1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/fs/ext4/inode.c
4   *
5   * Copyright (C) 1992, 1993, 1994, 1995
6   * Remy Card (card@masi.ibp.fr)
7   * Laboratoire MASI - Institut Blaise Pascal
8   * Universite Pierre et Marie Curie (Paris VI)
9   *
10   *  from
11   *
12   *  linux/fs/minix/inode.c
13   *
14   *  Copyright (C) 1991, 1992  Linus Torvalds
15   *
16   *  64-bit file support on 64-bit platforms by Jakub Jelinek
17   *	(jj@sunsite.ms.mff.cuni.cz)
18   *
19   *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20   */
21  
22  #include <linux/fs.h>
23  #include <linux/mount.h>
24  #include <linux/time.h>
25  #include <linux/highuid.h>
26  #include <linux/pagemap.h>
27  #include <linux/dax.h>
28  #include <linux/quotaops.h>
29  #include <linux/string.h>
30  #include <linux/buffer_head.h>
31  #include <linux/writeback.h>
32  #include <linux/pagevec.h>
33  #include <linux/mpage.h>
34  #include <linux/namei.h>
35  #include <linux/uio.h>
36  #include <linux/bio.h>
37  #include <linux/workqueue.h>
38  #include <linux/kernel.h>
39  #include <linux/printk.h>
40  #include <linux/slab.h>
41  #include <linux/bitops.h>
42  #include <linux/iomap.h>
43  #include <linux/iversion.h>
44  
45  #include "ext4_jbd2.h"
46  #include "xattr.h"
47  #include "acl.h"
48  #include "truncate.h"
49  
50  #include <trace/events/ext4.h>
51  
52  static void ext4_journalled_zero_new_buffers(handle_t *handle,
53  					    struct inode *inode,
54  					    struct folio *folio,
55  					    unsigned from, unsigned to);
56  
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)57  static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
58  			      struct ext4_inode_info *ei)
59  {
60  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
61  	__u32 csum;
62  	__u16 dummy_csum = 0;
63  	int offset = offsetof(struct ext4_inode, i_checksum_lo);
64  	unsigned int csum_size = sizeof(dummy_csum);
65  
66  	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
67  	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
68  	offset += csum_size;
69  	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
70  			   EXT4_GOOD_OLD_INODE_SIZE - offset);
71  
72  	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73  		offset = offsetof(struct ext4_inode, i_checksum_hi);
74  		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
75  				   EXT4_GOOD_OLD_INODE_SIZE,
76  				   offset - EXT4_GOOD_OLD_INODE_SIZE);
77  		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
78  			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
79  					   csum_size);
80  			offset += csum_size;
81  		}
82  		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
83  				   EXT4_INODE_SIZE(inode->i_sb) - offset);
84  	}
85  
86  	return csum;
87  }
88  
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)89  static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
90  				  struct ext4_inode_info *ei)
91  {
92  	__u32 provided, calculated;
93  
94  	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
95  	    cpu_to_le32(EXT4_OS_LINUX) ||
96  	    !ext4_has_metadata_csum(inode->i_sb))
97  		return 1;
98  
99  	provided = le16_to_cpu(raw->i_checksum_lo);
100  	calculated = ext4_inode_csum(inode, raw, ei);
101  	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
102  	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
103  		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
104  	else
105  		calculated &= 0xFFFF;
106  
107  	return provided == calculated;
108  }
109  
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)110  void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
111  			 struct ext4_inode_info *ei)
112  {
113  	__u32 csum;
114  
115  	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
116  	    cpu_to_le32(EXT4_OS_LINUX) ||
117  	    !ext4_has_metadata_csum(inode->i_sb))
118  		return;
119  
120  	csum = ext4_inode_csum(inode, raw, ei);
121  	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
122  	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
123  	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
124  		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
125  }
126  
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)127  static inline int ext4_begin_ordered_truncate(struct inode *inode,
128  					      loff_t new_size)
129  {
130  	trace_ext4_begin_ordered_truncate(inode, new_size);
131  	/*
132  	 * If jinode is zero, then we never opened the file for
133  	 * writing, so there's no need to call
134  	 * jbd2_journal_begin_ordered_truncate() since there's no
135  	 * outstanding writes we need to flush.
136  	 */
137  	if (!EXT4_I(inode)->jinode)
138  		return 0;
139  	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
140  						   EXT4_I(inode)->jinode,
141  						   new_size);
142  }
143  
144  static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145  				  int pextents);
146  
147  /*
148   * Test whether an inode is a fast symlink.
149   * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150   */
ext4_inode_is_fast_symlink(struct inode * inode)151  int ext4_inode_is_fast_symlink(struct inode *inode)
152  {
153  	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154  		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155  				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156  
157  		if (ext4_has_inline_data(inode))
158  			return 0;
159  
160  		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161  	}
162  	return S_ISLNK(inode->i_mode) && inode->i_size &&
163  	       (inode->i_size < EXT4_N_BLOCKS * 4);
164  }
165  
166  /*
167   * Called at the last iput() if i_nlink is zero.
168   */
ext4_evict_inode(struct inode * inode)169  void ext4_evict_inode(struct inode *inode)
170  {
171  	handle_t *handle;
172  	int err;
173  	/*
174  	 * Credits for final inode cleanup and freeing:
175  	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176  	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
177  	 */
178  	int extra_credits = 6;
179  	struct ext4_xattr_inode_array *ea_inode_array = NULL;
180  	bool freeze_protected = false;
181  
182  	trace_ext4_evict_inode(inode);
183  
184  	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
185  		ext4_evict_ea_inode(inode);
186  	if (inode->i_nlink) {
187  		truncate_inode_pages_final(&inode->i_data);
188  
189  		goto no_delete;
190  	}
191  
192  	if (is_bad_inode(inode))
193  		goto no_delete;
194  	dquot_initialize(inode);
195  
196  	if (ext4_should_order_data(inode))
197  		ext4_begin_ordered_truncate(inode, 0);
198  	truncate_inode_pages_final(&inode->i_data);
199  
200  	/*
201  	 * For inodes with journalled data, transaction commit could have
202  	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
203  	 * extents converting worker could merge extents and also have dirtied
204  	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
205  	 * we still need to remove the inode from the writeback lists.
206  	 */
207  	if (!list_empty_careful(&inode->i_io_list))
208  		inode_io_list_del(inode);
209  
210  	/*
211  	 * Protect us against freezing - iput() caller didn't have to have any
212  	 * protection against it. When we are in a running transaction though,
213  	 * we are already protected against freezing and we cannot grab further
214  	 * protection due to lock ordering constraints.
215  	 */
216  	if (!ext4_journal_current_handle()) {
217  		sb_start_intwrite(inode->i_sb);
218  		freeze_protected = true;
219  	}
220  
221  	if (!IS_NOQUOTA(inode))
222  		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
223  
224  	/*
225  	 * Block bitmap, group descriptor, and inode are accounted in both
226  	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
227  	 */
228  	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
229  			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
230  	if (IS_ERR(handle)) {
231  		ext4_std_error(inode->i_sb, PTR_ERR(handle));
232  		/*
233  		 * If we're going to skip the normal cleanup, we still need to
234  		 * make sure that the in-core orphan linked list is properly
235  		 * cleaned up.
236  		 */
237  		ext4_orphan_del(NULL, inode);
238  		if (freeze_protected)
239  			sb_end_intwrite(inode->i_sb);
240  		goto no_delete;
241  	}
242  
243  	if (IS_SYNC(inode))
244  		ext4_handle_sync(handle);
245  
246  	/*
247  	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
248  	 * special handling of symlinks here because i_size is used to
249  	 * determine whether ext4_inode_info->i_data contains symlink data or
250  	 * block mappings. Setting i_size to 0 will remove its fast symlink
251  	 * status. Erase i_data so that it becomes a valid empty block map.
252  	 */
253  	if (ext4_inode_is_fast_symlink(inode))
254  		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
255  	inode->i_size = 0;
256  	err = ext4_mark_inode_dirty(handle, inode);
257  	if (err) {
258  		ext4_warning(inode->i_sb,
259  			     "couldn't mark inode dirty (err %d)", err);
260  		goto stop_handle;
261  	}
262  	if (inode->i_blocks) {
263  		err = ext4_truncate(inode);
264  		if (err) {
265  			ext4_error_err(inode->i_sb, -err,
266  				       "couldn't truncate inode %lu (err %d)",
267  				       inode->i_ino, err);
268  			goto stop_handle;
269  		}
270  	}
271  
272  	/* Remove xattr references. */
273  	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
274  				      extra_credits);
275  	if (err) {
276  		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
277  stop_handle:
278  		ext4_journal_stop(handle);
279  		ext4_orphan_del(NULL, inode);
280  		if (freeze_protected)
281  			sb_end_intwrite(inode->i_sb);
282  		ext4_xattr_inode_array_free(ea_inode_array);
283  		goto no_delete;
284  	}
285  
286  	/*
287  	 * Kill off the orphan record which ext4_truncate created.
288  	 * AKPM: I think this can be inside the above `if'.
289  	 * Note that ext4_orphan_del() has to be able to cope with the
290  	 * deletion of a non-existent orphan - this is because we don't
291  	 * know if ext4_truncate() actually created an orphan record.
292  	 * (Well, we could do this if we need to, but heck - it works)
293  	 */
294  	ext4_orphan_del(handle, inode);
295  	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
296  
297  	/*
298  	 * One subtle ordering requirement: if anything has gone wrong
299  	 * (transaction abort, IO errors, whatever), then we can still
300  	 * do these next steps (the fs will already have been marked as
301  	 * having errors), but we can't free the inode if the mark_dirty
302  	 * fails.
303  	 */
304  	if (ext4_mark_inode_dirty(handle, inode))
305  		/* If that failed, just do the required in-core inode clear. */
306  		ext4_clear_inode(inode);
307  	else
308  		ext4_free_inode(handle, inode);
309  	ext4_journal_stop(handle);
310  	if (freeze_protected)
311  		sb_end_intwrite(inode->i_sb);
312  	ext4_xattr_inode_array_free(ea_inode_array);
313  	return;
314  no_delete:
315  	/*
316  	 * Check out some where else accidentally dirty the evicting inode,
317  	 * which may probably cause inode use-after-free issues later.
318  	 */
319  	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
320  
321  	if (!list_empty(&EXT4_I(inode)->i_fc_list))
322  		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
323  	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
324  }
325  
326  #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)327  qsize_t *ext4_get_reserved_space(struct inode *inode)
328  {
329  	return &EXT4_I(inode)->i_reserved_quota;
330  }
331  #endif
332  
333  /*
334   * Called with i_data_sem down, which is important since we can call
335   * ext4_discard_preallocations() from here.
336   */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)337  void ext4_da_update_reserve_space(struct inode *inode,
338  					int used, int quota_claim)
339  {
340  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341  	struct ext4_inode_info *ei = EXT4_I(inode);
342  
343  	spin_lock(&ei->i_block_reservation_lock);
344  	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345  	if (unlikely(used > ei->i_reserved_data_blocks)) {
346  		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347  			 "with only %d reserved data blocks",
348  			 __func__, inode->i_ino, used,
349  			 ei->i_reserved_data_blocks);
350  		WARN_ON(1);
351  		used = ei->i_reserved_data_blocks;
352  	}
353  
354  	/* Update per-inode reservations */
355  	ei->i_reserved_data_blocks -= used;
356  	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
357  
358  	spin_unlock(&ei->i_block_reservation_lock);
359  
360  	/* Update quota subsystem for data blocks */
361  	if (quota_claim)
362  		dquot_claim_block(inode, EXT4_C2B(sbi, used));
363  	else {
364  		/*
365  		 * We did fallocate with an offset that is already delayed
366  		 * allocated. So on delayed allocated writeback we should
367  		 * not re-claim the quota for fallocated blocks.
368  		 */
369  		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
370  	}
371  
372  	/*
373  	 * If we have done all the pending block allocations and if
374  	 * there aren't any writers on the inode, we can discard the
375  	 * inode's preallocations.
376  	 */
377  	if ((ei->i_reserved_data_blocks == 0) &&
378  	    !inode_is_open_for_write(inode))
379  		ext4_discard_preallocations(inode);
380  }
381  
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)382  static int __check_block_validity(struct inode *inode, const char *func,
383  				unsigned int line,
384  				struct ext4_map_blocks *map)
385  {
386  	if (ext4_has_feature_journal(inode->i_sb) &&
387  	    (inode->i_ino ==
388  	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
389  		return 0;
390  	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
391  		ext4_error_inode(inode, func, line, map->m_pblk,
392  				 "lblock %lu mapped to illegal pblock %llu "
393  				 "(length %d)", (unsigned long) map->m_lblk,
394  				 map->m_pblk, map->m_len);
395  		return -EFSCORRUPTED;
396  	}
397  	return 0;
398  }
399  
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)400  int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
401  		       ext4_lblk_t len)
402  {
403  	int ret;
404  
405  	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
406  		return fscrypt_zeroout_range(inode, lblk, pblk, len);
407  
408  	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
409  	if (ret > 0)
410  		ret = 0;
411  
412  	return ret;
413  }
414  
415  #define check_block_validity(inode, map)	\
416  	__check_block_validity((inode), __func__, __LINE__, (map))
417  
418  #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)419  static void ext4_map_blocks_es_recheck(handle_t *handle,
420  				       struct inode *inode,
421  				       struct ext4_map_blocks *es_map,
422  				       struct ext4_map_blocks *map,
423  				       int flags)
424  {
425  	int retval;
426  
427  	map->m_flags = 0;
428  	/*
429  	 * There is a race window that the result is not the same.
430  	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
431  	 * is that we lookup a block mapping in extent status tree with
432  	 * out taking i_data_sem.  So at the time the unwritten extent
433  	 * could be converted.
434  	 */
435  	down_read(&EXT4_I(inode)->i_data_sem);
436  	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437  		retval = ext4_ext_map_blocks(handle, inode, map, 0);
438  	} else {
439  		retval = ext4_ind_map_blocks(handle, inode, map, 0);
440  	}
441  	up_read((&EXT4_I(inode)->i_data_sem));
442  
443  	/*
444  	 * We don't check m_len because extent will be collpased in status
445  	 * tree.  So the m_len might not equal.
446  	 */
447  	if (es_map->m_lblk != map->m_lblk ||
448  	    es_map->m_flags != map->m_flags ||
449  	    es_map->m_pblk != map->m_pblk) {
450  		printk("ES cache assertion failed for inode: %lu "
451  		       "es_cached ex [%d/%d/%llu/%x] != "
452  		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
453  		       inode->i_ino, es_map->m_lblk, es_map->m_len,
454  		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
455  		       map->m_len, map->m_pblk, map->m_flags,
456  		       retval, flags);
457  	}
458  }
459  #endif /* ES_AGGRESSIVE_TEST */
460  
ext4_map_query_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map)461  static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
462  				 struct ext4_map_blocks *map)
463  {
464  	unsigned int status;
465  	int retval;
466  
467  	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
468  		retval = ext4_ext_map_blocks(handle, inode, map, 0);
469  	else
470  		retval = ext4_ind_map_blocks(handle, inode, map, 0);
471  
472  	if (retval <= 0)
473  		return retval;
474  
475  	if (unlikely(retval != map->m_len)) {
476  		ext4_warning(inode->i_sb,
477  			     "ES len assertion failed for inode "
478  			     "%lu: retval %d != map->m_len %d",
479  			     inode->i_ino, retval, map->m_len);
480  		WARN_ON(1);
481  	}
482  
483  	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
484  			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
485  	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
486  			      map->m_pblk, status, 0);
487  	return retval;
488  }
489  
ext4_map_create_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)490  static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
491  				  struct ext4_map_blocks *map, int flags)
492  {
493  	struct extent_status es;
494  	unsigned int status;
495  	int err, retval = 0;
496  
497  	/*
498  	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
499  	 * indicates that the blocks and quotas has already been
500  	 * checked when the data was copied into the page cache.
501  	 */
502  	if (map->m_flags & EXT4_MAP_DELAYED)
503  		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
504  
505  	/*
506  	 * Here we clear m_flags because after allocating an new extent,
507  	 * it will be set again.
508  	 */
509  	map->m_flags &= ~EXT4_MAP_FLAGS;
510  
511  	/*
512  	 * We need to check for EXT4 here because migrate could have
513  	 * changed the inode type in between.
514  	 */
515  	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
516  		retval = ext4_ext_map_blocks(handle, inode, map, flags);
517  	} else {
518  		retval = ext4_ind_map_blocks(handle, inode, map, flags);
519  
520  		/*
521  		 * We allocated new blocks which will result in i_data's
522  		 * format changing. Force the migrate to fail by clearing
523  		 * migrate flags.
524  		 */
525  		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
526  			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
527  	}
528  	if (retval <= 0)
529  		return retval;
530  
531  	if (unlikely(retval != map->m_len)) {
532  		ext4_warning(inode->i_sb,
533  			     "ES len assertion failed for inode %lu: "
534  			     "retval %d != map->m_len %d",
535  			     inode->i_ino, retval, map->m_len);
536  		WARN_ON(1);
537  	}
538  
539  	/*
540  	 * We have to zeroout blocks before inserting them into extent
541  	 * status tree. Otherwise someone could look them up there and
542  	 * use them before they are really zeroed. We also have to
543  	 * unmap metadata before zeroing as otherwise writeback can
544  	 * overwrite zeros with stale data from block device.
545  	 */
546  	if (flags & EXT4_GET_BLOCKS_ZERO &&
547  	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
548  		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
549  					 map->m_len);
550  		if (err)
551  			return err;
552  	}
553  
554  	/*
555  	 * If the extent has been zeroed out, we don't need to update
556  	 * extent status tree.
557  	 */
558  	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
559  	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
560  		if (ext4_es_is_written(&es))
561  			return retval;
562  	}
563  
564  	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
565  			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
566  	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
567  			      map->m_pblk, status, flags);
568  
569  	return retval;
570  }
571  
572  /*
573   * The ext4_map_blocks() function tries to look up the requested blocks,
574   * and returns if the blocks are already mapped.
575   *
576   * Otherwise it takes the write lock of the i_data_sem and allocate blocks
577   * and store the allocated blocks in the result buffer head and mark it
578   * mapped.
579   *
580   * If file type is extents based, it will call ext4_ext_map_blocks(),
581   * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
582   * based files
583   *
584   * On success, it returns the number of blocks being mapped or allocated.
585   * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
586   * pre-allocated and unwritten, the resulting @map is marked as unwritten.
587   * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
588   *
589   * It returns 0 if plain look up failed (blocks have not been allocated), in
590   * that case, @map is returned as unmapped but we still do fill map->m_len to
591   * indicate the length of a hole starting at map->m_lblk.
592   *
593   * It returns the error in case of allocation failure.
594   */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)595  int ext4_map_blocks(handle_t *handle, struct inode *inode,
596  		    struct ext4_map_blocks *map, int flags)
597  {
598  	struct extent_status es;
599  	int retval;
600  	int ret = 0;
601  #ifdef ES_AGGRESSIVE_TEST
602  	struct ext4_map_blocks orig_map;
603  
604  	memcpy(&orig_map, map, sizeof(*map));
605  #endif
606  
607  	map->m_flags = 0;
608  	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
609  		  flags, map->m_len, (unsigned long) map->m_lblk);
610  
611  	/*
612  	 * ext4_map_blocks returns an int, and m_len is an unsigned int
613  	 */
614  	if (unlikely(map->m_len > INT_MAX))
615  		map->m_len = INT_MAX;
616  
617  	/* We can handle the block number less than EXT_MAX_BLOCKS */
618  	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
619  		return -EFSCORRUPTED;
620  
621  	/* Lookup extent status tree firstly */
622  	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
623  	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
624  		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
625  			map->m_pblk = ext4_es_pblock(&es) +
626  					map->m_lblk - es.es_lblk;
627  			map->m_flags |= ext4_es_is_written(&es) ?
628  					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
629  			retval = es.es_len - (map->m_lblk - es.es_lblk);
630  			if (retval > map->m_len)
631  				retval = map->m_len;
632  			map->m_len = retval;
633  		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
634  			map->m_pblk = 0;
635  			map->m_flags |= ext4_es_is_delayed(&es) ?
636  					EXT4_MAP_DELAYED : 0;
637  			retval = es.es_len - (map->m_lblk - es.es_lblk);
638  			if (retval > map->m_len)
639  				retval = map->m_len;
640  			map->m_len = retval;
641  			retval = 0;
642  		} else {
643  			BUG();
644  		}
645  
646  		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
647  			return retval;
648  #ifdef ES_AGGRESSIVE_TEST
649  		ext4_map_blocks_es_recheck(handle, inode, map,
650  					   &orig_map, flags);
651  #endif
652  		goto found;
653  	}
654  	/*
655  	 * In the query cache no-wait mode, nothing we can do more if we
656  	 * cannot find extent in the cache.
657  	 */
658  	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
659  		return 0;
660  
661  	/*
662  	 * Try to see if we can get the block without requesting a new
663  	 * file system block.
664  	 */
665  	down_read(&EXT4_I(inode)->i_data_sem);
666  	retval = ext4_map_query_blocks(handle, inode, map);
667  	up_read((&EXT4_I(inode)->i_data_sem));
668  
669  found:
670  	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
671  		ret = check_block_validity(inode, map);
672  		if (ret != 0)
673  			return ret;
674  	}
675  
676  	/* If it is only a block(s) look up */
677  	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
678  		return retval;
679  
680  	/*
681  	 * Returns if the blocks have already allocated
682  	 *
683  	 * Note that if blocks have been preallocated
684  	 * ext4_ext_map_blocks() returns with buffer head unmapped
685  	 */
686  	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
687  		/*
688  		 * If we need to convert extent to unwritten
689  		 * we continue and do the actual work in
690  		 * ext4_ext_map_blocks()
691  		 */
692  		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
693  			return retval;
694  
695  	/*
696  	 * New blocks allocate and/or writing to unwritten extent
697  	 * will possibly result in updating i_data, so we take
698  	 * the write lock of i_data_sem, and call get_block()
699  	 * with create == 1 flag.
700  	 */
701  	down_write(&EXT4_I(inode)->i_data_sem);
702  	retval = ext4_map_create_blocks(handle, inode, map, flags);
703  	up_write((&EXT4_I(inode)->i_data_sem));
704  	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705  		ret = check_block_validity(inode, map);
706  		if (ret != 0)
707  			return ret;
708  
709  		/*
710  		 * Inodes with freshly allocated blocks where contents will be
711  		 * visible after transaction commit must be on transaction's
712  		 * ordered data list.
713  		 */
714  		if (map->m_flags & EXT4_MAP_NEW &&
715  		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716  		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
717  		    !ext4_is_quota_file(inode) &&
718  		    ext4_should_order_data(inode)) {
719  			loff_t start_byte =
720  				(loff_t)map->m_lblk << inode->i_blkbits;
721  			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722  
723  			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724  				ret = ext4_jbd2_inode_add_wait(handle, inode,
725  						start_byte, length);
726  			else
727  				ret = ext4_jbd2_inode_add_write(handle, inode,
728  						start_byte, length);
729  			if (ret)
730  				return ret;
731  		}
732  	}
733  	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
734  				map->m_flags & EXT4_MAP_MAPPED))
735  		ext4_fc_track_range(handle, inode, map->m_lblk,
736  					map->m_lblk + map->m_len - 1);
737  	if (retval < 0)
738  		ext_debug(inode, "failed with err %d\n", retval);
739  	return retval;
740  }
741  
742  /*
743   * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744   * we have to be careful as someone else may be manipulating b_state as well.
745   */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)746  static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747  {
748  	unsigned long old_state;
749  	unsigned long new_state;
750  
751  	flags &= EXT4_MAP_FLAGS;
752  
753  	/* Dummy buffer_head? Set non-atomically. */
754  	if (!bh->b_page) {
755  		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756  		return;
757  	}
758  	/*
759  	 * Someone else may be modifying b_state. Be careful! This is ugly but
760  	 * once we get rid of using bh as a container for mapping information
761  	 * to pass to / from get_block functions, this can go away.
762  	 */
763  	old_state = READ_ONCE(bh->b_state);
764  	do {
765  		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766  	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
767  }
768  
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)769  static int _ext4_get_block(struct inode *inode, sector_t iblock,
770  			   struct buffer_head *bh, int flags)
771  {
772  	struct ext4_map_blocks map;
773  	int ret = 0;
774  
775  	if (ext4_has_inline_data(inode))
776  		return -ERANGE;
777  
778  	map.m_lblk = iblock;
779  	map.m_len = bh->b_size >> inode->i_blkbits;
780  
781  	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782  			      flags);
783  	if (ret > 0) {
784  		map_bh(bh, inode->i_sb, map.m_pblk);
785  		ext4_update_bh_state(bh, map.m_flags);
786  		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787  		ret = 0;
788  	} else if (ret == 0) {
789  		/* hole case, need to fill in bh->b_size */
790  		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791  	}
792  	return ret;
793  }
794  
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)795  int ext4_get_block(struct inode *inode, sector_t iblock,
796  		   struct buffer_head *bh, int create)
797  {
798  	return _ext4_get_block(inode, iblock, bh,
799  			       create ? EXT4_GET_BLOCKS_CREATE : 0);
800  }
801  
802  /*
803   * Get block function used when preparing for buffered write if we require
804   * creating an unwritten extent if blocks haven't been allocated.  The extent
805   * will be converted to written after the IO is complete.
806   */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)807  int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808  			     struct buffer_head *bh_result, int create)
809  {
810  	int ret = 0;
811  
812  	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813  		   inode->i_ino, create);
814  	ret = _ext4_get_block(inode, iblock, bh_result,
815  			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
816  
817  	/*
818  	 * If the buffer is marked unwritten, mark it as new to make sure it is
819  	 * zeroed out correctly in case of partial writes. Otherwise, there is
820  	 * a chance of stale data getting exposed.
821  	 */
822  	if (ret == 0 && buffer_unwritten(bh_result))
823  		set_buffer_new(bh_result);
824  
825  	return ret;
826  }
827  
828  /* Maximum number of blocks we map for direct IO at once. */
829  #define DIO_MAX_BLOCKS 4096
830  
831  /*
832   * `handle' can be NULL if create is zero
833   */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)834  struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835  				ext4_lblk_t block, int map_flags)
836  {
837  	struct ext4_map_blocks map;
838  	struct buffer_head *bh;
839  	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840  	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
841  	int err;
842  
843  	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844  		    || handle != NULL || create == 0);
845  	ASSERT(create == 0 || !nowait);
846  
847  	map.m_lblk = block;
848  	map.m_len = 1;
849  	err = ext4_map_blocks(handle, inode, &map, map_flags);
850  
851  	if (err == 0)
852  		return create ? ERR_PTR(-ENOSPC) : NULL;
853  	if (err < 0)
854  		return ERR_PTR(err);
855  
856  	if (nowait)
857  		return sb_find_get_block(inode->i_sb, map.m_pblk);
858  
859  	bh = sb_getblk(inode->i_sb, map.m_pblk);
860  	if (unlikely(!bh))
861  		return ERR_PTR(-ENOMEM);
862  	if (map.m_flags & EXT4_MAP_NEW) {
863  		ASSERT(create != 0);
864  		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
865  			    || (handle != NULL));
866  
867  		/*
868  		 * Now that we do not always journal data, we should
869  		 * keep in mind whether this should always journal the
870  		 * new buffer as metadata.  For now, regular file
871  		 * writes use ext4_get_block instead, so it's not a
872  		 * problem.
873  		 */
874  		lock_buffer(bh);
875  		BUFFER_TRACE(bh, "call get_create_access");
876  		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
877  						     EXT4_JTR_NONE);
878  		if (unlikely(err)) {
879  			unlock_buffer(bh);
880  			goto errout;
881  		}
882  		if (!buffer_uptodate(bh)) {
883  			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
884  			set_buffer_uptodate(bh);
885  		}
886  		unlock_buffer(bh);
887  		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
888  		err = ext4_handle_dirty_metadata(handle, inode, bh);
889  		if (unlikely(err))
890  			goto errout;
891  	} else
892  		BUFFER_TRACE(bh, "not a new buffer");
893  	return bh;
894  errout:
895  	brelse(bh);
896  	return ERR_PTR(err);
897  }
898  
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)899  struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
900  			       ext4_lblk_t block, int map_flags)
901  {
902  	struct buffer_head *bh;
903  	int ret;
904  
905  	bh = ext4_getblk(handle, inode, block, map_flags);
906  	if (IS_ERR(bh))
907  		return bh;
908  	if (!bh || ext4_buffer_uptodate(bh))
909  		return bh;
910  
911  	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
912  	if (ret) {
913  		put_bh(bh);
914  		return ERR_PTR(ret);
915  	}
916  	return bh;
917  }
918  
919  /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)920  int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
921  		     bool wait, struct buffer_head **bhs)
922  {
923  	int i, err;
924  
925  	for (i = 0; i < bh_count; i++) {
926  		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
927  		if (IS_ERR(bhs[i])) {
928  			err = PTR_ERR(bhs[i]);
929  			bh_count = i;
930  			goto out_brelse;
931  		}
932  	}
933  
934  	for (i = 0; i < bh_count; i++)
935  		/* Note that NULL bhs[i] is valid because of holes. */
936  		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
937  			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
938  
939  	if (!wait)
940  		return 0;
941  
942  	for (i = 0; i < bh_count; i++)
943  		if (bhs[i])
944  			wait_on_buffer(bhs[i]);
945  
946  	for (i = 0; i < bh_count; i++) {
947  		if (bhs[i] && !buffer_uptodate(bhs[i])) {
948  			err = -EIO;
949  			goto out_brelse;
950  		}
951  	}
952  	return 0;
953  
954  out_brelse:
955  	for (i = 0; i < bh_count; i++) {
956  		brelse(bhs[i]);
957  		bhs[i] = NULL;
958  	}
959  	return err;
960  }
961  
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))962  int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
963  			   struct buffer_head *head,
964  			   unsigned from,
965  			   unsigned to,
966  			   int *partial,
967  			   int (*fn)(handle_t *handle, struct inode *inode,
968  				     struct buffer_head *bh))
969  {
970  	struct buffer_head *bh;
971  	unsigned block_start, block_end;
972  	unsigned blocksize = head->b_size;
973  	int err, ret = 0;
974  	struct buffer_head *next;
975  
976  	for (bh = head, block_start = 0;
977  	     ret == 0 && (bh != head || !block_start);
978  	     block_start = block_end, bh = next) {
979  		next = bh->b_this_page;
980  		block_end = block_start + blocksize;
981  		if (block_end <= from || block_start >= to) {
982  			if (partial && !buffer_uptodate(bh))
983  				*partial = 1;
984  			continue;
985  		}
986  		err = (*fn)(handle, inode, bh);
987  		if (!ret)
988  			ret = err;
989  	}
990  	return ret;
991  }
992  
993  /*
994   * Helper for handling dirtying of journalled data. We also mark the folio as
995   * dirty so that writeback code knows about this page (and inode) contains
996   * dirty data. ext4_writepages() then commits appropriate transaction to
997   * make data stable.
998   */
ext4_dirty_journalled_data(handle_t * handle,struct buffer_head * bh)999  static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1000  {
1001  	folio_mark_dirty(bh->b_folio);
1002  	return ext4_handle_dirty_metadata(handle, NULL, bh);
1003  }
1004  
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1005  int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1006  				struct buffer_head *bh)
1007  {
1008  	if (!buffer_mapped(bh) || buffer_freed(bh))
1009  		return 0;
1010  	BUFFER_TRACE(bh, "get write access");
1011  	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1012  					    EXT4_JTR_NONE);
1013  }
1014  
ext4_block_write_begin(handle_t * handle,struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)1015  int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1016  			   loff_t pos, unsigned len,
1017  			   get_block_t *get_block)
1018  {
1019  	unsigned from = pos & (PAGE_SIZE - 1);
1020  	unsigned to = from + len;
1021  	struct inode *inode = folio->mapping->host;
1022  	unsigned block_start, block_end;
1023  	sector_t block;
1024  	int err = 0;
1025  	unsigned blocksize = inode->i_sb->s_blocksize;
1026  	unsigned bbits;
1027  	struct buffer_head *bh, *head, *wait[2];
1028  	int nr_wait = 0;
1029  	int i;
1030  	bool should_journal_data = ext4_should_journal_data(inode);
1031  
1032  	BUG_ON(!folio_test_locked(folio));
1033  	BUG_ON(from > PAGE_SIZE);
1034  	BUG_ON(to > PAGE_SIZE);
1035  	BUG_ON(from > to);
1036  
1037  	head = folio_buffers(folio);
1038  	if (!head)
1039  		head = create_empty_buffers(folio, blocksize, 0);
1040  	bbits = ilog2(blocksize);
1041  	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1042  
1043  	for (bh = head, block_start = 0; bh != head || !block_start;
1044  	    block++, block_start = block_end, bh = bh->b_this_page) {
1045  		block_end = block_start + blocksize;
1046  		if (block_end <= from || block_start >= to) {
1047  			if (folio_test_uptodate(folio)) {
1048  				set_buffer_uptodate(bh);
1049  			}
1050  			continue;
1051  		}
1052  		if (buffer_new(bh))
1053  			clear_buffer_new(bh);
1054  		if (!buffer_mapped(bh)) {
1055  			WARN_ON(bh->b_size != blocksize);
1056  			err = get_block(inode, block, bh, 1);
1057  			if (err)
1058  				break;
1059  			if (buffer_new(bh)) {
1060  				/*
1061  				 * We may be zeroing partial buffers or all new
1062  				 * buffers in case of failure. Prepare JBD2 for
1063  				 * that.
1064  				 */
1065  				if (should_journal_data)
1066  					do_journal_get_write_access(handle,
1067  								    inode, bh);
1068  				if (folio_test_uptodate(folio)) {
1069  					/*
1070  					 * Unlike __block_write_begin() we leave
1071  					 * dirtying of new uptodate buffers to
1072  					 * ->write_end() time or
1073  					 * folio_zero_new_buffers().
1074  					 */
1075  					set_buffer_uptodate(bh);
1076  					continue;
1077  				}
1078  				if (block_end > to || block_start < from)
1079  					folio_zero_segments(folio, to,
1080  							    block_end,
1081  							    block_start, from);
1082  				continue;
1083  			}
1084  		}
1085  		if (folio_test_uptodate(folio)) {
1086  			set_buffer_uptodate(bh);
1087  			continue;
1088  		}
1089  		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1090  		    !buffer_unwritten(bh) &&
1091  		    (block_start < from || block_end > to)) {
1092  			ext4_read_bh_lock(bh, 0, false);
1093  			wait[nr_wait++] = bh;
1094  		}
1095  	}
1096  	/*
1097  	 * If we issued read requests, let them complete.
1098  	 */
1099  	for (i = 0; i < nr_wait; i++) {
1100  		wait_on_buffer(wait[i]);
1101  		if (!buffer_uptodate(wait[i]))
1102  			err = -EIO;
1103  	}
1104  	if (unlikely(err)) {
1105  		if (should_journal_data)
1106  			ext4_journalled_zero_new_buffers(handle, inode, folio,
1107  							 from, to);
1108  		else
1109  			folio_zero_new_buffers(folio, from, to);
1110  	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1111  		for (i = 0; i < nr_wait; i++) {
1112  			int err2;
1113  
1114  			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1115  						blocksize, bh_offset(wait[i]));
1116  			if (err2) {
1117  				clear_buffer_uptodate(wait[i]);
1118  				err = err2;
1119  			}
1120  		}
1121  	}
1122  
1123  	return err;
1124  }
1125  
1126  /*
1127   * To preserve ordering, it is essential that the hole instantiation and
1128   * the data write be encapsulated in a single transaction.  We cannot
1129   * close off a transaction and start a new one between the ext4_get_block()
1130   * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1131   * ext4_write_begin() is the right place.
1132   */
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)1133  static int ext4_write_begin(struct file *file, struct address_space *mapping,
1134  			    loff_t pos, unsigned len,
1135  			    struct folio **foliop, void **fsdata)
1136  {
1137  	struct inode *inode = mapping->host;
1138  	int ret, needed_blocks;
1139  	handle_t *handle;
1140  	int retries = 0;
1141  	struct folio *folio;
1142  	pgoff_t index;
1143  	unsigned from, to;
1144  
1145  	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1146  		return -EIO;
1147  
1148  	trace_ext4_write_begin(inode, pos, len);
1149  	/*
1150  	 * Reserve one block more for addition to orphan list in case
1151  	 * we allocate blocks but write fails for some reason
1152  	 */
1153  	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1154  	index = pos >> PAGE_SHIFT;
1155  	from = pos & (PAGE_SIZE - 1);
1156  	to = from + len;
1157  
1158  	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1159  		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1160  						    foliop);
1161  		if (ret < 0)
1162  			return ret;
1163  		if (ret == 1)
1164  			return 0;
1165  	}
1166  
1167  	/*
1168  	 * __filemap_get_folio() can take a long time if the
1169  	 * system is thrashing due to memory pressure, or if the folio
1170  	 * is being written back.  So grab it first before we start
1171  	 * the transaction handle.  This also allows us to allocate
1172  	 * the folio (if needed) without using GFP_NOFS.
1173  	 */
1174  retry_grab:
1175  	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1176  					mapping_gfp_mask(mapping));
1177  	if (IS_ERR(folio))
1178  		return PTR_ERR(folio);
1179  	/*
1180  	 * The same as page allocation, we prealloc buffer heads before
1181  	 * starting the handle.
1182  	 */
1183  	if (!folio_buffers(folio))
1184  		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1185  
1186  	folio_unlock(folio);
1187  
1188  retry_journal:
1189  	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1190  	if (IS_ERR(handle)) {
1191  		folio_put(folio);
1192  		return PTR_ERR(handle);
1193  	}
1194  
1195  	folio_lock(folio);
1196  	if (folio->mapping != mapping) {
1197  		/* The folio got truncated from under us */
1198  		folio_unlock(folio);
1199  		folio_put(folio);
1200  		ext4_journal_stop(handle);
1201  		goto retry_grab;
1202  	}
1203  	/* In case writeback began while the folio was unlocked */
1204  	folio_wait_stable(folio);
1205  
1206  	if (ext4_should_dioread_nolock(inode))
1207  		ret = ext4_block_write_begin(handle, folio, pos, len,
1208  					     ext4_get_block_unwritten);
1209  	else
1210  		ret = ext4_block_write_begin(handle, folio, pos, len,
1211  					     ext4_get_block);
1212  	if (!ret && ext4_should_journal_data(inode)) {
1213  		ret = ext4_walk_page_buffers(handle, inode,
1214  					     folio_buffers(folio), from, to,
1215  					     NULL, do_journal_get_write_access);
1216  	}
1217  
1218  	if (ret) {
1219  		bool extended = (pos + len > inode->i_size) &&
1220  				!ext4_verity_in_progress(inode);
1221  
1222  		folio_unlock(folio);
1223  		/*
1224  		 * ext4_block_write_begin may have instantiated a few blocks
1225  		 * outside i_size.  Trim these off again. Don't need
1226  		 * i_size_read because we hold i_rwsem.
1227  		 *
1228  		 * Add inode to orphan list in case we crash before
1229  		 * truncate finishes
1230  		 */
1231  		if (extended && ext4_can_truncate(inode))
1232  			ext4_orphan_add(handle, inode);
1233  
1234  		ext4_journal_stop(handle);
1235  		if (extended) {
1236  			ext4_truncate_failed_write(inode);
1237  			/*
1238  			 * If truncate failed early the inode might
1239  			 * still be on the orphan list; we need to
1240  			 * make sure the inode is removed from the
1241  			 * orphan list in that case.
1242  			 */
1243  			if (inode->i_nlink)
1244  				ext4_orphan_del(NULL, inode);
1245  		}
1246  
1247  		if (ret == -ENOSPC &&
1248  		    ext4_should_retry_alloc(inode->i_sb, &retries))
1249  			goto retry_journal;
1250  		folio_put(folio);
1251  		return ret;
1252  	}
1253  	*foliop = folio;
1254  	return ret;
1255  }
1256  
1257  /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1258  static int write_end_fn(handle_t *handle, struct inode *inode,
1259  			struct buffer_head *bh)
1260  {
1261  	int ret;
1262  	if (!buffer_mapped(bh) || buffer_freed(bh))
1263  		return 0;
1264  	set_buffer_uptodate(bh);
1265  	ret = ext4_dirty_journalled_data(handle, bh);
1266  	clear_buffer_meta(bh);
1267  	clear_buffer_prio(bh);
1268  	return ret;
1269  }
1270  
1271  /*
1272   * We need to pick up the new inode size which generic_commit_write gave us
1273   * `file' can be NULL - eg, when called from page_symlink().
1274   *
1275   * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1276   * buffers are managed internally.
1277   */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)1278  static int ext4_write_end(struct file *file,
1279  			  struct address_space *mapping,
1280  			  loff_t pos, unsigned len, unsigned copied,
1281  			  struct folio *folio, void *fsdata)
1282  {
1283  	handle_t *handle = ext4_journal_current_handle();
1284  	struct inode *inode = mapping->host;
1285  	loff_t old_size = inode->i_size;
1286  	int ret = 0, ret2;
1287  	int i_size_changed = 0;
1288  	bool verity = ext4_verity_in_progress(inode);
1289  
1290  	trace_ext4_write_end(inode, pos, len, copied);
1291  
1292  	if (ext4_has_inline_data(inode) &&
1293  	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1294  		return ext4_write_inline_data_end(inode, pos, len, copied,
1295  						  folio);
1296  
1297  	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1298  	/*
1299  	 * it's important to update i_size while still holding folio lock:
1300  	 * page writeout could otherwise come in and zero beyond i_size.
1301  	 *
1302  	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1303  	 * blocks are being written past EOF, so skip the i_size update.
1304  	 */
1305  	if (!verity)
1306  		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1307  	folio_unlock(folio);
1308  	folio_put(folio);
1309  
1310  	if (old_size < pos && !verity)
1311  		pagecache_isize_extended(inode, old_size, pos);
1312  	/*
1313  	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1314  	 * makes the holding time of folio lock longer. Second, it forces lock
1315  	 * ordering of folio lock and transaction start for journaling
1316  	 * filesystems.
1317  	 */
1318  	if (i_size_changed)
1319  		ret = ext4_mark_inode_dirty(handle, inode);
1320  
1321  	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1322  		/* if we have allocated more blocks and copied
1323  		 * less. We will have blocks allocated outside
1324  		 * inode->i_size. So truncate them
1325  		 */
1326  		ext4_orphan_add(handle, inode);
1327  
1328  	ret2 = ext4_journal_stop(handle);
1329  	if (!ret)
1330  		ret = ret2;
1331  
1332  	if (pos + len > inode->i_size && !verity) {
1333  		ext4_truncate_failed_write(inode);
1334  		/*
1335  		 * If truncate failed early the inode might still be
1336  		 * on the orphan list; we need to make sure the inode
1337  		 * is removed from the orphan list in that case.
1338  		 */
1339  		if (inode->i_nlink)
1340  			ext4_orphan_del(NULL, inode);
1341  	}
1342  
1343  	return ret ? ret : copied;
1344  }
1345  
1346  /*
1347   * This is a private version of folio_zero_new_buffers() which doesn't
1348   * set the buffer to be dirty, since in data=journalled mode we need
1349   * to call ext4_dirty_journalled_data() instead.
1350   */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct folio * folio,unsigned from,unsigned to)1351  static void ext4_journalled_zero_new_buffers(handle_t *handle,
1352  					    struct inode *inode,
1353  					    struct folio *folio,
1354  					    unsigned from, unsigned to)
1355  {
1356  	unsigned int block_start = 0, block_end;
1357  	struct buffer_head *head, *bh;
1358  
1359  	bh = head = folio_buffers(folio);
1360  	do {
1361  		block_end = block_start + bh->b_size;
1362  		if (buffer_new(bh)) {
1363  			if (block_end > from && block_start < to) {
1364  				if (!folio_test_uptodate(folio)) {
1365  					unsigned start, size;
1366  
1367  					start = max(from, block_start);
1368  					size = min(to, block_end) - start;
1369  
1370  					folio_zero_range(folio, start, size);
1371  				}
1372  				clear_buffer_new(bh);
1373  				write_end_fn(handle, inode, bh);
1374  			}
1375  		}
1376  		block_start = block_end;
1377  		bh = bh->b_this_page;
1378  	} while (bh != head);
1379  }
1380  
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)1381  static int ext4_journalled_write_end(struct file *file,
1382  				     struct address_space *mapping,
1383  				     loff_t pos, unsigned len, unsigned copied,
1384  				     struct folio *folio, void *fsdata)
1385  {
1386  	handle_t *handle = ext4_journal_current_handle();
1387  	struct inode *inode = mapping->host;
1388  	loff_t old_size = inode->i_size;
1389  	int ret = 0, ret2;
1390  	int partial = 0;
1391  	unsigned from, to;
1392  	int size_changed = 0;
1393  	bool verity = ext4_verity_in_progress(inode);
1394  
1395  	trace_ext4_journalled_write_end(inode, pos, len, copied);
1396  	from = pos & (PAGE_SIZE - 1);
1397  	to = from + len;
1398  
1399  	BUG_ON(!ext4_handle_valid(handle));
1400  
1401  	if (ext4_has_inline_data(inode))
1402  		return ext4_write_inline_data_end(inode, pos, len, copied,
1403  						  folio);
1404  
1405  	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1406  		copied = 0;
1407  		ext4_journalled_zero_new_buffers(handle, inode, folio,
1408  						 from, to);
1409  	} else {
1410  		if (unlikely(copied < len))
1411  			ext4_journalled_zero_new_buffers(handle, inode, folio,
1412  							 from + copied, to);
1413  		ret = ext4_walk_page_buffers(handle, inode,
1414  					     folio_buffers(folio),
1415  					     from, from + copied, &partial,
1416  					     write_end_fn);
1417  		if (!partial)
1418  			folio_mark_uptodate(folio);
1419  	}
1420  	if (!verity)
1421  		size_changed = ext4_update_inode_size(inode, pos + copied);
1422  	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423  	folio_unlock(folio);
1424  	folio_put(folio);
1425  
1426  	if (old_size < pos && !verity)
1427  		pagecache_isize_extended(inode, old_size, pos);
1428  
1429  	if (size_changed) {
1430  		ret2 = ext4_mark_inode_dirty(handle, inode);
1431  		if (!ret)
1432  			ret = ret2;
1433  	}
1434  
1435  	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1436  		/* if we have allocated more blocks and copied
1437  		 * less. We will have blocks allocated outside
1438  		 * inode->i_size. So truncate them
1439  		 */
1440  		ext4_orphan_add(handle, inode);
1441  
1442  	ret2 = ext4_journal_stop(handle);
1443  	if (!ret)
1444  		ret = ret2;
1445  	if (pos + len > inode->i_size && !verity) {
1446  		ext4_truncate_failed_write(inode);
1447  		/*
1448  		 * If truncate failed early the inode might still be
1449  		 * on the orphan list; we need to make sure the inode
1450  		 * is removed from the orphan list in that case.
1451  		 */
1452  		if (inode->i_nlink)
1453  			ext4_orphan_del(NULL, inode);
1454  	}
1455  
1456  	return ret ? ret : copied;
1457  }
1458  
1459  /*
1460   * Reserve space for 'nr_resv' clusters
1461   */
ext4_da_reserve_space(struct inode * inode,int nr_resv)1462  static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1463  {
1464  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465  	struct ext4_inode_info *ei = EXT4_I(inode);
1466  	int ret;
1467  
1468  	/*
1469  	 * We will charge metadata quota at writeout time; this saves
1470  	 * us from metadata over-estimation, though we may go over by
1471  	 * a small amount in the end.  Here we just reserve for data.
1472  	 */
1473  	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1474  	if (ret)
1475  		return ret;
1476  
1477  	spin_lock(&ei->i_block_reservation_lock);
1478  	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1479  		spin_unlock(&ei->i_block_reservation_lock);
1480  		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1481  		return -ENOSPC;
1482  	}
1483  	ei->i_reserved_data_blocks += nr_resv;
1484  	trace_ext4_da_reserve_space(inode, nr_resv);
1485  	spin_unlock(&ei->i_block_reservation_lock);
1486  
1487  	return 0;       /* success */
1488  }
1489  
ext4_da_release_space(struct inode * inode,int to_free)1490  void ext4_da_release_space(struct inode *inode, int to_free)
1491  {
1492  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493  	struct ext4_inode_info *ei = EXT4_I(inode);
1494  
1495  	if (!to_free)
1496  		return;		/* Nothing to release, exit */
1497  
1498  	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499  
1500  	trace_ext4_da_release_space(inode, to_free);
1501  	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502  		/*
1503  		 * if there aren't enough reserved blocks, then the
1504  		 * counter is messed up somewhere.  Since this
1505  		 * function is called from invalidate page, it's
1506  		 * harmless to return without any action.
1507  		 */
1508  		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509  			 "ino %lu, to_free %d with only %d reserved "
1510  			 "data blocks", inode->i_ino, to_free,
1511  			 ei->i_reserved_data_blocks);
1512  		WARN_ON(1);
1513  		to_free = ei->i_reserved_data_blocks;
1514  	}
1515  	ei->i_reserved_data_blocks -= to_free;
1516  
1517  	/* update fs dirty data blocks counter */
1518  	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519  
1520  	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521  
1522  	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523  }
1524  
1525  /*
1526   * Delayed allocation stuff
1527   */
1528  
1529  struct mpage_da_data {
1530  	/* These are input fields for ext4_do_writepages() */
1531  	struct inode *inode;
1532  	struct writeback_control *wbc;
1533  	unsigned int can_map:1;	/* Can writepages call map blocks? */
1534  
1535  	/* These are internal state of ext4_do_writepages() */
1536  	pgoff_t first_page;	/* The first page to write */
1537  	pgoff_t next_page;	/* Current page to examine */
1538  	pgoff_t last_page;	/* Last page to examine */
1539  	/*
1540  	 * Extent to map - this can be after first_page because that can be
1541  	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1542  	 * is delalloc or unwritten.
1543  	 */
1544  	struct ext4_map_blocks map;
1545  	struct ext4_io_submit io_submit;	/* IO submission data */
1546  	unsigned int do_map:1;
1547  	unsigned int scanned_until_end:1;
1548  	unsigned int journalled_more_data:1;
1549  };
1550  
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1551  static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1552  				       bool invalidate)
1553  {
1554  	unsigned nr, i;
1555  	pgoff_t index, end;
1556  	struct folio_batch fbatch;
1557  	struct inode *inode = mpd->inode;
1558  	struct address_space *mapping = inode->i_mapping;
1559  
1560  	/* This is necessary when next_page == 0. */
1561  	if (mpd->first_page >= mpd->next_page)
1562  		return;
1563  
1564  	mpd->scanned_until_end = 0;
1565  	index = mpd->first_page;
1566  	end   = mpd->next_page - 1;
1567  	if (invalidate) {
1568  		ext4_lblk_t start, last;
1569  		start = index << (PAGE_SHIFT - inode->i_blkbits);
1570  		last = end << (PAGE_SHIFT - inode->i_blkbits);
1571  
1572  		/*
1573  		 * avoid racing with extent status tree scans made by
1574  		 * ext4_insert_delayed_block()
1575  		 */
1576  		down_write(&EXT4_I(inode)->i_data_sem);
1577  		ext4_es_remove_extent(inode, start, last - start + 1);
1578  		up_write(&EXT4_I(inode)->i_data_sem);
1579  	}
1580  
1581  	folio_batch_init(&fbatch);
1582  	while (index <= end) {
1583  		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1584  		if (nr == 0)
1585  			break;
1586  		for (i = 0; i < nr; i++) {
1587  			struct folio *folio = fbatch.folios[i];
1588  
1589  			if (folio->index < mpd->first_page)
1590  				continue;
1591  			if (folio_next_index(folio) - 1 > end)
1592  				continue;
1593  			BUG_ON(!folio_test_locked(folio));
1594  			BUG_ON(folio_test_writeback(folio));
1595  			if (invalidate) {
1596  				if (folio_mapped(folio))
1597  					folio_clear_dirty_for_io(folio);
1598  				block_invalidate_folio(folio, 0,
1599  						folio_size(folio));
1600  				folio_clear_uptodate(folio);
1601  			}
1602  			folio_unlock(folio);
1603  		}
1604  		folio_batch_release(&fbatch);
1605  	}
1606  }
1607  
ext4_print_free_blocks(struct inode * inode)1608  static void ext4_print_free_blocks(struct inode *inode)
1609  {
1610  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1611  	struct super_block *sb = inode->i_sb;
1612  	struct ext4_inode_info *ei = EXT4_I(inode);
1613  
1614  	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1615  	       EXT4_C2B(EXT4_SB(inode->i_sb),
1616  			ext4_count_free_clusters(sb)));
1617  	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1618  	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1619  	       (long long) EXT4_C2B(EXT4_SB(sb),
1620  		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1621  	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1622  	       (long long) EXT4_C2B(EXT4_SB(sb),
1623  		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1624  	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1625  	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1626  		 ei->i_reserved_data_blocks);
1627  	return;
1628  }
1629  
1630  /*
1631   * Check whether the cluster containing lblk has been allocated or has
1632   * delalloc reservation.
1633   *
1634   * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1635   * reservation, 2 if it's already been allocated, negative error code on
1636   * failure.
1637   */
ext4_clu_alloc_state(struct inode * inode,ext4_lblk_t lblk)1638  static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1639  {
1640  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1641  	int ret;
1642  
1643  	/* Has delalloc reservation? */
1644  	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1645  		return 1;
1646  
1647  	/* Already been allocated? */
1648  	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1649  		return 2;
1650  	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1651  	if (ret < 0)
1652  		return ret;
1653  	if (ret > 0)
1654  		return 2;
1655  
1656  	return 0;
1657  }
1658  
1659  /*
1660   * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1661   *                              status tree, incrementing the reserved
1662   *                              cluster/block count or making pending
1663   *                              reservations where needed
1664   *
1665   * @inode - file containing the newly added block
1666   * @lblk - start logical block to be added
1667   * @len - length of blocks to be added
1668   *
1669   * Returns 0 on success, negative error code on failure.
1670   */
ext4_insert_delayed_blocks(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1671  static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1672  				      ext4_lblk_t len)
1673  {
1674  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1675  	int ret;
1676  	bool lclu_allocated = false;
1677  	bool end_allocated = false;
1678  	ext4_lblk_t resv_clu;
1679  	ext4_lblk_t end = lblk + len - 1;
1680  
1681  	/*
1682  	 * If the cluster containing lblk or end is shared with a delayed,
1683  	 * written, or unwritten extent in a bigalloc file system, it's
1684  	 * already been accounted for and does not need to be reserved.
1685  	 * A pending reservation must be made for the cluster if it's
1686  	 * shared with a written or unwritten extent and doesn't already
1687  	 * have one.  Written and unwritten extents can be purged from the
1688  	 * extents status tree if the system is under memory pressure, so
1689  	 * it's necessary to examine the extent tree if a search of the
1690  	 * extents status tree doesn't get a match.
1691  	 */
1692  	if (sbi->s_cluster_ratio == 1) {
1693  		ret = ext4_da_reserve_space(inode, len);
1694  		if (ret != 0)   /* ENOSPC */
1695  			return ret;
1696  	} else {   /* bigalloc */
1697  		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1698  
1699  		ret = ext4_clu_alloc_state(inode, lblk);
1700  		if (ret < 0)
1701  			return ret;
1702  		if (ret > 0) {
1703  			resv_clu--;
1704  			lclu_allocated = (ret == 2);
1705  		}
1706  
1707  		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1708  			ret = ext4_clu_alloc_state(inode, end);
1709  			if (ret < 0)
1710  				return ret;
1711  			if (ret > 0) {
1712  				resv_clu--;
1713  				end_allocated = (ret == 2);
1714  			}
1715  		}
1716  
1717  		if (resv_clu) {
1718  			ret = ext4_da_reserve_space(inode, resv_clu);
1719  			if (ret != 0)   /* ENOSPC */
1720  				return ret;
1721  		}
1722  	}
1723  
1724  	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1725  				      end_allocated);
1726  	return 0;
1727  }
1728  
1729  /*
1730   * Looks up the requested blocks and sets the delalloc extent map.
1731   * First try to look up for the extent entry that contains the requested
1732   * blocks in the extent status tree without i_data_sem, then try to look
1733   * up for the ondisk extent mapping with i_data_sem in read mode,
1734   * finally hold i_data_sem in write mode, looks up again and add a
1735   * delalloc extent entry if it still couldn't find any extent. Pass out
1736   * the mapped extent through @map and return 0 on success.
1737   */
ext4_da_map_blocks(struct inode * inode,struct ext4_map_blocks * map)1738  static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1739  {
1740  	struct extent_status es;
1741  	int retval;
1742  #ifdef ES_AGGRESSIVE_TEST
1743  	struct ext4_map_blocks orig_map;
1744  
1745  	memcpy(&orig_map, map, sizeof(*map));
1746  #endif
1747  
1748  	map->m_flags = 0;
1749  	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1750  		  (unsigned long) map->m_lblk);
1751  
1752  	/* Lookup extent status tree firstly */
1753  	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1754  		map->m_len = min_t(unsigned int, map->m_len,
1755  				   es.es_len - (map->m_lblk - es.es_lblk));
1756  
1757  		if (ext4_es_is_hole(&es))
1758  			goto add_delayed;
1759  
1760  found:
1761  		/*
1762  		 * Delayed extent could be allocated by fallocate.
1763  		 * So we need to check it.
1764  		 */
1765  		if (ext4_es_is_delayed(&es)) {
1766  			map->m_flags |= EXT4_MAP_DELAYED;
1767  			return 0;
1768  		}
1769  
1770  		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1771  		if (ext4_es_is_written(&es))
1772  			map->m_flags |= EXT4_MAP_MAPPED;
1773  		else if (ext4_es_is_unwritten(&es))
1774  			map->m_flags |= EXT4_MAP_UNWRITTEN;
1775  		else
1776  			BUG();
1777  
1778  #ifdef ES_AGGRESSIVE_TEST
1779  		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1780  #endif
1781  		return 0;
1782  	}
1783  
1784  	/*
1785  	 * Try to see if we can get the block without requesting a new
1786  	 * file system block.
1787  	 */
1788  	down_read(&EXT4_I(inode)->i_data_sem);
1789  	if (ext4_has_inline_data(inode))
1790  		retval = 0;
1791  	else
1792  		retval = ext4_map_query_blocks(NULL, inode, map);
1793  	up_read(&EXT4_I(inode)->i_data_sem);
1794  	if (retval)
1795  		return retval < 0 ? retval : 0;
1796  
1797  add_delayed:
1798  	down_write(&EXT4_I(inode)->i_data_sem);
1799  	/*
1800  	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1801  	 * and fallocate path (no folio lock) can race. Make sure we
1802  	 * lookup the extent status tree here again while i_data_sem
1803  	 * is held in write mode, before inserting a new da entry in
1804  	 * the extent status tree.
1805  	 */
1806  	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1807  		map->m_len = min_t(unsigned int, map->m_len,
1808  				   es.es_len - (map->m_lblk - es.es_lblk));
1809  
1810  		if (!ext4_es_is_hole(&es)) {
1811  			up_write(&EXT4_I(inode)->i_data_sem);
1812  			goto found;
1813  		}
1814  	} else if (!ext4_has_inline_data(inode)) {
1815  		retval = ext4_map_query_blocks(NULL, inode, map);
1816  		if (retval) {
1817  			up_write(&EXT4_I(inode)->i_data_sem);
1818  			return retval < 0 ? retval : 0;
1819  		}
1820  	}
1821  
1822  	map->m_flags |= EXT4_MAP_DELAYED;
1823  	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1824  	up_write(&EXT4_I(inode)->i_data_sem);
1825  
1826  	return retval;
1827  }
1828  
1829  /*
1830   * This is a special get_block_t callback which is used by
1831   * ext4_da_write_begin().  It will either return mapped block or
1832   * reserve space for a single block.
1833   *
1834   * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1835   * We also have b_blocknr = -1 and b_bdev initialized properly
1836   *
1837   * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1838   * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1839   * initialized properly.
1840   */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1841  int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1842  			   struct buffer_head *bh, int create)
1843  {
1844  	struct ext4_map_blocks map;
1845  	sector_t invalid_block = ~((sector_t) 0xffff);
1846  	int ret = 0;
1847  
1848  	BUG_ON(create == 0);
1849  	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1850  
1851  	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1852  		invalid_block = ~0;
1853  
1854  	map.m_lblk = iblock;
1855  	map.m_len = 1;
1856  
1857  	/*
1858  	 * first, we need to know whether the block is allocated already
1859  	 * preallocated blocks are unmapped but should treated
1860  	 * the same as allocated blocks.
1861  	 */
1862  	ret = ext4_da_map_blocks(inode, &map);
1863  	if (ret < 0)
1864  		return ret;
1865  
1866  	if (map.m_flags & EXT4_MAP_DELAYED) {
1867  		map_bh(bh, inode->i_sb, invalid_block);
1868  		set_buffer_new(bh);
1869  		set_buffer_delay(bh);
1870  		return 0;
1871  	}
1872  
1873  	map_bh(bh, inode->i_sb, map.m_pblk);
1874  	ext4_update_bh_state(bh, map.m_flags);
1875  
1876  	if (buffer_unwritten(bh)) {
1877  		/* A delayed write to unwritten bh should be marked
1878  		 * new and mapped.  Mapped ensures that we don't do
1879  		 * get_block multiple times when we write to the same
1880  		 * offset and new ensures that we do proper zero out
1881  		 * for partial write.
1882  		 */
1883  		set_buffer_new(bh);
1884  		set_buffer_mapped(bh);
1885  	}
1886  	return 0;
1887  }
1888  
mpage_folio_done(struct mpage_da_data * mpd,struct folio * folio)1889  static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1890  {
1891  	mpd->first_page += folio_nr_pages(folio);
1892  	folio_unlock(folio);
1893  }
1894  
mpage_submit_folio(struct mpage_da_data * mpd,struct folio * folio)1895  static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1896  {
1897  	size_t len;
1898  	loff_t size;
1899  	int err;
1900  
1901  	BUG_ON(folio->index != mpd->first_page);
1902  	folio_clear_dirty_for_io(folio);
1903  	/*
1904  	 * We have to be very careful here!  Nothing protects writeback path
1905  	 * against i_size changes and the page can be writeably mapped into
1906  	 * page tables. So an application can be growing i_size and writing
1907  	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1908  	 * write-protects our page in page tables and the page cannot get
1909  	 * written to again until we release folio lock. So only after
1910  	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1911  	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1912  	 * on the barrier provided by folio_test_clear_dirty() in
1913  	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1914  	 * after page tables are updated.
1915  	 */
1916  	size = i_size_read(mpd->inode);
1917  	len = folio_size(folio);
1918  	if (folio_pos(folio) + len > size &&
1919  	    !ext4_verity_in_progress(mpd->inode))
1920  		len = size & (len - 1);
1921  	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1922  	if (!err)
1923  		mpd->wbc->nr_to_write--;
1924  
1925  	return err;
1926  }
1927  
1928  #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1929  
1930  /*
1931   * mballoc gives us at most this number of blocks...
1932   * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1933   * The rest of mballoc seems to handle chunks up to full group size.
1934   */
1935  #define MAX_WRITEPAGES_EXTENT_LEN 2048
1936  
1937  /*
1938   * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1939   *
1940   * @mpd - extent of blocks
1941   * @lblk - logical number of the block in the file
1942   * @bh - buffer head we want to add to the extent
1943   *
1944   * The function is used to collect contig. blocks in the same state. If the
1945   * buffer doesn't require mapping for writeback and we haven't started the
1946   * extent of buffers to map yet, the function returns 'true' immediately - the
1947   * caller can write the buffer right away. Otherwise the function returns true
1948   * if the block has been added to the extent, false if the block couldn't be
1949   * added.
1950   */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1951  static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1952  				   struct buffer_head *bh)
1953  {
1954  	struct ext4_map_blocks *map = &mpd->map;
1955  
1956  	/* Buffer that doesn't need mapping for writeback? */
1957  	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1958  	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1959  		/* So far no extent to map => we write the buffer right away */
1960  		if (map->m_len == 0)
1961  			return true;
1962  		return false;
1963  	}
1964  
1965  	/* First block in the extent? */
1966  	if (map->m_len == 0) {
1967  		/* We cannot map unless handle is started... */
1968  		if (!mpd->do_map)
1969  			return false;
1970  		map->m_lblk = lblk;
1971  		map->m_len = 1;
1972  		map->m_flags = bh->b_state & BH_FLAGS;
1973  		return true;
1974  	}
1975  
1976  	/* Don't go larger than mballoc is willing to allocate */
1977  	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1978  		return false;
1979  
1980  	/* Can we merge the block to our big extent? */
1981  	if (lblk == map->m_lblk + map->m_len &&
1982  	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1983  		map->m_len++;
1984  		return true;
1985  	}
1986  	return false;
1987  }
1988  
1989  /*
1990   * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1991   *
1992   * @mpd - extent of blocks for mapping
1993   * @head - the first buffer in the page
1994   * @bh - buffer we should start processing from
1995   * @lblk - logical number of the block in the file corresponding to @bh
1996   *
1997   * Walk through page buffers from @bh upto @head (exclusive) and either submit
1998   * the page for IO if all buffers in this page were mapped and there's no
1999   * accumulated extent of buffers to map or add buffers in the page to the
2000   * extent of buffers to map. The function returns 1 if the caller can continue
2001   * by processing the next page, 0 if it should stop adding buffers to the
2002   * extent to map because we cannot extend it anymore. It can also return value
2003   * < 0 in case of error during IO submission.
2004   */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2005  static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2006  				   struct buffer_head *head,
2007  				   struct buffer_head *bh,
2008  				   ext4_lblk_t lblk)
2009  {
2010  	struct inode *inode = mpd->inode;
2011  	int err;
2012  	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2013  							>> inode->i_blkbits;
2014  
2015  	if (ext4_verity_in_progress(inode))
2016  		blocks = EXT_MAX_BLOCKS;
2017  
2018  	do {
2019  		BUG_ON(buffer_locked(bh));
2020  
2021  		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2022  			/* Found extent to map? */
2023  			if (mpd->map.m_len)
2024  				return 0;
2025  			/* Buffer needs mapping and handle is not started? */
2026  			if (!mpd->do_map)
2027  				return 0;
2028  			/* Everything mapped so far and we hit EOF */
2029  			break;
2030  		}
2031  	} while (lblk++, (bh = bh->b_this_page) != head);
2032  	/* So far everything mapped? Submit the page for IO. */
2033  	if (mpd->map.m_len == 0) {
2034  		err = mpage_submit_folio(mpd, head->b_folio);
2035  		if (err < 0)
2036  			return err;
2037  		mpage_folio_done(mpd, head->b_folio);
2038  	}
2039  	if (lblk >= blocks) {
2040  		mpd->scanned_until_end = 1;
2041  		return 0;
2042  	}
2043  	return 1;
2044  }
2045  
2046  /*
2047   * mpage_process_folio - update folio buffers corresponding to changed extent
2048   *			 and may submit fully mapped page for IO
2049   * @mpd: description of extent to map, on return next extent to map
2050   * @folio: Contains these buffers.
2051   * @m_lblk: logical block mapping.
2052   * @m_pblk: corresponding physical mapping.
2053   * @map_bh: determines on return whether this page requires any further
2054   *		  mapping or not.
2055   *
2056   * Scan given folio buffers corresponding to changed extent and update buffer
2057   * state according to new extent state.
2058   * We map delalloc buffers to their physical location, clear unwritten bits.
2059   * If the given folio is not fully mapped, we update @mpd to the next extent in
2060   * the given folio that needs mapping & return @map_bh as true.
2061   */
mpage_process_folio(struct mpage_da_data * mpd,struct folio * folio,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2062  static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2063  			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2064  			      bool *map_bh)
2065  {
2066  	struct buffer_head *head, *bh;
2067  	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2068  	ext4_lblk_t lblk = *m_lblk;
2069  	ext4_fsblk_t pblock = *m_pblk;
2070  	int err = 0;
2071  	int blkbits = mpd->inode->i_blkbits;
2072  	ssize_t io_end_size = 0;
2073  	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2074  
2075  	bh = head = folio_buffers(folio);
2076  	do {
2077  		if (lblk < mpd->map.m_lblk)
2078  			continue;
2079  		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2080  			/*
2081  			 * Buffer after end of mapped extent.
2082  			 * Find next buffer in the folio to map.
2083  			 */
2084  			mpd->map.m_len = 0;
2085  			mpd->map.m_flags = 0;
2086  			io_end_vec->size += io_end_size;
2087  
2088  			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2089  			if (err > 0)
2090  				err = 0;
2091  			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2092  				io_end_vec = ext4_alloc_io_end_vec(io_end);
2093  				if (IS_ERR(io_end_vec)) {
2094  					err = PTR_ERR(io_end_vec);
2095  					goto out;
2096  				}
2097  				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2098  			}
2099  			*map_bh = true;
2100  			goto out;
2101  		}
2102  		if (buffer_delay(bh)) {
2103  			clear_buffer_delay(bh);
2104  			bh->b_blocknr = pblock++;
2105  		}
2106  		clear_buffer_unwritten(bh);
2107  		io_end_size += (1 << blkbits);
2108  	} while (lblk++, (bh = bh->b_this_page) != head);
2109  
2110  	io_end_vec->size += io_end_size;
2111  	*map_bh = false;
2112  out:
2113  	*m_lblk = lblk;
2114  	*m_pblk = pblock;
2115  	return err;
2116  }
2117  
2118  /*
2119   * mpage_map_buffers - update buffers corresponding to changed extent and
2120   *		       submit fully mapped pages for IO
2121   *
2122   * @mpd - description of extent to map, on return next extent to map
2123   *
2124   * Scan buffers corresponding to changed extent (we expect corresponding pages
2125   * to be already locked) and update buffer state according to new extent state.
2126   * We map delalloc buffers to their physical location, clear unwritten bits,
2127   * and mark buffers as uninit when we perform writes to unwritten extents
2128   * and do extent conversion after IO is finished. If the last page is not fully
2129   * mapped, we update @map to the next extent in the last page that needs
2130   * mapping. Otherwise we submit the page for IO.
2131   */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2132  static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2133  {
2134  	struct folio_batch fbatch;
2135  	unsigned nr, i;
2136  	struct inode *inode = mpd->inode;
2137  	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2138  	pgoff_t start, end;
2139  	ext4_lblk_t lblk;
2140  	ext4_fsblk_t pblock;
2141  	int err;
2142  	bool map_bh = false;
2143  
2144  	start = mpd->map.m_lblk >> bpp_bits;
2145  	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2146  	lblk = start << bpp_bits;
2147  	pblock = mpd->map.m_pblk;
2148  
2149  	folio_batch_init(&fbatch);
2150  	while (start <= end) {
2151  		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2152  		if (nr == 0)
2153  			break;
2154  		for (i = 0; i < nr; i++) {
2155  			struct folio *folio = fbatch.folios[i];
2156  
2157  			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2158  						 &map_bh);
2159  			/*
2160  			 * If map_bh is true, means page may require further bh
2161  			 * mapping, or maybe the page was submitted for IO.
2162  			 * So we return to call further extent mapping.
2163  			 */
2164  			if (err < 0 || map_bh)
2165  				goto out;
2166  			/* Page fully mapped - let IO run! */
2167  			err = mpage_submit_folio(mpd, folio);
2168  			if (err < 0)
2169  				goto out;
2170  			mpage_folio_done(mpd, folio);
2171  		}
2172  		folio_batch_release(&fbatch);
2173  	}
2174  	/* Extent fully mapped and matches with page boundary. We are done. */
2175  	mpd->map.m_len = 0;
2176  	mpd->map.m_flags = 0;
2177  	return 0;
2178  out:
2179  	folio_batch_release(&fbatch);
2180  	return err;
2181  }
2182  
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2183  static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2184  {
2185  	struct inode *inode = mpd->inode;
2186  	struct ext4_map_blocks *map = &mpd->map;
2187  	int get_blocks_flags;
2188  	int err, dioread_nolock;
2189  
2190  	trace_ext4_da_write_pages_extent(inode, map);
2191  	/*
2192  	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2193  	 * to convert an unwritten extent to be initialized (in the case
2194  	 * where we have written into one or more preallocated blocks).  It is
2195  	 * possible that we're going to need more metadata blocks than
2196  	 * previously reserved. However we must not fail because we're in
2197  	 * writeback and there is nothing we can do about it so it might result
2198  	 * in data loss.  So use reserved blocks to allocate metadata if
2199  	 * possible.
2200  	 */
2201  	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2202  			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2203  			   EXT4_GET_BLOCKS_IO_SUBMIT;
2204  	dioread_nolock = ext4_should_dioread_nolock(inode);
2205  	if (dioread_nolock)
2206  		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2207  
2208  	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2209  	if (err < 0)
2210  		return err;
2211  	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2212  		if (!mpd->io_submit.io_end->handle &&
2213  		    ext4_handle_valid(handle)) {
2214  			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2215  			handle->h_rsv_handle = NULL;
2216  		}
2217  		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2218  	}
2219  
2220  	BUG_ON(map->m_len == 0);
2221  	return 0;
2222  }
2223  
2224  /*
2225   * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2226   *				 mpd->len and submit pages underlying it for IO
2227   *
2228   * @handle - handle for journal operations
2229   * @mpd - extent to map
2230   * @give_up_on_write - we set this to true iff there is a fatal error and there
2231   *                     is no hope of writing the data. The caller should discard
2232   *                     dirty pages to avoid infinite loops.
2233   *
2234   * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2235   * delayed, blocks are allocated, if it is unwritten, we may need to convert
2236   * them to initialized or split the described range from larger unwritten
2237   * extent. Note that we need not map all the described range since allocation
2238   * can return less blocks or the range is covered by more unwritten extents. We
2239   * cannot map more because we are limited by reserved transaction credits. On
2240   * the other hand we always make sure that the last touched page is fully
2241   * mapped so that it can be written out (and thus forward progress is
2242   * guaranteed). After mapping we submit all mapped pages for IO.
2243   */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2244  static int mpage_map_and_submit_extent(handle_t *handle,
2245  				       struct mpage_da_data *mpd,
2246  				       bool *give_up_on_write)
2247  {
2248  	struct inode *inode = mpd->inode;
2249  	struct ext4_map_blocks *map = &mpd->map;
2250  	int err;
2251  	loff_t disksize;
2252  	int progress = 0;
2253  	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2254  	struct ext4_io_end_vec *io_end_vec;
2255  
2256  	io_end_vec = ext4_alloc_io_end_vec(io_end);
2257  	if (IS_ERR(io_end_vec))
2258  		return PTR_ERR(io_end_vec);
2259  	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2260  	do {
2261  		err = mpage_map_one_extent(handle, mpd);
2262  		if (err < 0) {
2263  			struct super_block *sb = inode->i_sb;
2264  
2265  			if (ext4_forced_shutdown(sb))
2266  				goto invalidate_dirty_pages;
2267  			/*
2268  			 * Let the uper layers retry transient errors.
2269  			 * In the case of ENOSPC, if ext4_count_free_blocks()
2270  			 * is non-zero, a commit should free up blocks.
2271  			 */
2272  			if ((err == -ENOMEM) ||
2273  			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2274  				if (progress)
2275  					goto update_disksize;
2276  				return err;
2277  			}
2278  			ext4_msg(sb, KERN_CRIT,
2279  				 "Delayed block allocation failed for "
2280  				 "inode %lu at logical offset %llu with"
2281  				 " max blocks %u with error %d",
2282  				 inode->i_ino,
2283  				 (unsigned long long)map->m_lblk,
2284  				 (unsigned)map->m_len, -err);
2285  			ext4_msg(sb, KERN_CRIT,
2286  				 "This should not happen!! Data will "
2287  				 "be lost\n");
2288  			if (err == -ENOSPC)
2289  				ext4_print_free_blocks(inode);
2290  		invalidate_dirty_pages:
2291  			*give_up_on_write = true;
2292  			return err;
2293  		}
2294  		progress = 1;
2295  		/*
2296  		 * Update buffer state, submit mapped pages, and get us new
2297  		 * extent to map
2298  		 */
2299  		err = mpage_map_and_submit_buffers(mpd);
2300  		if (err < 0)
2301  			goto update_disksize;
2302  	} while (map->m_len);
2303  
2304  update_disksize:
2305  	/*
2306  	 * Update on-disk size after IO is submitted.  Races with
2307  	 * truncate are avoided by checking i_size under i_data_sem.
2308  	 */
2309  	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2310  	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2311  		int err2;
2312  		loff_t i_size;
2313  
2314  		down_write(&EXT4_I(inode)->i_data_sem);
2315  		i_size = i_size_read(inode);
2316  		if (disksize > i_size)
2317  			disksize = i_size;
2318  		if (disksize > EXT4_I(inode)->i_disksize)
2319  			EXT4_I(inode)->i_disksize = disksize;
2320  		up_write(&EXT4_I(inode)->i_data_sem);
2321  		err2 = ext4_mark_inode_dirty(handle, inode);
2322  		if (err2) {
2323  			ext4_error_err(inode->i_sb, -err2,
2324  				       "Failed to mark inode %lu dirty",
2325  				       inode->i_ino);
2326  		}
2327  		if (!err)
2328  			err = err2;
2329  	}
2330  	return err;
2331  }
2332  
2333  /*
2334   * Calculate the total number of credits to reserve for one writepages
2335   * iteration. This is called from ext4_writepages(). We map an extent of
2336   * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2337   * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2338   * bpp - 1 blocks in bpp different extents.
2339   */
ext4_da_writepages_trans_blocks(struct inode * inode)2340  static int ext4_da_writepages_trans_blocks(struct inode *inode)
2341  {
2342  	int bpp = ext4_journal_blocks_per_page(inode);
2343  
2344  	return ext4_meta_trans_blocks(inode,
2345  				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2346  }
2347  
ext4_journal_folio_buffers(handle_t * handle,struct folio * folio,size_t len)2348  static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2349  				     size_t len)
2350  {
2351  	struct buffer_head *page_bufs = folio_buffers(folio);
2352  	struct inode *inode = folio->mapping->host;
2353  	int ret, err;
2354  
2355  	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2356  				     NULL, do_journal_get_write_access);
2357  	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2358  				     NULL, write_end_fn);
2359  	if (ret == 0)
2360  		ret = err;
2361  	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2362  	if (ret == 0)
2363  		ret = err;
2364  	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2365  
2366  	return ret;
2367  }
2368  
mpage_journal_page_buffers(handle_t * handle,struct mpage_da_data * mpd,struct folio * folio)2369  static int mpage_journal_page_buffers(handle_t *handle,
2370  				      struct mpage_da_data *mpd,
2371  				      struct folio *folio)
2372  {
2373  	struct inode *inode = mpd->inode;
2374  	loff_t size = i_size_read(inode);
2375  	size_t len = folio_size(folio);
2376  
2377  	folio_clear_checked(folio);
2378  	mpd->wbc->nr_to_write--;
2379  
2380  	if (folio_pos(folio) + len > size &&
2381  	    !ext4_verity_in_progress(inode))
2382  		len = size & (len - 1);
2383  
2384  	return ext4_journal_folio_buffers(handle, folio, len);
2385  }
2386  
2387  /*
2388   * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2389   * 				 needing mapping, submit mapped pages
2390   *
2391   * @mpd - where to look for pages
2392   *
2393   * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2394   * IO immediately. If we cannot map blocks, we submit just already mapped
2395   * buffers in the page for IO and keep page dirty. When we can map blocks and
2396   * we find a page which isn't mapped we start accumulating extent of buffers
2397   * underlying these pages that needs mapping (formed by either delayed or
2398   * unwritten buffers). We also lock the pages containing these buffers. The
2399   * extent found is returned in @mpd structure (starting at mpd->lblk with
2400   * length mpd->len blocks).
2401   *
2402   * Note that this function can attach bios to one io_end structure which are
2403   * neither logically nor physically contiguous. Although it may seem as an
2404   * unnecessary complication, it is actually inevitable in blocksize < pagesize
2405   * case as we need to track IO to all buffers underlying a page in one io_end.
2406   */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2407  static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2408  {
2409  	struct address_space *mapping = mpd->inode->i_mapping;
2410  	struct folio_batch fbatch;
2411  	unsigned int nr_folios;
2412  	pgoff_t index = mpd->first_page;
2413  	pgoff_t end = mpd->last_page;
2414  	xa_mark_t tag;
2415  	int i, err = 0;
2416  	int blkbits = mpd->inode->i_blkbits;
2417  	ext4_lblk_t lblk;
2418  	struct buffer_head *head;
2419  	handle_t *handle = NULL;
2420  	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2421  
2422  	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2423  		tag = PAGECACHE_TAG_TOWRITE;
2424  	else
2425  		tag = PAGECACHE_TAG_DIRTY;
2426  
2427  	mpd->map.m_len = 0;
2428  	mpd->next_page = index;
2429  	if (ext4_should_journal_data(mpd->inode)) {
2430  		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2431  					    bpp);
2432  		if (IS_ERR(handle))
2433  			return PTR_ERR(handle);
2434  	}
2435  	folio_batch_init(&fbatch);
2436  	while (index <= end) {
2437  		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2438  				tag, &fbatch);
2439  		if (nr_folios == 0)
2440  			break;
2441  
2442  		for (i = 0; i < nr_folios; i++) {
2443  			struct folio *folio = fbatch.folios[i];
2444  
2445  			/*
2446  			 * Accumulated enough dirty pages? This doesn't apply
2447  			 * to WB_SYNC_ALL mode. For integrity sync we have to
2448  			 * keep going because someone may be concurrently
2449  			 * dirtying pages, and we might have synced a lot of
2450  			 * newly appeared dirty pages, but have not synced all
2451  			 * of the old dirty pages.
2452  			 */
2453  			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2454  			    mpd->wbc->nr_to_write <=
2455  			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2456  				goto out;
2457  
2458  			/* If we can't merge this page, we are done. */
2459  			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2460  				goto out;
2461  
2462  			if (handle) {
2463  				err = ext4_journal_ensure_credits(handle, bpp,
2464  								  0);
2465  				if (err < 0)
2466  					goto out;
2467  			}
2468  
2469  			folio_lock(folio);
2470  			/*
2471  			 * If the page is no longer dirty, or its mapping no
2472  			 * longer corresponds to inode we are writing (which
2473  			 * means it has been truncated or invalidated), or the
2474  			 * page is already under writeback and we are not doing
2475  			 * a data integrity writeback, skip the page
2476  			 */
2477  			if (!folio_test_dirty(folio) ||
2478  			    (folio_test_writeback(folio) &&
2479  			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2480  			    unlikely(folio->mapping != mapping)) {
2481  				folio_unlock(folio);
2482  				continue;
2483  			}
2484  
2485  			folio_wait_writeback(folio);
2486  			BUG_ON(folio_test_writeback(folio));
2487  
2488  			/*
2489  			 * Should never happen but for buggy code in
2490  			 * other subsystems that call
2491  			 * set_page_dirty() without properly warning
2492  			 * the file system first.  See [1] for more
2493  			 * information.
2494  			 *
2495  			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2496  			 */
2497  			if (!folio_buffers(folio)) {
2498  				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2499  				folio_clear_dirty(folio);
2500  				folio_unlock(folio);
2501  				continue;
2502  			}
2503  
2504  			if (mpd->map.m_len == 0)
2505  				mpd->first_page = folio->index;
2506  			mpd->next_page = folio_next_index(folio);
2507  			/*
2508  			 * Writeout when we cannot modify metadata is simple.
2509  			 * Just submit the page. For data=journal mode we
2510  			 * first handle writeout of the page for checkpoint and
2511  			 * only after that handle delayed page dirtying. This
2512  			 * makes sure current data is checkpointed to the final
2513  			 * location before possibly journalling it again which
2514  			 * is desirable when the page is frequently dirtied
2515  			 * through a pin.
2516  			 */
2517  			if (!mpd->can_map) {
2518  				err = mpage_submit_folio(mpd, folio);
2519  				if (err < 0)
2520  					goto out;
2521  				/* Pending dirtying of journalled data? */
2522  				if (folio_test_checked(folio)) {
2523  					err = mpage_journal_page_buffers(handle,
2524  						mpd, folio);
2525  					if (err < 0)
2526  						goto out;
2527  					mpd->journalled_more_data = 1;
2528  				}
2529  				mpage_folio_done(mpd, folio);
2530  			} else {
2531  				/* Add all dirty buffers to mpd */
2532  				lblk = ((ext4_lblk_t)folio->index) <<
2533  					(PAGE_SHIFT - blkbits);
2534  				head = folio_buffers(folio);
2535  				err = mpage_process_page_bufs(mpd, head, head,
2536  						lblk);
2537  				if (err <= 0)
2538  					goto out;
2539  				err = 0;
2540  			}
2541  		}
2542  		folio_batch_release(&fbatch);
2543  		cond_resched();
2544  	}
2545  	mpd->scanned_until_end = 1;
2546  	if (handle)
2547  		ext4_journal_stop(handle);
2548  	return 0;
2549  out:
2550  	folio_batch_release(&fbatch);
2551  	if (handle)
2552  		ext4_journal_stop(handle);
2553  	return err;
2554  }
2555  
ext4_do_writepages(struct mpage_da_data * mpd)2556  static int ext4_do_writepages(struct mpage_da_data *mpd)
2557  {
2558  	struct writeback_control *wbc = mpd->wbc;
2559  	pgoff_t	writeback_index = 0;
2560  	long nr_to_write = wbc->nr_to_write;
2561  	int range_whole = 0;
2562  	int cycled = 1;
2563  	handle_t *handle = NULL;
2564  	struct inode *inode = mpd->inode;
2565  	struct address_space *mapping = inode->i_mapping;
2566  	int needed_blocks, rsv_blocks = 0, ret = 0;
2567  	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2568  	struct blk_plug plug;
2569  	bool give_up_on_write = false;
2570  
2571  	trace_ext4_writepages(inode, wbc);
2572  
2573  	/*
2574  	 * No pages to write? This is mainly a kludge to avoid starting
2575  	 * a transaction for special inodes like journal inode on last iput()
2576  	 * because that could violate lock ordering on umount
2577  	 */
2578  	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2579  		goto out_writepages;
2580  
2581  	/*
2582  	 * If the filesystem has aborted, it is read-only, so return
2583  	 * right away instead of dumping stack traces later on that
2584  	 * will obscure the real source of the problem.  We test
2585  	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2586  	 * the latter could be true if the filesystem is mounted
2587  	 * read-only, and in that case, ext4_writepages should
2588  	 * *never* be called, so if that ever happens, we would want
2589  	 * the stack trace.
2590  	 */
2591  	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2592  		ret = -EROFS;
2593  		goto out_writepages;
2594  	}
2595  
2596  	/*
2597  	 * If we have inline data and arrive here, it means that
2598  	 * we will soon create the block for the 1st page, so
2599  	 * we'd better clear the inline data here.
2600  	 */
2601  	if (ext4_has_inline_data(inode)) {
2602  		/* Just inode will be modified... */
2603  		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2604  		if (IS_ERR(handle)) {
2605  			ret = PTR_ERR(handle);
2606  			goto out_writepages;
2607  		}
2608  		BUG_ON(ext4_test_inode_state(inode,
2609  				EXT4_STATE_MAY_INLINE_DATA));
2610  		ext4_destroy_inline_data(handle, inode);
2611  		ext4_journal_stop(handle);
2612  	}
2613  
2614  	/*
2615  	 * data=journal mode does not do delalloc so we just need to writeout /
2616  	 * journal already mapped buffers. On the other hand we need to commit
2617  	 * transaction to make data stable. We expect all the data to be
2618  	 * already in the journal (the only exception are DMA pinned pages
2619  	 * dirtied behind our back) so we commit transaction here and run the
2620  	 * writeback loop to checkpoint them. The checkpointing is not actually
2621  	 * necessary to make data persistent *but* quite a few places (extent
2622  	 * shifting operations, fsverity, ...) depend on being able to drop
2623  	 * pagecache pages after calling filemap_write_and_wait() and for that
2624  	 * checkpointing needs to happen.
2625  	 */
2626  	if (ext4_should_journal_data(inode)) {
2627  		mpd->can_map = 0;
2628  		if (wbc->sync_mode == WB_SYNC_ALL)
2629  			ext4_fc_commit(sbi->s_journal,
2630  				       EXT4_I(inode)->i_datasync_tid);
2631  	}
2632  	mpd->journalled_more_data = 0;
2633  
2634  	if (ext4_should_dioread_nolock(inode)) {
2635  		/*
2636  		 * We may need to convert up to one extent per block in
2637  		 * the page and we may dirty the inode.
2638  		 */
2639  		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2640  						PAGE_SIZE >> inode->i_blkbits);
2641  	}
2642  
2643  	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2644  		range_whole = 1;
2645  
2646  	if (wbc->range_cyclic) {
2647  		writeback_index = mapping->writeback_index;
2648  		if (writeback_index)
2649  			cycled = 0;
2650  		mpd->first_page = writeback_index;
2651  		mpd->last_page = -1;
2652  	} else {
2653  		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2654  		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2655  	}
2656  
2657  	ext4_io_submit_init(&mpd->io_submit, wbc);
2658  retry:
2659  	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2660  		tag_pages_for_writeback(mapping, mpd->first_page,
2661  					mpd->last_page);
2662  	blk_start_plug(&plug);
2663  
2664  	/*
2665  	 * First writeback pages that don't need mapping - we can avoid
2666  	 * starting a transaction unnecessarily and also avoid being blocked
2667  	 * in the block layer on device congestion while having transaction
2668  	 * started.
2669  	 */
2670  	mpd->do_map = 0;
2671  	mpd->scanned_until_end = 0;
2672  	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2673  	if (!mpd->io_submit.io_end) {
2674  		ret = -ENOMEM;
2675  		goto unplug;
2676  	}
2677  	ret = mpage_prepare_extent_to_map(mpd);
2678  	/* Unlock pages we didn't use */
2679  	mpage_release_unused_pages(mpd, false);
2680  	/* Submit prepared bio */
2681  	ext4_io_submit(&mpd->io_submit);
2682  	ext4_put_io_end_defer(mpd->io_submit.io_end);
2683  	mpd->io_submit.io_end = NULL;
2684  	if (ret < 0)
2685  		goto unplug;
2686  
2687  	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2688  		/* For each extent of pages we use new io_end */
2689  		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2690  		if (!mpd->io_submit.io_end) {
2691  			ret = -ENOMEM;
2692  			break;
2693  		}
2694  
2695  		WARN_ON_ONCE(!mpd->can_map);
2696  		/*
2697  		 * We have two constraints: We find one extent to map and we
2698  		 * must always write out whole page (makes a difference when
2699  		 * blocksize < pagesize) so that we don't block on IO when we
2700  		 * try to write out the rest of the page. Journalled mode is
2701  		 * not supported by delalloc.
2702  		 */
2703  		BUG_ON(ext4_should_journal_data(inode));
2704  		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2705  
2706  		/* start a new transaction */
2707  		handle = ext4_journal_start_with_reserve(inode,
2708  				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2709  		if (IS_ERR(handle)) {
2710  			ret = PTR_ERR(handle);
2711  			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2712  			       "%ld pages, ino %lu; err %d", __func__,
2713  				wbc->nr_to_write, inode->i_ino, ret);
2714  			/* Release allocated io_end */
2715  			ext4_put_io_end(mpd->io_submit.io_end);
2716  			mpd->io_submit.io_end = NULL;
2717  			break;
2718  		}
2719  		mpd->do_map = 1;
2720  
2721  		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2722  		ret = mpage_prepare_extent_to_map(mpd);
2723  		if (!ret && mpd->map.m_len)
2724  			ret = mpage_map_and_submit_extent(handle, mpd,
2725  					&give_up_on_write);
2726  		/*
2727  		 * Caution: If the handle is synchronous,
2728  		 * ext4_journal_stop() can wait for transaction commit
2729  		 * to finish which may depend on writeback of pages to
2730  		 * complete or on page lock to be released.  In that
2731  		 * case, we have to wait until after we have
2732  		 * submitted all the IO, released page locks we hold,
2733  		 * and dropped io_end reference (for extent conversion
2734  		 * to be able to complete) before stopping the handle.
2735  		 */
2736  		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2737  			ext4_journal_stop(handle);
2738  			handle = NULL;
2739  			mpd->do_map = 0;
2740  		}
2741  		/* Unlock pages we didn't use */
2742  		mpage_release_unused_pages(mpd, give_up_on_write);
2743  		/* Submit prepared bio */
2744  		ext4_io_submit(&mpd->io_submit);
2745  
2746  		/*
2747  		 * Drop our io_end reference we got from init. We have
2748  		 * to be careful and use deferred io_end finishing if
2749  		 * we are still holding the transaction as we can
2750  		 * release the last reference to io_end which may end
2751  		 * up doing unwritten extent conversion.
2752  		 */
2753  		if (handle) {
2754  			ext4_put_io_end_defer(mpd->io_submit.io_end);
2755  			ext4_journal_stop(handle);
2756  		} else
2757  			ext4_put_io_end(mpd->io_submit.io_end);
2758  		mpd->io_submit.io_end = NULL;
2759  
2760  		if (ret == -ENOSPC && sbi->s_journal) {
2761  			/*
2762  			 * Commit the transaction which would
2763  			 * free blocks released in the transaction
2764  			 * and try again
2765  			 */
2766  			jbd2_journal_force_commit_nested(sbi->s_journal);
2767  			ret = 0;
2768  			continue;
2769  		}
2770  		/* Fatal error - ENOMEM, EIO... */
2771  		if (ret)
2772  			break;
2773  	}
2774  unplug:
2775  	blk_finish_plug(&plug);
2776  	if (!ret && !cycled && wbc->nr_to_write > 0) {
2777  		cycled = 1;
2778  		mpd->last_page = writeback_index - 1;
2779  		mpd->first_page = 0;
2780  		goto retry;
2781  	}
2782  
2783  	/* Update index */
2784  	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2785  		/*
2786  		 * Set the writeback_index so that range_cyclic
2787  		 * mode will write it back later
2788  		 */
2789  		mapping->writeback_index = mpd->first_page;
2790  
2791  out_writepages:
2792  	trace_ext4_writepages_result(inode, wbc, ret,
2793  				     nr_to_write - wbc->nr_to_write);
2794  	return ret;
2795  }
2796  
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2797  static int ext4_writepages(struct address_space *mapping,
2798  			   struct writeback_control *wbc)
2799  {
2800  	struct super_block *sb = mapping->host->i_sb;
2801  	struct mpage_da_data mpd = {
2802  		.inode = mapping->host,
2803  		.wbc = wbc,
2804  		.can_map = 1,
2805  	};
2806  	int ret;
2807  	int alloc_ctx;
2808  
2809  	if (unlikely(ext4_forced_shutdown(sb)))
2810  		return -EIO;
2811  
2812  	alloc_ctx = ext4_writepages_down_read(sb);
2813  	ret = ext4_do_writepages(&mpd);
2814  	/*
2815  	 * For data=journal writeback we could have come across pages marked
2816  	 * for delayed dirtying (PageChecked) which were just added to the
2817  	 * running transaction. Try once more to get them to stable storage.
2818  	 */
2819  	if (!ret && mpd.journalled_more_data)
2820  		ret = ext4_do_writepages(&mpd);
2821  	ext4_writepages_up_read(sb, alloc_ctx);
2822  
2823  	return ret;
2824  }
2825  
ext4_normal_submit_inode_data_buffers(struct jbd2_inode * jinode)2826  int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2827  {
2828  	struct writeback_control wbc = {
2829  		.sync_mode = WB_SYNC_ALL,
2830  		.nr_to_write = LONG_MAX,
2831  		.range_start = jinode->i_dirty_start,
2832  		.range_end = jinode->i_dirty_end,
2833  	};
2834  	struct mpage_da_data mpd = {
2835  		.inode = jinode->i_vfs_inode,
2836  		.wbc = &wbc,
2837  		.can_map = 0,
2838  	};
2839  	return ext4_do_writepages(&mpd);
2840  }
2841  
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2842  static int ext4_dax_writepages(struct address_space *mapping,
2843  			       struct writeback_control *wbc)
2844  {
2845  	int ret;
2846  	long nr_to_write = wbc->nr_to_write;
2847  	struct inode *inode = mapping->host;
2848  	int alloc_ctx;
2849  
2850  	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2851  		return -EIO;
2852  
2853  	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2854  	trace_ext4_writepages(inode, wbc);
2855  
2856  	ret = dax_writeback_mapping_range(mapping,
2857  					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2858  	trace_ext4_writepages_result(inode, wbc, ret,
2859  				     nr_to_write - wbc->nr_to_write);
2860  	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2861  	return ret;
2862  }
2863  
ext4_nonda_switch(struct super_block * sb)2864  static int ext4_nonda_switch(struct super_block *sb)
2865  {
2866  	s64 free_clusters, dirty_clusters;
2867  	struct ext4_sb_info *sbi = EXT4_SB(sb);
2868  
2869  	/*
2870  	 * switch to non delalloc mode if we are running low
2871  	 * on free block. The free block accounting via percpu
2872  	 * counters can get slightly wrong with percpu_counter_batch getting
2873  	 * accumulated on each CPU without updating global counters
2874  	 * Delalloc need an accurate free block accounting. So switch
2875  	 * to non delalloc when we are near to error range.
2876  	 */
2877  	free_clusters =
2878  		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2879  	dirty_clusters =
2880  		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2881  	/*
2882  	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2883  	 */
2884  	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2885  		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2886  
2887  	if (2 * free_clusters < 3 * dirty_clusters ||
2888  	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2889  		/*
2890  		 * free block count is less than 150% of dirty blocks
2891  		 * or free blocks is less than watermark
2892  		 */
2893  		return 1;
2894  	}
2895  	return 0;
2896  }
2897  
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)2898  static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2899  			       loff_t pos, unsigned len,
2900  			       struct folio **foliop, void **fsdata)
2901  {
2902  	int ret, retries = 0;
2903  	struct folio *folio;
2904  	pgoff_t index;
2905  	struct inode *inode = mapping->host;
2906  
2907  	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2908  		return -EIO;
2909  
2910  	index = pos >> PAGE_SHIFT;
2911  
2912  	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2913  		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2914  		return ext4_write_begin(file, mapping, pos,
2915  					len, foliop, fsdata);
2916  	}
2917  	*fsdata = (void *)0;
2918  	trace_ext4_da_write_begin(inode, pos, len);
2919  
2920  	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2921  		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2922  						      foliop, fsdata);
2923  		if (ret < 0)
2924  			return ret;
2925  		if (ret == 1)
2926  			return 0;
2927  	}
2928  
2929  retry:
2930  	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2931  			mapping_gfp_mask(mapping));
2932  	if (IS_ERR(folio))
2933  		return PTR_ERR(folio);
2934  
2935  	ret = ext4_block_write_begin(NULL, folio, pos, len,
2936  				     ext4_da_get_block_prep);
2937  	if (ret < 0) {
2938  		folio_unlock(folio);
2939  		folio_put(folio);
2940  		/*
2941  		 * block_write_begin may have instantiated a few blocks
2942  		 * outside i_size.  Trim these off again. Don't need
2943  		 * i_size_read because we hold inode lock.
2944  		 */
2945  		if (pos + len > inode->i_size)
2946  			ext4_truncate_failed_write(inode);
2947  
2948  		if (ret == -ENOSPC &&
2949  		    ext4_should_retry_alloc(inode->i_sb, &retries))
2950  			goto retry;
2951  		return ret;
2952  	}
2953  
2954  	*foliop = folio;
2955  	return ret;
2956  }
2957  
2958  /*
2959   * Check if we should update i_disksize
2960   * when write to the end of file but not require block allocation
2961   */
ext4_da_should_update_i_disksize(struct folio * folio,unsigned long offset)2962  static int ext4_da_should_update_i_disksize(struct folio *folio,
2963  					    unsigned long offset)
2964  {
2965  	struct buffer_head *bh;
2966  	struct inode *inode = folio->mapping->host;
2967  	unsigned int idx;
2968  	int i;
2969  
2970  	bh = folio_buffers(folio);
2971  	idx = offset >> inode->i_blkbits;
2972  
2973  	for (i = 0; i < idx; i++)
2974  		bh = bh->b_this_page;
2975  
2976  	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2977  		return 0;
2978  	return 1;
2979  }
2980  
ext4_da_do_write_end(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio)2981  static int ext4_da_do_write_end(struct address_space *mapping,
2982  			loff_t pos, unsigned len, unsigned copied,
2983  			struct folio *folio)
2984  {
2985  	struct inode *inode = mapping->host;
2986  	loff_t old_size = inode->i_size;
2987  	bool disksize_changed = false;
2988  	loff_t new_i_size;
2989  
2990  	if (unlikely(!folio_buffers(folio))) {
2991  		folio_unlock(folio);
2992  		folio_put(folio);
2993  		return -EIO;
2994  	}
2995  	/*
2996  	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2997  	 * flag, which all that's needed to trigger page writeback.
2998  	 */
2999  	copied = block_write_end(NULL, mapping, pos, len, copied,
3000  			folio, NULL);
3001  	new_i_size = pos + copied;
3002  
3003  	/*
3004  	 * It's important to update i_size while still holding folio lock,
3005  	 * because folio writeout could otherwise come in and zero beyond
3006  	 * i_size.
3007  	 *
3008  	 * Since we are holding inode lock, we are sure i_disksize <=
3009  	 * i_size. We also know that if i_disksize < i_size, there are
3010  	 * delalloc writes pending in the range up to i_size. If the end of
3011  	 * the current write is <= i_size, there's no need to touch
3012  	 * i_disksize since writeback will push i_disksize up to i_size
3013  	 * eventually. If the end of the current write is > i_size and
3014  	 * inside an allocated block which ext4_da_should_update_i_disksize()
3015  	 * checked, we need to update i_disksize here as certain
3016  	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3017  	 */
3018  	if (new_i_size > inode->i_size) {
3019  		unsigned long end;
3020  
3021  		i_size_write(inode, new_i_size);
3022  		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3023  		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3024  			ext4_update_i_disksize(inode, new_i_size);
3025  			disksize_changed = true;
3026  		}
3027  	}
3028  
3029  	folio_unlock(folio);
3030  	folio_put(folio);
3031  
3032  	if (old_size < pos)
3033  		pagecache_isize_extended(inode, old_size, pos);
3034  
3035  	if (disksize_changed) {
3036  		handle_t *handle;
3037  
3038  		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3039  		if (IS_ERR(handle))
3040  			return PTR_ERR(handle);
3041  		ext4_mark_inode_dirty(handle, inode);
3042  		ext4_journal_stop(handle);
3043  	}
3044  
3045  	return copied;
3046  }
3047  
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3048  static int ext4_da_write_end(struct file *file,
3049  			     struct address_space *mapping,
3050  			     loff_t pos, unsigned len, unsigned copied,
3051  			     struct folio *folio, void *fsdata)
3052  {
3053  	struct inode *inode = mapping->host;
3054  	int write_mode = (int)(unsigned long)fsdata;
3055  
3056  	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3057  		return ext4_write_end(file, mapping, pos,
3058  				      len, copied, folio, fsdata);
3059  
3060  	trace_ext4_da_write_end(inode, pos, len, copied);
3061  
3062  	if (write_mode != CONVERT_INLINE_DATA &&
3063  	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3064  	    ext4_has_inline_data(inode))
3065  		return ext4_write_inline_data_end(inode, pos, len, copied,
3066  						  folio);
3067  
3068  	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3069  		copied = 0;
3070  
3071  	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3072  }
3073  
3074  /*
3075   * Force all delayed allocation blocks to be allocated for a given inode.
3076   */
ext4_alloc_da_blocks(struct inode * inode)3077  int ext4_alloc_da_blocks(struct inode *inode)
3078  {
3079  	trace_ext4_alloc_da_blocks(inode);
3080  
3081  	if (!EXT4_I(inode)->i_reserved_data_blocks)
3082  		return 0;
3083  
3084  	/*
3085  	 * We do something simple for now.  The filemap_flush() will
3086  	 * also start triggering a write of the data blocks, which is
3087  	 * not strictly speaking necessary (and for users of
3088  	 * laptop_mode, not even desirable).  However, to do otherwise
3089  	 * would require replicating code paths in:
3090  	 *
3091  	 * ext4_writepages() ->
3092  	 *    write_cache_pages() ---> (via passed in callback function)
3093  	 *        __mpage_da_writepage() -->
3094  	 *           mpage_add_bh_to_extent()
3095  	 *           mpage_da_map_blocks()
3096  	 *
3097  	 * The problem is that write_cache_pages(), located in
3098  	 * mm/page-writeback.c, marks pages clean in preparation for
3099  	 * doing I/O, which is not desirable if we're not planning on
3100  	 * doing I/O at all.
3101  	 *
3102  	 * We could call write_cache_pages(), and then redirty all of
3103  	 * the pages by calling redirty_page_for_writepage() but that
3104  	 * would be ugly in the extreme.  So instead we would need to
3105  	 * replicate parts of the code in the above functions,
3106  	 * simplifying them because we wouldn't actually intend to
3107  	 * write out the pages, but rather only collect contiguous
3108  	 * logical block extents, call the multi-block allocator, and
3109  	 * then update the buffer heads with the block allocations.
3110  	 *
3111  	 * For now, though, we'll cheat by calling filemap_flush(),
3112  	 * which will map the blocks, and start the I/O, but not
3113  	 * actually wait for the I/O to complete.
3114  	 */
3115  	return filemap_flush(inode->i_mapping);
3116  }
3117  
3118  /*
3119   * bmap() is special.  It gets used by applications such as lilo and by
3120   * the swapper to find the on-disk block of a specific piece of data.
3121   *
3122   * Naturally, this is dangerous if the block concerned is still in the
3123   * journal.  If somebody makes a swapfile on an ext4 data-journaling
3124   * filesystem and enables swap, then they may get a nasty shock when the
3125   * data getting swapped to that swapfile suddenly gets overwritten by
3126   * the original zero's written out previously to the journal and
3127   * awaiting writeback in the kernel's buffer cache.
3128   *
3129   * So, if we see any bmap calls here on a modified, data-journaled file,
3130   * take extra steps to flush any blocks which might be in the cache.
3131   */
ext4_bmap(struct address_space * mapping,sector_t block)3132  static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3133  {
3134  	struct inode *inode = mapping->host;
3135  	sector_t ret = 0;
3136  
3137  	inode_lock_shared(inode);
3138  	/*
3139  	 * We can get here for an inline file via the FIBMAP ioctl
3140  	 */
3141  	if (ext4_has_inline_data(inode))
3142  		goto out;
3143  
3144  	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3145  	    (test_opt(inode->i_sb, DELALLOC) ||
3146  	     ext4_should_journal_data(inode))) {
3147  		/*
3148  		 * With delalloc or journalled data we want to sync the file so
3149  		 * that we can make sure we allocate blocks for file and data
3150  		 * is in place for the user to see it
3151  		 */
3152  		filemap_write_and_wait(mapping);
3153  	}
3154  
3155  	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3156  
3157  out:
3158  	inode_unlock_shared(inode);
3159  	return ret;
3160  }
3161  
ext4_read_folio(struct file * file,struct folio * folio)3162  static int ext4_read_folio(struct file *file, struct folio *folio)
3163  {
3164  	int ret = -EAGAIN;
3165  	struct inode *inode = folio->mapping->host;
3166  
3167  	trace_ext4_read_folio(inode, folio);
3168  
3169  	if (ext4_has_inline_data(inode))
3170  		ret = ext4_readpage_inline(inode, folio);
3171  
3172  	if (ret == -EAGAIN)
3173  		return ext4_mpage_readpages(inode, NULL, folio);
3174  
3175  	return ret;
3176  }
3177  
ext4_readahead(struct readahead_control * rac)3178  static void ext4_readahead(struct readahead_control *rac)
3179  {
3180  	struct inode *inode = rac->mapping->host;
3181  
3182  	/* If the file has inline data, no need to do readahead. */
3183  	if (ext4_has_inline_data(inode))
3184  		return;
3185  
3186  	ext4_mpage_readpages(inode, rac, NULL);
3187  }
3188  
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3189  static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3190  				size_t length)
3191  {
3192  	trace_ext4_invalidate_folio(folio, offset, length);
3193  
3194  	/* No journalling happens on data buffers when this function is used */
3195  	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3196  
3197  	block_invalidate_folio(folio, offset, length);
3198  }
3199  
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3200  static int __ext4_journalled_invalidate_folio(struct folio *folio,
3201  					    size_t offset, size_t length)
3202  {
3203  	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3204  
3205  	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3206  
3207  	/*
3208  	 * If it's a full truncate we just forget about the pending dirtying
3209  	 */
3210  	if (offset == 0 && length == folio_size(folio))
3211  		folio_clear_checked(folio);
3212  
3213  	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3214  }
3215  
3216  /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3217  static void ext4_journalled_invalidate_folio(struct folio *folio,
3218  					   size_t offset,
3219  					   size_t length)
3220  {
3221  	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3222  }
3223  
ext4_release_folio(struct folio * folio,gfp_t wait)3224  static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3225  {
3226  	struct inode *inode = folio->mapping->host;
3227  	journal_t *journal = EXT4_JOURNAL(inode);
3228  
3229  	trace_ext4_release_folio(inode, folio);
3230  
3231  	/* Page has dirty journalled data -> cannot release */
3232  	if (folio_test_checked(folio))
3233  		return false;
3234  	if (journal)
3235  		return jbd2_journal_try_to_free_buffers(journal, folio);
3236  	else
3237  		return try_to_free_buffers(folio);
3238  }
3239  
ext4_inode_datasync_dirty(struct inode * inode)3240  static bool ext4_inode_datasync_dirty(struct inode *inode)
3241  {
3242  	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3243  
3244  	if (journal) {
3245  		if (jbd2_transaction_committed(journal,
3246  			EXT4_I(inode)->i_datasync_tid))
3247  			return false;
3248  		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3249  			return !list_empty(&EXT4_I(inode)->i_fc_list);
3250  		return true;
3251  	}
3252  
3253  	/* Any metadata buffers to write? */
3254  	if (!list_empty(&inode->i_mapping->i_private_list))
3255  		return true;
3256  	return inode->i_state & I_DIRTY_DATASYNC;
3257  }
3258  
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3259  static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3260  			   struct ext4_map_blocks *map, loff_t offset,
3261  			   loff_t length, unsigned int flags)
3262  {
3263  	u8 blkbits = inode->i_blkbits;
3264  
3265  	/*
3266  	 * Writes that span EOF might trigger an I/O size update on completion,
3267  	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3268  	 * there is no other metadata changes being made or are pending.
3269  	 */
3270  	iomap->flags = 0;
3271  	if (ext4_inode_datasync_dirty(inode) ||
3272  	    offset + length > i_size_read(inode))
3273  		iomap->flags |= IOMAP_F_DIRTY;
3274  
3275  	if (map->m_flags & EXT4_MAP_NEW)
3276  		iomap->flags |= IOMAP_F_NEW;
3277  
3278  	if (flags & IOMAP_DAX)
3279  		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3280  	else
3281  		iomap->bdev = inode->i_sb->s_bdev;
3282  	iomap->offset = (u64) map->m_lblk << blkbits;
3283  	iomap->length = (u64) map->m_len << blkbits;
3284  
3285  	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3286  	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3287  		iomap->flags |= IOMAP_F_MERGED;
3288  
3289  	/*
3290  	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3291  	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3292  	 * set. In order for any allocated unwritten extents to be converted
3293  	 * into written extents correctly within the ->end_io() handler, we
3294  	 * need to ensure that the iomap->type is set appropriately. Hence, the
3295  	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3296  	 * been set first.
3297  	 */
3298  	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3299  		iomap->type = IOMAP_UNWRITTEN;
3300  		iomap->addr = (u64) map->m_pblk << blkbits;
3301  		if (flags & IOMAP_DAX)
3302  			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3303  	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3304  		iomap->type = IOMAP_MAPPED;
3305  		iomap->addr = (u64) map->m_pblk << blkbits;
3306  		if (flags & IOMAP_DAX)
3307  			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3308  	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3309  		iomap->type = IOMAP_DELALLOC;
3310  		iomap->addr = IOMAP_NULL_ADDR;
3311  	} else {
3312  		iomap->type = IOMAP_HOLE;
3313  		iomap->addr = IOMAP_NULL_ADDR;
3314  	}
3315  }
3316  
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3317  static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3318  			    unsigned int flags)
3319  {
3320  	handle_t *handle;
3321  	u8 blkbits = inode->i_blkbits;
3322  	int ret, dio_credits, m_flags = 0, retries = 0;
3323  
3324  	/*
3325  	 * Trim the mapping request to the maximum value that we can map at
3326  	 * once for direct I/O.
3327  	 */
3328  	if (map->m_len > DIO_MAX_BLOCKS)
3329  		map->m_len = DIO_MAX_BLOCKS;
3330  	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3331  
3332  retry:
3333  	/*
3334  	 * Either we allocate blocks and then don't get an unwritten extent, so
3335  	 * in that case we have reserved enough credits. Or, the blocks are
3336  	 * already allocated and unwritten. In that case, the extent conversion
3337  	 * fits into the credits as well.
3338  	 */
3339  	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3340  	if (IS_ERR(handle))
3341  		return PTR_ERR(handle);
3342  
3343  	/*
3344  	 * DAX and direct I/O are the only two operations that are currently
3345  	 * supported with IOMAP_WRITE.
3346  	 */
3347  	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3348  	if (flags & IOMAP_DAX)
3349  		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3350  	/*
3351  	 * We use i_size instead of i_disksize here because delalloc writeback
3352  	 * can complete at any point during the I/O and subsequently push the
3353  	 * i_disksize out to i_size. This could be beyond where direct I/O is
3354  	 * happening and thus expose allocated blocks to direct I/O reads.
3355  	 */
3356  	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3357  		m_flags = EXT4_GET_BLOCKS_CREATE;
3358  	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3359  		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3360  
3361  	ret = ext4_map_blocks(handle, inode, map, m_flags);
3362  
3363  	/*
3364  	 * We cannot fill holes in indirect tree based inodes as that could
3365  	 * expose stale data in the case of a crash. Use the magic error code
3366  	 * to fallback to buffered I/O.
3367  	 */
3368  	if (!m_flags && !ret)
3369  		ret = -ENOTBLK;
3370  
3371  	ext4_journal_stop(handle);
3372  	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3373  		goto retry;
3374  
3375  	return ret;
3376  }
3377  
3378  
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3379  static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3380  		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3381  {
3382  	int ret;
3383  	struct ext4_map_blocks map;
3384  	u8 blkbits = inode->i_blkbits;
3385  
3386  	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3387  		return -EINVAL;
3388  
3389  	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3390  		return -ERANGE;
3391  
3392  	/*
3393  	 * Calculate the first and last logical blocks respectively.
3394  	 */
3395  	map.m_lblk = offset >> blkbits;
3396  	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3397  			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3398  
3399  	if (flags & IOMAP_WRITE) {
3400  		/*
3401  		 * We check here if the blocks are already allocated, then we
3402  		 * don't need to start a journal txn and we can directly return
3403  		 * the mapping information. This could boost performance
3404  		 * especially in multi-threaded overwrite requests.
3405  		 */
3406  		if (offset + length <= i_size_read(inode)) {
3407  			ret = ext4_map_blocks(NULL, inode, &map, 0);
3408  			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3409  				goto out;
3410  		}
3411  		ret = ext4_iomap_alloc(inode, &map, flags);
3412  	} else {
3413  		ret = ext4_map_blocks(NULL, inode, &map, 0);
3414  	}
3415  
3416  	if (ret < 0)
3417  		return ret;
3418  out:
3419  	/*
3420  	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3421  	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3422  	 * limiting the length of the mapping returned.
3423  	 */
3424  	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3425  
3426  	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3427  
3428  	return 0;
3429  }
3430  
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3431  static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3432  		loff_t length, unsigned flags, struct iomap *iomap,
3433  		struct iomap *srcmap)
3434  {
3435  	int ret;
3436  
3437  	/*
3438  	 * Even for writes we don't need to allocate blocks, so just pretend
3439  	 * we are reading to save overhead of starting a transaction.
3440  	 */
3441  	flags &= ~IOMAP_WRITE;
3442  	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3443  	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3444  	return ret;
3445  }
3446  
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3447  static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3448  			  ssize_t written, unsigned flags, struct iomap *iomap)
3449  {
3450  	/*
3451  	 * Check to see whether an error occurred while writing out the data to
3452  	 * the allocated blocks. If so, return the magic error code so that we
3453  	 * fallback to buffered I/O and attempt to complete the remainder of
3454  	 * the I/O. Any blocks that may have been allocated in preparation for
3455  	 * the direct I/O will be reused during buffered I/O.
3456  	 */
3457  	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3458  		return -ENOTBLK;
3459  
3460  	return 0;
3461  }
3462  
3463  const struct iomap_ops ext4_iomap_ops = {
3464  	.iomap_begin		= ext4_iomap_begin,
3465  	.iomap_end		= ext4_iomap_end,
3466  };
3467  
3468  const struct iomap_ops ext4_iomap_overwrite_ops = {
3469  	.iomap_begin		= ext4_iomap_overwrite_begin,
3470  	.iomap_end		= ext4_iomap_end,
3471  };
3472  
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3473  static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3474  				   loff_t length, unsigned int flags,
3475  				   struct iomap *iomap, struct iomap *srcmap)
3476  {
3477  	int ret;
3478  	struct ext4_map_blocks map;
3479  	u8 blkbits = inode->i_blkbits;
3480  
3481  	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3482  		return -EINVAL;
3483  
3484  	if (ext4_has_inline_data(inode)) {
3485  		ret = ext4_inline_data_iomap(inode, iomap);
3486  		if (ret != -EAGAIN) {
3487  			if (ret == 0 && offset >= iomap->length)
3488  				ret = -ENOENT;
3489  			return ret;
3490  		}
3491  	}
3492  
3493  	/*
3494  	 * Calculate the first and last logical block respectively.
3495  	 */
3496  	map.m_lblk = offset >> blkbits;
3497  	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3498  			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3499  
3500  	/*
3501  	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3502  	 * So handle it here itself instead of querying ext4_map_blocks().
3503  	 * Since ext4_map_blocks() will warn about it and will return
3504  	 * -EIO error.
3505  	 */
3506  	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3507  		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3508  
3509  		if (offset >= sbi->s_bitmap_maxbytes) {
3510  			map.m_flags = 0;
3511  			goto set_iomap;
3512  		}
3513  	}
3514  
3515  	ret = ext4_map_blocks(NULL, inode, &map, 0);
3516  	if (ret < 0)
3517  		return ret;
3518  set_iomap:
3519  	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3520  
3521  	return 0;
3522  }
3523  
3524  const struct iomap_ops ext4_iomap_report_ops = {
3525  	.iomap_begin = ext4_iomap_begin_report,
3526  };
3527  
3528  /*
3529   * For data=journal mode, folio should be marked dirty only when it was
3530   * writeably mapped. When that happens, it was already attached to the
3531   * transaction and marked as jbddirty (we take care of this in
3532   * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3533   * so we should have nothing to do here, except for the case when someone
3534   * had the page pinned and dirtied the page through this pin (e.g. by doing
3535   * direct IO to it). In that case we'd need to attach buffers here to the
3536   * transaction but we cannot due to lock ordering.  We cannot just dirty the
3537   * folio and leave attached buffers clean, because the buffers' dirty state is
3538   * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3539   * the journalling code will explode.  So what we do is to mark the folio
3540   * "pending dirty" and next time ext4_writepages() is called, attach buffers
3541   * to the transaction appropriately.
3542   */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3543  static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3544  		struct folio *folio)
3545  {
3546  	WARN_ON_ONCE(!folio_buffers(folio));
3547  	if (folio_maybe_dma_pinned(folio))
3548  		folio_set_checked(folio);
3549  	return filemap_dirty_folio(mapping, folio);
3550  }
3551  
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3552  static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3553  {
3554  	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3555  	WARN_ON_ONCE(!folio_buffers(folio));
3556  	return block_dirty_folio(mapping, folio);
3557  }
3558  
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3559  static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3560  				    struct file *file, sector_t *span)
3561  {
3562  	return iomap_swapfile_activate(sis, file, span,
3563  				       &ext4_iomap_report_ops);
3564  }
3565  
3566  static const struct address_space_operations ext4_aops = {
3567  	.read_folio		= ext4_read_folio,
3568  	.readahead		= ext4_readahead,
3569  	.writepages		= ext4_writepages,
3570  	.write_begin		= ext4_write_begin,
3571  	.write_end		= ext4_write_end,
3572  	.dirty_folio		= ext4_dirty_folio,
3573  	.bmap			= ext4_bmap,
3574  	.invalidate_folio	= ext4_invalidate_folio,
3575  	.release_folio		= ext4_release_folio,
3576  	.migrate_folio		= buffer_migrate_folio,
3577  	.is_partially_uptodate  = block_is_partially_uptodate,
3578  	.error_remove_folio	= generic_error_remove_folio,
3579  	.swap_activate		= ext4_iomap_swap_activate,
3580  };
3581  
3582  static const struct address_space_operations ext4_journalled_aops = {
3583  	.read_folio		= ext4_read_folio,
3584  	.readahead		= ext4_readahead,
3585  	.writepages		= ext4_writepages,
3586  	.write_begin		= ext4_write_begin,
3587  	.write_end		= ext4_journalled_write_end,
3588  	.dirty_folio		= ext4_journalled_dirty_folio,
3589  	.bmap			= ext4_bmap,
3590  	.invalidate_folio	= ext4_journalled_invalidate_folio,
3591  	.release_folio		= ext4_release_folio,
3592  	.migrate_folio		= buffer_migrate_folio_norefs,
3593  	.is_partially_uptodate  = block_is_partially_uptodate,
3594  	.error_remove_folio	= generic_error_remove_folio,
3595  	.swap_activate		= ext4_iomap_swap_activate,
3596  };
3597  
3598  static const struct address_space_operations ext4_da_aops = {
3599  	.read_folio		= ext4_read_folio,
3600  	.readahead		= ext4_readahead,
3601  	.writepages		= ext4_writepages,
3602  	.write_begin		= ext4_da_write_begin,
3603  	.write_end		= ext4_da_write_end,
3604  	.dirty_folio		= ext4_dirty_folio,
3605  	.bmap			= ext4_bmap,
3606  	.invalidate_folio	= ext4_invalidate_folio,
3607  	.release_folio		= ext4_release_folio,
3608  	.migrate_folio		= buffer_migrate_folio,
3609  	.is_partially_uptodate  = block_is_partially_uptodate,
3610  	.error_remove_folio	= generic_error_remove_folio,
3611  	.swap_activate		= ext4_iomap_swap_activate,
3612  };
3613  
3614  static const struct address_space_operations ext4_dax_aops = {
3615  	.writepages		= ext4_dax_writepages,
3616  	.dirty_folio		= noop_dirty_folio,
3617  	.bmap			= ext4_bmap,
3618  	.swap_activate		= ext4_iomap_swap_activate,
3619  };
3620  
ext4_set_aops(struct inode * inode)3621  void ext4_set_aops(struct inode *inode)
3622  {
3623  	switch (ext4_inode_journal_mode(inode)) {
3624  	case EXT4_INODE_ORDERED_DATA_MODE:
3625  	case EXT4_INODE_WRITEBACK_DATA_MODE:
3626  		break;
3627  	case EXT4_INODE_JOURNAL_DATA_MODE:
3628  		inode->i_mapping->a_ops = &ext4_journalled_aops;
3629  		return;
3630  	default:
3631  		BUG();
3632  	}
3633  	if (IS_DAX(inode))
3634  		inode->i_mapping->a_ops = &ext4_dax_aops;
3635  	else if (test_opt(inode->i_sb, DELALLOC))
3636  		inode->i_mapping->a_ops = &ext4_da_aops;
3637  	else
3638  		inode->i_mapping->a_ops = &ext4_aops;
3639  }
3640  
3641  /*
3642   * Here we can't skip an unwritten buffer even though it usually reads zero
3643   * because it might have data in pagecache (eg, if called from ext4_zero_range,
3644   * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3645   * racing writeback can come later and flush the stale pagecache to disk.
3646   */
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3647  static int __ext4_block_zero_page_range(handle_t *handle,
3648  		struct address_space *mapping, loff_t from, loff_t length)
3649  {
3650  	ext4_fsblk_t index = from >> PAGE_SHIFT;
3651  	unsigned offset = from & (PAGE_SIZE-1);
3652  	unsigned blocksize, pos;
3653  	ext4_lblk_t iblock;
3654  	struct inode *inode = mapping->host;
3655  	struct buffer_head *bh;
3656  	struct folio *folio;
3657  	int err = 0;
3658  
3659  	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3660  				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3661  				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3662  	if (IS_ERR(folio))
3663  		return PTR_ERR(folio);
3664  
3665  	blocksize = inode->i_sb->s_blocksize;
3666  
3667  	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3668  
3669  	bh = folio_buffers(folio);
3670  	if (!bh)
3671  		bh = create_empty_buffers(folio, blocksize, 0);
3672  
3673  	/* Find the buffer that contains "offset" */
3674  	pos = blocksize;
3675  	while (offset >= pos) {
3676  		bh = bh->b_this_page;
3677  		iblock++;
3678  		pos += blocksize;
3679  	}
3680  	if (buffer_freed(bh)) {
3681  		BUFFER_TRACE(bh, "freed: skip");
3682  		goto unlock;
3683  	}
3684  	if (!buffer_mapped(bh)) {
3685  		BUFFER_TRACE(bh, "unmapped");
3686  		ext4_get_block(inode, iblock, bh, 0);
3687  		/* unmapped? It's a hole - nothing to do */
3688  		if (!buffer_mapped(bh)) {
3689  			BUFFER_TRACE(bh, "still unmapped");
3690  			goto unlock;
3691  		}
3692  	}
3693  
3694  	/* Ok, it's mapped. Make sure it's up-to-date */
3695  	if (folio_test_uptodate(folio))
3696  		set_buffer_uptodate(bh);
3697  
3698  	if (!buffer_uptodate(bh)) {
3699  		err = ext4_read_bh_lock(bh, 0, true);
3700  		if (err)
3701  			goto unlock;
3702  		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3703  			/* We expect the key to be set. */
3704  			BUG_ON(!fscrypt_has_encryption_key(inode));
3705  			err = fscrypt_decrypt_pagecache_blocks(folio,
3706  							       blocksize,
3707  							       bh_offset(bh));
3708  			if (err) {
3709  				clear_buffer_uptodate(bh);
3710  				goto unlock;
3711  			}
3712  		}
3713  	}
3714  	if (ext4_should_journal_data(inode)) {
3715  		BUFFER_TRACE(bh, "get write access");
3716  		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3717  						    EXT4_JTR_NONE);
3718  		if (err)
3719  			goto unlock;
3720  	}
3721  	folio_zero_range(folio, offset, length);
3722  	BUFFER_TRACE(bh, "zeroed end of block");
3723  
3724  	if (ext4_should_journal_data(inode)) {
3725  		err = ext4_dirty_journalled_data(handle, bh);
3726  	} else {
3727  		err = 0;
3728  		mark_buffer_dirty(bh);
3729  		if (ext4_should_order_data(inode))
3730  			err = ext4_jbd2_inode_add_write(handle, inode, from,
3731  					length);
3732  	}
3733  
3734  unlock:
3735  	folio_unlock(folio);
3736  	folio_put(folio);
3737  	return err;
3738  }
3739  
3740  /*
3741   * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3742   * starting from file offset 'from'.  The range to be zero'd must
3743   * be contained with in one block.  If the specified range exceeds
3744   * the end of the block it will be shortened to end of the block
3745   * that corresponds to 'from'
3746   */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3747  static int ext4_block_zero_page_range(handle_t *handle,
3748  		struct address_space *mapping, loff_t from, loff_t length)
3749  {
3750  	struct inode *inode = mapping->host;
3751  	unsigned offset = from & (PAGE_SIZE-1);
3752  	unsigned blocksize = inode->i_sb->s_blocksize;
3753  	unsigned max = blocksize - (offset & (blocksize - 1));
3754  
3755  	/*
3756  	 * correct length if it does not fall between
3757  	 * 'from' and the end of the block
3758  	 */
3759  	if (length > max || length < 0)
3760  		length = max;
3761  
3762  	if (IS_DAX(inode)) {
3763  		return dax_zero_range(inode, from, length, NULL,
3764  				      &ext4_iomap_ops);
3765  	}
3766  	return __ext4_block_zero_page_range(handle, mapping, from, length);
3767  }
3768  
3769  /*
3770   * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3771   * up to the end of the block which corresponds to `from'.
3772   * This required during truncate. We need to physically zero the tail end
3773   * of that block so it doesn't yield old data if the file is later grown.
3774   */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3775  static int ext4_block_truncate_page(handle_t *handle,
3776  		struct address_space *mapping, loff_t from)
3777  {
3778  	unsigned offset = from & (PAGE_SIZE-1);
3779  	unsigned length;
3780  	unsigned blocksize;
3781  	struct inode *inode = mapping->host;
3782  
3783  	/* If we are processing an encrypted inode during orphan list handling */
3784  	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3785  		return 0;
3786  
3787  	blocksize = inode->i_sb->s_blocksize;
3788  	length = blocksize - (offset & (blocksize - 1));
3789  
3790  	return ext4_block_zero_page_range(handle, mapping, from, length);
3791  }
3792  
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3793  int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3794  			     loff_t lstart, loff_t length)
3795  {
3796  	struct super_block *sb = inode->i_sb;
3797  	struct address_space *mapping = inode->i_mapping;
3798  	unsigned partial_start, partial_end;
3799  	ext4_fsblk_t start, end;
3800  	loff_t byte_end = (lstart + length - 1);
3801  	int err = 0;
3802  
3803  	partial_start = lstart & (sb->s_blocksize - 1);
3804  	partial_end = byte_end & (sb->s_blocksize - 1);
3805  
3806  	start = lstart >> sb->s_blocksize_bits;
3807  	end = byte_end >> sb->s_blocksize_bits;
3808  
3809  	/* Handle partial zero within the single block */
3810  	if (start == end &&
3811  	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3812  		err = ext4_block_zero_page_range(handle, mapping,
3813  						 lstart, length);
3814  		return err;
3815  	}
3816  	/* Handle partial zero out on the start of the range */
3817  	if (partial_start) {
3818  		err = ext4_block_zero_page_range(handle, mapping,
3819  						 lstart, sb->s_blocksize);
3820  		if (err)
3821  			return err;
3822  	}
3823  	/* Handle partial zero out on the end of the range */
3824  	if (partial_end != sb->s_blocksize - 1)
3825  		err = ext4_block_zero_page_range(handle, mapping,
3826  						 byte_end - partial_end,
3827  						 partial_end + 1);
3828  	return err;
3829  }
3830  
ext4_can_truncate(struct inode * inode)3831  int ext4_can_truncate(struct inode *inode)
3832  {
3833  	if (S_ISREG(inode->i_mode))
3834  		return 1;
3835  	if (S_ISDIR(inode->i_mode))
3836  		return 1;
3837  	if (S_ISLNK(inode->i_mode))
3838  		return !ext4_inode_is_fast_symlink(inode);
3839  	return 0;
3840  }
3841  
3842  /*
3843   * We have to make sure i_disksize gets properly updated before we truncate
3844   * page cache due to hole punching or zero range. Otherwise i_disksize update
3845   * can get lost as it may have been postponed to submission of writeback but
3846   * that will never happen after we truncate page cache.
3847   */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3848  int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3849  				      loff_t len)
3850  {
3851  	handle_t *handle;
3852  	int ret;
3853  
3854  	loff_t size = i_size_read(inode);
3855  
3856  	WARN_ON(!inode_is_locked(inode));
3857  	if (offset > size || offset + len < size)
3858  		return 0;
3859  
3860  	if (EXT4_I(inode)->i_disksize >= size)
3861  		return 0;
3862  
3863  	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3864  	if (IS_ERR(handle))
3865  		return PTR_ERR(handle);
3866  	ext4_update_i_disksize(inode, size);
3867  	ret = ext4_mark_inode_dirty(handle, inode);
3868  	ext4_journal_stop(handle);
3869  
3870  	return ret;
3871  }
3872  
ext4_wait_dax_page(struct inode * inode)3873  static void ext4_wait_dax_page(struct inode *inode)
3874  {
3875  	filemap_invalidate_unlock(inode->i_mapping);
3876  	schedule();
3877  	filemap_invalidate_lock(inode->i_mapping);
3878  }
3879  
ext4_break_layouts(struct inode * inode)3880  int ext4_break_layouts(struct inode *inode)
3881  {
3882  	struct page *page;
3883  	int error;
3884  
3885  	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3886  		return -EINVAL;
3887  
3888  	do {
3889  		page = dax_layout_busy_page(inode->i_mapping);
3890  		if (!page)
3891  			return 0;
3892  
3893  		error = ___wait_var_event(&page->_refcount,
3894  				atomic_read(&page->_refcount) == 1,
3895  				TASK_INTERRUPTIBLE, 0, 0,
3896  				ext4_wait_dax_page(inode));
3897  	} while (error == 0);
3898  
3899  	return error;
3900  }
3901  
3902  /*
3903   * ext4_punch_hole: punches a hole in a file by releasing the blocks
3904   * associated with the given offset and length
3905   *
3906   * @inode:  File inode
3907   * @offset: The offset where the hole will begin
3908   * @len:    The length of the hole
3909   *
3910   * Returns: 0 on success or negative on failure
3911   */
3912  
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3913  int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3914  {
3915  	struct inode *inode = file_inode(file);
3916  	struct super_block *sb = inode->i_sb;
3917  	ext4_lblk_t first_block, stop_block;
3918  	struct address_space *mapping = inode->i_mapping;
3919  	loff_t first_block_offset, last_block_offset, max_length;
3920  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3921  	handle_t *handle;
3922  	unsigned int credits;
3923  	int ret = 0, ret2 = 0;
3924  
3925  	trace_ext4_punch_hole(inode, offset, length, 0);
3926  
3927  	/*
3928  	 * Write out all dirty pages to avoid race conditions
3929  	 * Then release them.
3930  	 */
3931  	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3932  		ret = filemap_write_and_wait_range(mapping, offset,
3933  						   offset + length - 1);
3934  		if (ret)
3935  			return ret;
3936  	}
3937  
3938  	inode_lock(inode);
3939  
3940  	/* No need to punch hole beyond i_size */
3941  	if (offset >= inode->i_size)
3942  		goto out_mutex;
3943  
3944  	/*
3945  	 * If the hole extends beyond i_size, set the hole
3946  	 * to end after the page that contains i_size
3947  	 */
3948  	if (offset + length > inode->i_size) {
3949  		length = inode->i_size +
3950  		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3951  		   offset;
3952  	}
3953  
3954  	/*
3955  	 * For punch hole the length + offset needs to be within one block
3956  	 * before last range. Adjust the length if it goes beyond that limit.
3957  	 */
3958  	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3959  	if (offset + length > max_length)
3960  		length = max_length - offset;
3961  
3962  	if (offset & (sb->s_blocksize - 1) ||
3963  	    (offset + length) & (sb->s_blocksize - 1)) {
3964  		/*
3965  		 * Attach jinode to inode for jbd2 if we do any zeroing of
3966  		 * partial block
3967  		 */
3968  		ret = ext4_inode_attach_jinode(inode);
3969  		if (ret < 0)
3970  			goto out_mutex;
3971  
3972  	}
3973  
3974  	/* Wait all existing dio workers, newcomers will block on i_rwsem */
3975  	inode_dio_wait(inode);
3976  
3977  	ret = file_modified(file);
3978  	if (ret)
3979  		goto out_mutex;
3980  
3981  	/*
3982  	 * Prevent page faults from reinstantiating pages we have released from
3983  	 * page cache.
3984  	 */
3985  	filemap_invalidate_lock(mapping);
3986  
3987  	ret = ext4_break_layouts(inode);
3988  	if (ret)
3989  		goto out_dio;
3990  
3991  	first_block_offset = round_up(offset, sb->s_blocksize);
3992  	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3993  
3994  	/* Now release the pages and zero block aligned part of pages*/
3995  	if (last_block_offset > first_block_offset) {
3996  		ret = ext4_update_disksize_before_punch(inode, offset, length);
3997  		if (ret)
3998  			goto out_dio;
3999  		truncate_pagecache_range(inode, first_block_offset,
4000  					 last_block_offset);
4001  	}
4002  
4003  	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4004  		credits = ext4_writepage_trans_blocks(inode);
4005  	else
4006  		credits = ext4_blocks_for_truncate(inode);
4007  	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4008  	if (IS_ERR(handle)) {
4009  		ret = PTR_ERR(handle);
4010  		ext4_std_error(sb, ret);
4011  		goto out_dio;
4012  	}
4013  
4014  	ret = ext4_zero_partial_blocks(handle, inode, offset,
4015  				       length);
4016  	if (ret)
4017  		goto out_stop;
4018  
4019  	first_block = (offset + sb->s_blocksize - 1) >>
4020  		EXT4_BLOCK_SIZE_BITS(sb);
4021  	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4022  
4023  	/* If there are blocks to remove, do it */
4024  	if (stop_block > first_block) {
4025  		ext4_lblk_t hole_len = stop_block - first_block;
4026  
4027  		down_write(&EXT4_I(inode)->i_data_sem);
4028  		ext4_discard_preallocations(inode);
4029  
4030  		ext4_es_remove_extent(inode, first_block, hole_len);
4031  
4032  		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4033  			ret = ext4_ext_remove_space(inode, first_block,
4034  						    stop_block - 1);
4035  		else
4036  			ret = ext4_ind_remove_space(handle, inode, first_block,
4037  						    stop_block);
4038  
4039  		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4040  				      EXTENT_STATUS_HOLE, 0);
4041  		up_write(&EXT4_I(inode)->i_data_sem);
4042  	}
4043  	ext4_fc_track_range(handle, inode, first_block, stop_block);
4044  	if (IS_SYNC(inode))
4045  		ext4_handle_sync(handle);
4046  
4047  	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4048  	ret2 = ext4_mark_inode_dirty(handle, inode);
4049  	if (unlikely(ret2))
4050  		ret = ret2;
4051  	if (ret >= 0)
4052  		ext4_update_inode_fsync_trans(handle, inode, 1);
4053  out_stop:
4054  	ext4_journal_stop(handle);
4055  out_dio:
4056  	filemap_invalidate_unlock(mapping);
4057  out_mutex:
4058  	inode_unlock(inode);
4059  	return ret;
4060  }
4061  
ext4_inode_attach_jinode(struct inode * inode)4062  int ext4_inode_attach_jinode(struct inode *inode)
4063  {
4064  	struct ext4_inode_info *ei = EXT4_I(inode);
4065  	struct jbd2_inode *jinode;
4066  
4067  	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4068  		return 0;
4069  
4070  	jinode = jbd2_alloc_inode(GFP_KERNEL);
4071  	spin_lock(&inode->i_lock);
4072  	if (!ei->jinode) {
4073  		if (!jinode) {
4074  			spin_unlock(&inode->i_lock);
4075  			return -ENOMEM;
4076  		}
4077  		ei->jinode = jinode;
4078  		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4079  		jinode = NULL;
4080  	}
4081  	spin_unlock(&inode->i_lock);
4082  	if (unlikely(jinode != NULL))
4083  		jbd2_free_inode(jinode);
4084  	return 0;
4085  }
4086  
4087  /*
4088   * ext4_truncate()
4089   *
4090   * We block out ext4_get_block() block instantiations across the entire
4091   * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4092   * simultaneously on behalf of the same inode.
4093   *
4094   * As we work through the truncate and commit bits of it to the journal there
4095   * is one core, guiding principle: the file's tree must always be consistent on
4096   * disk.  We must be able to restart the truncate after a crash.
4097   *
4098   * The file's tree may be transiently inconsistent in memory (although it
4099   * probably isn't), but whenever we close off and commit a journal transaction,
4100   * the contents of (the filesystem + the journal) must be consistent and
4101   * restartable.  It's pretty simple, really: bottom up, right to left (although
4102   * left-to-right works OK too).
4103   *
4104   * Note that at recovery time, journal replay occurs *before* the restart of
4105   * truncate against the orphan inode list.
4106   *
4107   * The committed inode has the new, desired i_size (which is the same as
4108   * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4109   * that this inode's truncate did not complete and it will again call
4110   * ext4_truncate() to have another go.  So there will be instantiated blocks
4111   * to the right of the truncation point in a crashed ext4 filesystem.  But
4112   * that's fine - as long as they are linked from the inode, the post-crash
4113   * ext4_truncate() run will find them and release them.
4114   */
ext4_truncate(struct inode * inode)4115  int ext4_truncate(struct inode *inode)
4116  {
4117  	struct ext4_inode_info *ei = EXT4_I(inode);
4118  	unsigned int credits;
4119  	int err = 0, err2;
4120  	handle_t *handle;
4121  	struct address_space *mapping = inode->i_mapping;
4122  
4123  	/*
4124  	 * There is a possibility that we're either freeing the inode
4125  	 * or it's a completely new inode. In those cases we might not
4126  	 * have i_rwsem locked because it's not necessary.
4127  	 */
4128  	if (!(inode->i_state & (I_NEW|I_FREEING)))
4129  		WARN_ON(!inode_is_locked(inode));
4130  	trace_ext4_truncate_enter(inode);
4131  
4132  	if (!ext4_can_truncate(inode))
4133  		goto out_trace;
4134  
4135  	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4136  		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4137  
4138  	if (ext4_has_inline_data(inode)) {
4139  		int has_inline = 1;
4140  
4141  		err = ext4_inline_data_truncate(inode, &has_inline);
4142  		if (err || has_inline)
4143  			goto out_trace;
4144  	}
4145  
4146  	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4147  	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4148  		err = ext4_inode_attach_jinode(inode);
4149  		if (err)
4150  			goto out_trace;
4151  	}
4152  
4153  	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4154  		credits = ext4_writepage_trans_blocks(inode);
4155  	else
4156  		credits = ext4_blocks_for_truncate(inode);
4157  
4158  	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4159  	if (IS_ERR(handle)) {
4160  		err = PTR_ERR(handle);
4161  		goto out_trace;
4162  	}
4163  
4164  	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4165  		ext4_block_truncate_page(handle, mapping, inode->i_size);
4166  
4167  	/*
4168  	 * We add the inode to the orphan list, so that if this
4169  	 * truncate spans multiple transactions, and we crash, we will
4170  	 * resume the truncate when the filesystem recovers.  It also
4171  	 * marks the inode dirty, to catch the new size.
4172  	 *
4173  	 * Implication: the file must always be in a sane, consistent
4174  	 * truncatable state while each transaction commits.
4175  	 */
4176  	err = ext4_orphan_add(handle, inode);
4177  	if (err)
4178  		goto out_stop;
4179  
4180  	down_write(&EXT4_I(inode)->i_data_sem);
4181  
4182  	ext4_discard_preallocations(inode);
4183  
4184  	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4185  		err = ext4_ext_truncate(handle, inode);
4186  	else
4187  		ext4_ind_truncate(handle, inode);
4188  
4189  	up_write(&ei->i_data_sem);
4190  	if (err)
4191  		goto out_stop;
4192  
4193  	if (IS_SYNC(inode))
4194  		ext4_handle_sync(handle);
4195  
4196  out_stop:
4197  	/*
4198  	 * If this was a simple ftruncate() and the file will remain alive,
4199  	 * then we need to clear up the orphan record which we created above.
4200  	 * However, if this was a real unlink then we were called by
4201  	 * ext4_evict_inode(), and we allow that function to clean up the
4202  	 * orphan info for us.
4203  	 */
4204  	if (inode->i_nlink)
4205  		ext4_orphan_del(handle, inode);
4206  
4207  	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4208  	err2 = ext4_mark_inode_dirty(handle, inode);
4209  	if (unlikely(err2 && !err))
4210  		err = err2;
4211  	ext4_journal_stop(handle);
4212  
4213  out_trace:
4214  	trace_ext4_truncate_exit(inode);
4215  	return err;
4216  }
4217  
ext4_inode_peek_iversion(const struct inode * inode)4218  static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4219  {
4220  	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4221  		return inode_peek_iversion_raw(inode);
4222  	else
4223  		return inode_peek_iversion(inode);
4224  }
4225  
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4226  static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4227  				 struct ext4_inode_info *ei)
4228  {
4229  	struct inode *inode = &(ei->vfs_inode);
4230  	u64 i_blocks = READ_ONCE(inode->i_blocks);
4231  	struct super_block *sb = inode->i_sb;
4232  
4233  	if (i_blocks <= ~0U) {
4234  		/*
4235  		 * i_blocks can be represented in a 32 bit variable
4236  		 * as multiple of 512 bytes
4237  		 */
4238  		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4239  		raw_inode->i_blocks_high = 0;
4240  		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4241  		return 0;
4242  	}
4243  
4244  	/*
4245  	 * This should never happen since sb->s_maxbytes should not have
4246  	 * allowed this, sb->s_maxbytes was set according to the huge_file
4247  	 * feature in ext4_fill_super().
4248  	 */
4249  	if (!ext4_has_feature_huge_file(sb))
4250  		return -EFSCORRUPTED;
4251  
4252  	if (i_blocks <= 0xffffffffffffULL) {
4253  		/*
4254  		 * i_blocks can be represented in a 48 bit variable
4255  		 * as multiple of 512 bytes
4256  		 */
4257  		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4258  		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4259  		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4260  	} else {
4261  		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4262  		/* i_block is stored in file system block size */
4263  		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4264  		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4265  		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4266  	}
4267  	return 0;
4268  }
4269  
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4270  static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4271  {
4272  	struct ext4_inode_info *ei = EXT4_I(inode);
4273  	uid_t i_uid;
4274  	gid_t i_gid;
4275  	projid_t i_projid;
4276  	int block;
4277  	int err;
4278  
4279  	err = ext4_inode_blocks_set(raw_inode, ei);
4280  
4281  	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4282  	i_uid = i_uid_read(inode);
4283  	i_gid = i_gid_read(inode);
4284  	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4285  	if (!(test_opt(inode->i_sb, NO_UID32))) {
4286  		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4287  		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4288  		/*
4289  		 * Fix up interoperability with old kernels. Otherwise,
4290  		 * old inodes get re-used with the upper 16 bits of the
4291  		 * uid/gid intact.
4292  		 */
4293  		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4294  			raw_inode->i_uid_high = 0;
4295  			raw_inode->i_gid_high = 0;
4296  		} else {
4297  			raw_inode->i_uid_high =
4298  				cpu_to_le16(high_16_bits(i_uid));
4299  			raw_inode->i_gid_high =
4300  				cpu_to_le16(high_16_bits(i_gid));
4301  		}
4302  	} else {
4303  		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4304  		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4305  		raw_inode->i_uid_high = 0;
4306  		raw_inode->i_gid_high = 0;
4307  	}
4308  	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4309  
4310  	EXT4_INODE_SET_CTIME(inode, raw_inode);
4311  	EXT4_INODE_SET_MTIME(inode, raw_inode);
4312  	EXT4_INODE_SET_ATIME(inode, raw_inode);
4313  	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4314  
4315  	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4316  	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4317  	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4318  		raw_inode->i_file_acl_high =
4319  			cpu_to_le16(ei->i_file_acl >> 32);
4320  	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4321  	ext4_isize_set(raw_inode, ei->i_disksize);
4322  
4323  	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4324  	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4325  		if (old_valid_dev(inode->i_rdev)) {
4326  			raw_inode->i_block[0] =
4327  				cpu_to_le32(old_encode_dev(inode->i_rdev));
4328  			raw_inode->i_block[1] = 0;
4329  		} else {
4330  			raw_inode->i_block[0] = 0;
4331  			raw_inode->i_block[1] =
4332  				cpu_to_le32(new_encode_dev(inode->i_rdev));
4333  			raw_inode->i_block[2] = 0;
4334  		}
4335  	} else if (!ext4_has_inline_data(inode)) {
4336  		for (block = 0; block < EXT4_N_BLOCKS; block++)
4337  			raw_inode->i_block[block] = ei->i_data[block];
4338  	}
4339  
4340  	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4341  		u64 ivers = ext4_inode_peek_iversion(inode);
4342  
4343  		raw_inode->i_disk_version = cpu_to_le32(ivers);
4344  		if (ei->i_extra_isize) {
4345  			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4346  				raw_inode->i_version_hi =
4347  					cpu_to_le32(ivers >> 32);
4348  			raw_inode->i_extra_isize =
4349  				cpu_to_le16(ei->i_extra_isize);
4350  		}
4351  	}
4352  
4353  	if (i_projid != EXT4_DEF_PROJID &&
4354  	    !ext4_has_feature_project(inode->i_sb))
4355  		err = err ?: -EFSCORRUPTED;
4356  
4357  	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4358  	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4359  		raw_inode->i_projid = cpu_to_le32(i_projid);
4360  
4361  	ext4_inode_csum_set(inode, raw_inode, ei);
4362  	return err;
4363  }
4364  
4365  /*
4366   * ext4_get_inode_loc returns with an extra refcount against the inode's
4367   * underlying buffer_head on success. If we pass 'inode' and it does not
4368   * have in-inode xattr, we have all inode data in memory that is needed
4369   * to recreate the on-disk version of this inode.
4370   */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4371  static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4372  				struct inode *inode, struct ext4_iloc *iloc,
4373  				ext4_fsblk_t *ret_block)
4374  {
4375  	struct ext4_group_desc	*gdp;
4376  	struct buffer_head	*bh;
4377  	ext4_fsblk_t		block;
4378  	struct blk_plug		plug;
4379  	int			inodes_per_block, inode_offset;
4380  
4381  	iloc->bh = NULL;
4382  	if (ino < EXT4_ROOT_INO ||
4383  	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4384  		return -EFSCORRUPTED;
4385  
4386  	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4387  	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4388  	if (!gdp)
4389  		return -EIO;
4390  
4391  	/*
4392  	 * Figure out the offset within the block group inode table
4393  	 */
4394  	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4395  	inode_offset = ((ino - 1) %
4396  			EXT4_INODES_PER_GROUP(sb));
4397  	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4398  
4399  	block = ext4_inode_table(sb, gdp);
4400  	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4401  	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4402  		ext4_error(sb, "Invalid inode table block %llu in "
4403  			   "block_group %u", block, iloc->block_group);
4404  		return -EFSCORRUPTED;
4405  	}
4406  	block += (inode_offset / inodes_per_block);
4407  
4408  	bh = sb_getblk(sb, block);
4409  	if (unlikely(!bh))
4410  		return -ENOMEM;
4411  	if (ext4_buffer_uptodate(bh))
4412  		goto has_buffer;
4413  
4414  	lock_buffer(bh);
4415  	if (ext4_buffer_uptodate(bh)) {
4416  		/* Someone brought it uptodate while we waited */
4417  		unlock_buffer(bh);
4418  		goto has_buffer;
4419  	}
4420  
4421  	/*
4422  	 * If we have all information of the inode in memory and this
4423  	 * is the only valid inode in the block, we need not read the
4424  	 * block.
4425  	 */
4426  	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4427  		struct buffer_head *bitmap_bh;
4428  		int i, start;
4429  
4430  		start = inode_offset & ~(inodes_per_block - 1);
4431  
4432  		/* Is the inode bitmap in cache? */
4433  		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4434  		if (unlikely(!bitmap_bh))
4435  			goto make_io;
4436  
4437  		/*
4438  		 * If the inode bitmap isn't in cache then the
4439  		 * optimisation may end up performing two reads instead
4440  		 * of one, so skip it.
4441  		 */
4442  		if (!buffer_uptodate(bitmap_bh)) {
4443  			brelse(bitmap_bh);
4444  			goto make_io;
4445  		}
4446  		for (i = start; i < start + inodes_per_block; i++) {
4447  			if (i == inode_offset)
4448  				continue;
4449  			if (ext4_test_bit(i, bitmap_bh->b_data))
4450  				break;
4451  		}
4452  		brelse(bitmap_bh);
4453  		if (i == start + inodes_per_block) {
4454  			struct ext4_inode *raw_inode =
4455  				(struct ext4_inode *) (bh->b_data + iloc->offset);
4456  
4457  			/* all other inodes are free, so skip I/O */
4458  			memset(bh->b_data, 0, bh->b_size);
4459  			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4460  				ext4_fill_raw_inode(inode, raw_inode);
4461  			set_buffer_uptodate(bh);
4462  			unlock_buffer(bh);
4463  			goto has_buffer;
4464  		}
4465  	}
4466  
4467  make_io:
4468  	/*
4469  	 * If we need to do any I/O, try to pre-readahead extra
4470  	 * blocks from the inode table.
4471  	 */
4472  	blk_start_plug(&plug);
4473  	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4474  		ext4_fsblk_t b, end, table;
4475  		unsigned num;
4476  		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4477  
4478  		table = ext4_inode_table(sb, gdp);
4479  		/* s_inode_readahead_blks is always a power of 2 */
4480  		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4481  		if (table > b)
4482  			b = table;
4483  		end = b + ra_blks;
4484  		num = EXT4_INODES_PER_GROUP(sb);
4485  		if (ext4_has_group_desc_csum(sb))
4486  			num -= ext4_itable_unused_count(sb, gdp);
4487  		table += num / inodes_per_block;
4488  		if (end > table)
4489  			end = table;
4490  		while (b <= end)
4491  			ext4_sb_breadahead_unmovable(sb, b++);
4492  	}
4493  
4494  	/*
4495  	 * There are other valid inodes in the buffer, this inode
4496  	 * has in-inode xattrs, or we don't have this inode in memory.
4497  	 * Read the block from disk.
4498  	 */
4499  	trace_ext4_load_inode(sb, ino);
4500  	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4501  	blk_finish_plug(&plug);
4502  	wait_on_buffer(bh);
4503  	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4504  	if (!buffer_uptodate(bh)) {
4505  		if (ret_block)
4506  			*ret_block = block;
4507  		brelse(bh);
4508  		return -EIO;
4509  	}
4510  has_buffer:
4511  	iloc->bh = bh;
4512  	return 0;
4513  }
4514  
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4515  static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4516  					struct ext4_iloc *iloc)
4517  {
4518  	ext4_fsblk_t err_blk = 0;
4519  	int ret;
4520  
4521  	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4522  					&err_blk);
4523  
4524  	if (ret == -EIO)
4525  		ext4_error_inode_block(inode, err_blk, EIO,
4526  					"unable to read itable block");
4527  
4528  	return ret;
4529  }
4530  
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4531  int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4532  {
4533  	ext4_fsblk_t err_blk = 0;
4534  	int ret;
4535  
4536  	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4537  					&err_blk);
4538  
4539  	if (ret == -EIO)
4540  		ext4_error_inode_block(inode, err_blk, EIO,
4541  					"unable to read itable block");
4542  
4543  	return ret;
4544  }
4545  
4546  
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4547  int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4548  			  struct ext4_iloc *iloc)
4549  {
4550  	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4551  }
4552  
ext4_should_enable_dax(struct inode * inode)4553  static bool ext4_should_enable_dax(struct inode *inode)
4554  {
4555  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4556  
4557  	if (test_opt2(inode->i_sb, DAX_NEVER))
4558  		return false;
4559  	if (!S_ISREG(inode->i_mode))
4560  		return false;
4561  	if (ext4_should_journal_data(inode))
4562  		return false;
4563  	if (ext4_has_inline_data(inode))
4564  		return false;
4565  	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4566  		return false;
4567  	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4568  		return false;
4569  	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4570  		return false;
4571  	if (test_opt(inode->i_sb, DAX_ALWAYS))
4572  		return true;
4573  
4574  	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4575  }
4576  
ext4_set_inode_flags(struct inode * inode,bool init)4577  void ext4_set_inode_flags(struct inode *inode, bool init)
4578  {
4579  	unsigned int flags = EXT4_I(inode)->i_flags;
4580  	unsigned int new_fl = 0;
4581  
4582  	WARN_ON_ONCE(IS_DAX(inode) && init);
4583  
4584  	if (flags & EXT4_SYNC_FL)
4585  		new_fl |= S_SYNC;
4586  	if (flags & EXT4_APPEND_FL)
4587  		new_fl |= S_APPEND;
4588  	if (flags & EXT4_IMMUTABLE_FL)
4589  		new_fl |= S_IMMUTABLE;
4590  	if (flags & EXT4_NOATIME_FL)
4591  		new_fl |= S_NOATIME;
4592  	if (flags & EXT4_DIRSYNC_FL)
4593  		new_fl |= S_DIRSYNC;
4594  
4595  	/* Because of the way inode_set_flags() works we must preserve S_DAX
4596  	 * here if already set. */
4597  	new_fl |= (inode->i_flags & S_DAX);
4598  	if (init && ext4_should_enable_dax(inode))
4599  		new_fl |= S_DAX;
4600  
4601  	if (flags & EXT4_ENCRYPT_FL)
4602  		new_fl |= S_ENCRYPTED;
4603  	if (flags & EXT4_CASEFOLD_FL)
4604  		new_fl |= S_CASEFOLD;
4605  	if (flags & EXT4_VERITY_FL)
4606  		new_fl |= S_VERITY;
4607  	inode_set_flags(inode, new_fl,
4608  			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4609  			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4610  }
4611  
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4612  static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4613  				  struct ext4_inode_info *ei)
4614  {
4615  	blkcnt_t i_blocks ;
4616  	struct inode *inode = &(ei->vfs_inode);
4617  	struct super_block *sb = inode->i_sb;
4618  
4619  	if (ext4_has_feature_huge_file(sb)) {
4620  		/* we are using combined 48 bit field */
4621  		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4622  					le32_to_cpu(raw_inode->i_blocks_lo);
4623  		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4624  			/* i_blocks represent file system block size */
4625  			return i_blocks  << (inode->i_blkbits - 9);
4626  		} else {
4627  			return i_blocks;
4628  		}
4629  	} else {
4630  		return le32_to_cpu(raw_inode->i_blocks_lo);
4631  	}
4632  }
4633  
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4634  static inline int ext4_iget_extra_inode(struct inode *inode,
4635  					 struct ext4_inode *raw_inode,
4636  					 struct ext4_inode_info *ei)
4637  {
4638  	__le32 *magic = (void *)raw_inode +
4639  			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4640  
4641  	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4642  	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4643  		int err;
4644  
4645  		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4646  		err = ext4_find_inline_data_nolock(inode);
4647  		if (!err && ext4_has_inline_data(inode))
4648  			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4649  		return err;
4650  	} else
4651  		EXT4_I(inode)->i_inline_off = 0;
4652  	return 0;
4653  }
4654  
ext4_get_projid(struct inode * inode,kprojid_t * projid)4655  int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4656  {
4657  	if (!ext4_has_feature_project(inode->i_sb))
4658  		return -EOPNOTSUPP;
4659  	*projid = EXT4_I(inode)->i_projid;
4660  	return 0;
4661  }
4662  
4663  /*
4664   * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4665   * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4666   * set.
4667   */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4668  static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4669  {
4670  	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4671  		inode_set_iversion_raw(inode, val);
4672  	else
4673  		inode_set_iversion_queried(inode, val);
4674  }
4675  
check_igot_inode(struct inode * inode,ext4_iget_flags flags)4676  static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4677  
4678  {
4679  	if (flags & EXT4_IGET_EA_INODE) {
4680  		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4681  			return "missing EA_INODE flag";
4682  		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4683  		    EXT4_I(inode)->i_file_acl)
4684  			return "ea_inode with extended attributes";
4685  	} else {
4686  		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4687  			return "unexpected EA_INODE flag";
4688  	}
4689  	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4690  		return "unexpected bad inode w/o EXT4_IGET_BAD";
4691  	return NULL;
4692  }
4693  
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4694  struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4695  			  ext4_iget_flags flags, const char *function,
4696  			  unsigned int line)
4697  {
4698  	struct ext4_iloc iloc;
4699  	struct ext4_inode *raw_inode;
4700  	struct ext4_inode_info *ei;
4701  	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4702  	struct inode *inode;
4703  	const char *err_str;
4704  	journal_t *journal = EXT4_SB(sb)->s_journal;
4705  	long ret;
4706  	loff_t size;
4707  	int block;
4708  	uid_t i_uid;
4709  	gid_t i_gid;
4710  	projid_t i_projid;
4711  
4712  	if ((!(flags & EXT4_IGET_SPECIAL) &&
4713  	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4714  	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4715  	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4716  	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4717  	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4718  	    (ino < EXT4_ROOT_INO) ||
4719  	    (ino > le32_to_cpu(es->s_inodes_count))) {
4720  		if (flags & EXT4_IGET_HANDLE)
4721  			return ERR_PTR(-ESTALE);
4722  		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4723  			     "inode #%lu: comm %s: iget: illegal inode #",
4724  			     ino, current->comm);
4725  		return ERR_PTR(-EFSCORRUPTED);
4726  	}
4727  
4728  	inode = iget_locked(sb, ino);
4729  	if (!inode)
4730  		return ERR_PTR(-ENOMEM);
4731  	if (!(inode->i_state & I_NEW)) {
4732  		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4733  			ext4_error_inode(inode, function, line, 0, err_str);
4734  			iput(inode);
4735  			return ERR_PTR(-EFSCORRUPTED);
4736  		}
4737  		return inode;
4738  	}
4739  
4740  	ei = EXT4_I(inode);
4741  	iloc.bh = NULL;
4742  
4743  	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4744  	if (ret < 0)
4745  		goto bad_inode;
4746  	raw_inode = ext4_raw_inode(&iloc);
4747  
4748  	if ((flags & EXT4_IGET_HANDLE) &&
4749  	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4750  		ret = -ESTALE;
4751  		goto bad_inode;
4752  	}
4753  
4754  	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4755  		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4756  		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4757  			EXT4_INODE_SIZE(inode->i_sb) ||
4758  		    (ei->i_extra_isize & 3)) {
4759  			ext4_error_inode(inode, function, line, 0,
4760  					 "iget: bad extra_isize %u "
4761  					 "(inode size %u)",
4762  					 ei->i_extra_isize,
4763  					 EXT4_INODE_SIZE(inode->i_sb));
4764  			ret = -EFSCORRUPTED;
4765  			goto bad_inode;
4766  		}
4767  	} else
4768  		ei->i_extra_isize = 0;
4769  
4770  	/* Precompute checksum seed for inode metadata */
4771  	if (ext4_has_metadata_csum(sb)) {
4772  		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4773  		__u32 csum;
4774  		__le32 inum = cpu_to_le32(inode->i_ino);
4775  		__le32 gen = raw_inode->i_generation;
4776  		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4777  				   sizeof(inum));
4778  		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4779  					      sizeof(gen));
4780  	}
4781  
4782  	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4783  	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4784  	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4785  		ext4_error_inode_err(inode, function, line, 0,
4786  				EFSBADCRC, "iget: checksum invalid");
4787  		ret = -EFSBADCRC;
4788  		goto bad_inode;
4789  	}
4790  
4791  	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4792  	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4793  	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4794  	if (ext4_has_feature_project(sb) &&
4795  	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4796  	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4797  		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4798  	else
4799  		i_projid = EXT4_DEF_PROJID;
4800  
4801  	if (!(test_opt(inode->i_sb, NO_UID32))) {
4802  		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4803  		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4804  	}
4805  	i_uid_write(inode, i_uid);
4806  	i_gid_write(inode, i_gid);
4807  	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4808  	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4809  
4810  	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4811  	ei->i_inline_off = 0;
4812  	ei->i_dir_start_lookup = 0;
4813  	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4814  	/* We now have enough fields to check if the inode was active or not.
4815  	 * This is needed because nfsd might try to access dead inodes
4816  	 * the test is that same one that e2fsck uses
4817  	 * NeilBrown 1999oct15
4818  	 */
4819  	if (inode->i_nlink == 0) {
4820  		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4821  		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4822  		    ino != EXT4_BOOT_LOADER_INO) {
4823  			/* this inode is deleted or unallocated */
4824  			if (flags & EXT4_IGET_SPECIAL) {
4825  				ext4_error_inode(inode, function, line, 0,
4826  						 "iget: special inode unallocated");
4827  				ret = -EFSCORRUPTED;
4828  			} else
4829  				ret = -ESTALE;
4830  			goto bad_inode;
4831  		}
4832  		/* The only unlinked inodes we let through here have
4833  		 * valid i_mode and are being read by the orphan
4834  		 * recovery code: that's fine, we're about to complete
4835  		 * the process of deleting those.
4836  		 * OR it is the EXT4_BOOT_LOADER_INO which is
4837  		 * not initialized on a new filesystem. */
4838  	}
4839  	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4840  	ext4_set_inode_flags(inode, true);
4841  	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4842  	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4843  	if (ext4_has_feature_64bit(sb))
4844  		ei->i_file_acl |=
4845  			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4846  	inode->i_size = ext4_isize(sb, raw_inode);
4847  	if ((size = i_size_read(inode)) < 0) {
4848  		ext4_error_inode(inode, function, line, 0,
4849  				 "iget: bad i_size value: %lld", size);
4850  		ret = -EFSCORRUPTED;
4851  		goto bad_inode;
4852  	}
4853  	/*
4854  	 * If dir_index is not enabled but there's dir with INDEX flag set,
4855  	 * we'd normally treat htree data as empty space. But with metadata
4856  	 * checksumming that corrupts checksums so forbid that.
4857  	 */
4858  	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4859  	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4860  		ext4_error_inode(inode, function, line, 0,
4861  			 "iget: Dir with htree data on filesystem without dir_index feature.");
4862  		ret = -EFSCORRUPTED;
4863  		goto bad_inode;
4864  	}
4865  	ei->i_disksize = inode->i_size;
4866  #ifdef CONFIG_QUOTA
4867  	ei->i_reserved_quota = 0;
4868  #endif
4869  	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4870  	ei->i_block_group = iloc.block_group;
4871  	ei->i_last_alloc_group = ~0;
4872  	/*
4873  	 * NOTE! The in-memory inode i_data array is in little-endian order
4874  	 * even on big-endian machines: we do NOT byteswap the block numbers!
4875  	 */
4876  	for (block = 0; block < EXT4_N_BLOCKS; block++)
4877  		ei->i_data[block] = raw_inode->i_block[block];
4878  	INIT_LIST_HEAD(&ei->i_orphan);
4879  	ext4_fc_init_inode(&ei->vfs_inode);
4880  
4881  	/*
4882  	 * Set transaction id's of transactions that have to be committed
4883  	 * to finish f[data]sync. We set them to currently running transaction
4884  	 * as we cannot be sure that the inode or some of its metadata isn't
4885  	 * part of the transaction - the inode could have been reclaimed and
4886  	 * now it is reread from disk.
4887  	 */
4888  	if (journal) {
4889  		transaction_t *transaction;
4890  		tid_t tid;
4891  
4892  		read_lock(&journal->j_state_lock);
4893  		if (journal->j_running_transaction)
4894  			transaction = journal->j_running_transaction;
4895  		else
4896  			transaction = journal->j_committing_transaction;
4897  		if (transaction)
4898  			tid = transaction->t_tid;
4899  		else
4900  			tid = journal->j_commit_sequence;
4901  		read_unlock(&journal->j_state_lock);
4902  		ei->i_sync_tid = tid;
4903  		ei->i_datasync_tid = tid;
4904  	}
4905  
4906  	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4907  		if (ei->i_extra_isize == 0) {
4908  			/* The extra space is currently unused. Use it. */
4909  			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4910  			ei->i_extra_isize = sizeof(struct ext4_inode) -
4911  					    EXT4_GOOD_OLD_INODE_SIZE;
4912  		} else {
4913  			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4914  			if (ret)
4915  				goto bad_inode;
4916  		}
4917  	}
4918  
4919  	EXT4_INODE_GET_CTIME(inode, raw_inode);
4920  	EXT4_INODE_GET_ATIME(inode, raw_inode);
4921  	EXT4_INODE_GET_MTIME(inode, raw_inode);
4922  	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4923  
4924  	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4925  		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4926  
4927  		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4928  			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4929  				ivers |=
4930  		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4931  		}
4932  		ext4_inode_set_iversion_queried(inode, ivers);
4933  	}
4934  
4935  	ret = 0;
4936  	if (ei->i_file_acl &&
4937  	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4938  		ext4_error_inode(inode, function, line, 0,
4939  				 "iget: bad extended attribute block %llu",
4940  				 ei->i_file_acl);
4941  		ret = -EFSCORRUPTED;
4942  		goto bad_inode;
4943  	} else if (!ext4_has_inline_data(inode)) {
4944  		/* validate the block references in the inode */
4945  		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4946  			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4947  			(S_ISLNK(inode->i_mode) &&
4948  			!ext4_inode_is_fast_symlink(inode)))) {
4949  			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4950  				ret = ext4_ext_check_inode(inode);
4951  			else
4952  				ret = ext4_ind_check_inode(inode);
4953  		}
4954  	}
4955  	if (ret)
4956  		goto bad_inode;
4957  
4958  	if (S_ISREG(inode->i_mode)) {
4959  		inode->i_op = &ext4_file_inode_operations;
4960  		inode->i_fop = &ext4_file_operations;
4961  		ext4_set_aops(inode);
4962  	} else if (S_ISDIR(inode->i_mode)) {
4963  		inode->i_op = &ext4_dir_inode_operations;
4964  		inode->i_fop = &ext4_dir_operations;
4965  	} else if (S_ISLNK(inode->i_mode)) {
4966  		/* VFS does not allow setting these so must be corruption */
4967  		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4968  			ext4_error_inode(inode, function, line, 0,
4969  					 "iget: immutable or append flags "
4970  					 "not allowed on symlinks");
4971  			ret = -EFSCORRUPTED;
4972  			goto bad_inode;
4973  		}
4974  		if (IS_ENCRYPTED(inode)) {
4975  			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4976  		} else if (ext4_inode_is_fast_symlink(inode)) {
4977  			inode->i_link = (char *)ei->i_data;
4978  			inode->i_op = &ext4_fast_symlink_inode_operations;
4979  			nd_terminate_link(ei->i_data, inode->i_size,
4980  				sizeof(ei->i_data) - 1);
4981  		} else {
4982  			inode->i_op = &ext4_symlink_inode_operations;
4983  		}
4984  	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4985  	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4986  		inode->i_op = &ext4_special_inode_operations;
4987  		if (raw_inode->i_block[0])
4988  			init_special_inode(inode, inode->i_mode,
4989  			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4990  		else
4991  			init_special_inode(inode, inode->i_mode,
4992  			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4993  	} else if (ino == EXT4_BOOT_LOADER_INO) {
4994  		make_bad_inode(inode);
4995  	} else {
4996  		ret = -EFSCORRUPTED;
4997  		ext4_error_inode(inode, function, line, 0,
4998  				 "iget: bogus i_mode (%o)", inode->i_mode);
4999  		goto bad_inode;
5000  	}
5001  	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5002  		ext4_error_inode(inode, function, line, 0,
5003  				 "casefold flag without casefold feature");
5004  		ret = -EFSCORRUPTED;
5005  		goto bad_inode;
5006  	}
5007  	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5008  		ext4_error_inode(inode, function, line, 0, err_str);
5009  		ret = -EFSCORRUPTED;
5010  		goto bad_inode;
5011  	}
5012  
5013  	brelse(iloc.bh);
5014  	unlock_new_inode(inode);
5015  	return inode;
5016  
5017  bad_inode:
5018  	brelse(iloc.bh);
5019  	iget_failed(inode);
5020  	return ERR_PTR(ret);
5021  }
5022  
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5023  static void __ext4_update_other_inode_time(struct super_block *sb,
5024  					   unsigned long orig_ino,
5025  					   unsigned long ino,
5026  					   struct ext4_inode *raw_inode)
5027  {
5028  	struct inode *inode;
5029  
5030  	inode = find_inode_by_ino_rcu(sb, ino);
5031  	if (!inode)
5032  		return;
5033  
5034  	if (!inode_is_dirtytime_only(inode))
5035  		return;
5036  
5037  	spin_lock(&inode->i_lock);
5038  	if (inode_is_dirtytime_only(inode)) {
5039  		struct ext4_inode_info	*ei = EXT4_I(inode);
5040  
5041  		inode->i_state &= ~I_DIRTY_TIME;
5042  		spin_unlock(&inode->i_lock);
5043  
5044  		spin_lock(&ei->i_raw_lock);
5045  		EXT4_INODE_SET_CTIME(inode, raw_inode);
5046  		EXT4_INODE_SET_MTIME(inode, raw_inode);
5047  		EXT4_INODE_SET_ATIME(inode, raw_inode);
5048  		ext4_inode_csum_set(inode, raw_inode, ei);
5049  		spin_unlock(&ei->i_raw_lock);
5050  		trace_ext4_other_inode_update_time(inode, orig_ino);
5051  		return;
5052  	}
5053  	spin_unlock(&inode->i_lock);
5054  }
5055  
5056  /*
5057   * Opportunistically update the other time fields for other inodes in
5058   * the same inode table block.
5059   */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5060  static void ext4_update_other_inodes_time(struct super_block *sb,
5061  					  unsigned long orig_ino, char *buf)
5062  {
5063  	unsigned long ino;
5064  	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5065  	int inode_size = EXT4_INODE_SIZE(sb);
5066  
5067  	/*
5068  	 * Calculate the first inode in the inode table block.  Inode
5069  	 * numbers are one-based.  That is, the first inode in a block
5070  	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5071  	 */
5072  	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5073  	rcu_read_lock();
5074  	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5075  		if (ino == orig_ino)
5076  			continue;
5077  		__ext4_update_other_inode_time(sb, orig_ino, ino,
5078  					       (struct ext4_inode *)buf);
5079  	}
5080  	rcu_read_unlock();
5081  }
5082  
5083  /*
5084   * Post the struct inode info into an on-disk inode location in the
5085   * buffer-cache.  This gobbles the caller's reference to the
5086   * buffer_head in the inode location struct.
5087   *
5088   * The caller must have write access to iloc->bh.
5089   */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5090  static int ext4_do_update_inode(handle_t *handle,
5091  				struct inode *inode,
5092  				struct ext4_iloc *iloc)
5093  {
5094  	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5095  	struct ext4_inode_info *ei = EXT4_I(inode);
5096  	struct buffer_head *bh = iloc->bh;
5097  	struct super_block *sb = inode->i_sb;
5098  	int err;
5099  	int need_datasync = 0, set_large_file = 0;
5100  
5101  	spin_lock(&ei->i_raw_lock);
5102  
5103  	/*
5104  	 * For fields not tracked in the in-memory inode, initialise them
5105  	 * to zero for new inodes.
5106  	 */
5107  	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5108  		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5109  
5110  	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5111  		need_datasync = 1;
5112  	if (ei->i_disksize > 0x7fffffffULL) {
5113  		if (!ext4_has_feature_large_file(sb) ||
5114  		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5115  			set_large_file = 1;
5116  	}
5117  
5118  	err = ext4_fill_raw_inode(inode, raw_inode);
5119  	spin_unlock(&ei->i_raw_lock);
5120  	if (err) {
5121  		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5122  		goto out_brelse;
5123  	}
5124  
5125  	if (inode->i_sb->s_flags & SB_LAZYTIME)
5126  		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5127  					      bh->b_data);
5128  
5129  	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5130  	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5131  	if (err)
5132  		goto out_error;
5133  	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5134  	if (set_large_file) {
5135  		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5136  		err = ext4_journal_get_write_access(handle, sb,
5137  						    EXT4_SB(sb)->s_sbh,
5138  						    EXT4_JTR_NONE);
5139  		if (err)
5140  			goto out_error;
5141  		lock_buffer(EXT4_SB(sb)->s_sbh);
5142  		ext4_set_feature_large_file(sb);
5143  		ext4_superblock_csum_set(sb);
5144  		unlock_buffer(EXT4_SB(sb)->s_sbh);
5145  		ext4_handle_sync(handle);
5146  		err = ext4_handle_dirty_metadata(handle, NULL,
5147  						 EXT4_SB(sb)->s_sbh);
5148  	}
5149  	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5150  out_error:
5151  	ext4_std_error(inode->i_sb, err);
5152  out_brelse:
5153  	brelse(bh);
5154  	return err;
5155  }
5156  
5157  /*
5158   * ext4_write_inode()
5159   *
5160   * We are called from a few places:
5161   *
5162   * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5163   *   Here, there will be no transaction running. We wait for any running
5164   *   transaction to commit.
5165   *
5166   * - Within flush work (sys_sync(), kupdate and such).
5167   *   We wait on commit, if told to.
5168   *
5169   * - Within iput_final() -> write_inode_now()
5170   *   We wait on commit, if told to.
5171   *
5172   * In all cases it is actually safe for us to return without doing anything,
5173   * because the inode has been copied into a raw inode buffer in
5174   * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5175   * writeback.
5176   *
5177   * Note that we are absolutely dependent upon all inode dirtiers doing the
5178   * right thing: they *must* call mark_inode_dirty() after dirtying info in
5179   * which we are interested.
5180   *
5181   * It would be a bug for them to not do this.  The code:
5182   *
5183   *	mark_inode_dirty(inode)
5184   *	stuff();
5185   *	inode->i_size = expr;
5186   *
5187   * is in error because write_inode() could occur while `stuff()' is running,
5188   * and the new i_size will be lost.  Plus the inode will no longer be on the
5189   * superblock's dirty inode list.
5190   */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5191  int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5192  {
5193  	int err;
5194  
5195  	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5196  		return 0;
5197  
5198  	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5199  		return -EIO;
5200  
5201  	if (EXT4_SB(inode->i_sb)->s_journal) {
5202  		if (ext4_journal_current_handle()) {
5203  			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5204  			dump_stack();
5205  			return -EIO;
5206  		}
5207  
5208  		/*
5209  		 * No need to force transaction in WB_SYNC_NONE mode. Also
5210  		 * ext4_sync_fs() will force the commit after everything is
5211  		 * written.
5212  		 */
5213  		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5214  			return 0;
5215  
5216  		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5217  						EXT4_I(inode)->i_sync_tid);
5218  	} else {
5219  		struct ext4_iloc iloc;
5220  
5221  		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5222  		if (err)
5223  			return err;
5224  		/*
5225  		 * sync(2) will flush the whole buffer cache. No need to do
5226  		 * it here separately for each inode.
5227  		 */
5228  		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5229  			sync_dirty_buffer(iloc.bh);
5230  		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5231  			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5232  					       "IO error syncing inode");
5233  			err = -EIO;
5234  		}
5235  		brelse(iloc.bh);
5236  	}
5237  	return err;
5238  }
5239  
5240  /*
5241   * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5242   * buffers that are attached to a folio straddling i_size and are undergoing
5243   * commit. In that case we have to wait for commit to finish and try again.
5244   */
ext4_wait_for_tail_page_commit(struct inode * inode)5245  static void ext4_wait_for_tail_page_commit(struct inode *inode)
5246  {
5247  	unsigned offset;
5248  	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5249  	tid_t commit_tid;
5250  	int ret;
5251  	bool has_transaction;
5252  
5253  	offset = inode->i_size & (PAGE_SIZE - 1);
5254  	/*
5255  	 * If the folio is fully truncated, we don't need to wait for any commit
5256  	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5257  	 * strip all buffers from the folio but keep the folio dirty which can then
5258  	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5259  	 * buffers). Also we don't need to wait for any commit if all buffers in
5260  	 * the folio remain valid. This is most beneficial for the common case of
5261  	 * blocksize == PAGESIZE.
5262  	 */
5263  	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5264  		return;
5265  	while (1) {
5266  		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5267  				      inode->i_size >> PAGE_SHIFT);
5268  		if (IS_ERR(folio))
5269  			return;
5270  		ret = __ext4_journalled_invalidate_folio(folio, offset,
5271  						folio_size(folio) - offset);
5272  		folio_unlock(folio);
5273  		folio_put(folio);
5274  		if (ret != -EBUSY)
5275  			return;
5276  		has_transaction = false;
5277  		read_lock(&journal->j_state_lock);
5278  		if (journal->j_committing_transaction) {
5279  			commit_tid = journal->j_committing_transaction->t_tid;
5280  			has_transaction = true;
5281  		}
5282  		read_unlock(&journal->j_state_lock);
5283  		if (has_transaction)
5284  			jbd2_log_wait_commit(journal, commit_tid);
5285  	}
5286  }
5287  
5288  /*
5289   * ext4_setattr()
5290   *
5291   * Called from notify_change.
5292   *
5293   * We want to trap VFS attempts to truncate the file as soon as
5294   * possible.  In particular, we want to make sure that when the VFS
5295   * shrinks i_size, we put the inode on the orphan list and modify
5296   * i_disksize immediately, so that during the subsequent flushing of
5297   * dirty pages and freeing of disk blocks, we can guarantee that any
5298   * commit will leave the blocks being flushed in an unused state on
5299   * disk.  (On recovery, the inode will get truncated and the blocks will
5300   * be freed, so we have a strong guarantee that no future commit will
5301   * leave these blocks visible to the user.)
5302   *
5303   * Another thing we have to assure is that if we are in ordered mode
5304   * and inode is still attached to the committing transaction, we must
5305   * we start writeout of all the dirty pages which are being truncated.
5306   * This way we are sure that all the data written in the previous
5307   * transaction are already on disk (truncate waits for pages under
5308   * writeback).
5309   *
5310   * Called with inode->i_rwsem down.
5311   */
ext4_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5312  int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5313  		 struct iattr *attr)
5314  {
5315  	struct inode *inode = d_inode(dentry);
5316  	int error, rc = 0;
5317  	int orphan = 0;
5318  	const unsigned int ia_valid = attr->ia_valid;
5319  	bool inc_ivers = true;
5320  
5321  	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5322  		return -EIO;
5323  
5324  	if (unlikely(IS_IMMUTABLE(inode)))
5325  		return -EPERM;
5326  
5327  	if (unlikely(IS_APPEND(inode) &&
5328  		     (ia_valid & (ATTR_MODE | ATTR_UID |
5329  				  ATTR_GID | ATTR_TIMES_SET))))
5330  		return -EPERM;
5331  
5332  	error = setattr_prepare(idmap, dentry, attr);
5333  	if (error)
5334  		return error;
5335  
5336  	error = fscrypt_prepare_setattr(dentry, attr);
5337  	if (error)
5338  		return error;
5339  
5340  	error = fsverity_prepare_setattr(dentry, attr);
5341  	if (error)
5342  		return error;
5343  
5344  	if (is_quota_modification(idmap, inode, attr)) {
5345  		error = dquot_initialize(inode);
5346  		if (error)
5347  			return error;
5348  	}
5349  
5350  	if (i_uid_needs_update(idmap, attr, inode) ||
5351  	    i_gid_needs_update(idmap, attr, inode)) {
5352  		handle_t *handle;
5353  
5354  		/* (user+group)*(old+new) structure, inode write (sb,
5355  		 * inode block, ? - but truncate inode update has it) */
5356  		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5357  			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5358  			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5359  		if (IS_ERR(handle)) {
5360  			error = PTR_ERR(handle);
5361  			goto err_out;
5362  		}
5363  
5364  		/* dquot_transfer() calls back ext4_get_inode_usage() which
5365  		 * counts xattr inode references.
5366  		 */
5367  		down_read(&EXT4_I(inode)->xattr_sem);
5368  		error = dquot_transfer(idmap, inode, attr);
5369  		up_read(&EXT4_I(inode)->xattr_sem);
5370  
5371  		if (error) {
5372  			ext4_journal_stop(handle);
5373  			return error;
5374  		}
5375  		/* Update corresponding info in inode so that everything is in
5376  		 * one transaction */
5377  		i_uid_update(idmap, attr, inode);
5378  		i_gid_update(idmap, attr, inode);
5379  		error = ext4_mark_inode_dirty(handle, inode);
5380  		ext4_journal_stop(handle);
5381  		if (unlikely(error)) {
5382  			return error;
5383  		}
5384  	}
5385  
5386  	if (attr->ia_valid & ATTR_SIZE) {
5387  		handle_t *handle;
5388  		loff_t oldsize = inode->i_size;
5389  		loff_t old_disksize;
5390  		int shrink = (attr->ia_size < inode->i_size);
5391  
5392  		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5393  			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5394  
5395  			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5396  				return -EFBIG;
5397  			}
5398  		}
5399  		if (!S_ISREG(inode->i_mode)) {
5400  			return -EINVAL;
5401  		}
5402  
5403  		if (attr->ia_size == inode->i_size)
5404  			inc_ivers = false;
5405  
5406  		if (shrink) {
5407  			if (ext4_should_order_data(inode)) {
5408  				error = ext4_begin_ordered_truncate(inode,
5409  							    attr->ia_size);
5410  				if (error)
5411  					goto err_out;
5412  			}
5413  			/*
5414  			 * Blocks are going to be removed from the inode. Wait
5415  			 * for dio in flight.
5416  			 */
5417  			inode_dio_wait(inode);
5418  		}
5419  
5420  		filemap_invalidate_lock(inode->i_mapping);
5421  
5422  		rc = ext4_break_layouts(inode);
5423  		if (rc) {
5424  			filemap_invalidate_unlock(inode->i_mapping);
5425  			goto err_out;
5426  		}
5427  
5428  		if (attr->ia_size != inode->i_size) {
5429  			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5430  			if (IS_ERR(handle)) {
5431  				error = PTR_ERR(handle);
5432  				goto out_mmap_sem;
5433  			}
5434  			if (ext4_handle_valid(handle) && shrink) {
5435  				error = ext4_orphan_add(handle, inode);
5436  				orphan = 1;
5437  			}
5438  			/*
5439  			 * Update c/mtime on truncate up, ext4_truncate() will
5440  			 * update c/mtime in shrink case below
5441  			 */
5442  			if (!shrink)
5443  				inode_set_mtime_to_ts(inode,
5444  						      inode_set_ctime_current(inode));
5445  
5446  			if (shrink)
5447  				ext4_fc_track_range(handle, inode,
5448  					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5449  					inode->i_sb->s_blocksize_bits,
5450  					EXT_MAX_BLOCKS - 1);
5451  			else
5452  				ext4_fc_track_range(
5453  					handle, inode,
5454  					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5455  					inode->i_sb->s_blocksize_bits,
5456  					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5457  					inode->i_sb->s_blocksize_bits);
5458  
5459  			down_write(&EXT4_I(inode)->i_data_sem);
5460  			old_disksize = EXT4_I(inode)->i_disksize;
5461  			EXT4_I(inode)->i_disksize = attr->ia_size;
5462  			rc = ext4_mark_inode_dirty(handle, inode);
5463  			if (!error)
5464  				error = rc;
5465  			/*
5466  			 * We have to update i_size under i_data_sem together
5467  			 * with i_disksize to avoid races with writeback code
5468  			 * running ext4_wb_update_i_disksize().
5469  			 */
5470  			if (!error)
5471  				i_size_write(inode, attr->ia_size);
5472  			else
5473  				EXT4_I(inode)->i_disksize = old_disksize;
5474  			up_write(&EXT4_I(inode)->i_data_sem);
5475  			ext4_journal_stop(handle);
5476  			if (error)
5477  				goto out_mmap_sem;
5478  			if (!shrink) {
5479  				pagecache_isize_extended(inode, oldsize,
5480  							 inode->i_size);
5481  			} else if (ext4_should_journal_data(inode)) {
5482  				ext4_wait_for_tail_page_commit(inode);
5483  			}
5484  		}
5485  
5486  		/*
5487  		 * Truncate pagecache after we've waited for commit
5488  		 * in data=journal mode to make pages freeable.
5489  		 */
5490  		truncate_pagecache(inode, inode->i_size);
5491  		/*
5492  		 * Call ext4_truncate() even if i_size didn't change to
5493  		 * truncate possible preallocated blocks.
5494  		 */
5495  		if (attr->ia_size <= oldsize) {
5496  			rc = ext4_truncate(inode);
5497  			if (rc)
5498  				error = rc;
5499  		}
5500  out_mmap_sem:
5501  		filemap_invalidate_unlock(inode->i_mapping);
5502  	}
5503  
5504  	if (!error) {
5505  		if (inc_ivers)
5506  			inode_inc_iversion(inode);
5507  		setattr_copy(idmap, inode, attr);
5508  		mark_inode_dirty(inode);
5509  	}
5510  
5511  	/*
5512  	 * If the call to ext4_truncate failed to get a transaction handle at
5513  	 * all, we need to clean up the in-core orphan list manually.
5514  	 */
5515  	if (orphan && inode->i_nlink)
5516  		ext4_orphan_del(NULL, inode);
5517  
5518  	if (!error && (ia_valid & ATTR_MODE))
5519  		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5520  
5521  err_out:
5522  	if  (error)
5523  		ext4_std_error(inode->i_sb, error);
5524  	if (!error)
5525  		error = rc;
5526  	return error;
5527  }
5528  
ext4_dio_alignment(struct inode * inode)5529  u32 ext4_dio_alignment(struct inode *inode)
5530  {
5531  	if (fsverity_active(inode))
5532  		return 0;
5533  	if (ext4_should_journal_data(inode))
5534  		return 0;
5535  	if (ext4_has_inline_data(inode))
5536  		return 0;
5537  	if (IS_ENCRYPTED(inode)) {
5538  		if (!fscrypt_dio_supported(inode))
5539  			return 0;
5540  		return i_blocksize(inode);
5541  	}
5542  	return 1; /* use the iomap defaults */
5543  }
5544  
ext4_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5545  int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5546  		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5547  {
5548  	struct inode *inode = d_inode(path->dentry);
5549  	struct ext4_inode *raw_inode;
5550  	struct ext4_inode_info *ei = EXT4_I(inode);
5551  	unsigned int flags;
5552  
5553  	if ((request_mask & STATX_BTIME) &&
5554  	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5555  		stat->result_mask |= STATX_BTIME;
5556  		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5557  		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5558  	}
5559  
5560  	/*
5561  	 * Return the DIO alignment restrictions if requested.  We only return
5562  	 * this information when requested, since on encrypted files it might
5563  	 * take a fair bit of work to get if the file wasn't opened recently.
5564  	 */
5565  	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5566  		u32 dio_align = ext4_dio_alignment(inode);
5567  
5568  		stat->result_mask |= STATX_DIOALIGN;
5569  		if (dio_align == 1) {
5570  			struct block_device *bdev = inode->i_sb->s_bdev;
5571  
5572  			/* iomap defaults */
5573  			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5574  			stat->dio_offset_align = bdev_logical_block_size(bdev);
5575  		} else {
5576  			stat->dio_mem_align = dio_align;
5577  			stat->dio_offset_align = dio_align;
5578  		}
5579  	}
5580  
5581  	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5582  	if (flags & EXT4_APPEND_FL)
5583  		stat->attributes |= STATX_ATTR_APPEND;
5584  	if (flags & EXT4_COMPR_FL)
5585  		stat->attributes |= STATX_ATTR_COMPRESSED;
5586  	if (flags & EXT4_ENCRYPT_FL)
5587  		stat->attributes |= STATX_ATTR_ENCRYPTED;
5588  	if (flags & EXT4_IMMUTABLE_FL)
5589  		stat->attributes |= STATX_ATTR_IMMUTABLE;
5590  	if (flags & EXT4_NODUMP_FL)
5591  		stat->attributes |= STATX_ATTR_NODUMP;
5592  	if (flags & EXT4_VERITY_FL)
5593  		stat->attributes |= STATX_ATTR_VERITY;
5594  
5595  	stat->attributes_mask |= (STATX_ATTR_APPEND |
5596  				  STATX_ATTR_COMPRESSED |
5597  				  STATX_ATTR_ENCRYPTED |
5598  				  STATX_ATTR_IMMUTABLE |
5599  				  STATX_ATTR_NODUMP |
5600  				  STATX_ATTR_VERITY);
5601  
5602  	generic_fillattr(idmap, request_mask, inode, stat);
5603  	return 0;
5604  }
5605  
ext4_file_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5606  int ext4_file_getattr(struct mnt_idmap *idmap,
5607  		      const struct path *path, struct kstat *stat,
5608  		      u32 request_mask, unsigned int query_flags)
5609  {
5610  	struct inode *inode = d_inode(path->dentry);
5611  	u64 delalloc_blocks;
5612  
5613  	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5614  
5615  	/*
5616  	 * If there is inline data in the inode, the inode will normally not
5617  	 * have data blocks allocated (it may have an external xattr block).
5618  	 * Report at least one sector for such files, so tools like tar, rsync,
5619  	 * others don't incorrectly think the file is completely sparse.
5620  	 */
5621  	if (unlikely(ext4_has_inline_data(inode)))
5622  		stat->blocks += (stat->size + 511) >> 9;
5623  
5624  	/*
5625  	 * We can't update i_blocks if the block allocation is delayed
5626  	 * otherwise in the case of system crash before the real block
5627  	 * allocation is done, we will have i_blocks inconsistent with
5628  	 * on-disk file blocks.
5629  	 * We always keep i_blocks updated together with real
5630  	 * allocation. But to not confuse with user, stat
5631  	 * will return the blocks that include the delayed allocation
5632  	 * blocks for this file.
5633  	 */
5634  	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5635  				   EXT4_I(inode)->i_reserved_data_blocks);
5636  	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5637  	return 0;
5638  }
5639  
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5640  static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5641  				   int pextents)
5642  {
5643  	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5644  		return ext4_ind_trans_blocks(inode, lblocks);
5645  	return ext4_ext_index_trans_blocks(inode, pextents);
5646  }
5647  
5648  /*
5649   * Account for index blocks, block groups bitmaps and block group
5650   * descriptor blocks if modify datablocks and index blocks
5651   * worse case, the indexs blocks spread over different block groups
5652   *
5653   * If datablocks are discontiguous, they are possible to spread over
5654   * different block groups too. If they are contiguous, with flexbg,
5655   * they could still across block group boundary.
5656   *
5657   * Also account for superblock, inode, quota and xattr blocks
5658   */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5659  static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5660  				  int pextents)
5661  {
5662  	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5663  	int gdpblocks;
5664  	int idxblocks;
5665  	int ret;
5666  
5667  	/*
5668  	 * How many index blocks need to touch to map @lblocks logical blocks
5669  	 * to @pextents physical extents?
5670  	 */
5671  	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5672  
5673  	ret = idxblocks;
5674  
5675  	/*
5676  	 * Now let's see how many group bitmaps and group descriptors need
5677  	 * to account
5678  	 */
5679  	groups = idxblocks + pextents;
5680  	gdpblocks = groups;
5681  	if (groups > ngroups)
5682  		groups = ngroups;
5683  	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5684  		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5685  
5686  	/* bitmaps and block group descriptor blocks */
5687  	ret += groups + gdpblocks;
5688  
5689  	/* Blocks for super block, inode, quota and xattr blocks */
5690  	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5691  
5692  	return ret;
5693  }
5694  
5695  /*
5696   * Calculate the total number of credits to reserve to fit
5697   * the modification of a single pages into a single transaction,
5698   * which may include multiple chunks of block allocations.
5699   *
5700   * This could be called via ext4_write_begin()
5701   *
5702   * We need to consider the worse case, when
5703   * one new block per extent.
5704   */
ext4_writepage_trans_blocks(struct inode * inode)5705  int ext4_writepage_trans_blocks(struct inode *inode)
5706  {
5707  	int bpp = ext4_journal_blocks_per_page(inode);
5708  	int ret;
5709  
5710  	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5711  
5712  	/* Account for data blocks for journalled mode */
5713  	if (ext4_should_journal_data(inode))
5714  		ret += bpp;
5715  	return ret;
5716  }
5717  
5718  /*
5719   * Calculate the journal credits for a chunk of data modification.
5720   *
5721   * This is called from DIO, fallocate or whoever calling
5722   * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5723   *
5724   * journal buffers for data blocks are not included here, as DIO
5725   * and fallocate do no need to journal data buffers.
5726   */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5727  int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5728  {
5729  	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5730  }
5731  
5732  /*
5733   * The caller must have previously called ext4_reserve_inode_write().
5734   * Give this, we know that the caller already has write access to iloc->bh.
5735   */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5736  int ext4_mark_iloc_dirty(handle_t *handle,
5737  			 struct inode *inode, struct ext4_iloc *iloc)
5738  {
5739  	int err = 0;
5740  
5741  	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5742  		put_bh(iloc->bh);
5743  		return -EIO;
5744  	}
5745  	ext4_fc_track_inode(handle, inode);
5746  
5747  	/* the do_update_inode consumes one bh->b_count */
5748  	get_bh(iloc->bh);
5749  
5750  	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5751  	err = ext4_do_update_inode(handle, inode, iloc);
5752  	put_bh(iloc->bh);
5753  	return err;
5754  }
5755  
5756  /*
5757   * On success, We end up with an outstanding reference count against
5758   * iloc->bh.  This _must_ be cleaned up later.
5759   */
5760  
5761  int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5762  ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5763  			 struct ext4_iloc *iloc)
5764  {
5765  	int err;
5766  
5767  	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5768  		return -EIO;
5769  
5770  	err = ext4_get_inode_loc(inode, iloc);
5771  	if (!err) {
5772  		BUFFER_TRACE(iloc->bh, "get_write_access");
5773  		err = ext4_journal_get_write_access(handle, inode->i_sb,
5774  						    iloc->bh, EXT4_JTR_NONE);
5775  		if (err) {
5776  			brelse(iloc->bh);
5777  			iloc->bh = NULL;
5778  		}
5779  	}
5780  	ext4_std_error(inode->i_sb, err);
5781  	return err;
5782  }
5783  
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5784  static int __ext4_expand_extra_isize(struct inode *inode,
5785  				     unsigned int new_extra_isize,
5786  				     struct ext4_iloc *iloc,
5787  				     handle_t *handle, int *no_expand)
5788  {
5789  	struct ext4_inode *raw_inode;
5790  	struct ext4_xattr_ibody_header *header;
5791  	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5792  	struct ext4_inode_info *ei = EXT4_I(inode);
5793  	int error;
5794  
5795  	/* this was checked at iget time, but double check for good measure */
5796  	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5797  	    (ei->i_extra_isize & 3)) {
5798  		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5799  				 ei->i_extra_isize,
5800  				 EXT4_INODE_SIZE(inode->i_sb));
5801  		return -EFSCORRUPTED;
5802  	}
5803  	if ((new_extra_isize < ei->i_extra_isize) ||
5804  	    (new_extra_isize < 4) ||
5805  	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5806  		return -EINVAL;	/* Should never happen */
5807  
5808  	raw_inode = ext4_raw_inode(iloc);
5809  
5810  	header = IHDR(inode, raw_inode);
5811  
5812  	/* No extended attributes present */
5813  	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5814  	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5815  		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5816  		       EXT4_I(inode)->i_extra_isize, 0,
5817  		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5818  		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5819  		return 0;
5820  	}
5821  
5822  	/*
5823  	 * We may need to allocate external xattr block so we need quotas
5824  	 * initialized. Here we can be called with various locks held so we
5825  	 * cannot affort to initialize quotas ourselves. So just bail.
5826  	 */
5827  	if (dquot_initialize_needed(inode))
5828  		return -EAGAIN;
5829  
5830  	/* try to expand with EAs present */
5831  	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5832  					   raw_inode, handle);
5833  	if (error) {
5834  		/*
5835  		 * Inode size expansion failed; don't try again
5836  		 */
5837  		*no_expand = 1;
5838  	}
5839  
5840  	return error;
5841  }
5842  
5843  /*
5844   * Expand an inode by new_extra_isize bytes.
5845   * Returns 0 on success or negative error number on failure.
5846   */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5847  static int ext4_try_to_expand_extra_isize(struct inode *inode,
5848  					  unsigned int new_extra_isize,
5849  					  struct ext4_iloc iloc,
5850  					  handle_t *handle)
5851  {
5852  	int no_expand;
5853  	int error;
5854  
5855  	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5856  		return -EOVERFLOW;
5857  
5858  	/*
5859  	 * In nojournal mode, we can immediately attempt to expand
5860  	 * the inode.  When journaled, we first need to obtain extra
5861  	 * buffer credits since we may write into the EA block
5862  	 * with this same handle. If journal_extend fails, then it will
5863  	 * only result in a minor loss of functionality for that inode.
5864  	 * If this is felt to be critical, then e2fsck should be run to
5865  	 * force a large enough s_min_extra_isize.
5866  	 */
5867  	if (ext4_journal_extend(handle,
5868  				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5869  		return -ENOSPC;
5870  
5871  	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5872  		return -EBUSY;
5873  
5874  	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5875  					  handle, &no_expand);
5876  	ext4_write_unlock_xattr(inode, &no_expand);
5877  
5878  	return error;
5879  }
5880  
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5881  int ext4_expand_extra_isize(struct inode *inode,
5882  			    unsigned int new_extra_isize,
5883  			    struct ext4_iloc *iloc)
5884  {
5885  	handle_t *handle;
5886  	int no_expand;
5887  	int error, rc;
5888  
5889  	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5890  		brelse(iloc->bh);
5891  		return -EOVERFLOW;
5892  	}
5893  
5894  	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5895  				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5896  	if (IS_ERR(handle)) {
5897  		error = PTR_ERR(handle);
5898  		brelse(iloc->bh);
5899  		return error;
5900  	}
5901  
5902  	ext4_write_lock_xattr(inode, &no_expand);
5903  
5904  	BUFFER_TRACE(iloc->bh, "get_write_access");
5905  	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5906  					      EXT4_JTR_NONE);
5907  	if (error) {
5908  		brelse(iloc->bh);
5909  		goto out_unlock;
5910  	}
5911  
5912  	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5913  					  handle, &no_expand);
5914  
5915  	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5916  	if (!error)
5917  		error = rc;
5918  
5919  out_unlock:
5920  	ext4_write_unlock_xattr(inode, &no_expand);
5921  	ext4_journal_stop(handle);
5922  	return error;
5923  }
5924  
5925  /*
5926   * What we do here is to mark the in-core inode as clean with respect to inode
5927   * dirtiness (it may still be data-dirty).
5928   * This means that the in-core inode may be reaped by prune_icache
5929   * without having to perform any I/O.  This is a very good thing,
5930   * because *any* task may call prune_icache - even ones which
5931   * have a transaction open against a different journal.
5932   *
5933   * Is this cheating?  Not really.  Sure, we haven't written the
5934   * inode out, but prune_icache isn't a user-visible syncing function.
5935   * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5936   * we start and wait on commits.
5937   */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)5938  int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5939  				const char *func, unsigned int line)
5940  {
5941  	struct ext4_iloc iloc;
5942  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5943  	int err;
5944  
5945  	might_sleep();
5946  	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5947  	err = ext4_reserve_inode_write(handle, inode, &iloc);
5948  	if (err)
5949  		goto out;
5950  
5951  	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5952  		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5953  					       iloc, handle);
5954  
5955  	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5956  out:
5957  	if (unlikely(err))
5958  		ext4_error_inode_err(inode, func, line, 0, err,
5959  					"mark_inode_dirty error");
5960  	return err;
5961  }
5962  
5963  /*
5964   * ext4_dirty_inode() is called from __mark_inode_dirty()
5965   *
5966   * We're really interested in the case where a file is being extended.
5967   * i_size has been changed by generic_commit_write() and we thus need
5968   * to include the updated inode in the current transaction.
5969   *
5970   * Also, dquot_alloc_block() will always dirty the inode when blocks
5971   * are allocated to the file.
5972   *
5973   * If the inode is marked synchronous, we don't honour that here - doing
5974   * so would cause a commit on atime updates, which we don't bother doing.
5975   * We handle synchronous inodes at the highest possible level.
5976   */
ext4_dirty_inode(struct inode * inode,int flags)5977  void ext4_dirty_inode(struct inode *inode, int flags)
5978  {
5979  	handle_t *handle;
5980  
5981  	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5982  	if (IS_ERR(handle))
5983  		return;
5984  	ext4_mark_inode_dirty(handle, inode);
5985  	ext4_journal_stop(handle);
5986  }
5987  
ext4_change_inode_journal_flag(struct inode * inode,int val)5988  int ext4_change_inode_journal_flag(struct inode *inode, int val)
5989  {
5990  	journal_t *journal;
5991  	handle_t *handle;
5992  	int err;
5993  	int alloc_ctx;
5994  
5995  	/*
5996  	 * We have to be very careful here: changing a data block's
5997  	 * journaling status dynamically is dangerous.  If we write a
5998  	 * data block to the journal, change the status and then delete
5999  	 * that block, we risk forgetting to revoke the old log record
6000  	 * from the journal and so a subsequent replay can corrupt data.
6001  	 * So, first we make sure that the journal is empty and that
6002  	 * nobody is changing anything.
6003  	 */
6004  
6005  	journal = EXT4_JOURNAL(inode);
6006  	if (!journal)
6007  		return 0;
6008  	if (is_journal_aborted(journal))
6009  		return -EROFS;
6010  
6011  	/* Wait for all existing dio workers */
6012  	inode_dio_wait(inode);
6013  
6014  	/*
6015  	 * Before flushing the journal and switching inode's aops, we have
6016  	 * to flush all dirty data the inode has. There can be outstanding
6017  	 * delayed allocations, there can be unwritten extents created by
6018  	 * fallocate or buffered writes in dioread_nolock mode covered by
6019  	 * dirty data which can be converted only after flushing the dirty
6020  	 * data (and journalled aops don't know how to handle these cases).
6021  	 */
6022  	if (val) {
6023  		filemap_invalidate_lock(inode->i_mapping);
6024  		err = filemap_write_and_wait(inode->i_mapping);
6025  		if (err < 0) {
6026  			filemap_invalidate_unlock(inode->i_mapping);
6027  			return err;
6028  		}
6029  	}
6030  
6031  	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6032  	jbd2_journal_lock_updates(journal);
6033  
6034  	/*
6035  	 * OK, there are no updates running now, and all cached data is
6036  	 * synced to disk.  We are now in a completely consistent state
6037  	 * which doesn't have anything in the journal, and we know that
6038  	 * no filesystem updates are running, so it is safe to modify
6039  	 * the inode's in-core data-journaling state flag now.
6040  	 */
6041  
6042  	if (val)
6043  		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6044  	else {
6045  		err = jbd2_journal_flush(journal, 0);
6046  		if (err < 0) {
6047  			jbd2_journal_unlock_updates(journal);
6048  			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6049  			return err;
6050  		}
6051  		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6052  	}
6053  	ext4_set_aops(inode);
6054  
6055  	jbd2_journal_unlock_updates(journal);
6056  	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6057  
6058  	if (val)
6059  		filemap_invalidate_unlock(inode->i_mapping);
6060  
6061  	/* Finally we can mark the inode as dirty. */
6062  
6063  	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6064  	if (IS_ERR(handle))
6065  		return PTR_ERR(handle);
6066  
6067  	ext4_fc_mark_ineligible(inode->i_sb,
6068  		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6069  	err = ext4_mark_inode_dirty(handle, inode);
6070  	ext4_handle_sync(handle);
6071  	ext4_journal_stop(handle);
6072  	ext4_std_error(inode->i_sb, err);
6073  
6074  	return err;
6075  }
6076  
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6077  static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6078  			    struct buffer_head *bh)
6079  {
6080  	return !buffer_mapped(bh);
6081  }
6082  
ext4_page_mkwrite(struct vm_fault * vmf)6083  vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6084  {
6085  	struct vm_area_struct *vma = vmf->vma;
6086  	struct folio *folio = page_folio(vmf->page);
6087  	loff_t size;
6088  	unsigned long len;
6089  	int err;
6090  	vm_fault_t ret;
6091  	struct file *file = vma->vm_file;
6092  	struct inode *inode = file_inode(file);
6093  	struct address_space *mapping = inode->i_mapping;
6094  	handle_t *handle;
6095  	get_block_t *get_block;
6096  	int retries = 0;
6097  
6098  	if (unlikely(IS_IMMUTABLE(inode)))
6099  		return VM_FAULT_SIGBUS;
6100  
6101  	sb_start_pagefault(inode->i_sb);
6102  	file_update_time(vma->vm_file);
6103  
6104  	filemap_invalidate_lock_shared(mapping);
6105  
6106  	err = ext4_convert_inline_data(inode);
6107  	if (err)
6108  		goto out_ret;
6109  
6110  	/*
6111  	 * On data journalling we skip straight to the transaction handle:
6112  	 * there's no delalloc; page truncated will be checked later; the
6113  	 * early return w/ all buffers mapped (calculates size/len) can't
6114  	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6115  	 */
6116  	if (ext4_should_journal_data(inode))
6117  		goto retry_alloc;
6118  
6119  	/* Delalloc case is easy... */
6120  	if (test_opt(inode->i_sb, DELALLOC) &&
6121  	    !ext4_nonda_switch(inode->i_sb)) {
6122  		do {
6123  			err = block_page_mkwrite(vma, vmf,
6124  						   ext4_da_get_block_prep);
6125  		} while (err == -ENOSPC &&
6126  		       ext4_should_retry_alloc(inode->i_sb, &retries));
6127  		goto out_ret;
6128  	}
6129  
6130  	folio_lock(folio);
6131  	size = i_size_read(inode);
6132  	/* Page got truncated from under us? */
6133  	if (folio->mapping != mapping || folio_pos(folio) > size) {
6134  		folio_unlock(folio);
6135  		ret = VM_FAULT_NOPAGE;
6136  		goto out;
6137  	}
6138  
6139  	len = folio_size(folio);
6140  	if (folio_pos(folio) + len > size)
6141  		len = size - folio_pos(folio);
6142  	/*
6143  	 * Return if we have all the buffers mapped. This avoids the need to do
6144  	 * journal_start/journal_stop which can block and take a long time
6145  	 *
6146  	 * This cannot be done for data journalling, as we have to add the
6147  	 * inode to the transaction's list to writeprotect pages on commit.
6148  	 */
6149  	if (folio_buffers(folio)) {
6150  		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6151  					    0, len, NULL,
6152  					    ext4_bh_unmapped)) {
6153  			/* Wait so that we don't change page under IO */
6154  			folio_wait_stable(folio);
6155  			ret = VM_FAULT_LOCKED;
6156  			goto out;
6157  		}
6158  	}
6159  	folio_unlock(folio);
6160  	/* OK, we need to fill the hole... */
6161  	if (ext4_should_dioread_nolock(inode))
6162  		get_block = ext4_get_block_unwritten;
6163  	else
6164  		get_block = ext4_get_block;
6165  retry_alloc:
6166  	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6167  				    ext4_writepage_trans_blocks(inode));
6168  	if (IS_ERR(handle)) {
6169  		ret = VM_FAULT_SIGBUS;
6170  		goto out;
6171  	}
6172  	/*
6173  	 * Data journalling can't use block_page_mkwrite() because it
6174  	 * will set_buffer_dirty() before do_journal_get_write_access()
6175  	 * thus might hit warning messages for dirty metadata buffers.
6176  	 */
6177  	if (!ext4_should_journal_data(inode)) {
6178  		err = block_page_mkwrite(vma, vmf, get_block);
6179  	} else {
6180  		folio_lock(folio);
6181  		size = i_size_read(inode);
6182  		/* Page got truncated from under us? */
6183  		if (folio->mapping != mapping || folio_pos(folio) > size) {
6184  			ret = VM_FAULT_NOPAGE;
6185  			goto out_error;
6186  		}
6187  
6188  		len = folio_size(folio);
6189  		if (folio_pos(folio) + len > size)
6190  			len = size - folio_pos(folio);
6191  
6192  		err = ext4_block_write_begin(handle, folio, 0, len,
6193  					     ext4_get_block);
6194  		if (!err) {
6195  			ret = VM_FAULT_SIGBUS;
6196  			if (ext4_journal_folio_buffers(handle, folio, len))
6197  				goto out_error;
6198  		} else {
6199  			folio_unlock(folio);
6200  		}
6201  	}
6202  	ext4_journal_stop(handle);
6203  	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6204  		goto retry_alloc;
6205  out_ret:
6206  	ret = vmf_fs_error(err);
6207  out:
6208  	filemap_invalidate_unlock_shared(mapping);
6209  	sb_end_pagefault(inode->i_sb);
6210  	return ret;
6211  out_error:
6212  	folio_unlock(folio);
6213  	ext4_journal_stop(handle);
6214  	goto out;
6215  }
6216