112 static int ffs_func_setup(struct usb_function *,
113 			  const struct usb_ctrlrequest *);
114 static bool ffs_func_req_match(struct usb_function *,
115 			       const struct usb_ctrlrequest *,
116 			       bool config0);
117 static void ffs_func_suspend(struct usb_function *);
118 static void ffs_func_resume(struct usb_function *);
119 
120 
121 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
122 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
123 
124 
125 /* The endpoints structures *************************************************/
126 
127 struct ffs_ep {
128 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
129 	struct usb_request		*req;	/* P: epfile->mutex */
130 
131 	/* [0]: full speed, [1]: high speed, [2]: super speed */
132 	struct usb_endpoint_descriptor	*descs[3];
133 
134 	u8				num;
135 };
136 
137 struct ffs_dmabuf_priv {
138 	struct list_head entry;
139 	struct kref ref;
140 	struct ffs_data *ffs;
141 	struct dma_buf_attachment *attach;
142 	struct sg_table *sgt;
143 	enum dma_data_direction dir;
144 	spinlock_t lock;
145 	u64 context;
146 	struct usb_request *req;	/* P: ffs->eps_lock */
147 	struct usb_ep *ep;		/* P: ffs->eps_lock */
148 };
149 
150 struct ffs_dma_fence {
151 	struct dma_fence base;
152 	struct ffs_dmabuf_priv *priv;
153 	struct work_struct work;
154 };
155 
156 struct ffs_epfile {
157 	/* Protects ep->ep and ep->req. */
158 	struct mutex			mutex;
159 
160 	struct ffs_data			*ffs;
161 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
162 
163 	struct dentry			*dentry;
164 
165 	/*
166 	 * Buffer for holding data from partial reads which may happen since
167 	 * we’re rounding user read requests to a multiple of a max packet size.
168 	 *
169 	 * The pointer is initialised with NULL value and may be set by
170 	 * __ffs_epfile_read_data function to point to a temporary buffer.
171 	 *
172 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
173 	 * data from said buffer and eventually free it.  Importantly, while the
174 	 * function is using the buffer, it sets the pointer to NULL.  This is
175 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
176 	 * can never run concurrently (they are synchronised by epfile->mutex)
177 	 * so the latter will not assign a new value to the pointer.
178 	 *
179 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
180 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
181 	 * value is crux of the synchronisation between ffs_func_eps_disable and
182 	 * __ffs_epfile_read_data.
183 	 *
184 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
185 	 * pointer back to its old value (as described above), but seeing as the
186 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
187 	 * the buffer.
188 	 *
189 	 * == State transitions ==
190 	 *
191 	 * • ptr == NULL:  (initial state)
192 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
193 	 *   ◦ __ffs_epfile_read_buffered:    nop
194 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
195 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
196 	 * • ptr == DROP:
197 	 *   ◦ __ffs_epfile_read_buffer_free: nop
198 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
199 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
200 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
201 	 * • ptr == buf:
202 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
203 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
204 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
205 	 *                                    is always called first
206 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
207 	 * • ptr == NULL and reading:
208 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
209 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
210 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
211 	 *   ◦ reading finishes and …
212 	 *     … all data read:               free buf, go to ptr == NULL
213 	 *     … otherwise:                   go to ptr == buf and reading
214 	 * • ptr == DROP and reading:
215 	 *   ◦ __ffs_epfile_read_buffer_free: nop
216 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
217 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
218 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
219 	 */
220 	struct ffs_buffer		*read_buffer;
221 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
222 
223 	char				name[5];
224 
225 	unsigned char			in;	/* P: ffs->eps_lock */
226 	unsigned char			isoc;	/* P: ffs->eps_lock */
227 
228 	unsigned char			_pad;
229 
230 	/* Protects dmabufs */
231 	struct mutex			dmabufs_mutex;
232 	struct list_head		dmabufs; /* P: dmabufs_mutex */
233 	atomic_t			seqno;
234 };
235 
236 struct ffs_buffer {
237 	size_t length;
238 	char *data;
239 	char storage[] __counted_by(length);
240 };
241 
242 /*  ffs_io_data structure ***************************************************/
243 
244 struct ffs_io_data {
245 	bool aio;
246 	bool read;
247 
248 	struct kiocb *kiocb;
249 	struct iov_iter data;
250 	const void *to_free;
251 	char *buf;
252 
253 	struct mm_struct *mm;
254 	struct work_struct work;
255 
256 	struct usb_ep *ep;
257 	struct usb_request *req;
258 	struct sg_table sgt;
259 	bool use_sg;
260 
261 	struct ffs_data *ffs;
262 
263 	int status;
264 	struct completion done;
265 };
266 
267 struct ffs_desc_helper {
268 	struct ffs_data *ffs;
269 	unsigned interfaces_count;
270 	unsigned eps_count;
271 };
272 
273 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
274 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
275 
276 static struct dentry *
277 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
278 		   const struct file_operations *fops);
279 
280 /* Devices management *******************************************************/
281 
282 DEFINE_MUTEX(ffs_lock);
283 EXPORT_SYMBOL_GPL(ffs_lock);
284 
285 static struct ffs_dev *_ffs_find_dev(const char *name);
286 static struct ffs_dev *_ffs_alloc_dev(void);
287 static void _ffs_free_dev(struct ffs_dev *dev);
288 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
289 static void ffs_release_dev(struct ffs_dev *ffs_dev);
290 static int ffs_ready(struct ffs_data *ffs);
291 static void ffs_closed(struct ffs_data *ffs);
292 
293 /* Misc helper functions ****************************************************/
294 
295 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
296 	__attribute__((warn_unused_result, nonnull));
297 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
298 	__attribute__((warn_unused_result, nonnull));
299 
300 
301 /* Control file aka ep0 *****************************************************/
302 
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)303 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
304 {
305 	struct ffs_data *ffs = req->context;
306 
307 	complete(&ffs->ep0req_completion);
308 }
309 
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)310 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
311 	__releases(&ffs->ev.waitq.lock)
312 {
313 	struct usb_request *req = ffs->ep0req;
314 	int ret;
315 
316 	if (!req) {
317 		spin_unlock_irq(&ffs->ev.waitq.lock);
318 		return -EINVAL;
319 	}
320 
321 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
322 
323 	spin_unlock_irq(&ffs->ev.waitq.lock);
324 
325 	req->buf      = data;
326 	req->length   = len;
327 
328 	/*
329 	 * UDC layer requires to provide a buffer even for ZLP, but should
330 	 * not use it at all. Let's provide some poisoned pointer to catch
331 	 * possible bug in the driver.
332 	 */
333 	if (req->buf == NULL)
334 		req->buf = (void *)0xDEADBABE;
335 
336 	reinit_completion(&ffs->ep0req_completion);
337 
338 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
339 	if (ret < 0)
340 		return ret;
341 
342 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
343 	if (ret) {
344 		usb_ep_dequeue(ffs->gadget->ep0, req);
345 		return -EINTR;
346 	}
347 
348 	ffs->setup_state = FFS_NO_SETUP;
349 	return req->status ? req->status : req->actual;
350 }
351 
__ffs_ep0_stall(struct ffs_data * ffs)352 static int __ffs_ep0_stall(struct ffs_data *ffs)
353 {
354 	if (ffs->ev.can_stall) {
355 		pr_vdebug("ep0 stall\n");
356 		usb_ep_set_halt(ffs->gadget->ep0);
357 		ffs->setup_state = FFS_NO_SETUP;
358 		return -EL2HLT;
359 	} else {
360 		pr_debug("bogus ep0 stall!\n");
361 		return -ESRCH;
362 	}
363 }
364 
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)365 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
366 			     size_t len, loff_t *ptr)
367 {
368 	struct ffs_data *ffs = file->private_data;
369 	ssize_t ret;
370 	char *data;
371 
372 	/* Fast check if setup was canceled */
373 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
374 		return -EIDRM;
375 
376 	/* Acquire mutex */
377 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
378 	if (ret < 0)
379 		return ret;
380 
381 	/* Check state */
382 	switch (ffs->state) {
383 	case FFS_READ_DESCRIPTORS:
384 	case FFS_READ_STRINGS:
385 		/* Copy data */
386 		if (len < 16) {
387 			ret = -EINVAL;
388 			break;
389 		}
390 
391 		data = ffs_prepare_buffer(buf, len);
392 		if (IS_ERR(data)) {
393 			ret = PTR_ERR(data);
394 			break;
395 		}
396 
397 		/* Handle data */
398 		if (ffs->state == FFS_READ_DESCRIPTORS) {
399 			pr_info("read descriptors\n");
400 			ret = __ffs_data_got_descs(ffs, data, len);
401 			if (ret < 0)
402 				break;
403 
404 			ffs->state = FFS_READ_STRINGS;
405 			ret = len;
406 		} else {
407 			pr_info("read strings\n");
408 			ret = __ffs_data_got_strings(ffs, data, len);
409 			if (ret < 0)
410 				break;
411 
412 			ret = ffs_epfiles_create(ffs);
413 			if (ret) {
414 				ffs->state = FFS_CLOSING;
415 				break;
416 			}
417 
418 			ffs->state = FFS_ACTIVE;
419 			mutex_unlock(&ffs->mutex);
420 
421 			ret = ffs_ready(ffs);
422 			if (ret < 0) {
423 				ffs->state = FFS_CLOSING;
424 				return ret;
425 			}
426 
427 			return len;
428 		}
429 		break;
430 
431 	case FFS_ACTIVE:
432 		data = NULL;
433 		/*
434 		 * We're called from user space, we can use _irq
435 		 * rather then _irqsave
436 		 */
437 		spin_lock_irq(&ffs->ev.waitq.lock);
438 		switch (ffs_setup_state_clear_cancelled(ffs)) {
439 		case FFS_SETUP_CANCELLED:
440 			ret = -EIDRM;
441 			goto done_spin;
442 
443 		case FFS_NO_SETUP:
444 			ret = -ESRCH;
445 			goto done_spin;
446 
447 		case FFS_SETUP_PENDING:
448 			break;
449 		}
450 
451 		/* FFS_SETUP_PENDING */
452 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
453 			spin_unlock_irq(&ffs->ev.waitq.lock);
454 			ret = __ffs_ep0_stall(ffs);
455 			break;
456 		}
457 
458 		/* FFS_SETUP_PENDING and not stall */
459 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
460 
461 		spin_unlock_irq(&ffs->ev.waitq.lock);
462 
463 		data = ffs_prepare_buffer(buf, len);
464 		if (IS_ERR(data)) {
465 			ret = PTR_ERR(data);
466 			break;
467 		}
468 
469 		spin_lock_irq(&ffs->ev.waitq.lock);
470 
471 		/*
472 		 * We are guaranteed to be still in FFS_ACTIVE state
473 		 * but the state of setup could have changed from
474 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
475 		 * to check for that.  If that happened we copied data
476 		 * from user space in vain but it's unlikely.
477 		 *
478 		 * For sure we are not in FFS_NO_SETUP since this is
479 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
480 		 * transition can be performed and it's protected by
481 		 * mutex.
482 		 */
483 		if (ffs_setup_state_clear_cancelled(ffs) ==
484 		    FFS_SETUP_CANCELLED) {
485 			ret = -EIDRM;
486 done_spin:
487 			spin_unlock_irq(&ffs->ev.waitq.lock);
488 		} else {
489 			/* unlocks spinlock */
490 			ret = __ffs_ep0_queue_wait(ffs, data, len);
491 		}
492 		kfree(data);
493 		break;
494 
495 	default:
496 		ret = -EBADFD;
497 		break;
498 	}
499 
500 	mutex_unlock(&ffs->mutex);
501 	return ret;
502 }
503 
504 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)505 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
506 				     size_t n)
507 	__releases(&ffs->ev.waitq.lock)
508 {
509 	/*
510 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
511 	 * size of ffs->ev.types array (which is four) so that's how much space
512 	 * we reserve.
513 	 */
514 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
515 	const size_t size = n * sizeof *events;
516 	unsigned i = 0;
517 
518 	memset(events, 0, size);
519 
520 	do {
521 		events[i].type = ffs->ev.types[i];
522 		if (events[i].type == FUNCTIONFS_SETUP) {
523 			events[i].u.setup = ffs->ev.setup;
524 			ffs->setup_state = FFS_SETUP_PENDING;
525 		}
526 	} while (++i < n);
527 
528 	ffs->ev.count -= n;
529 	if (ffs->ev.count)
530 		memmove(ffs->ev.types, ffs->ev.types + n,
531 			ffs->ev.count * sizeof *ffs->ev.types);
532 
533 	spin_unlock_irq(&ffs->ev.waitq.lock);
534 	mutex_unlock(&ffs->mutex);
535 
536 	return copy_to_user(buf, events, size) ? -EFAULT : size;
537 }
538 
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)539 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
540 			    size_t len, loff_t *ptr)
541 {
542 	struct ffs_data *ffs = file->private_data;
543 	char *data = NULL;
544 	size_t n;
545 	int ret;
546 
547 	/* Fast check if setup was canceled */
548 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
549 		return -EIDRM;
550 
551 	/* Acquire mutex */
552 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
553 	if (ret < 0)
554 		return ret;
555 
556 	/* Check state */
557 	if (ffs->state != FFS_ACTIVE) {
558 		ret = -EBADFD;
559 		goto done_mutex;
560 	}
561 
562 	/*
563 	 * We're called from user space, we can use _irq rather then
564 	 * _irqsave
565 	 */
566 	spin_lock_irq(&ffs->ev.waitq.lock);
567 
568 	switch (ffs_setup_state_clear_cancelled(ffs)) {
569 	case FFS_SETUP_CANCELLED:
570 		ret = -EIDRM;
571 		break;
572 
573 	case FFS_NO_SETUP:
574 		n = len / sizeof(struct usb_functionfs_event);
575 		if (!n) {
576 			ret = -EINVAL;
577 			break;
578 		}
579 
580 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
581 			ret = -EAGAIN;
582 			break;
583 		}
584 
585 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
586 							ffs->ev.count)) {
587 			ret = -EINTR;
588 			break;
589 		}
590 
591 		/* unlocks spinlock */
592 		return __ffs_ep0_read_events(ffs, buf,
593 					     min(n, (size_t)ffs->ev.count));
594 
595 	case FFS_SETUP_PENDING:
596 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
597 			spin_unlock_irq(&ffs->ev.waitq.lock);
598 			ret = __ffs_ep0_stall(ffs);
599 			goto done_mutex;
600 		}
601 
602 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
603 
604 		spin_unlock_irq(&ffs->ev.waitq.lock);
605 
606 		if (len) {
607 			data = kmalloc(len, GFP_KERNEL);
608 			if (!data) {
609 				ret = -ENOMEM;
610 				goto done_mutex;
611 			}
612 		}
613 
614 		spin_lock_irq(&ffs->ev.waitq.lock);
615 
616 		/* See ffs_ep0_write() */
617 		if (ffs_setup_state_clear_cancelled(ffs) ==
618 		    FFS_SETUP_CANCELLED) {
619 			ret = -EIDRM;
620 			break;
621 		}
622 
623 		/* unlocks spinlock */
624 		ret = __ffs_ep0_queue_wait(ffs, data, len);
625 		if ((ret > 0) && (copy_to_user(buf, data, len)))
626 			ret = -EFAULT;
627 		goto done_mutex;
628 
629 	default:
630 		ret = -EBADFD;
631 		break;
632 	}
633 
634 	spin_unlock_irq(&ffs->ev.waitq.lock);
635 done_mutex:
636 	mutex_unlock(&ffs->mutex);
637 	kfree(data);
638 	return ret;
639 }
640 
ffs_ep0_open(struct inode * inode,struct file * file)641 static int ffs_ep0_open(struct inode *inode, struct file *file)
642 {
643 	struct ffs_data *ffs = inode->i_private;
644 
645 	if (ffs->state == FFS_CLOSING)
646 		return -EBUSY;
647 
648 	file->private_data = ffs;
649 	ffs_data_opened(ffs);
650 
651 	return stream_open(inode, file);
652 }
653 
ffs_ep0_release(struct inode * inode,struct file * file)654 static int ffs_ep0_release(struct inode *inode, struct file *file)
655 {
656 	struct ffs_data *ffs = file->private_data;
657 
658 	ffs_data_closed(ffs);
659 
660 	return 0;
661 }
662 
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)663 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
664 {
665 	struct ffs_data *ffs = file->private_data;
666 	struct usb_gadget *gadget = ffs->gadget;
667 	long ret;
668 
669 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
670 		struct ffs_function *func = ffs->func;
671 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
672 	} else if (gadget && gadget->ops->ioctl) {
673 		ret = gadget->ops->ioctl(gadget, code, value);
674 	} else {
675 		ret = -ENOTTY;
676 	}
677 
678 	return ret;
679 }
680 
ffs_ep0_poll(struct file * file,poll_table * wait)681 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
682 {
683 	struct ffs_data *ffs = file->private_data;
684 	__poll_t mask = EPOLLWRNORM;
685 	int ret;
686 
687 	poll_wait(file, &ffs->ev.waitq, wait);
688 
689 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
690 	if (ret < 0)
691 		return mask;
692 
693 	switch (ffs->state) {
694 	case FFS_READ_DESCRIPTORS:
695 	case FFS_READ_STRINGS:
696 		mask |= EPOLLOUT;
697 		break;
698 
699 	case FFS_ACTIVE:
700 		switch (ffs->setup_state) {
701 		case FFS_NO_SETUP:
702 			if (ffs->ev.count)
703 				mask |= EPOLLIN;
704 			break;
705 
706 		case FFS_SETUP_PENDING:
707 		case FFS_SETUP_CANCELLED:
708 			mask |= (EPOLLIN | EPOLLOUT);
709 			break;
710 		}
711 		break;
712 
713 	case FFS_CLOSING:
714 		break;
715 	case FFS_DEACTIVATED:
716 		break;
717 	}
718 
719 	mutex_unlock(&ffs->mutex);
720 
721 	return mask;
722 }
723 
724 static const struct file_operations ffs_ep0_operations = {
725 
726 	.open =		ffs_ep0_open,
727 	.write =	ffs_ep0_write,
728 	.read =		ffs_ep0_read,
729 	.release =	ffs_ep0_release,
730 	.unlocked_ioctl =	ffs_ep0_ioctl,
731 	.poll =		ffs_ep0_poll,
732 };
733 
734 
735 /* "Normal" endpoints operations ********************************************/
736 
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)737 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
738 {
739 	struct ffs_io_data *io_data = req->context;
740 
741 	if (req->status)
742 		io_data->status = req->status;
743 	else
744 		io_data->status = req->actual;
745 
746 	complete(&io_data->done);
747 }
748 
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)749 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
750 {
751 	ssize_t ret = copy_to_iter(data, data_len, iter);
752 	if (ret == data_len)
753 		return ret;
754 
755 	if (iov_iter_count(iter))
756 		return -EFAULT;
757 
758 	/*
759 	 * Dear user space developer!
760 	 *
761 	 * TL;DR: To stop getting below error message in your kernel log, change
762 	 * user space code using functionfs to align read buffers to a max
763 	 * packet size.
764 	 *
765 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
766 	 * packet size.  When unaligned buffer is passed to functionfs, it
767 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
768 	 *
769 	 * Unfortunately, this means that host may send more data than was
770 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
771 	 * that excess data so it simply drops it.
772 	 *
773 	 * Was the buffer aligned in the first place, no such problem would
774 	 * happen.
775 	 *
776 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
777 	 * by splitting a request into multiple parts.  This splitting may still
778 	 * be a problem though so it’s likely best to align the buffer
779 	 * regardless of it being AIO or not..
780 	 *
781 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
782 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
783 	 * affected.
784 	 */
785 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
786 	       "Align read buffer size to max packet size to avoid the problem.\n",
787 	       data_len, ret);
788 
789 	return ret;
790 }
791 
792 /*
793  * allocate a virtually contiguous buffer and create a scatterlist describing it
794  * @sg_table	- pointer to a place to be filled with sg_table contents
795  * @size	- required buffer size
796  */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)797 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
798 {
799 	struct page **pages;
800 	void *vaddr, *ptr;
801 	unsigned int n_pages;
802 	int i;
803 
804 	vaddr = vmalloc(sz);
805 	if (!vaddr)
806 		return NULL;
807 
808 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
809 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
810 	if (!pages) {
811 		vfree(vaddr);
812 
813 		return NULL;
814 	}
815 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
816 		pages[i] = vmalloc_to_page(ptr);
817 
818 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
819 		kvfree(pages);
820 		vfree(vaddr);
821 
822 		return NULL;
823 	}
824 	kvfree(pages);
825 
826 	return vaddr;
827 }
828 
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)829 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
830 	size_t data_len)
831 {
832 	if (io_data->use_sg)
833 		return ffs_build_sg_list(&io_data->sgt, data_len);
834 
835 	return kmalloc(data_len, GFP_KERNEL);
836 }
837 
ffs_free_buffer(struct ffs_io_data * io_data)838 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
839 {
840 	if (!io_data->buf)
841 		return;
842 
843 	if (io_data->use_sg) {
844 		sg_free_table(&io_data->sgt);
845 		vfree(io_data->buf);
846 	} else {
847 		kfree(io_data->buf);
848 	}
849 }
850 
ffs_user_copy_worker(struct work_struct * work)851 static void ffs_user_copy_worker(struct work_struct *work)
852 {
853 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
854 						   work);
855 	int ret = io_data->status;
856 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
857 	unsigned long flags;
858 
859 	if (io_data->read && ret > 0) {
860 		kthread_use_mm(io_data->mm);
861 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
862 		kthread_unuse_mm(io_data->mm);
863 	}
864 
865 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
866 
867 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
868 		eventfd_signal(io_data->ffs->ffs_eventfd);
869 
870 	spin_lock_irqsave(&io_data->ffs->eps_lock, flags);
871 	usb_ep_free_request(io_data->ep, io_data->req);
872 	io_data->req = NULL;
873 	spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags);
874 
875 	if (io_data->read)
876 		kfree(io_data->to_free);
877 	ffs_free_buffer(io_data);
878 	kfree(io_data);
879 }
880 
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)881 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
882 					 struct usb_request *req)
883 {
884 	struct ffs_io_data *io_data = req->context;
885 	struct ffs_data *ffs = io_data->ffs;
886 
887 	io_data->status = req->status ? req->status : req->actual;
888 
889 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
890 	queue_work(ffs->io_completion_wq, &io_data->work);
891 }
892 
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)893 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
894 {
895 	/*
896 	 * See comment in struct ffs_epfile for full read_buffer pointer
897 	 * synchronisation story.
898 	 */
899 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
900 	if (buf && buf != READ_BUFFER_DROP)
901 		kfree(buf);
902 }
903 
904 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)905 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
906 					  struct iov_iter *iter)
907 {
908 	/*
909 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
910 	 * the buffer while we are using it.  See comment in struct ffs_epfile
911 	 * for full read_buffer pointer synchronisation story.
912 	 */
913 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
914 	ssize_t ret;
915 	if (!buf || buf == READ_BUFFER_DROP)
916 		return 0;
917 
918 	ret = copy_to_iter(buf->data, buf->length, iter);
919 	if (buf->length == ret) {
920 		kfree(buf);
921 		return ret;
922 	}
923 
924 	if (iov_iter_count(iter)) {
925 		ret = -EFAULT;
926 	} else {
927 		buf->length -= ret;
928 		buf->data += ret;
929 	}
930 
931 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
932 		kfree(buf);
933 
934 	return ret;
935 }
936 
937 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)938 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
939 				      void *data, int data_len,
940 				      struct iov_iter *iter)
941 {
942 	struct ffs_buffer *buf;
943 
944 	ssize_t ret = copy_to_iter(data, data_len, iter);
945 	if (data_len == ret)
946 		return ret;
947 
948 	if (iov_iter_count(iter))
949 		return -EFAULT;
950 
951 	/* See ffs_copy_to_iter for more context. */
952 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
953 		data_len, ret);
954 
955 	data_len -= ret;
956 	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
957 	if (!buf)
958 		return -ENOMEM;
959 	buf->length = data_len;
960 	buf->data = buf->storage;
961 	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
962 
963 	/*
964 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
965 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
966 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
967 	 * story.
968 	 */
969 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
970 		kfree(buf);
971 
972 	return ret;
973 }
974 
ffs_epfile_wait_ep(struct file * file)975 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
976 {
977 	struct ffs_epfile *epfile = file->private_data;
978 	struct ffs_ep *ep;
979 	int ret;
980 
981 	/* Wait for endpoint to be enabled */
982 	ep = epfile->ep;
983 	if (!ep) {
984 		if (file->f_flags & O_NONBLOCK)
985 			return ERR_PTR(-EAGAIN);
986 
987 		ret = wait_event_interruptible(
988 				epfile->ffs->wait, (ep = epfile->ep));
989 		if (ret)
990 			return ERR_PTR(-EINTR);
991 	}
992 
993 	return ep;
994 }
995 
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)996 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
997 {
998 	struct ffs_epfile *epfile = file->private_data;
999 	struct usb_request *req;
1000 	struct ffs_ep *ep;
1001 	char *data = NULL;
1002 	ssize_t ret, data_len = -EINVAL;
1003 	int halt;
1004 
1005 	/* Are we still active? */
1006 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1007 		return -ENODEV;
1008 
1009 	ep = ffs_epfile_wait_ep(file);
1010 	if (IS_ERR(ep))
1011 		return PTR_ERR(ep);
1012 
1013 	/* Do we halt? */
1014 	halt = (!io_data->read == !epfile->in);
1015 	if (halt && epfile->isoc)
1016 		return -EINVAL;
1017 
1018 	/* We will be using request and read_buffer */
1019 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1020 	if (ret)
1021 		goto error;
1022 
1023 	/* Allocate & copy */
1024 	if (!halt) {
1025 		struct usb_gadget *gadget;
1026 
1027 		/*
1028 		 * Do we have buffered data from previous partial read?  Check
1029 		 * that for synchronous case only because we do not have
1030 		 * facility to ‘wake up’ a pending asynchronous read and push
1031 		 * buffered data to it which we would need to make things behave
1032 		 * consistently.
1033 		 */
1034 		if (!io_data->aio && io_data->read) {
1035 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1036 			if (ret)
1037 				goto error_mutex;
1038 		}
1039 
1040 		/*
1041 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1042 		 * before the waiting completes, so do not assign to 'gadget'
1043 		 * earlier
1044 		 */
1045 		gadget = epfile->ffs->gadget;
1046 
1047 		spin_lock_irq(&epfile->ffs->eps_lock);
1048 		/* In the meantime, endpoint got disabled or changed. */
1049 		if (epfile->ep != ep) {
1050 			ret = -ESHUTDOWN;
1051 			goto error_lock;
1052 		}
1053 		data_len = iov_iter_count(&io_data->data);
1054 		/*
1055 		 * Controller may require buffer size to be aligned to
1056 		 * maxpacketsize of an out endpoint.
1057 		 */
1058 		if (io_data->read)
1059 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1060 
1061 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1062 		spin_unlock_irq(&epfile->ffs->eps_lock);
1063 
1064 		data = ffs_alloc_buffer(io_data, data_len);
1065 		if (!data) {
1066 			ret = -ENOMEM;
1067 			goto error_mutex;
1068 		}
1069 		if (!io_data->read &&
1070 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1071 			ret = -EFAULT;
1072 			goto error_mutex;
1073 		}
1074 	}
1075 
1076 	spin_lock_irq(&epfile->ffs->eps_lock);
1077 
1078 	if (epfile->ep != ep) {
1079 		/* In the meantime, endpoint got disabled or changed. */
1080 		ret = -ESHUTDOWN;
1081 	} else if (halt) {
1082 		ret = usb_ep_set_halt(ep->ep);
1083 		if (!ret)
1084 			ret = -EBADMSG;
1085 	} else if (data_len == -EINVAL) {
1086 		/*
1087 		 * Sanity Check: even though data_len can't be used
1088 		 * uninitialized at the time I write this comment, some
1089 		 * compilers complain about this situation.
1090 		 * In order to keep the code clean from warnings, data_len is
1091 		 * being initialized to -EINVAL during its declaration, which
1092 		 * means we can't rely on compiler anymore to warn no future
1093 		 * changes won't result in data_len being used uninitialized.
1094 		 * For such reason, we're adding this redundant sanity check
1095 		 * here.
1096 		 */
1097 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1098 		ret = -EINVAL;
1099 	} else if (!io_data->aio) {
1100 		bool interrupted = false;
1101 
1102 		req = ep->req;
1103 		if (io_data->use_sg) {
1104 			req->buf = NULL;
1105 			req->sg	= io_data->sgt.sgl;
1106 			req->num_sgs = io_data->sgt.nents;
1107 		} else {
1108 			req->buf = data;
1109 			req->num_sgs = 0;
1110 		}
1111 		req->length = data_len;
1112 
1113 		io_data->buf = data;
1114 
1115 		init_completion(&io_data->done);
1116 		req->context  = io_data;
1117 		req->complete = ffs_epfile_io_complete;
1118 
1119 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120 		if (ret < 0)
1121 			goto error_lock;
1122 
1123 		spin_unlock_irq(&epfile->ffs->eps_lock);
1124 
1125 		if (wait_for_completion_interruptible(&io_data->done)) {
1126 			spin_lock_irq(&epfile->ffs->eps_lock);
1127 			if (epfile->ep != ep) {
1128 				ret = -ESHUTDOWN;
1129 				goto error_lock;
1130 			}
1131 			/*
1132 			 * To avoid race condition with ffs_epfile_io_complete,
1133 			 * dequeue the request first then check
1134 			 * status. usb_ep_dequeue API should guarantee no race
1135 			 * condition with req->complete callback.
1136 			 */
1137 			usb_ep_dequeue(ep->ep, req);
1138 			spin_unlock_irq(&epfile->ffs->eps_lock);
1139 			wait_for_completion(&io_data->done);
1140 			interrupted = io_data->status < 0;
1141 		}
1142 
1143 		if (interrupted)
1144 			ret = -EINTR;
1145 		else if (io_data->read && io_data->status > 0)
1146 			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1147 						     &io_data->data);
1148 		else
1149 			ret = io_data->status;
1150 		goto error_mutex;
1151 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1152 		ret = -ENOMEM;
1153 	} else {
1154 		if (io_data->use_sg) {
1155 			req->buf = NULL;
1156 			req->sg	= io_data->sgt.sgl;
1157 			req->num_sgs = io_data->sgt.nents;
1158 		} else {
1159 			req->buf = data;
1160 			req->num_sgs = 0;
1161 		}
1162 		req->length = data_len;
1163 
1164 		io_data->buf = data;
1165 		io_data->ep = ep->ep;
1166 		io_data->req = req;
1167 		io_data->ffs = epfile->ffs;
1168 
1169 		req->context  = io_data;
1170 		req->complete = ffs_epfile_async_io_complete;
1171 
1172 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1173 		if (ret) {
1174 			io_data->req = NULL;
1175 			usb_ep_free_request(ep->ep, req);
1176 			goto error_lock;
1177 		}
1178 
1179 		ret = -EIOCBQUEUED;
1180 		/*
1181 		 * Do not kfree the buffer in this function.  It will be freed
1182 		 * by ffs_user_copy_worker.
1183 		 */
1184 		data = NULL;
1185 	}
1186 
1187 error_lock:
1188 	spin_unlock_irq(&epfile->ffs->eps_lock);
1189 error_mutex:
1190 	mutex_unlock(&epfile->mutex);
1191 error:
1192 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1193 		ffs_free_buffer(io_data);
1194 	return ret;
1195 }
1196 
1197 static int
ffs_epfile_open(struct inode * inode,struct file * file)1198 ffs_epfile_open(struct inode *inode, struct file *file)
1199 {
1200 	struct ffs_epfile *epfile = inode->i_private;
1201 
1202 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1203 		return -ENODEV;
1204 
1205 	file->private_data = epfile;
1206 	ffs_data_opened(epfile->ffs);
1207 
1208 	return stream_open(inode, file);
1209 }
1210 
ffs_aio_cancel(struct kiocb * kiocb)1211 static int ffs_aio_cancel(struct kiocb *kiocb)
1212 {
1213 	struct ffs_io_data *io_data = kiocb->private;
1214 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1215 	unsigned long flags;
1216 	int value;
1217 
1218 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1219 
1220 	if (io_data && io_data->ep && io_data->req)
1221 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1222 	else
1223 		value = -EINVAL;
1224 
1225 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1226 
1227 	return value;
1228 }
1229 
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1230 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1231 {
1232 	struct ffs_io_data io_data, *p = &io_data;
1233 	ssize_t res;
1234 
1235 	if (!is_sync_kiocb(kiocb)) {
1236 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1237 		if (!p)
1238 			return -ENOMEM;
1239 		p->aio = true;
1240 	} else {
1241 		memset(p, 0, sizeof(*p));
1242 		p->aio = false;
1243 	}
1244 
1245 	p->read = false;
1246 	p->kiocb = kiocb;
1247 	p->data = *from;
1248 	p->mm = current->mm;
1249 
1250 	kiocb->private = p;
1251 
1252 	if (p->aio)
1253 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1254 
1255 	res = ffs_epfile_io(kiocb->ki_filp, p);
1256 	if (res == -EIOCBQUEUED)
1257 		return res;
1258 	if (p->aio)
1259 		kfree(p);
1260 	else
1261 		*from = p->data;
1262 	return res;
1263 }
1264 
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1265 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1266 {
1267 	struct ffs_io_data io_data, *p = &io_data;
1268 	ssize_t res;
1269 
1270 	if (!is_sync_kiocb(kiocb)) {
1271 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1272 		if (!p)
1273 			return -ENOMEM;
1274 		p->aio = true;
1275 	} else {
1276 		memset(p, 0, sizeof(*p));
1277 		p->aio = false;
1278 	}
1279 
1280 	p->read = true;
1281 	p->kiocb = kiocb;
1282 	if (p->aio) {
1283 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1284 		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1285 			kfree(p);
1286 			return -ENOMEM;
1287 		}
1288 	} else {
1289 		p->data = *to;
1290 		p->to_free = NULL;
1291 	}
1292 	p->mm = current->mm;
1293 
1294 	kiocb->private = p;
1295 
1296 	if (p->aio)
1297 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1298 
1299 	res = ffs_epfile_io(kiocb->ki_filp, p);
1300 	if (res == -EIOCBQUEUED)
1301 		return res;
1302 
1303 	if (p->aio) {
1304 		kfree(p->to_free);
1305 		kfree(p);
1306 	} else {
1307 		*to = p->data;
1308 	}
1309 	return res;
1310 }
1311 
ffs_dmabuf_release(struct kref * ref)1312 static void ffs_dmabuf_release(struct kref *ref)
1313 {
1314 	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1315 	struct dma_buf_attachment *attach = priv->attach;
1316 	struct dma_buf *dmabuf = attach->dmabuf;
1317 
1318 	pr_vdebug("FFS DMABUF release\n");
1319 	dma_resv_lock(dmabuf->resv, NULL);
1320 	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1321 	dma_resv_unlock(dmabuf->resv);
1322 
1323 	dma_buf_detach(attach->dmabuf, attach);
1324 	dma_buf_put(dmabuf);
1325 	kfree(priv);
1326 }
1327 
ffs_dmabuf_get(struct dma_buf_attachment * attach)1328 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1329 {
1330 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1331 
1332 	kref_get(&priv->ref);
1333 }
1334 
ffs_dmabuf_put(struct dma_buf_attachment * attach)1335 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1336 {
1337 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1338 
1339 	kref_put(&priv->ref, ffs_dmabuf_release);
1340 }
1341 
1342 static int
ffs_epfile_release(struct inode * inode,struct file * file)1343 ffs_epfile_release(struct inode *inode, struct file *file)
1344 {
1345 	struct ffs_epfile *epfile = inode->i_private;
1346 	struct ffs_dmabuf_priv *priv, *tmp;
1347 	struct ffs_data *ffs = epfile->ffs;
1348 
1349 	mutex_lock(&epfile->dmabufs_mutex);
1350 
1351 	/* Close all attached DMABUFs */
1352 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1353 		/* Cancel any pending transfer */
1354 		spin_lock_irq(&ffs->eps_lock);
1355 		if (priv->ep && priv->req)
1356 			usb_ep_dequeue(priv->ep, priv->req);
1357 		spin_unlock_irq(&ffs->eps_lock);
1358 
1359 		list_del(&priv->entry);
1360 		ffs_dmabuf_put(priv->attach);
1361 	}
1362 
1363 	mutex_unlock(&epfile->dmabufs_mutex);
1364 
1365 	__ffs_epfile_read_buffer_free(epfile);
1366 	ffs_data_closed(epfile->ffs);
1367 
1368 	return 0;
1369 }
1370 
ffs_dmabuf_cleanup(struct work_struct * work)1371 static void ffs_dmabuf_cleanup(struct work_struct *work)
1372 {
1373 	struct ffs_dma_fence *dma_fence =
1374 		container_of(work, struct ffs_dma_fence, work);
1375 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1376 	struct dma_buf_attachment *attach = priv->attach;
1377 	struct dma_fence *fence = &dma_fence->base;
1378 
1379 	ffs_dmabuf_put(attach);
1380 	dma_fence_put(fence);
1381 }
1382 
ffs_dmabuf_signal_done(struct ffs_dma_fence * dma_fence,int ret)1383 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1384 {
1385 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1386 	struct dma_fence *fence = &dma_fence->base;
1387 	bool cookie = dma_fence_begin_signalling();
1388 
1389 	dma_fence_get(fence);
1390 	fence->error = ret;
1391 	dma_fence_signal(fence);
1392 	dma_fence_end_signalling(cookie);
1393 
1394 	/*
1395 	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1396 	 * It can't be done here, as the unref functions might try to lock
1397 	 * the resv object, which would deadlock.
1398 	 */
1399 	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1400 	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1401 }
1402 
ffs_epfile_dmabuf_io_complete(struct usb_ep * ep,struct usb_request * req)1403 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1404 					  struct usb_request *req)
1405 {
1406 	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1407 	ffs_dmabuf_signal_done(req->context, req->status);
1408 	usb_ep_free_request(ep, req);
1409 }
1410 
ffs_dmabuf_get_driver_name(struct dma_fence * fence)1411 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1412 {
1413 	return "functionfs";
1414 }
1415 
ffs_dmabuf_get_timeline_name(struct dma_fence * fence)1416 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1417 {
1418 	return "";
1419 }
1420 
ffs_dmabuf_fence_release(struct dma_fence * fence)1421 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1422 {
1423 	struct ffs_dma_fence *dma_fence =
1424 		container_of(fence, struct ffs_dma_fence, base);
1425 
1426 	kfree(dma_fence);
1427 }
1428 
1429 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1430 	.get_driver_name	= ffs_dmabuf_get_driver_name,
1431 	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1432 	.release		= ffs_dmabuf_fence_release,
1433 };
1434 
ffs_dma_resv_lock(struct dma_buf * dmabuf,bool nonblock)1435 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1436 {
1437 	if (!nonblock)
1438 		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1439 
1440 	if (!dma_resv_trylock(dmabuf->resv))
1441 		return -EBUSY;
1442 
1443 	return 0;
1444 }
1445 
1446 static struct dma_buf_attachment *
ffs_dmabuf_find_attachment(struct ffs_epfile * epfile,struct dma_buf * dmabuf)1447 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1448 {
1449 	struct device *dev = epfile->ffs->gadget->dev.parent;
1450 	struct dma_buf_attachment *attach = NULL;
1451 	struct ffs_dmabuf_priv *priv;
1452 
1453 	mutex_lock(&epfile->dmabufs_mutex);
1454 
1455 	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1456 		if (priv->attach->dev == dev
1457 		    && priv->attach->dmabuf == dmabuf) {
1458 			attach = priv->attach;
1459 			break;
1460 		}
1461 	}
1462 
1463 	if (attach)
1464 		ffs_dmabuf_get(attach);
1465 
1466 	mutex_unlock(&epfile->dmabufs_mutex);
1467 
1468 	return attach ?: ERR_PTR(-EPERM);
1469 }
1470 
ffs_dmabuf_attach(struct file * file,int fd)1471 static int ffs_dmabuf_attach(struct file *file, int fd)
1472 {
1473 	bool nonblock = file->f_flags & O_NONBLOCK;
1474 	struct ffs_epfile *epfile = file->private_data;
1475 	struct usb_gadget *gadget = epfile->ffs->gadget;
1476 	struct dma_buf_attachment *attach;
1477 	struct ffs_dmabuf_priv *priv;
1478 	enum dma_data_direction dir;
1479 	struct sg_table *sg_table;
1480 	struct dma_buf *dmabuf;
1481 	int err;
1482 
1483 	if (!gadget || !gadget->sg_supported)
1484 		return -EPERM;
1485 
1486 	dmabuf = dma_buf_get(fd);
1487 	if (IS_ERR(dmabuf))
1488 		return PTR_ERR(dmabuf);
1489 
1490 	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1491 	if (IS_ERR(attach)) {
1492 		err = PTR_ERR(attach);
1493 		goto err_dmabuf_put;
1494 	}
1495 
1496 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1497 	if (!priv) {
1498 		err = -ENOMEM;
1499 		goto err_dmabuf_detach;
1500 	}
1501 
1502 	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1503 
1504 	err = ffs_dma_resv_lock(dmabuf, nonblock);
1505 	if (err)
1506 		goto err_free_priv;
1507 
1508 	sg_table = dma_buf_map_attachment(attach, dir);
1509 	dma_resv_unlock(dmabuf->resv);
1510 
1511 	if (IS_ERR(sg_table)) {
1512 		err = PTR_ERR(sg_table);
1513 		goto err_free_priv;
1514 	}
1515 
1516 	attach->importer_priv = priv;
1517 
1518 	priv->sgt = sg_table;
1519 	priv->dir = dir;
1520 	priv->ffs = epfile->ffs;
1521 	priv->attach = attach;
1522 	spin_lock_init(&priv->lock);
1523 	kref_init(&priv->ref);
1524 	priv->context = dma_fence_context_alloc(1);
1525 
1526 	mutex_lock(&epfile->dmabufs_mutex);
1527 	list_add(&priv->entry, &epfile->dmabufs);
1528 	mutex_unlock(&epfile->dmabufs_mutex);
1529 
1530 	return 0;
1531 
1532 err_free_priv:
1533 	kfree(priv);
1534 err_dmabuf_detach:
1535 	dma_buf_detach(dmabuf, attach);
1536 err_dmabuf_put:
1537 	dma_buf_put(dmabuf);
1538 
1539 	return err;
1540 }
1541 
ffs_dmabuf_detach(struct file * file,int fd)1542 static int ffs_dmabuf_detach(struct file *file, int fd)
1543 {
1544 	struct ffs_epfile *epfile = file->private_data;
1545 	struct ffs_data *ffs = epfile->ffs;
1546 	struct device *dev = ffs->gadget->dev.parent;
1547 	struct ffs_dmabuf_priv *priv, *tmp;
1548 	struct dma_buf *dmabuf;
1549 	int ret = -EPERM;
1550 
1551 	dmabuf = dma_buf_get(fd);
1552 	if (IS_ERR(dmabuf))
1553 		return PTR_ERR(dmabuf);
1554 
1555 	mutex_lock(&epfile->dmabufs_mutex);
1556 
1557 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1558 		if (priv->attach->dev == dev
1559 		    && priv->attach->dmabuf == dmabuf) {
1560 			/* Cancel any pending transfer */
1561 			spin_lock_irq(&ffs->eps_lock);
1562 			if (priv->ep && priv->req)
1563 				usb_ep_dequeue(priv->ep, priv->req);
1564 			spin_unlock_irq(&ffs->eps_lock);
1565 
1566 			list_del(&priv->entry);
1567 
1568 			/* Unref the reference from ffs_dmabuf_attach() */
1569 			ffs_dmabuf_put(priv->attach);
1570 			ret = 0;
1571 			break;
1572 		}
1573 	}
1574 
1575 	mutex_unlock(&epfile->dmabufs_mutex);
1576 	dma_buf_put(dmabuf);
1577 
1578 	return ret;
1579 }
1580 
ffs_dmabuf_transfer(struct file * file,const struct usb_ffs_dmabuf_transfer_req * req)1581 static int ffs_dmabuf_transfer(struct file *file,
1582 			       const struct usb_ffs_dmabuf_transfer_req *req)
1583 {
1584 	bool nonblock = file->f_flags & O_NONBLOCK;
1585 	struct ffs_epfile *epfile = file->private_data;
1586 	struct dma_buf_attachment *attach;
1587 	struct ffs_dmabuf_priv *priv;
1588 	struct ffs_dma_fence *fence;
1589 	struct usb_request *usb_req;
1590 	enum dma_resv_usage resv_dir;
1591 	struct dma_buf *dmabuf;
1592 	unsigned long timeout;
1593 	struct ffs_ep *ep;
1594 	bool cookie;
1595 	u32 seqno;
1596 	long retl;
1597 	int ret;
1598 
1599 	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1600 		return -EINVAL;
1601 
1602 	dmabuf = dma_buf_get(req->fd);
1603 	if (IS_ERR(dmabuf))
1604 		return PTR_ERR(dmabuf);
1605 
1606 	if (req->length > dmabuf->size || req->length == 0) {
1607 		ret = -EINVAL;
1608 		goto err_dmabuf_put;
1609 	}
1610 
1611 	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1612 	if (IS_ERR(attach)) {
1613 		ret = PTR_ERR(attach);
1614 		goto err_dmabuf_put;
1615 	}
1616 
1617 	priv = attach->importer_priv;
1618 
1619 	ep = ffs_epfile_wait_ep(file);
1620 	if (IS_ERR(ep)) {
1621 		ret = PTR_ERR(ep);
1622 		goto err_attachment_put;
1623 	}
1624 
1625 	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1626 	if (ret)
1627 		goto err_attachment_put;
1628 
1629 	/* Make sure we don't have writers */
1630 	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1631 	retl = dma_resv_wait_timeout(dmabuf->resv,
1632 				     dma_resv_usage_rw(epfile->in),
1633 				     true, timeout);
1634 	if (retl == 0)
1635 		retl = -EBUSY;
1636 	if (retl < 0) {
1637 		ret = (int)retl;
1638 		goto err_resv_unlock;
1639 	}
1640 
1641 	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1642 	if (ret)
1643 		goto err_resv_unlock;
1644 
1645 	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1646 	if (!fence) {
1647 		ret = -ENOMEM;
1648 		goto err_resv_unlock;
1649 	}
1650 
1651 	fence->priv = priv;
1652 
1653 	spin_lock_irq(&epfile->ffs->eps_lock);
1654 
1655 	/* In the meantime, endpoint got disabled or changed. */
1656 	if (epfile->ep != ep) {
1657 		ret = -ESHUTDOWN;
1658 		goto err_fence_put;
1659 	}
1660 
1661 	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1662 	if (!usb_req) {
1663 		ret = -ENOMEM;
1664 		goto err_fence_put;
1665 	}
1666 
1667 	/*
1668 	 * usb_ep_queue() guarantees that all transfers are processed in the
1669 	 * order they are enqueued, so we can use a simple incrementing
1670 	 * sequence number for the dma_fence.
1671 	 */
1672 	seqno = atomic_add_return(1, &epfile->seqno);
1673 
1674 	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1675 		       &priv->lock, priv->context, seqno);
1676 
1677 	resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1678 
1679 	dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1680 	dma_resv_unlock(dmabuf->resv);
1681 
1682 	/* Now that the dma_fence is in place, queue the transfer. */
1683 
1684 	usb_req->length = req->length;
1685 	usb_req->buf = NULL;
1686 	usb_req->sg = priv->sgt->sgl;
1687 	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1688 	usb_req->sg_was_mapped = true;
1689 	usb_req->context  = fence;
1690 	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1691 
1692 	cookie = dma_fence_begin_signalling();
1693 	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1694 	dma_fence_end_signalling(cookie);
1695 	if (!ret) {
1696 		priv->req = usb_req;
1697 		priv->ep = ep->ep;
1698 	} else {
1699 		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1700 		ffs_dmabuf_signal_done(fence, ret);
1701 		usb_ep_free_request(ep->ep, usb_req);
1702 	}
1703 
1704 	spin_unlock_irq(&epfile->ffs->eps_lock);
1705 	dma_buf_put(dmabuf);
1706 
1707 	return ret;
1708 
1709 err_fence_put:
1710 	spin_unlock_irq(&epfile->ffs->eps_lock);
1711 	dma_fence_put(&fence->base);
1712 err_resv_unlock:
1713 	dma_resv_unlock(dmabuf->resv);
1714 err_attachment_put:
1715 	ffs_dmabuf_put(attach);
1716 err_dmabuf_put:
1717 	dma_buf_put(dmabuf);
1718 
1719 	return ret;
1720 }
1721 
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1722 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1723 			     unsigned long value)
1724 {
1725 	struct ffs_epfile *epfile = file->private_data;
1726 	struct ffs_ep *ep;
1727 	int ret;
1728 
1729 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1730 		return -ENODEV;
1731 
1732 	switch (code) {
1733 	case FUNCTIONFS_DMABUF_ATTACH:
1734 	{
1735 		int fd;
1736 
1737 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1738 			ret = -EFAULT;
1739 			break;
1740 		}
1741 
1742 		return ffs_dmabuf_attach(file, fd);
1743 	}
1744 	case FUNCTIONFS_DMABUF_DETACH:
1745 	{
1746 		int fd;
1747 
1748 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1749 			ret = -EFAULT;
1750 			break;
1751 		}
1752 
1753 		return ffs_dmabuf_detach(file, fd);
1754 	}
1755 	case FUNCTIONFS_DMABUF_TRANSFER:
1756 	{
1757 		struct usb_ffs_dmabuf_transfer_req req;
1758 
1759 		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1760 			ret = -EFAULT;
1761 			break;
1762 		}
1763 
1764 		return ffs_dmabuf_transfer(file, &req);
1765 	}
1766 	default:
1767 		break;
1768 	}
1769 
1770 	/* Wait for endpoint to be enabled */
1771 	ep = ffs_epfile_wait_ep(file);
1772 	if (IS_ERR(ep))
1773 		return PTR_ERR(ep);
1774 
1775 	spin_lock_irq(&epfile->ffs->eps_lock);
1776 
1777 	/* In the meantime, endpoint got disabled or changed. */
1778 	if (epfile->ep != ep) {
1779 		spin_unlock_irq(&epfile->ffs->eps_lock);
1780 		return -ESHUTDOWN;
1781 	}
1782 
1783 	switch (code) {
1784 	case FUNCTIONFS_FIFO_STATUS:
1785 		ret = usb_ep_fifo_status(epfile->ep->ep);
1786 		break;
1787 	case FUNCTIONFS_FIFO_FLUSH:
1788 		usb_ep_fifo_flush(epfile->ep->ep);
1789 		ret = 0;
1790 		break;
1791 	case FUNCTIONFS_CLEAR_HALT:
1792 		ret = usb_ep_clear_halt(epfile->ep->ep);
1793 		break;
1794 	case FUNCTIONFS_ENDPOINT_REVMAP:
1795 		ret = epfile->ep->num;
1796 		break;
1797 	case FUNCTIONFS_ENDPOINT_DESC:
1798 	{
1799 		int desc_idx;
1800 		struct usb_endpoint_descriptor desc1, *desc;
1801 
1802 		switch (epfile->ffs->gadget->speed) {
1803 		case USB_SPEED_SUPER:
1804 		case USB_SPEED_SUPER_PLUS:
1805 			desc_idx = 2;
1806 			break;
1807 		case USB_SPEED_HIGH:
1808 			desc_idx = 1;
1809 			break;
1810 		default:
1811 			desc_idx = 0;
1812 		}
1813 
1814 		desc = epfile->ep->descs[desc_idx];
1815 		memcpy(&desc1, desc, desc->bLength);
1816 
1817 		spin_unlock_irq(&epfile->ffs->eps_lock);
1818 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1819 		if (ret)
1820 			ret = -EFAULT;
1821 		return ret;
1822 	}
1823 	default:
1824 		ret = -ENOTTY;
1825 	}
1826 	spin_unlock_irq(&epfile->ffs->eps_lock);
1827 
1828 	return ret;
1829 }
1830 
1831 static const struct file_operations ffs_epfile_operations = {
1832 
1833 	.open =		ffs_epfile_open,
1834 	.write_iter =	ffs_epfile_write_iter,
1835 	.read_iter =	ffs_epfile_read_iter,
1836 	.release =	ffs_epfile_release,
1837 	.unlocked_ioctl =	ffs_epfile_ioctl,
1838 	.compat_ioctl = compat_ptr_ioctl,
1839 };
1840 
1841 
1842 /* File system and super block operations ***********************************/
1843 
1844 /*
1845  * Mounting the file system creates a controller file, used first for
1846  * function configuration then later for event monitoring.
1847  */
1848 
1849 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1850 ffs_sb_make_inode(struct super_block *sb, void *data,
1851 		  const struct file_operations *fops,
1852 		  const struct inode_operations *iops,
1853 		  struct ffs_file_perms *perms)
1854 {
1855 	struct inode *inode;
1856 
1857 	inode = new_inode(sb);
1858 
1859 	if (inode) {
1860 		struct timespec64 ts = inode_set_ctime_current(inode);
1861 
1862 		inode->i_ino	 = get_next_ino();
1863 		inode->i_mode    = perms->mode;
1864 		inode->i_uid     = perms->uid;
1865 		inode->i_gid     = perms->gid;
1866 		inode_set_atime_to_ts(inode, ts);
1867 		inode_set_mtime_to_ts(inode, ts);
1868 		inode->i_private = data;
1869 		if (fops)
1870 			inode->i_fop = fops;
1871 		if (iops)
1872 			inode->i_op  = iops;
1873 	}
1874 
1875 	return inode;
1876 }
1877 
1878 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1879 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1880 					const char *name, void *data,
1881 					const struct file_operations *fops)
1882 {
1883 	struct ffs_data	*ffs = sb->s_fs_info;
1884 	struct dentry	*dentry;
1885 	struct inode	*inode;
1886 
1887 	dentry = d_alloc_name(sb->s_root, name);
1888 	if (!dentry)
1889 		return NULL;
1890 
1891 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1892 	if (!inode) {
1893 		dput(dentry);
1894 		return NULL;
1895 	}
1896 
1897 	d_add(dentry, inode);
1898 	return dentry;
1899 }
1900 
1901 /* Super block */
1902 static const struct super_operations ffs_sb_operations = {
1903 	.statfs =	simple_statfs,
1904 	.drop_inode =	generic_delete_inode,
1905 };
1906 
1907 struct ffs_sb_fill_data {
1908 	struct ffs_file_perms perms;
1909 	umode_t root_mode;
1910 	const char *dev_name;
1911 	bool no_disconnect;
1912 	struct ffs_data *ffs_data;
1913 };
1914 
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1915 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1916 {
1917 	struct ffs_sb_fill_data *data = fc->fs_private;
1918 	struct inode	*inode;
1919 	struct ffs_data	*ffs = data->ffs_data;
1920 
1921 	ffs->sb              = sb;
1922 	data->ffs_data       = NULL;
1923 	sb->s_fs_info        = ffs;
1924 	sb->s_blocksize      = PAGE_SIZE;
1925 	sb->s_blocksize_bits = PAGE_SHIFT;
1926 	sb->s_magic          = FUNCTIONFS_MAGIC;
1927 	sb->s_op             = &ffs_sb_operations;
1928 	sb->s_time_gran      = 1;
1929 
1930 	/* Root inode */
1931 	data->perms.mode = data->root_mode;
1932 	inode = ffs_sb_make_inode(sb, NULL,
1933 				  &simple_dir_operations,
1934 				  &simple_dir_inode_operations,
1935 				  &data->perms);
1936 	sb->s_root = d_make_root(inode);
1937 	if (!sb->s_root)
1938 		return -ENOMEM;
1939 
1940 	/* EP0 file */
1941 	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1942 		return -ENOMEM;
1943 
1944 	return 0;
1945 }
1946 
1947 enum {
1948 	Opt_no_disconnect,
1949 	Opt_rmode,
1950 	Opt_fmode,
1951 	Opt_mode,
1952 	Opt_uid,
1953 	Opt_gid,
1954 };
1955 
1956 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1957 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1958 	fsparam_u32	("rmode",		Opt_rmode),
1959 	fsparam_u32	("fmode",		Opt_fmode),
1960 	fsparam_u32	("mode",		Opt_mode),
1961 	fsparam_u32	("uid",			Opt_uid),
1962 	fsparam_u32	("gid",			Opt_gid),
1963 	{}
1964 };
1965 
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1966 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1967 {
1968 	struct ffs_sb_fill_data *data = fc->fs_private;
1969 	struct fs_parse_result result;
1970 	int opt;
1971 
1972 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1973 	if (opt < 0)
1974 		return opt;
1975 
1976 	switch (opt) {
1977 	case Opt_no_disconnect:
1978 		data->no_disconnect = result.boolean;
1979 		break;
1980 	case Opt_rmode:
1981 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1982 		break;
1983 	case Opt_fmode:
1984 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1985 		break;
1986 	case Opt_mode:
1987 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1988 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1989 		break;
1990 
1991 	case Opt_uid:
1992 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1993 		if (!uid_valid(data->perms.uid))
1994 			goto unmapped_value;
1995 		break;
1996 	case Opt_gid:
1997 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1998 		if (!gid_valid(data->perms.gid))
1999 			goto unmapped_value;
2000 		break;
2001 
2002 	default:
2003 		return -ENOPARAM;
2004 	}
2005 
2006 	return 0;
2007 
2008 unmapped_value:
2009 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2010 }
2011 
2012 /*
2013  * Set up the superblock for a mount.
2014  */
ffs_fs_get_tree(struct fs_context * fc)2015 static int ffs_fs_get_tree(struct fs_context *fc)
2016 {
2017 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2018 	struct ffs_data	*ffs;
2019 	int ret;
2020 
2021 	if (!fc->source)
2022 		return invalf(fc, "No source specified");
2023 
2024 	ffs = ffs_data_new(fc->source);
2025 	if (!ffs)
2026 		return -ENOMEM;
2027 	ffs->file_perms = ctx->perms;
2028 	ffs->no_disconnect = ctx->no_disconnect;
2029 
2030 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2031 	if (!ffs->dev_name) {
2032 		ffs_data_put(ffs);
2033 		return -ENOMEM;
2034 	}
2035 
2036 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2037 	if (ret) {
2038 		ffs_data_put(ffs);
2039 		return ret;
2040 	}
2041 
2042 	ctx->ffs_data = ffs;
2043 	return get_tree_nodev(fc, ffs_sb_fill);
2044 }
2045 
ffs_fs_free_fc(struct fs_context * fc)2046 static void ffs_fs_free_fc(struct fs_context *fc)
2047 {
2048 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2049 
2050 	if (ctx) {
2051 		if (ctx->ffs_data) {
2052 			ffs_data_put(ctx->ffs_data);
2053 		}
2054 
2055 		kfree(ctx);
2056 	}
2057 }
2058 
2059 static const struct fs_context_operations ffs_fs_context_ops = {
2060 	.free		= ffs_fs_free_fc,
2061 	.parse_param	= ffs_fs_parse_param,
2062 	.get_tree	= ffs_fs_get_tree,
2063 };
2064 
ffs_fs_init_fs_context(struct fs_context * fc)2065 static int ffs_fs_init_fs_context(struct fs_context *fc)
2066 {
2067 	struct ffs_sb_fill_data *ctx;
2068 
2069 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2070 	if (!ctx)
2071 		return -ENOMEM;
2072 
2073 	ctx->perms.mode = S_IFREG | 0600;
2074 	ctx->perms.uid = GLOBAL_ROOT_UID;
2075 	ctx->perms.gid = GLOBAL_ROOT_GID;
2076 	ctx->root_mode = S_IFDIR | 0500;
2077 	ctx->no_disconnect = false;
2078 
2079 	fc->fs_private = ctx;
2080 	fc->ops = &ffs_fs_context_ops;
2081 	return 0;
2082 }
2083 
2084 static void
ffs_fs_kill_sb(struct super_block * sb)2085 ffs_fs_kill_sb(struct super_block *sb)
2086 {
2087 	kill_litter_super(sb);
2088 	if (sb->s_fs_info)
2089 		ffs_data_closed(sb->s_fs_info);
2090 }
2091 
2092 static struct file_system_type ffs_fs_type = {
2093 	.owner		= THIS_MODULE,
2094 	.name		= "functionfs",
2095 	.init_fs_context = ffs_fs_init_fs_context,
2096 	.parameters	= ffs_fs_fs_parameters,
2097 	.kill_sb	= ffs_fs_kill_sb,
2098 };
2099 MODULE_ALIAS_FS("functionfs");
2100 
2101 
2102 /* Driver's main init/cleanup functions *************************************/
2103 
functionfs_init(void)2104 static int functionfs_init(void)
2105 {
2106 	int ret;
2107 
2108 	ret = register_filesystem(&ffs_fs_type);
2109 	if (!ret)
2110 		pr_info("file system registered\n");
2111 	else
2112 		pr_err("failed registering file system (%d)\n", ret);
2113 
2114 	return ret;
2115 }
2116 
functionfs_cleanup(void)2117 static void functionfs_cleanup(void)
2118 {
2119 	pr_info("unloading\n");
2120 	unregister_filesystem(&ffs_fs_type);
2121 }
2122 
2123 
2124 /* ffs_data and ffs_function construction and destruction code **************/
2125 
2126 static void ffs_data_clear(struct ffs_data *ffs);
2127 static void ffs_data_reset(struct ffs_data *ffs);
2128 
ffs_data_get(struct ffs_data * ffs)2129 static void ffs_data_get(struct ffs_data *ffs)
2130 {
2131 	refcount_inc(&ffs->ref);
2132 }
2133 
ffs_data_opened(struct ffs_data * ffs)2134 static void ffs_data_opened(struct ffs_data *ffs)
2135 {
2136 	refcount_inc(&ffs->ref);
2137 	if (atomic_add_return(1, &ffs->opened) == 1 &&
2138 			ffs->state == FFS_DEACTIVATED) {
2139 		ffs->state = FFS_CLOSING;
2140 		ffs_data_reset(ffs);
2141 	}
2142 }
2143 
ffs_data_put(struct ffs_data * ffs)2144 static void ffs_data_put(struct ffs_data *ffs)
2145 {
2146 	if (refcount_dec_and_test(&ffs->ref)) {
2147 		pr_info("%s(): freeing\n", __func__);
2148 		ffs_data_clear(ffs);
2149 		ffs_release_dev(ffs->private_data);
2150 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2151 		       swait_active(&ffs->ep0req_completion.wait) ||
2152 		       waitqueue_active(&ffs->wait));
2153 		destroy_workqueue(ffs->io_completion_wq);
2154 		kfree(ffs->dev_name);
2155 		kfree(ffs);
2156 	}
2157 }
2158 
ffs_data_closed(struct ffs_data * ffs)2159 static void ffs_data_closed(struct ffs_data *ffs)
2160 {
2161 	struct ffs_epfile *epfiles;
2162 	unsigned long flags;
2163 
2164 	if (atomic_dec_and_test(&ffs->opened)) {
2165 		if (ffs->no_disconnect) {
2166 			ffs->state = FFS_DEACTIVATED;
2167 			spin_lock_irqsave(&ffs->eps_lock, flags);
2168 			epfiles = ffs->epfiles;
2169 			ffs->epfiles = NULL;
2170 			spin_unlock_irqrestore(&ffs->eps_lock,
2171 							flags);
2172 
2173 			if (epfiles)
2174 				ffs_epfiles_destroy(epfiles,
2175 						 ffs->eps_count);
2176 
2177 			if (ffs->setup_state == FFS_SETUP_PENDING)
2178 				__ffs_ep0_stall(ffs);
2179 		} else {
2180 			ffs->state = FFS_CLOSING;
2181 			ffs_data_reset(ffs);
2182 		}
2183 	}
2184 	if (atomic_read(&ffs->opened) < 0) {
2185 		ffs->state = FFS_CLOSING;
2186 		ffs_data_reset(ffs);
2187 	}
2188 
2189 	ffs_data_put(ffs);
2190 }
2191 
ffs_data_new(const char * dev_name)2192 static struct ffs_data *ffs_data_new(const char *dev_name)
2193 {
2194 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2195 	if (!ffs)
2196 		return NULL;
2197 
2198 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2199 	if (!ffs->io_completion_wq) {
2200 		kfree(ffs);
2201 		return NULL;
2202 	}
2203 
2204 	refcount_set(&ffs->ref, 1);
2205 	atomic_set(&ffs->opened, 0);
2206 	ffs->state = FFS_READ_DESCRIPTORS;
2207 	mutex_init(&ffs->mutex);
2208 	spin_lock_init(&ffs->eps_lock);
2209 	init_waitqueue_head(&ffs->ev.waitq);
2210 	init_waitqueue_head(&ffs->wait);
2211 	init_completion(&ffs->ep0req_completion);
2212 
2213 	/* XXX REVISIT need to update it in some places, or do we? */
2214 	ffs->ev.can_stall = 1;
2215 
2216 	return ffs;
2217 }
2218 
ffs_data_clear(struct ffs_data * ffs)2219 static void ffs_data_clear(struct ffs_data *ffs)
2220 {
2221 	struct ffs_epfile *epfiles;
2222 	unsigned long flags;
2223 
2224 	ffs_closed(ffs);
2225 
2226 	BUG_ON(ffs->gadget);
2227 
2228 	spin_lock_irqsave(&ffs->eps_lock, flags);
2229 	epfiles = ffs->epfiles;
2230 	ffs->epfiles = NULL;
2231 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2232 
2233 	/*
2234 	 * potential race possible between ffs_func_eps_disable
2235 	 * & ffs_epfile_release therefore maintaining a local
2236 	 * copy of epfile will save us from use-after-free.
2237 	 */
2238 	if (epfiles) {
2239 		ffs_epfiles_destroy(epfiles, ffs->eps_count);
2240 		ffs->epfiles = NULL;
2241 	}
2242 
2243 	if (ffs->ffs_eventfd) {
2244 		eventfd_ctx_put(ffs->ffs_eventfd);
2245 		ffs->ffs_eventfd = NULL;
2246 	}
2247 
2248 	kfree(ffs->raw_descs_data);
2249 	kfree(ffs->raw_strings);
2250 	kfree(ffs->stringtabs);
2251 }
2252 
ffs_data_reset(struct ffs_data * ffs)2253 static void ffs_data_reset(struct ffs_data *ffs)
2254 {
2255 	ffs_data_clear(ffs);
2256 
2257 	ffs->raw_descs_data = NULL;
2258 	ffs->raw_descs = NULL;
2259 	ffs->raw_strings = NULL;
2260 	ffs->stringtabs = NULL;
2261 
2262 	ffs->raw_descs_length = 0;
2263 	ffs->fs_descs_count = 0;
2264 	ffs->hs_descs_count = 0;
2265 	ffs->ss_descs_count = 0;
2266 
2267 	ffs->strings_count = 0;
2268 	ffs->interfaces_count = 0;
2269 	ffs->eps_count = 0;
2270 
2271 	ffs->ev.count = 0;
2272 
2273 	ffs->state = FFS_READ_DESCRIPTORS;
2274 	ffs->setup_state = FFS_NO_SETUP;
2275 	ffs->flags = 0;
2276 
2277 	ffs->ms_os_descs_ext_prop_count = 0;
2278 	ffs->ms_os_descs_ext_prop_name_len = 0;
2279 	ffs->ms_os_descs_ext_prop_data_len = 0;
2280 }
2281 
2282 
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)2283 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2284 {
2285 	struct usb_gadget_strings **lang;
2286 	int first_id;
2287 
2288 	if (WARN_ON(ffs->state != FFS_ACTIVE
2289 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2290 		return -EBADFD;
2291 
2292 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2293 	if (first_id < 0)
2294 		return first_id;
2295 
2296 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2297 	if (!ffs->ep0req)
2298 		return -ENOMEM;
2299 	ffs->ep0req->complete = ffs_ep0_complete;
2300 	ffs->ep0req->context = ffs;
2301 
2302 	lang = ffs->stringtabs;
2303 	if (lang) {
2304 		for (; *lang; ++lang) {
2305 			struct usb_string *str = (*lang)->strings;
2306 			int id = first_id;
2307 			for (; str->s; ++id, ++str)
2308 				str->id = id;
2309 		}
2310 	}
2311 
2312 	ffs->gadget = cdev->gadget;
2313 	ffs_data_get(ffs);
2314 	return 0;
2315 }
2316 
functionfs_unbind(struct ffs_data * ffs)2317 static void functionfs_unbind(struct ffs_data *ffs)
2318 {
2319 	if (!WARN_ON(!ffs->gadget)) {
2320 		/* dequeue before freeing ep0req */
2321 		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2322 		mutex_lock(&ffs->mutex);
2323 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2324 		ffs->ep0req = NULL;
2325 		ffs->gadget = NULL;
2326 		clear_bit(FFS_FL_BOUND, &ffs->flags);
2327 		mutex_unlock(&ffs->mutex);
2328 		ffs_data_put(ffs);
2329 	}
2330 }
2331 
ffs_epfiles_create(struct ffs_data * ffs)2332 static int ffs_epfiles_create(struct ffs_data *ffs)
2333 {
2334 	struct ffs_epfile *epfile, *epfiles;
2335 	unsigned i, count;
2336 
2337 	count = ffs->eps_count;
2338 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2339 	if (!epfiles)
2340 		return -ENOMEM;
2341 
2342 	epfile = epfiles;
2343 	for (i = 1; i <= count; ++i, ++epfile) {
2344 		epfile->ffs = ffs;
2345 		mutex_init(&epfile->mutex);
2346 		mutex_init(&epfile->dmabufs_mutex);
2347 		INIT_LIST_HEAD(&epfile->dmabufs);
2348 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2349 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2350 		else
2351 			sprintf(epfile->name, "ep%u", i);
2352 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2353 						 epfile,
2354 						 &ffs_epfile_operations);
2355 		if (!epfile->dentry) {
2356 			ffs_epfiles_destroy(epfiles, i - 1);
2357 			return -ENOMEM;
2358 		}
2359 	}
2360 
2361 	ffs->epfiles = epfiles;
2362 	return 0;
2363 }
2364 
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)2365 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2366 {
2367 	struct ffs_epfile *epfile = epfiles;
2368 
2369 	for (; count; --count, ++epfile) {
2370 		BUG_ON(mutex_is_locked(&epfile->mutex));
2371 		if (epfile->dentry) {
2372 			d_delete(epfile->dentry);
2373 			dput(epfile->dentry);
2374 			epfile->dentry = NULL;
2375 		}
2376 	}
2377 
2378 	kfree(epfiles);
2379 }
2380 
ffs_func_eps_disable(struct ffs_function * func)2381 static void ffs_func_eps_disable(struct ffs_function *func)
2382 {
2383 	struct ffs_ep *ep;
2384 	struct ffs_epfile *epfile;
2385 	unsigned short count;
2386 	unsigned long flags;
2387 
2388 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2389 	count = func->ffs->eps_count;
2390 	epfile = func->ffs->epfiles;
2391 	ep = func->eps;
2392 	while (count--) {
2393 		/* pending requests get nuked */
2394 		if (ep->ep)
2395 			usb_ep_disable(ep->ep);
2396 		++ep;
2397 
2398 		if (epfile) {
2399 			epfile->ep = NULL;
2400 			__ffs_epfile_read_buffer_free(epfile);
2401 			++epfile;
2402 		}
2403 	}
2404 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2405 }
2406 
ffs_func_eps_enable(struct ffs_function * func)2407 static int ffs_func_eps_enable(struct ffs_function *func)
2408 {
2409 	struct ffs_data *ffs;
2410 	struct ffs_ep *ep;
2411 	struct ffs_epfile *epfile;
2412 	unsigned short count;
2413 	unsigned long flags;
2414 	int ret = 0;
2415 
2416 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2417 	ffs = func->ffs;
2418 	ep = func->eps;
2419 	epfile = ffs->epfiles;
2420 	count = ffs->eps_count;
2421 	while(count--) {
2422 		ep->ep->driver_data = ep;
2423 
2424 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2425 		if (ret) {
2426 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2427 					__func__, ep->ep->name, ret);
2428 			break;
2429 		}
2430 
2431 		ret = usb_ep_enable(ep->ep);
2432 		if (!ret) {
2433 			epfile->ep = ep;
2434 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2435 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2436 		} else {
2437 			break;
2438 		}
2439 
2440 		++ep;
2441 		++epfile;
2442 	}
2443 
2444 	wake_up_interruptible(&ffs->wait);
2445 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2446 
2447 	return ret;
2448 }
2449 
2450 
2451 /* Parsing and building descriptors and strings *****************************/
2452 
2453 /*
2454  * This validates if data pointed by data is a valid USB descriptor as
2455  * well as record how many interfaces, endpoints and strings are
2456  * required by given configuration.  Returns address after the
2457  * descriptor or NULL if data is invalid.
2458  */
2459 
2460 enum ffs_entity_type {
2461 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2462 };
2463 
2464 enum ffs_os_desc_type {
2465 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2466 };
2467 
2468 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2469 				   u8 *valuep,
2470 				   struct usb_descriptor_header *desc,
2471 				   void *priv);
2472 
2473 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2474 				    struct usb_os_desc_header *h, void *data,
2475 				    unsigned len, void *priv);
2476 
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class,int * current_subclass)2477 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2478 					   ffs_entity_callback entity,
2479 					   void *priv, int *current_class, int *current_subclass)
2480 {
2481 	struct usb_descriptor_header *_ds = (void *)data;
2482 	u8 length;
2483 	int ret;
2484 
2485 	/* At least two bytes are required: length and type */
2486 	if (len < 2) {
2487 		pr_vdebug("descriptor too short\n");
2488 		return -EINVAL;
2489 	}
2490 
2491 	/* If we have at least as many bytes as the descriptor takes? */
2492 	length = _ds->bLength;
2493 	if (len < length) {
2494 		pr_vdebug("descriptor longer then available data\n");
2495 		return -EINVAL;
2496 	}
2497 
2498 #define __entity_check_INTERFACE(val)  1
2499 #define __entity_check_STRING(val)     (val)
2500 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2501 #define __entity(type, val) do {					\
2502 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2503 		if (!__entity_check_ ##type(val)) {			\
2504 			pr_vdebug("invalid entity's value\n");		\
2505 			return -EINVAL;					\
2506 		}							\
2507 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2508 		if (ret < 0) {						\
2509 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2510 				 (val), ret);				\
2511 			return ret;					\
2512 		}							\
2513 	} while (0)
2514 
2515 	/* Parse descriptor depending on type. */
2516 	switch (_ds->bDescriptorType) {
2517 	case USB_DT_DEVICE:
2518 	case USB_DT_CONFIG:
2519 	case USB_DT_STRING:
2520 	case USB_DT_DEVICE_QUALIFIER:
2521 		/* function can't have any of those */
2522 		pr_vdebug("descriptor reserved for gadget: %d\n",
2523 		      _ds->bDescriptorType);
2524 		return -EINVAL;
2525 
2526 	case USB_DT_INTERFACE: {
2527 		struct usb_interface_descriptor *ds = (void *)_ds;
2528 		pr_vdebug("interface descriptor\n");
2529 		if (length != sizeof *ds)
2530 			goto inv_length;
2531 
2532 		__entity(INTERFACE, ds->bInterfaceNumber);
2533 		if (ds->iInterface)
2534 			__entity(STRING, ds->iInterface);
2535 		*current_class = ds->bInterfaceClass;
2536 		*current_subclass = ds->bInterfaceSubClass;
2537 	}
2538 		break;
2539 
2540 	case USB_DT_ENDPOINT: {
2541 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2542 		pr_vdebug("endpoint descriptor\n");
2543 		if (length != USB_DT_ENDPOINT_SIZE &&
2544 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2545 			goto inv_length;
2546 		__entity(ENDPOINT, ds->bEndpointAddress);
2547 	}
2548 		break;
2549 
2550 	case USB_TYPE_CLASS | 0x01:
2551 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2552 			pr_vdebug("hid descriptor\n");
2553 			if (length != sizeof(struct hid_descriptor))
2554 				goto inv_length;
2555 			break;
2556 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2557 			pr_vdebug("ccid descriptor\n");
2558 			if (length != sizeof(struct ccid_descriptor))
2559 				goto inv_length;
2560 			break;
2561 		} else if (*current_class == USB_CLASS_APP_SPEC &&
2562 			   *current_subclass == USB_SUBCLASS_DFU) {
2563 			pr_vdebug("dfu functional descriptor\n");
2564 			if (length != sizeof(struct usb_dfu_functional_descriptor))
2565 				goto inv_length;
2566 			break;
2567 		} else {
2568 			pr_vdebug("unknown descriptor: %d for class %d\n",
2569 			      _ds->bDescriptorType, *current_class);
2570 			return -EINVAL;
2571 		}
2572 
2573 	case USB_DT_OTG:
2574 		if (length != sizeof(struct usb_otg_descriptor))
2575 			goto inv_length;
2576 		break;
2577 
2578 	case USB_DT_INTERFACE_ASSOCIATION: {
2579 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2580 		pr_vdebug("interface association descriptor\n");
2581 		if (length != sizeof *ds)
2582 			goto inv_length;
2583 		if (ds->iFunction)
2584 			__entity(STRING, ds->iFunction);
2585 	}
2586 		break;
2587 
2588 	case USB_DT_SS_ENDPOINT_COMP:
2589 		pr_vdebug("EP SS companion descriptor\n");
2590 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2591 			goto inv_length;
2592 		break;
2593 
2594 	case USB_DT_OTHER_SPEED_CONFIG:
2595 	case USB_DT_INTERFACE_POWER:
2596 	case USB_DT_DEBUG:
2597 	case USB_DT_SECURITY:
2598 	case USB_DT_CS_RADIO_CONTROL:
2599 		/* TODO */
2600 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2601 		return -EINVAL;
2602 
2603 	default:
2604 		/* We should never be here */
2605 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2606 		return -EINVAL;
2607 
2608 inv_length:
2609 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2610 			  _ds->bLength, _ds->bDescriptorType);
2611 		return -EINVAL;
2612 	}
2613 
2614 #undef __entity
2615 #undef __entity_check_DESCRIPTOR
2616 #undef __entity_check_INTERFACE
2617 #undef __entity_check_STRING
2618 #undef __entity_check_ENDPOINT
2619 
2620 	return length;
2621 }
2622 
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2623 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2624 				     ffs_entity_callback entity, void *priv)
2625 {
2626 	const unsigned _len = len;
2627 	unsigned long num = 0;
2628 	int current_class = -1;
2629 	int current_subclass = -1;
2630 
2631 	for (;;) {
2632 		int ret;
2633 
2634 		if (num == count)
2635 			data = NULL;
2636 
2637 		/* Record "descriptor" entity */
2638 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2639 		if (ret < 0) {
2640 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2641 				 num, ret);
2642 			return ret;
2643 		}
2644 
2645 		if (!data)
2646 			return _len - len;
2647 
2648 		ret = ffs_do_single_desc(data, len, entity, priv,
2649 			&current_class, &current_subclass);
2650 		if (ret < 0) {
2651 			pr_debug("%s returns %d\n", __func__, ret);
2652 			return ret;
2653 		}
2654 
2655 		len -= ret;
2656 		data += ret;
2657 		++num;
2658 	}
2659 }
2660 
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2661 static int __ffs_data_do_entity(enum ffs_entity_type type,
2662 				u8 *valuep, struct usb_descriptor_header *desc,
2663 				void *priv)
2664 {
2665 	struct ffs_desc_helper *helper = priv;
2666 	struct usb_endpoint_descriptor *d;
2667 
2668 	switch (type) {
2669 	case FFS_DESCRIPTOR:
2670 		break;
2671 
2672 	case FFS_INTERFACE:
2673 		/*
2674 		 * Interfaces are indexed from zero so if we
2675 		 * encountered interface "n" then there are at least
2676 		 * "n+1" interfaces.
2677 		 */
2678 		if (*valuep >= helper->interfaces_count)
2679 			helper->interfaces_count = *valuep + 1;
2680 		break;
2681 
2682 	case FFS_STRING:
2683 		/*
2684 		 * Strings are indexed from 1 (0 is reserved
2685 		 * for languages list)
2686 		 */
2687 		if (*valuep > helper->ffs->strings_count)
2688 			helper->ffs->strings_count = *valuep;
2689 		break;
2690 
2691 	case FFS_ENDPOINT:
2692 		d = (void *)desc;
2693 		helper->eps_count++;
2694 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2695 			return -EINVAL;
2696 		/* Check if descriptors for any speed were already parsed */
2697 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2698 			helper->ffs->eps_addrmap[helper->eps_count] =
2699 				d->bEndpointAddress;
2700 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2701 				d->bEndpointAddress)
2702 			return -EINVAL;
2703 		break;
2704 	}
2705 
2706 	return 0;
2707 }
2708 
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2709 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2710 				   struct usb_os_desc_header *desc)
2711 {
2712 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2713 	u16 w_index = le16_to_cpu(desc->wIndex);
2714 
2715 	if (bcd_version == 0x1) {
2716 		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2717 			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2718 	} else if (bcd_version != 0x100) {
2719 		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2720 			  bcd_version);
2721 		return -EINVAL;
2722 	}
2723 	switch (w_index) {
2724 	case 0x4:
2725 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2726 		break;
2727 	case 0x5:
2728 		*next_type = FFS_OS_DESC_EXT_PROP;
2729 		break;
2730 	default:
2731 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2732 		return -EINVAL;
2733 	}
2734 
2735 	return sizeof(*desc);
2736 }
2737 
2738 /*
2739  * Process all extended compatibility/extended property descriptors
2740  * of a feature descriptor
2741  */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2742 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2743 					      enum ffs_os_desc_type type,
2744 					      u16 feature_count,
2745 					      ffs_os_desc_callback entity,
2746 					      void *priv,
2747 					      struct usb_os_desc_header *h)
2748 {
2749 	int ret;
2750 	const unsigned _len = len;
2751 
2752 	/* loop over all ext compat/ext prop descriptors */
2753 	while (feature_count--) {
2754 		ret = entity(type, h, data, len, priv);
2755 		if (ret < 0) {
2756 			pr_debug("bad OS descriptor, type: %d\n", type);
2757 			return ret;
2758 		}
2759 		data += ret;
2760 		len -= ret;
2761 	}
2762 	return _len - len;
2763 }
2764 
2765 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2766 static int __must_check ffs_do_os_descs(unsigned count,
2767 					char *data, unsigned len,
2768 					ffs_os_desc_callback entity, void *priv)
2769 {
2770 	const unsigned _len = len;
2771 	unsigned long num = 0;
2772 
2773 	for (num = 0; num < count; ++num) {
2774 		int ret;
2775 		enum ffs_os_desc_type type;
2776 		u16 feature_count;
2777 		struct usb_os_desc_header *desc = (void *)data;
2778 
2779 		if (len < sizeof(*desc))
2780 			return -EINVAL;
2781 
2782 		/*
2783 		 * Record "descriptor" entity.
2784 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2785 		 * Move the data pointer to the beginning of extended
2786 		 * compatibilities proper or extended properties proper
2787 		 * portions of the data
2788 		 */
2789 		if (le32_to_cpu(desc->dwLength) > len)
2790 			return -EINVAL;
2791 
2792 		ret = __ffs_do_os_desc_header(&type, desc);
2793 		if (ret < 0) {
2794 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2795 				 num, ret);
2796 			return ret;
2797 		}
2798 		/*
2799 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2800 		 */
2801 		feature_count = le16_to_cpu(desc->wCount);
2802 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2803 		    (feature_count > 255 || desc->Reserved))
2804 				return -EINVAL;
2805 		len -= ret;
2806 		data += ret;
2807 
2808 		/*
2809 		 * Process all function/property descriptors
2810 		 * of this Feature Descriptor
2811 		 */
2812 		ret = ffs_do_single_os_desc(data, len, type,
2813 					    feature_count, entity, priv, desc);
2814 		if (ret < 0) {
2815 			pr_debug("%s returns %d\n", __func__, ret);
2816 			return ret;
2817 		}
2818 
2819 		len -= ret;
2820 		data += ret;
2821 	}
2822 	return _len - len;
2823 }
2824 
2825 /*
2826  * Validate contents of the buffer from userspace related to OS descriptors.
2827  */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2828 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2829 				 struct usb_os_desc_header *h, void *data,
2830 				 unsigned len, void *priv)
2831 {
2832 	struct ffs_data *ffs = priv;
2833 	u8 length;
2834 
2835 	switch (type) {
2836 	case FFS_OS_DESC_EXT_COMPAT: {
2837 		struct usb_ext_compat_desc *d = data;
2838 		int i;
2839 
2840 		if (len < sizeof(*d) ||
2841 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2842 			return -EINVAL;
2843 		if (d->Reserved1 != 1) {
2844 			/*
2845 			 * According to the spec, Reserved1 must be set to 1
2846 			 * but older kernels incorrectly rejected non-zero
2847 			 * values.  We fix it here to avoid returning EINVAL
2848 			 * in response to values we used to accept.
2849 			 */
2850 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2851 			d->Reserved1 = 1;
2852 		}
2853 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2854 			if (d->Reserved2[i])
2855 				return -EINVAL;
2856 
2857 		length = sizeof(struct usb_ext_compat_desc);
2858 	}
2859 		break;
2860 	case FFS_OS_DESC_EXT_PROP: {
2861 		struct usb_ext_prop_desc *d = data;
2862 		u32 type, pdl;
2863 		u16 pnl;
2864 
2865 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2866 			return -EINVAL;
2867 		length = le32_to_cpu(d->dwSize);
2868 		if (len < length)
2869 			return -EINVAL;
2870 		type = le32_to_cpu(d->dwPropertyDataType);
2871 		if (type < USB_EXT_PROP_UNICODE ||
2872 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2873 			pr_vdebug("unsupported os descriptor property type: %d",
2874 				  type);
2875 			return -EINVAL;
2876 		}
2877 		pnl = le16_to_cpu(d->wPropertyNameLength);
2878 		if (length < 14 + pnl) {
2879 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2880 				  length, pnl, type);
2881 			return -EINVAL;
2882 		}
2883 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2884 		if (length != 14 + pnl + pdl) {
2885 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2886 				  length, pnl, pdl, type);
2887 			return -EINVAL;
2888 		}
2889 		++ffs->ms_os_descs_ext_prop_count;
2890 		/* property name reported to the host as "WCHAR"s */
2891 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2892 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2893 	}
2894 		break;
2895 	default:
2896 		pr_vdebug("unknown descriptor: %d\n", type);
2897 		return -EINVAL;
2898 	}
2899 	return length;
2900 }
2901 
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2902 static int __ffs_data_got_descs(struct ffs_data *ffs,
2903 				char *const _data, size_t len)
2904 {
2905 	char *data = _data, *raw_descs;
2906 	unsigned os_descs_count = 0, counts[3], flags;
2907 	int ret = -EINVAL, i;
2908 	struct ffs_desc_helper helper;
2909 
2910 	if (get_unaligned_le32(data + 4) != len)
2911 		goto error;
2912 
2913 	switch (get_unaligned_le32(data)) {
2914 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2915 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2916 		data += 8;
2917 		len  -= 8;
2918 		break;
2919 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2920 		flags = get_unaligned_le32(data + 8);
2921 		ffs->user_flags = flags;
2922 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2923 			      FUNCTIONFS_HAS_HS_DESC |
2924 			      FUNCTIONFS_HAS_SS_DESC |
2925 			      FUNCTIONFS_HAS_MS_OS_DESC |
2926 			      FUNCTIONFS_VIRTUAL_ADDR |
2927 			      FUNCTIONFS_EVENTFD |
2928 			      FUNCTIONFS_ALL_CTRL_RECIP |
2929 			      FUNCTIONFS_CONFIG0_SETUP)) {
2930 			ret = -ENOSYS;
2931 			goto error;
2932 		}
2933 		data += 12;
2934 		len  -= 12;
2935 		break;
2936 	default:
2937 		goto error;
2938 	}
2939 
2940 	if (flags & FUNCTIONFS_EVENTFD) {
2941 		if (len < 4)
2942 			goto error;
2943 		ffs->ffs_eventfd =
2944 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2945 		if (IS_ERR(ffs->ffs_eventfd)) {
2946 			ret = PTR_ERR(ffs->ffs_eventfd);
2947 			ffs->ffs_eventfd = NULL;
2948 			goto error;
2949 		}
2950 		data += 4;
2951 		len  -= 4;
2952 	}
2953 
2954 	/* Read fs_count, hs_count and ss_count (if present) */
2955 	for (i = 0; i < 3; ++i) {
2956 		if (!(flags & (1 << i))) {
2957 			counts[i] = 0;
2958 		} else if (len < 4) {
2959 			goto error;
2960 		} else {
2961 			counts[i] = get_unaligned_le32(data);
2962 			data += 4;
2963 			len  -= 4;
2964 		}
2965 	}
2966 	if (flags & (1 << i)) {
2967 		if (len < 4) {
2968 			goto error;
2969 		}
2970 		os_descs_count = get_unaligned_le32(data);
2971 		data += 4;
2972 		len -= 4;
2973 	}
2974 
2975 	/* Read descriptors */
2976 	raw_descs = data;
2977 	helper.ffs = ffs;
2978 	for (i = 0; i < 3; ++i) {
2979 		if (!counts[i])
2980 			continue;
2981 		helper.interfaces_count = 0;
2982 		helper.eps_count = 0;
2983 		ret = ffs_do_descs(counts[i], data, len,
2984 				   __ffs_data_do_entity, &helper);
2985 		if (ret < 0)
2986 			goto error;
2987 		if (!ffs->eps_count && !ffs->interfaces_count) {
2988 			ffs->eps_count = helper.eps_count;
2989 			ffs->interfaces_count = helper.interfaces_count;
2990 		} else {
2991 			if (ffs->eps_count != helper.eps_count) {
2992 				ret = -EINVAL;
2993 				goto error;
2994 			}
2995 			if (ffs->interfaces_count != helper.interfaces_count) {
2996 				ret = -EINVAL;
2997 				goto error;
2998 			}
2999 		}
3000 		data += ret;
3001 		len  -= ret;
3002 	}
3003 	if (os_descs_count) {
3004 		ret = ffs_do_os_descs(os_descs_count, data, len,
3005 				      __ffs_data_do_os_desc, ffs);
3006 		if (ret < 0)
3007 			goto error;
3008 		data += ret;
3009 		len -= ret;
3010 	}
3011 
3012 	if (raw_descs == data || len) {
3013 		ret = -EINVAL;
3014 		goto error;
3015 	}
3016 
3017 	ffs->raw_descs_data	= _data;
3018 	ffs->raw_descs		= raw_descs;
3019 	ffs->raw_descs_length	= data - raw_descs;
3020 	ffs->fs_descs_count	= counts[0];
3021 	ffs->hs_descs_count	= counts[1];
3022 	ffs->ss_descs_count	= counts[2];
3023 	ffs->ms_os_descs_count	= os_descs_count;
3024 
3025 	return 0;
3026 
3027 error:
3028 	kfree(_data);
3029 	return ret;
3030 }
3031 
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)3032 static int __ffs_data_got_strings(struct ffs_data *ffs,
3033 				  char *const _data, size_t len)
3034 {
3035 	u32 str_count, needed_count, lang_count;
3036 	struct usb_gadget_strings **stringtabs, *t;
3037 	const char *data = _data;
3038 	struct usb_string *s;
3039 
3040 	if (len < 16 ||
3041 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3042 	    get_unaligned_le32(data + 4) != len)
3043 		goto error;
3044 	str_count  = get_unaligned_le32(data + 8);
3045 	lang_count = get_unaligned_le32(data + 12);
3046 
3047 	/* if one is zero the other must be zero */
3048 	if (!str_count != !lang_count)
3049 		goto error;
3050 
3051 	/* Do we have at least as many strings as descriptors need? */
3052 	needed_count = ffs->strings_count;
3053 	if (str_count < needed_count)
3054 		goto error;
3055 
3056 	/*
3057 	 * If we don't need any strings just return and free all
3058 	 * memory.
3059 	 */
3060 	if (!needed_count) {
3061 		kfree(_data);
3062 		return 0;
3063 	}
3064 
3065 	/* Allocate everything in one chunk so there's less maintenance. */
3066 	{
3067 		unsigned i = 0;
3068 		vla_group(d);
3069 		vla_item(d, struct usb_gadget_strings *, stringtabs,
3070 			size_add(lang_count, 1));
3071 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3072 		vla_item(d, struct usb_string, strings,
3073 			size_mul(lang_count, (needed_count + 1)));
3074 
3075 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3076 
3077 		if (!vlabuf) {
3078 			kfree(_data);
3079 			return -ENOMEM;
3080 		}
3081 
3082 		/* Initialize the VLA pointers */
3083 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3084 		t = vla_ptr(vlabuf, d, stringtab);
3085 		i = lang_count;
3086 		do {
3087 			*stringtabs++ = t++;
3088 		} while (--i);
3089 		*stringtabs = NULL;
3090 
3091 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3092 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3093 		t = vla_ptr(vlabuf, d, stringtab);
3094 		s = vla_ptr(vlabuf, d, strings);
3095 	}
3096 
3097 	/* For each language */
3098 	data += 16;
3099 	len -= 16;
3100 
3101 	do { /* lang_count > 0 so we can use do-while */
3102 		unsigned needed = needed_count;
3103 		u32 str_per_lang = str_count;
3104 
3105 		if (len < 3)
3106 			goto error_free;
3107 		t->language = get_unaligned_le16(data);
3108 		t->strings  = s;
3109 		++t;
3110 
3111 		data += 2;
3112 		len -= 2;
3113 
3114 		/* For each string */
3115 		do { /* str_count > 0 so we can use do-while */
3116 			size_t length = strnlen(data, len);
3117 
3118 			if (length == len)
3119 				goto error_free;
3120 
3121 			/*
3122 			 * User may provide more strings then we need,
3123 			 * if that's the case we simply ignore the
3124 			 * rest
3125 			 */
3126 			if (needed) {
3127 				/*
3128 				 * s->id will be set while adding
3129 				 * function to configuration so for
3130 				 * now just leave garbage here.
3131 				 */
3132 				s->s = data;
3133 				--needed;
3134 				++s;
3135 			}
3136 
3137 			data += length + 1;
3138 			len -= length + 1;
3139 		} while (--str_per_lang);
3140 
3141 		s->id = 0;   /* terminator */
3142 		s->s = NULL;
3143 		++s;
3144 
3145 	} while (--lang_count);
3146 
3147 	/* Some garbage left? */
3148 	if (len)
3149 		goto error_free;
3150 
3151 	/* Done! */
3152 	ffs->stringtabs = stringtabs;
3153 	ffs->raw_strings = _data;
3154 
3155 	return 0;
3156 
3157 error_free:
3158 	kfree(stringtabs);
3159 error:
3160 	kfree(_data);
3161 	return -EINVAL;
3162 }
3163 
3164 
3165 /* Events handling and management *******************************************/
3166 
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3167 static void __ffs_event_add(struct ffs_data *ffs,
3168 			    enum usb_functionfs_event_type type)
3169 {
3170 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3171 	int neg = 0;
3172 
3173 	/*
3174 	 * Abort any unhandled setup
3175 	 *
3176 	 * We do not need to worry about some cmpxchg() changing value
3177 	 * of ffs->setup_state without holding the lock because when
3178 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3179 	 * the source does nothing.
3180 	 */
3181 	if (ffs->setup_state == FFS_SETUP_PENDING)
3182 		ffs->setup_state = FFS_SETUP_CANCELLED;
3183 
3184 	/*
3185 	 * Logic of this function guarantees that there are at most four pending
3186 	 * evens on ffs->ev.types queue.  This is important because the queue
3187 	 * has space for four elements only and __ffs_ep0_read_events function
3188 	 * depends on that limit as well.  If more event types are added, those
3189 	 * limits have to be revisited or guaranteed to still hold.
3190 	 */
3191 	switch (type) {
3192 	case FUNCTIONFS_RESUME:
3193 		rem_type2 = FUNCTIONFS_SUSPEND;
3194 		fallthrough;
3195 	case FUNCTIONFS_SUSPEND:
3196 	case FUNCTIONFS_SETUP:
3197 		rem_type1 = type;
3198 		/* Discard all similar events */
3199 		break;
3200 
3201 	case FUNCTIONFS_BIND:
3202 	case FUNCTIONFS_UNBIND:
3203 	case FUNCTIONFS_DISABLE:
3204 	case FUNCTIONFS_ENABLE:
3205 		/* Discard everything other then power management. */
3206 		rem_type1 = FUNCTIONFS_SUSPEND;
3207 		rem_type2 = FUNCTIONFS_RESUME;
3208 		neg = 1;
3209 		break;
3210 
3211 	default:
3212 		WARN(1, "%d: unknown event, this should not happen\n", type);
3213 		return;
3214 	}
3215 
3216 	{
3217 		u8 *ev  = ffs->ev.types, *out = ev;
3218 		unsigned n = ffs->ev.count;
3219 		for (; n; --n, ++ev)
3220 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3221 				*out++ = *ev;
3222 			else
3223 				pr_vdebug("purging event %d\n", *ev);
3224 		ffs->ev.count = out - ffs->ev.types;
3225 	}
3226 
3227 	pr_vdebug("adding event %d\n", type);
3228 	ffs->ev.types[ffs->ev.count++] = type;
3229 	wake_up_locked(&ffs->ev.waitq);
3230 	if (ffs->ffs_eventfd)
3231 		eventfd_signal(ffs->ffs_eventfd);
3232 }
3233 
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3234 static void ffs_event_add(struct ffs_data *ffs,
3235 			  enum usb_functionfs_event_type type)
3236 {
3237 	unsigned long flags;
3238 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3239 	__ffs_event_add(ffs, type);
3240 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3241 }
3242 
3243 /* Bind/unbind USB function hooks *******************************************/
3244 
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)3245 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3246 {
3247 	int i;
3248 
3249 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3250 		if (ffs->eps_addrmap[i] == endpoint_address)
3251 			return i;
3252 	return -ENOENT;
3253 }
3254 
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3255 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3256 				    struct usb_descriptor_header *desc,
3257 				    void *priv)
3258 {
3259 	struct usb_endpoint_descriptor *ds = (void *)desc;
3260 	struct ffs_function *func = priv;
3261 	struct ffs_ep *ffs_ep;
3262 	unsigned ep_desc_id;
3263 	int idx;
3264 	static const char *speed_names[] = { "full", "high", "super" };
3265 
3266 	if (type != FFS_DESCRIPTOR)
3267 		return 0;
3268 
3269 	/*
3270 	 * If ss_descriptors is not NULL, we are reading super speed
3271 	 * descriptors; if hs_descriptors is not NULL, we are reading high
3272 	 * speed descriptors; otherwise, we are reading full speed
3273 	 * descriptors.
3274 	 */
3275 	if (func->function.ss_descriptors) {
3276 		ep_desc_id = 2;
3277 		func->function.ss_descriptors[(long)valuep] = desc;
3278 	} else if (func->function.hs_descriptors) {
3279 		ep_desc_id = 1;
3280 		func->function.hs_descriptors[(long)valuep] = desc;
3281 	} else {
3282 		ep_desc_id = 0;
3283 		func->function.fs_descriptors[(long)valuep]    = desc;
3284 	}
3285 
3286 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3287 		return 0;
3288 
3289 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3290 	if (idx < 0)
3291 		return idx;
3292 
3293 	ffs_ep = func->eps + idx;
3294 
3295 	if (ffs_ep->descs[ep_desc_id]) {
3296 		pr_err("two %sspeed descriptors for EP %d\n",
3297 			  speed_names[ep_desc_id],
3298 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3299 		return -EINVAL;
3300 	}
3301 	ffs_ep->descs[ep_desc_id] = ds;
3302 
3303 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3304 	if (ffs_ep->ep) {
3305 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3306 		if (!ds->wMaxPacketSize)
3307 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3308 	} else {
3309 		struct usb_request *req;
3310 		struct usb_ep *ep;
3311 		u8 bEndpointAddress;
3312 		u16 wMaxPacketSize;
3313 
3314 		/*
3315 		 * We back up bEndpointAddress because autoconfig overwrites
3316 		 * it with physical endpoint address.
3317 		 */
3318 		bEndpointAddress = ds->bEndpointAddress;
3319 		/*
3320 		 * We back up wMaxPacketSize because autoconfig treats
3321 		 * endpoint descriptors as if they were full speed.
3322 		 */
3323 		wMaxPacketSize = ds->wMaxPacketSize;
3324 		pr_vdebug("autoconfig\n");
3325 		ep = usb_ep_autoconfig(func->gadget, ds);
3326 		if (!ep)
3327 			return -ENOTSUPP;
3328 		ep->driver_data = func->eps + idx;
3329 
3330 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3331 		if (!req)
3332 			return -ENOMEM;
3333 
3334 		ffs_ep->ep  = ep;
3335 		ffs_ep->req = req;
3336 		func->eps_revmap[ds->bEndpointAddress &
3337 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3338 		/*
3339 		 * If we use virtual address mapping, we restore
3340 		 * original bEndpointAddress value.
3341 		 */
3342 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3343 			ds->bEndpointAddress = bEndpointAddress;
3344 		/*
3345 		 * Restore wMaxPacketSize which was potentially
3346 		 * overwritten by autoconfig.
3347 		 */
3348 		ds->wMaxPacketSize = wMaxPacketSize;
3349 	}
3350 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3351 
3352 	return 0;
3353 }
3354 
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3355 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3356 				   struct usb_descriptor_header *desc,
3357 				   void *priv)
3358 {
3359 	struct ffs_function *func = priv;
3360 	unsigned idx;
3361 	u8 newValue;
3362 
3363 	switch (type) {
3364 	default:
3365 	case FFS_DESCRIPTOR:
3366 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3367 		return 0;
3368 
3369 	case FFS_INTERFACE:
3370 		idx = *valuep;
3371 		if (func->interfaces_nums[idx] < 0) {
3372 			int id = usb_interface_id(func->conf, &func->function);
3373 			if (id < 0)
3374 				return id;
3375 			func->interfaces_nums[idx] = id;
3376 		}
3377 		newValue = func->interfaces_nums[idx];
3378 		break;
3379 
3380 	case FFS_STRING:
3381 		/* String' IDs are allocated when fsf_data is bound to cdev */
3382 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3383 		break;
3384 
3385 	case FFS_ENDPOINT:
3386 		/*
3387 		 * USB_DT_ENDPOINT are handled in
3388 		 * __ffs_func_bind_do_descs().
3389 		 */
3390 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3391 			return 0;
3392 
3393 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3394 		if (!func->eps[idx].ep)
3395 			return -EINVAL;
3396 
3397 		{
3398 			struct usb_endpoint_descriptor **descs;
3399 			descs = func->eps[idx].descs;
3400 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3401 		}
3402 		break;
3403 	}
3404 
3405 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3406 	*valuep = newValue;
3407 	return 0;
3408 }
3409 
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)3410 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3411 				      struct usb_os_desc_header *h, void *data,
3412 				      unsigned len, void *priv)
3413 {
3414 	struct ffs_function *func = priv;
3415 	u8 length = 0;
3416 
3417 	switch (type) {
3418 	case FFS_OS_DESC_EXT_COMPAT: {
3419 		struct usb_ext_compat_desc *desc = data;
3420 		struct usb_os_desc_table *t;
3421 
3422 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3423 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3424 		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3425 		       sizeof_field(struct usb_ext_compat_desc, IDs));
3426 		length = sizeof(*desc);
3427 	}
3428 		break;
3429 	case FFS_OS_DESC_EXT_PROP: {
3430 		struct usb_ext_prop_desc *desc = data;
3431 		struct usb_os_desc_table *t;
3432 		struct usb_os_desc_ext_prop *ext_prop;
3433 		char *ext_prop_name;
3434 		char *ext_prop_data;
3435 
3436 		t = &func->function.os_desc_table[h->interface];
3437 		t->if_id = func->interfaces_nums[h->interface];
3438 
3439 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3440 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3441 
3442 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3443 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3444 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3445 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3446 		length = ext_prop->name_len + ext_prop->data_len + 14;
3447 
3448 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3449 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3450 			ext_prop->name_len;
3451 
3452 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3453 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3454 			ext_prop->data_len;
3455 		memcpy(ext_prop_data,
3456 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3457 		       ext_prop->data_len);
3458 		/* unicode data reported to the host as "WCHAR"s */
3459 		switch (ext_prop->type) {
3460 		case USB_EXT_PROP_UNICODE:
3461 		case USB_EXT_PROP_UNICODE_ENV:
3462 		case USB_EXT_PROP_UNICODE_LINK:
3463 		case USB_EXT_PROP_UNICODE_MULTI:
3464 			ext_prop->data_len *= 2;
3465 			break;
3466 		}
3467 		ext_prop->data = ext_prop_data;
3468 
3469 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3470 		       ext_prop->name_len);
3471 		/* property name reported to the host as "WCHAR"s */
3472 		ext_prop->name_len *= 2;
3473 		ext_prop->name = ext_prop_name;
3474 
3475 		t->os_desc->ext_prop_len +=
3476 			ext_prop->name_len + ext_prop->data_len + 14;
3477 		++t->os_desc->ext_prop_count;
3478 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3479 	}
3480 		break;
3481 	default:
3482 		pr_vdebug("unknown descriptor: %d\n", type);
3483 	}
3484 
3485 	return length;
3486 }
3487 
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3488 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3489 						struct usb_configuration *c)
3490 {
3491 	struct ffs_function *func = ffs_func_from_usb(f);
3492 	struct f_fs_opts *ffs_opts =
3493 		container_of(f->fi, struct f_fs_opts, func_inst);
3494 	struct ffs_data *ffs_data;
3495 	int ret;
3496 
3497 	/*
3498 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3499 	 * which already uses locking; taking the same lock here would
3500 	 * cause a deadlock.
3501 	 *
3502 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3503 	 */
3504 	if (!ffs_opts->no_configfs)
3505 		ffs_dev_lock();
3506 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3507 	ffs_data = ffs_opts->dev->ffs_data;
3508 	if (!ffs_opts->no_configfs)
3509 		ffs_dev_unlock();
3510 	if (ret)
3511 		return ERR_PTR(ret);
3512 
3513 	func->ffs = ffs_data;
3514 	func->conf = c;
3515 	func->gadget = c->cdev->gadget;
3516 
3517 	/*
3518 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3519 	 * configurations are bound in sequence with list_for_each_entry,
3520 	 * in each configuration its functions are bound in sequence
3521 	 * with list_for_each_entry, so we assume no race condition
3522 	 * with regard to ffs_opts->bound access
3523 	 */
3524 	if (!ffs_opts->refcnt) {
3525 		ret = functionfs_bind(func->ffs, c->cdev);
3526 		if (ret)
3527 			return ERR_PTR(ret);
3528 	}
3529 	ffs_opts->refcnt++;
3530 	func->function.strings = func->ffs->stringtabs;
3531 
3532 	return ffs_opts;
3533 }
3534 
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3535 static int _ffs_func_bind(struct usb_configuration *c,
3536 			  struct usb_function *f)
3537 {
3538 	struct ffs_function *func = ffs_func_from_usb(f);
3539 	struct ffs_data *ffs = func->ffs;
3540 
3541 	const int full = !!func->ffs->fs_descs_count;
3542 	const int high = !!func->ffs->hs_descs_count;
3543 	const int super = !!func->ffs->ss_descs_count;
3544 
3545 	int fs_len, hs_len, ss_len, ret, i;
3546 	struct ffs_ep *eps_ptr;
3547 
3548 	/* Make it a single chunk, less management later on */
3549 	vla_group(d);
3550 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3551 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3552 		full ? ffs->fs_descs_count + 1 : 0);
3553 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3554 		high ? ffs->hs_descs_count + 1 : 0);
3555 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3556 		super ? ffs->ss_descs_count + 1 : 0);
3557 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3558 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3559 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3560 	vla_item_with_sz(d, char[16], ext_compat,
3561 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3562 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3563 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3564 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3565 			 ffs->ms_os_descs_ext_prop_count);
3566 	vla_item_with_sz(d, char, ext_prop_name,
3567 			 ffs->ms_os_descs_ext_prop_name_len);
3568 	vla_item_with_sz(d, char, ext_prop_data,
3569 			 ffs->ms_os_descs_ext_prop_data_len);
3570 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3571 	char *vlabuf;
3572 
3573 	/* Has descriptors only for speeds gadget does not support */
3574 	if (!(full | high | super))
3575 		return -ENOTSUPP;
3576 
3577 	/* Allocate a single chunk, less management later on */
3578 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3579 	if (!vlabuf)
3580 		return -ENOMEM;
3581 
3582 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3583 	ffs->ms_os_descs_ext_prop_name_avail =
3584 		vla_ptr(vlabuf, d, ext_prop_name);
3585 	ffs->ms_os_descs_ext_prop_data_avail =
3586 		vla_ptr(vlabuf, d, ext_prop_data);
3587 
3588 	/* Copy descriptors  */
3589 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3590 	       ffs->raw_descs_length);
3591 
3592 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3593 	eps_ptr = vla_ptr(vlabuf, d, eps);
3594 	for (i = 0; i < ffs->eps_count; i++)
3595 		eps_ptr[i].num = -1;
3596 
3597 	/* Save pointers
3598 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3599 	*/
3600 	func->eps             = vla_ptr(vlabuf, d, eps);
3601 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3602 
3603 	/*
3604 	 * Go through all the endpoint descriptors and allocate
3605 	 * endpoints first, so that later we can rewrite the endpoint
3606 	 * numbers without worrying that it may be described later on.
3607 	 */
3608 	if (full) {
3609 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3610 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3611 				      vla_ptr(vlabuf, d, raw_descs),
3612 				      d_raw_descs__sz,
3613 				      __ffs_func_bind_do_descs, func);
3614 		if (fs_len < 0) {
3615 			ret = fs_len;
3616 			goto error;
3617 		}
3618 	} else {
3619 		fs_len = 0;
3620 	}
3621 
3622 	if (high) {
3623 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3624 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3625 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3626 				      d_raw_descs__sz - fs_len,
3627 				      __ffs_func_bind_do_descs, func);
3628 		if (hs_len < 0) {
3629 			ret = hs_len;
3630 			goto error;
3631 		}
3632 	} else {
3633 		hs_len = 0;
3634 	}
3635 
3636 	if (super) {
3637 		func->function.ss_descriptors = func->function.ssp_descriptors =
3638 			vla_ptr(vlabuf, d, ss_descs);
3639 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3640 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3641 				d_raw_descs__sz - fs_len - hs_len,
3642 				__ffs_func_bind_do_descs, func);
3643 		if (ss_len < 0) {
3644 			ret = ss_len;
3645 			goto error;
3646 		}
3647 	} else {
3648 		ss_len = 0;
3649 	}
3650 
3651 	/*
3652 	 * Now handle interface numbers allocation and interface and
3653 	 * endpoint numbers rewriting.  We can do that in one go
3654 	 * now.
3655 	 */
3656 	ret = ffs_do_descs(ffs->fs_descs_count +
3657 			   (high ? ffs->hs_descs_count : 0) +
3658 			   (super ? ffs->ss_descs_count : 0),
3659 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3660 			   __ffs_func_bind_do_nums, func);
3661 	if (ret < 0)
3662 		goto error;
3663 
3664 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3665 	if (c->cdev->use_os_string) {
3666 		for (i = 0; i < ffs->interfaces_count; ++i) {
3667 			struct usb_os_desc *desc;
3668 
3669 			desc = func->function.os_desc_table[i].os_desc =
3670 				vla_ptr(vlabuf, d, os_desc) +
3671 				i * sizeof(struct usb_os_desc);
3672 			desc->ext_compat_id =
3673 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3674 			INIT_LIST_HEAD(&desc->ext_prop);
3675 		}
3676 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3677 				      vla_ptr(vlabuf, d, raw_descs) +
3678 				      fs_len + hs_len + ss_len,
3679 				      d_raw_descs__sz - fs_len - hs_len -
3680 				      ss_len,
3681 				      __ffs_func_bind_do_os_desc, func);
3682 		if (ret < 0)
3683 			goto error;
3684 	}
3685 	func->function.os_desc_n =
3686 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3687 
3688 	/* And we're done */
3689 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3690 	return 0;
3691 
3692 error:
3693 	/* XXX Do we need to release all claimed endpoints here? */
3694 	return ret;
3695 }
3696 
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3697 static int ffs_func_bind(struct usb_configuration *c,
3698 			 struct usb_function *f)
3699 {
3700 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3701 	struct ffs_function *func = ffs_func_from_usb(f);
3702 	int ret;
3703 
3704 	if (IS_ERR(ffs_opts))
3705 		return PTR_ERR(ffs_opts);
3706 
3707 	ret = _ffs_func_bind(c, f);
3708 	if (ret && !--ffs_opts->refcnt)
3709 		functionfs_unbind(func->ffs);
3710 
3711 	return ret;
3712 }
3713 
3714 
3715 /* Other USB function hooks *************************************************/
3716 
ffs_reset_work(struct work_struct * work)3717 static void ffs_reset_work(struct work_struct *work)
3718 {
3719 	struct ffs_data *ffs = container_of(work,
3720 		struct ffs_data, reset_work);
3721 	ffs_data_reset(ffs);
3722 }
3723 
ffs_func_get_alt(struct usb_function * f,unsigned int interface)3724 static int ffs_func_get_alt(struct usb_function *f,
3725 			    unsigned int interface)
3726 {
3727 	struct ffs_function *func = ffs_func_from_usb(f);
3728 	int intf = ffs_func_revmap_intf(func, interface);
3729 
3730 	return (intf < 0) ? intf : func->cur_alt[interface];
3731 }
3732 
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3733 static int ffs_func_set_alt(struct usb_function *f,
3734 			    unsigned interface, unsigned alt)
3735 {
3736 	struct ffs_function *func = ffs_func_from_usb(f);
3737 	struct ffs_data *ffs = func->ffs;
3738 	int ret = 0, intf;
3739 
3740 	if (alt > MAX_ALT_SETTINGS)
3741 		return -EINVAL;
3742 
3743 	intf = ffs_func_revmap_intf(func, interface);
3744 	if (intf < 0)
3745 		return intf;
3746 
3747 	if (ffs->func)
3748 		ffs_func_eps_disable(ffs->func);
3749 
3750 	if (ffs->state == FFS_DEACTIVATED) {
3751 		ffs->state = FFS_CLOSING;
3752 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3753 		schedule_work(&ffs->reset_work);
3754 		return -ENODEV;
3755 	}
3756 
3757 	if (ffs->state != FFS_ACTIVE)
3758 		return -ENODEV;
3759 
3760 	ffs->func = func;
3761 	ret = ffs_func_eps_enable(func);
3762 	if (ret >= 0) {
3763 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3764 		func->cur_alt[interface] = alt;
3765 	}
3766 	return ret;
3767 }
3768 
ffs_func_disable(struct usb_function * f)3769 static void ffs_func_disable(struct usb_function *f)
3770 {
3771 	struct ffs_function *func = ffs_func_from_usb(f);
3772 	struct ffs_data *ffs = func->ffs;
3773 
3774 	if (ffs->func)
3775 		ffs_func_eps_disable(ffs->func);
3776 
3777 	if (ffs->state == FFS_DEACTIVATED) {
3778 		ffs->state = FFS_CLOSING;
3779 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3780 		schedule_work(&ffs->reset_work);
3781 		return;
3782 	}
3783 
3784 	if (ffs->state == FFS_ACTIVE) {
3785 		ffs->func = NULL;
3786 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3787 	}
3788 }
3789 
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3790 static int ffs_func_setup(struct usb_function *f,
3791 			  const struct usb_ctrlrequest *creq)
3792 {
3793 	struct ffs_function *func = ffs_func_from_usb(f);
3794 	struct ffs_data *ffs = func->ffs;
3795 	unsigned long flags;
3796 	int ret;
3797 
3798 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3799 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3800 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3801 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3802 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3803 
3804 	/*
3805 	 * Most requests directed to interface go through here
3806 	 * (notable exceptions are set/get interface) so we need to
3807 	 * handle them.  All other either handled by composite or
3808 	 * passed to usb_configuration->setup() (if one is set).  No
3809 	 * matter, we will handle requests directed to endpoint here
3810 	 * as well (as it's straightforward).  Other request recipient
3811 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3812 	 * is being used.
3813 	 */
3814 	if (ffs->state != FFS_ACTIVE)
3815 		return -ENODEV;
3816 
3817 	switch (creq->bRequestType & USB_RECIP_MASK) {
3818 	case USB_RECIP_INTERFACE:
3819 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3820 		if (ret < 0)
3821 			return ret;
3822 		break;
3823 
3824 	case USB_RECIP_ENDPOINT:
3825 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3826 		if (ret < 0)
3827 			return ret;
3828 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3829 			ret = func->ffs->eps_addrmap[ret];
3830 		break;
3831 
3832 	default:
3833 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3834 			ret = le16_to_cpu(creq->wIndex);
3835 		else
3836 			return -EOPNOTSUPP;
3837 	}
3838 
3839 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3840 	ffs->ev.setup = *creq;
3841 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3842 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3843 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3844 
3845 	return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3846 }
3847 
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3848 static bool ffs_func_req_match(struct usb_function *f,
3849 			       const struct usb_ctrlrequest *creq,
3850 			       bool config0)
3851 {
3852 	struct ffs_function *func = ffs_func_from_usb(f);
3853 
3854 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3855 		return false;
3856 
3857 	switch (creq->bRequestType & USB_RECIP_MASK) {
3858 	case USB_RECIP_INTERFACE:
3859 		return (ffs_func_revmap_intf(func,
3860 					     le16_to_cpu(creq->wIndex)) >= 0);
3861 	case USB_RECIP_ENDPOINT:
3862 		return (ffs_func_revmap_ep(func,
3863 					   le16_to_cpu(creq->wIndex)) >= 0);
3864 	default:
3865 		return (bool) (func->ffs->user_flags &
3866 			       FUNCTIONFS_ALL_CTRL_RECIP);
3867 	}
3868 }
3869 
ffs_func_suspend(struct usb_function * f)3870 static void ffs_func_suspend(struct usb_function *f)
3871 {
3872 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3873 }
3874 
ffs_func_resume(struct usb_function * f)3875 static void ffs_func_resume(struct usb_function *f)
3876 {
3877 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3878 }
3879 
3880 
3881 /* Endpoint and interface numbers reverse mapping ***************************/
3882 
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3883 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3884 {
3885 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3886 	return num ? num : -EDOM;
3887 }
3888 
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3889 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3890 {
3891 	short *nums = func->interfaces_nums;
3892 	unsigned count = func->ffs->interfaces_count;
3893 
3894 	for (; count; --count, ++nums) {
3895 		if (*nums >= 0 && *nums == intf)
3896 			return nums - func->interfaces_nums;
3897 	}
3898 
3899 	return -EDOM;
3900 }
3901 
3902 
3903 /* Devices management *******************************************************/
3904 
3905 static LIST_HEAD(ffs_devices);
3906 
_ffs_do_find_dev(const char * name)3907 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3908 {
3909 	struct ffs_dev *dev;
3910 
3911 	if (!name)
3912 		return NULL;
3913 
3914 	list_for_each_entry(dev, &ffs_devices, entry) {
3915 		if (strcmp(dev->name, name) == 0)
3916 			return dev;
3917 	}
3918 
3919 	return NULL;
3920 }
3921 
3922 /*
3923  * ffs_lock must be taken by the caller of this function
3924  */
_ffs_get_single_dev(void)3925 static struct ffs_dev *_ffs_get_single_dev(void)
3926 {
3927 	struct ffs_dev *dev;
3928 
3929 	if (list_is_singular(&ffs_devices)) {
3930 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3931 		if (dev->single)
3932 			return dev;
3933 	}
3934 
3935 	return NULL;
3936 }
3937 
3938 /*
3939  * ffs_lock must be taken by the caller of this function
3940  */
_ffs_find_dev(const char * name)3941 static struct ffs_dev *_ffs_find_dev(const char *name)
3942 {
3943 	struct ffs_dev *dev;
3944 
3945 	dev = _ffs_get_single_dev();
3946 	if (dev)
3947 		return dev;
3948 
3949 	return _ffs_do_find_dev(name);
3950 }
3951 
3952 /* Configfs support *********************************************************/
3953 
to_ffs_opts(struct config_item * item)3954 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3955 {
3956 	return container_of(to_config_group(item), struct f_fs_opts,
3957 			    func_inst.group);
3958 }
3959 
f_fs_opts_ready_show(struct config_item * item,char * page)3960 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3961 {
3962 	struct f_fs_opts *opts = to_ffs_opts(item);
3963 	int ready;
3964 
3965 	ffs_dev_lock();
3966 	ready = opts->dev->desc_ready;
3967 	ffs_dev_unlock();
3968 
3969 	return sprintf(page, "%d\n", ready);
3970 }
3971 
3972 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3973 
3974 static struct configfs_attribute *ffs_attrs[] = {
3975 	&f_fs_opts_attr_ready,
3976 	NULL,
3977 };
3978 
ffs_attr_release(struct config_item * item)3979 static void ffs_attr_release(struct config_item *item)
3980 {
3981 	struct f_fs_opts *opts = to_ffs_opts(item);
3982 
3983 	usb_put_function_instance(&opts->func_inst);
3984 }
3985 
3986 static struct configfs_item_operations ffs_item_ops = {
3987 	.release	= ffs_attr_release,
3988 };
3989 
3990 static const struct config_item_type ffs_func_type = {
3991 	.ct_item_ops	= &ffs_item_ops,
3992 	.ct_attrs	= ffs_attrs,
3993 	.ct_owner	= THIS_MODULE,
3994 };
3995 
3996 
3997 /* Function registration interface ******************************************/
3998 
ffs_free_inst(struct usb_function_instance * f)3999 static void ffs_free_inst(struct usb_function_instance *f)
4000 {
4001 	struct f_fs_opts *opts;
4002 
4003 	opts = to_f_fs_opts(f);
4004 	ffs_release_dev(opts->dev);
4005 	ffs_dev_lock();
4006 	_ffs_free_dev(opts->dev);
4007 	ffs_dev_unlock();
4008 	kfree(opts);
4009 }
4010 
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)4011 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4012 {
4013 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4014 		return -ENAMETOOLONG;
4015 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4016 }
4017 
ffs_alloc_inst(void)4018 static struct usb_function_instance *ffs_alloc_inst(void)
4019 {
4020 	struct f_fs_opts *opts;
4021 	struct ffs_dev *dev;
4022 
4023 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4024 	if (!opts)
4025 		return ERR_PTR(-ENOMEM);
4026 
4027 	opts->func_inst.set_inst_name = ffs_set_inst_name;
4028 	opts->func_inst.free_func_inst = ffs_free_inst;
4029 	ffs_dev_lock();
4030 	dev = _ffs_alloc_dev();
4031 	ffs_dev_unlock();
4032 	if (IS_ERR(dev)) {
4033 		kfree(opts);
4034 		return ERR_CAST(dev);
4035 	}
4036 	opts->dev = dev;
4037 	dev->opts = opts;
4038 
4039 	config_group_init_type_name(&opts->func_inst.group, "",
4040 				    &ffs_func_type);
4041 	return &opts->func_inst;
4042 }
4043 
ffs_free(struct usb_function * f)4044 static void ffs_free(struct usb_function *f)
4045 {
4046 	kfree(ffs_func_from_usb(f));
4047 }
4048 
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)4049 static void ffs_func_unbind(struct usb_configuration *c,
4050 			    struct usb_function *f)
4051 {
4052 	struct ffs_function *func = ffs_func_from_usb(f);
4053 	struct ffs_data *ffs = func->ffs;
4054 	struct f_fs_opts *opts =
4055 		container_of(f->fi, struct f_fs_opts, func_inst);
4056 	struct ffs_ep *ep = func->eps;
4057 	unsigned count = ffs->eps_count;
4058 	unsigned long flags;
4059 
4060 	if (ffs->func == func) {
4061 		ffs_func_eps_disable(func);
4062 		ffs->func = NULL;
4063 	}
4064 
4065 	/* Drain any pending AIO completions */
4066 	drain_workqueue(ffs->io_completion_wq);
4067 
4068 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4069 	if (!--opts->refcnt)
4070 		functionfs_unbind(ffs);
4071 
4072 	/* cleanup after autoconfig */
4073 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4074 	while (count--) {
4075 		if (ep->ep && ep->req)
4076 			usb_ep_free_request(ep->ep, ep->req);
4077 		ep->req = NULL;
4078 		++ep;
4079 	}
4080 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4081 	kfree(func->eps);
4082 	func->eps = NULL;
4083 	/*
4084 	 * eps, descriptors and interfaces_nums are allocated in the
4085 	 * same chunk so only one free is required.
4086 	 */
4087 	func->function.fs_descriptors = NULL;
4088 	func->function.hs_descriptors = NULL;
4089 	func->function.ss_descriptors = NULL;
4090 	func->function.ssp_descriptors = NULL;
4091 	func->interfaces_nums = NULL;
4092 
4093 }
4094 
ffs_alloc(struct usb_function_instance * fi)4095 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4096 {
4097 	struct ffs_function *func;
4098 
4099 	func = kzalloc(sizeof(*func), GFP_KERNEL);
4100 	if (!func)
4101 		return ERR_PTR(-ENOMEM);
4102 
4103 	func->function.name    = "Function FS Gadget";
4104 
4105 	func->function.bind    = ffs_func_bind;
4106 	func->function.unbind  = ffs_func_unbind;
4107 	func->function.set_alt = ffs_func_set_alt;
4108 	func->function.get_alt = ffs_func_get_alt;
4109 	func->function.disable = ffs_func_disable;
4110 	func->function.setup   = ffs_func_setup;
4111 	func->function.req_match = ffs_func_req_match;
4112 	func->function.suspend = ffs_func_suspend;
4113 	func->function.resume  = ffs_func_resume;
4114 	func->function.free_func = ffs_free;
4115 
4116 	return &func->function;
4117 }
4118 
4119 /*
4120  * ffs_lock must be taken by the caller of this function
4121  */
_ffs_alloc_dev(void)4122 static struct ffs_dev *_ffs_alloc_dev(void)
4123 {
4124 	struct ffs_dev *dev;
4125 	int ret;
4126 
4127 	if (_ffs_get_single_dev())
4128 			return ERR_PTR(-EBUSY);
4129 
4130 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4131 	if (!dev)
4132 		return ERR_PTR(-ENOMEM);
4133 
4134 	if (list_empty(&ffs_devices)) {
4135 		ret = functionfs_init();
4136 		if (ret) {
4137 			kfree(dev);
4138 			return ERR_PTR(ret);
4139 		}
4140 	}
4141 
4142 	list_add(&dev->entry, &ffs_devices);
4143 
4144 	return dev;
4145 }
4146 
ffs_name_dev(struct ffs_dev * dev,const char * name)4147 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4148 {
4149 	struct ffs_dev *existing;
4150 	int ret = 0;
4151 
4152 	ffs_dev_lock();
4153 
4154 	existing = _ffs_do_find_dev(name);
4155 	if (!existing)
4156 		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4157 	else if (existing != dev)
4158 		ret = -EBUSY;
4159 
4160 	ffs_dev_unlock();
4161 
4162 	return ret;
4163 }
4164 EXPORT_SYMBOL_GPL(ffs_name_dev);
4165 
ffs_single_dev(struct ffs_dev * dev)4166 int ffs_single_dev(struct ffs_dev *dev)
4167 {
4168 	int ret;
4169 
4170 	ret = 0;
4171 	ffs_dev_lock();
4172 
4173 	if (!list_is_singular(&ffs_devices))
4174 		ret = -EBUSY;
4175 	else
4176 		dev->single = true;
4177 
4178 	ffs_dev_unlock();
4179 	return ret;
4180 }
4181 EXPORT_SYMBOL_GPL(ffs_single_dev);
4182 
4183 /*
4184  * ffs_lock must be taken by the caller of this function
4185  */
_ffs_free_dev(struct ffs_dev * dev)4186 static void _ffs_free_dev(struct ffs_dev *dev)
4187 {
4188 	list_del(&dev->entry);
4189 
4190 	kfree(dev);
4191 	if (list_empty(&ffs_devices))
4192 		functionfs_cleanup();
4193 }
4194 
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)4195 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4196 {
4197 	int ret = 0;
4198 	struct ffs_dev *ffs_dev;
4199 
4200 	ffs_dev_lock();
4201 
4202 	ffs_dev = _ffs_find_dev(dev_name);
4203 	if (!ffs_dev) {
4204 		ret = -ENOENT;
4205 	} else if (ffs_dev->mounted) {
4206 		ret = -EBUSY;
4207 	} else if (ffs_dev->ffs_acquire_dev_callback &&
4208 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4209 		ret = -ENOENT;
4210 	} else {
4211 		ffs_dev->mounted = true;
4212 		ffs_dev->ffs_data = ffs_data;
4213 		ffs_data->private_data = ffs_dev;
4214 	}
4215 
4216 	ffs_dev_unlock();
4217 	return ret;
4218 }
4219 
ffs_release_dev(struct ffs_dev * ffs_dev)4220 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4221 {
4222 	ffs_dev_lock();
4223 
4224 	if (ffs_dev && ffs_dev->mounted) {
4225 		ffs_dev->mounted = false;
4226 		if (ffs_dev->ffs_data) {
4227 			ffs_dev->ffs_data->private_data = NULL;
4228 			ffs_dev->ffs_data = NULL;
4229 		}
4230 
4231 		if (ffs_dev->ffs_release_dev_callback)
4232 			ffs_dev->ffs_release_dev_callback(ffs_dev);
4233 	}
4234 
4235 	ffs_dev_unlock();
4236 }
4237 
ffs_ready(struct ffs_data * ffs)4238 static int ffs_ready(struct ffs_data *ffs)
4239 {
4240 	struct ffs_dev *ffs_obj;
4241 	int ret = 0;
4242 
4243 	ffs_dev_lock();
4244 
4245 	ffs_obj = ffs->private_data;
4246 	if (!ffs_obj) {
4247 		ret = -EINVAL;
4248 		goto done;
4249 	}
4250 	if (WARN_ON(ffs_obj->desc_ready)) {
4251 		ret = -EBUSY;
4252 		goto done;
4253 	}
4254 
4255 	ffs_obj->desc_ready = true;
4256 
4257 	if (ffs_obj->ffs_ready_callback) {
4258 		ret = ffs_obj->ffs_ready_callback(ffs);
4259 		if (ret)
4260 			goto done;
4261 	}
4262 
4263 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4264 done:
4265 	ffs_dev_unlock();
4266 	return ret;
4267 }
4268 
ffs_closed(struct ffs_data * ffs)4269 static void ffs_closed(struct ffs_data *ffs)
4270 {
4271 	struct ffs_dev *ffs_obj;
4272 	struct f_fs_opts *opts;
4273 	struct config_item *ci;
4274 
4275 	ffs_dev_lock();
4276 
4277 	ffs_obj = ffs->private_data;
4278 	if (!ffs_obj)
4279 		goto done;
4280 
4281 	ffs_obj->desc_ready = false;
4282 
4283 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4284 	    ffs_obj->ffs_closed_callback)
4285 		ffs_obj->ffs_closed_callback(ffs);
4286 
4287 	if (ffs_obj->opts)
4288 		opts = ffs_obj->opts;
4289 	else
4290 		goto done;
4291 
4292 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4293 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4294 		goto done;
4295 
4296 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4297 	ffs_dev_unlock();
4298 
4299 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4300 		unregister_gadget_item(ci);
4301 	return;
4302 done:
4303 	ffs_dev_unlock();
4304 }
4305 
4306 /* Misc helper functions ****************************************************/
4307 
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)4308 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4309 {
4310 	return nonblock
4311 		? mutex_trylock(mutex) ? 0 : -EAGAIN
4312 		: mutex_lock_interruptible(mutex);
4313 }
4314 
ffs_prepare_buffer(const char __user * buf,size_t len)4315 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4316 {
4317 	char *data;
4318 
4319 	if (!len)
4320 		return NULL;
4321 
4322 	data = memdup_user(buf, len);
4323 	if (IS_ERR(data))
4324 		return data;
4325 
4326 	pr_vdebug("Buffer from user space:\n");
4327 	ffs_dump_mem("", data, len);
4328 
4329 	return data;
4330 }
4331 
4332 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4333 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4334 MODULE_LICENSE("GPL");
4335 MODULE_AUTHOR("Michal Nazarewicz");
4336