1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/ptrace.c
4  *
5  * (C) Copyright 1999 Linus Torvalds
6  *
7  * Common interfaces for "ptrace()" which we do not want
8  * to continually duplicate across every architecture.
9  */
10 
11 #include <linux/capability.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/coredump.h>
16 #include <linux/sched/task.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/ptrace.h>
22 #include <linux/security.h>
23 #include <linux/signal.h>
24 #include <linux/uio.h>
25 #include <linux/audit.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/syscalls.h>
28 #include <linux/uaccess.h>
29 #include <linux/regset.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/cn_proc.h>
32 #include <linux/compat.h>
33 #include <linux/sched/signal.h>
34 #include <linux/minmax.h>
35 #include <linux/syscall_user_dispatch.h>
36 
37 #include <asm/syscall.h>	/* for syscall_get_* */
38 
39 /*
40  * Access another process' address space via ptrace.
41  * Source/target buffer must be kernel space,
42  * Do not walk the page table directly, use get_user_pages
43  */
ptrace_access_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)44 int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
45 		     void *buf, int len, unsigned int gup_flags)
46 {
47 	struct mm_struct *mm;
48 	int ret;
49 
50 	mm = get_task_mm(tsk);
51 	if (!mm)
52 		return 0;
53 
54 	if (!tsk->ptrace ||
55 	    (current != tsk->parent) ||
56 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
57 	     !ptracer_capable(tsk, mm->user_ns))) {
58 		mmput(mm);
59 		return 0;
60 	}
61 
62 	ret = access_remote_vm(mm, addr, buf, len, gup_flags);
63 	mmput(mm);
64 
65 	return ret;
66 }
67 
68 
__ptrace_link(struct task_struct * child,struct task_struct * new_parent,const struct cred * ptracer_cred)69 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent,
70 		   const struct cred *ptracer_cred)
71 {
72 	BUG_ON(!list_empty(&child->ptrace_entry));
73 	list_add(&child->ptrace_entry, &new_parent->ptraced);
74 	child->parent = new_parent;
75 	child->ptracer_cred = get_cred(ptracer_cred);
76 }
77 
78 /*
79  * ptrace a task: make the debugger its new parent and
80  * move it to the ptrace list.
81  *
82  * Must be called with the tasklist lock write-held.
83  */
ptrace_link(struct task_struct * child,struct task_struct * new_parent)84 static void ptrace_link(struct task_struct *child, struct task_struct *new_parent)
85 {
86 	__ptrace_link(child, new_parent, current_cred());
87 }
88 
89 /**
90  * __ptrace_unlink - unlink ptracee and restore its execution state
91  * @child: ptracee to be unlinked
92  *
93  * Remove @child from the ptrace list, move it back to the original parent,
94  * and restore the execution state so that it conforms to the group stop
95  * state.
96  *
97  * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
98  * exiting.  For PTRACE_DETACH, unless the ptracee has been killed between
99  * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
100  * If the ptracer is exiting, the ptracee can be in any state.
101  *
102  * After detach, the ptracee should be in a state which conforms to the
103  * group stop.  If the group is stopped or in the process of stopping, the
104  * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
105  * up from TASK_TRACED.
106  *
107  * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
108  * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
109  * to but in the opposite direction of what happens while attaching to a
110  * stopped task.  However, in this direction, the intermediate RUNNING
111  * state is not hidden even from the current ptracer and if it immediately
112  * re-attaches and performs a WNOHANG wait(2), it may fail.
113  *
114  * CONTEXT:
115  * write_lock_irq(tasklist_lock)
116  */
__ptrace_unlink(struct task_struct * child)117 void __ptrace_unlink(struct task_struct *child)
118 {
119 	const struct cred *old_cred;
120 	BUG_ON(!child->ptrace);
121 
122 	clear_task_syscall_work(child, SYSCALL_TRACE);
123 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
124 	clear_task_syscall_work(child, SYSCALL_EMU);
125 #endif
126 
127 	child->parent = child->real_parent;
128 	list_del_init(&child->ptrace_entry);
129 	old_cred = child->ptracer_cred;
130 	child->ptracer_cred = NULL;
131 	put_cred(old_cred);
132 
133 	spin_lock(&child->sighand->siglock);
134 	child->ptrace = 0;
135 	/*
136 	 * Clear all pending traps and TRAPPING.  TRAPPING should be
137 	 * cleared regardless of JOBCTL_STOP_PENDING.  Do it explicitly.
138 	 */
139 	task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
140 	task_clear_jobctl_trapping(child);
141 
142 	/*
143 	 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
144 	 * @child isn't dead.
145 	 */
146 	if (!(child->flags & PF_EXITING) &&
147 	    (child->signal->flags & SIGNAL_STOP_STOPPED ||
148 	     child->signal->group_stop_count))
149 		child->jobctl |= JOBCTL_STOP_PENDING;
150 
151 	/*
152 	 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
153 	 * @child in the butt.  Note that @resume should be used iff @child
154 	 * is in TASK_TRACED; otherwise, we might unduly disrupt
155 	 * TASK_KILLABLE sleeps.
156 	 */
157 	if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
158 		ptrace_signal_wake_up(child, true);
159 
160 	spin_unlock(&child->sighand->siglock);
161 }
162 
looks_like_a_spurious_pid(struct task_struct * task)163 static bool looks_like_a_spurious_pid(struct task_struct *task)
164 {
165 	if (task->exit_code != ((PTRACE_EVENT_EXEC << 8) | SIGTRAP))
166 		return false;
167 
168 	if (task_pid_vnr(task) == task->ptrace_message)
169 		return false;
170 	/*
171 	 * The tracee changed its pid but the PTRACE_EVENT_EXEC event
172 	 * was not wait()'ed, most probably debugger targets the old
173 	 * leader which was destroyed in de_thread().
174 	 */
175 	return true;
176 }
177 
178 /*
179  * Ensure that nothing can wake it up, even SIGKILL
180  *
181  * A task is switched to this state while a ptrace operation is in progress;
182  * such that the ptrace operation is uninterruptible.
183  */
ptrace_freeze_traced(struct task_struct * task)184 static bool ptrace_freeze_traced(struct task_struct *task)
185 {
186 	bool ret = false;
187 
188 	/* Lockless, nobody but us can set this flag */
189 	if (task->jobctl & JOBCTL_LISTENING)
190 		return ret;
191 
192 	spin_lock_irq(&task->sighand->siglock);
193 	if (task_is_traced(task) && !looks_like_a_spurious_pid(task) &&
194 	    !__fatal_signal_pending(task)) {
195 		task->jobctl |= JOBCTL_PTRACE_FROZEN;
196 		ret = true;
197 	}
198 	spin_unlock_irq(&task->sighand->siglock);
199 
200 	return ret;
201 }
202 
ptrace_unfreeze_traced(struct task_struct * task)203 static void ptrace_unfreeze_traced(struct task_struct *task)
204 {
205 	unsigned long flags;
206 
207 	/*
208 	 * The child may be awake and may have cleared
209 	 * JOBCTL_PTRACE_FROZEN (see ptrace_resume).  The child will
210 	 * not set JOBCTL_PTRACE_FROZEN or enter __TASK_TRACED anew.
211 	 */
212 	if (lock_task_sighand(task, &flags)) {
213 		task->jobctl &= ~JOBCTL_PTRACE_FROZEN;
214 		if (__fatal_signal_pending(task)) {
215 			task->jobctl &= ~JOBCTL_TRACED;
216 			wake_up_state(task, __TASK_TRACED);
217 		}
218 		unlock_task_sighand(task, &flags);
219 	}
220 }
221 
222 /**
223  * ptrace_check_attach - check whether ptracee is ready for ptrace operation
224  * @child: ptracee to check for
225  * @ignore_state: don't check whether @child is currently %TASK_TRACED
226  *
227  * Check whether @child is being ptraced by %current and ready for further
228  * ptrace operations.  If @ignore_state is %false, @child also should be in
229  * %TASK_TRACED state and on return the child is guaranteed to be traced
230  * and not executing.  If @ignore_state is %true, @child can be in any
231  * state.
232  *
233  * CONTEXT:
234  * Grabs and releases tasklist_lock and @child->sighand->siglock.
235  *
236  * RETURNS:
237  * 0 on success, -ESRCH if %child is not ready.
238  */
ptrace_check_attach(struct task_struct * child,bool ignore_state)239 static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
240 {
241 	int ret = -ESRCH;
242 
243 	/*
244 	 * We take the read lock around doing both checks to close a
245 	 * possible race where someone else was tracing our child and
246 	 * detached between these two checks.  After this locked check,
247 	 * we are sure that this is our traced child and that can only
248 	 * be changed by us so it's not changing right after this.
249 	 */
250 	read_lock(&tasklist_lock);
251 	if (child->ptrace && child->parent == current) {
252 		/*
253 		 * child->sighand can't be NULL, release_task()
254 		 * does ptrace_unlink() before __exit_signal().
255 		 */
256 		if (ignore_state || ptrace_freeze_traced(child))
257 			ret = 0;
258 	}
259 	read_unlock(&tasklist_lock);
260 
261 	if (!ret && !ignore_state &&
262 	    WARN_ON_ONCE(!wait_task_inactive(child, __TASK_TRACED|TASK_FROZEN)))
263 		ret = -ESRCH;
264 
265 	return ret;
266 }
267 
ptrace_has_cap(struct user_namespace * ns,unsigned int mode)268 static bool ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
269 {
270 	if (mode & PTRACE_MODE_NOAUDIT)
271 		return ns_capable_noaudit(ns, CAP_SYS_PTRACE);
272 	return ns_capable(ns, CAP_SYS_PTRACE);
273 }
274 
275 /* Returns 0 on success, -errno on denial. */
__ptrace_may_access(struct task_struct * task,unsigned int mode)276 static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
277 {
278 	const struct cred *cred = current_cred(), *tcred;
279 	struct mm_struct *mm;
280 	kuid_t caller_uid;
281 	kgid_t caller_gid;
282 
283 	if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) {
284 		WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n");
285 		return -EPERM;
286 	}
287 
288 	/* May we inspect the given task?
289 	 * This check is used both for attaching with ptrace
290 	 * and for allowing access to sensitive information in /proc.
291 	 *
292 	 * ptrace_attach denies several cases that /proc allows
293 	 * because setting up the necessary parent/child relationship
294 	 * or halting the specified task is impossible.
295 	 */
296 
297 	/* Don't let security modules deny introspection */
298 	if (same_thread_group(task, current))
299 		return 0;
300 	rcu_read_lock();
301 	if (mode & PTRACE_MODE_FSCREDS) {
302 		caller_uid = cred->fsuid;
303 		caller_gid = cred->fsgid;
304 	} else {
305 		/*
306 		 * Using the euid would make more sense here, but something
307 		 * in userland might rely on the old behavior, and this
308 		 * shouldn't be a security problem since
309 		 * PTRACE_MODE_REALCREDS implies that the caller explicitly
310 		 * used a syscall that requests access to another process
311 		 * (and not a filesystem syscall to procfs).
312 		 */
313 		caller_uid = cred->uid;
314 		caller_gid = cred->gid;
315 	}
316 	tcred = __task_cred(task);
317 	if (uid_eq(caller_uid, tcred->euid) &&
318 	    uid_eq(caller_uid, tcred->suid) &&
319 	    uid_eq(caller_uid, tcred->uid)  &&
320 	    gid_eq(caller_gid, tcred->egid) &&
321 	    gid_eq(caller_gid, tcred->sgid) &&
322 	    gid_eq(caller_gid, tcred->gid))
323 		goto ok;
324 	if (ptrace_has_cap(tcred->user_ns, mode))
325 		goto ok;
326 	rcu_read_unlock();
327 	return -EPERM;
328 ok:
329 	rcu_read_unlock();
330 	/*
331 	 * If a task drops privileges and becomes nondumpable (through a syscall
332 	 * like setresuid()) while we are trying to access it, we must ensure
333 	 * that the dumpability is read after the credentials; otherwise,
334 	 * we may be able to attach to a task that we shouldn't be able to
335 	 * attach to (as if the task had dropped privileges without becoming
336 	 * nondumpable).
337 	 * Pairs with a write barrier in commit_creds().
338 	 */
339 	smp_rmb();
340 	mm = task->mm;
341 	if (mm &&
342 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
343 	     !ptrace_has_cap(mm->user_ns, mode)))
344 	    return -EPERM;
345 
346 	return security_ptrace_access_check(task, mode);
347 }
348 
ptrace_may_access(struct task_struct * task,unsigned int mode)349 bool ptrace_may_access(struct task_struct *task, unsigned int mode)
350 {
351 	int err;
352 	task_lock(task);
353 	err = __ptrace_may_access(task, mode);
354 	task_unlock(task);
355 	return !err;
356 }
357 
check_ptrace_options(unsigned long data)358 static int check_ptrace_options(unsigned long data)
359 {
360 	if (data & ~(unsigned long)PTRACE_O_MASK)
361 		return -EINVAL;
362 
363 	if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) {
364 		if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) ||
365 		    !IS_ENABLED(CONFIG_SECCOMP))
366 			return -EINVAL;
367 
368 		if (!capable(CAP_SYS_ADMIN))
369 			return -EPERM;
370 
371 		if (seccomp_mode(&current->seccomp) != SECCOMP_MODE_DISABLED ||
372 		    current->ptrace & PT_SUSPEND_SECCOMP)
373 			return -EPERM;
374 	}
375 	return 0;
376 }
377 
ptrace_set_stopped(struct task_struct * task,bool seize)378 static inline void ptrace_set_stopped(struct task_struct *task, bool seize)
379 {
380 	guard(spinlock)(&task->sighand->siglock);
381 
382 	/* SEIZE doesn't trap tracee on attach */
383 	if (!seize)
384 		send_signal_locked(SIGSTOP, SEND_SIG_PRIV, task, PIDTYPE_PID);
385 	/*
386 	 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
387 	 * TRAPPING, and kick it so that it transits to TRACED.  TRAPPING
388 	 * will be cleared if the child completes the transition or any
389 	 * event which clears the group stop states happens.  We'll wait
390 	 * for the transition to complete before returning from this
391 	 * function.
392 	 *
393 	 * This hides STOPPED -> RUNNING -> TRACED transition from the
394 	 * attaching thread but a different thread in the same group can
395 	 * still observe the transient RUNNING state.  IOW, if another
396 	 * thread's WNOHANG wait(2) on the stopped tracee races against
397 	 * ATTACH, the wait(2) may fail due to the transient RUNNING.
398 	 *
399 	 * The following task_is_stopped() test is safe as both transitions
400 	 * in and out of STOPPED are protected by siglock.
401 	 */
402 	if (task_is_stopped(task) &&
403 	    task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING)) {
404 		task->jobctl &= ~JOBCTL_STOPPED;
405 		signal_wake_up_state(task, __TASK_STOPPED);
406 	}
407 }
408 
ptrace_attach(struct task_struct * task,long request,unsigned long addr,unsigned long flags)409 static int ptrace_attach(struct task_struct *task, long request,
410 			 unsigned long addr,
411 			 unsigned long flags)
412 {
413 	bool seize = (request == PTRACE_SEIZE);
414 	int retval;
415 
416 	if (seize) {
417 		if (addr != 0)
418 			return -EIO;
419 		/*
420 		 * This duplicates the check in check_ptrace_options() because
421 		 * ptrace_attach() and ptrace_setoptions() have historically
422 		 * used different error codes for unknown ptrace options.
423 		 */
424 		if (flags & ~(unsigned long)PTRACE_O_MASK)
425 			return -EIO;
426 
427 		retval = check_ptrace_options(flags);
428 		if (retval)
429 			return retval;
430 		flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
431 	} else {
432 		flags = PT_PTRACED;
433 	}
434 
435 	audit_ptrace(task);
436 
437 	if (unlikely(task->flags & PF_KTHREAD))
438 		return -EPERM;
439 	if (same_thread_group(task, current))
440 		return -EPERM;
441 
442 	/*
443 	 * Protect exec's credential calculations against our interference;
444 	 * SUID, SGID and LSM creds get determined differently
445 	 * under ptrace.
446 	 */
447 	scoped_cond_guard (mutex_intr, return -ERESTARTNOINTR,
448 			   &task->signal->cred_guard_mutex) {
449 
450 		scoped_guard (task_lock, task) {
451 			retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS);
452 			if (retval)
453 				return retval;
454 		}
455 
456 		scoped_guard (write_lock_irq, &tasklist_lock) {
457 			if (unlikely(task->exit_state))
458 				return -EPERM;
459 			if (task->ptrace)
460 				return -EPERM;
461 
462 			task->ptrace = flags;
463 			ptrace_link(task, current);
464 			ptrace_set_stopped(task, seize);
465 		}
466 	}
467 
468 	/*
469 	 * We do not bother to change retval or clear JOBCTL_TRAPPING
470 	 * if wait_on_bit() was interrupted by SIGKILL. The tracer will
471 	 * not return to user-mode, it will exit and clear this bit in
472 	 * __ptrace_unlink() if it wasn't already cleared by the tracee;
473 	 * and until then nobody can ptrace this task.
474 	 */
475 	wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE);
476 	proc_ptrace_connector(task, PTRACE_ATTACH);
477 
478 	return 0;
479 }
480 
481 /**
482  * ptrace_traceme  --  helper for PTRACE_TRACEME
483  *
484  * Performs checks and sets PT_PTRACED.
485  * Should be used by all ptrace implementations for PTRACE_TRACEME.
486  */
ptrace_traceme(void)487 static int ptrace_traceme(void)
488 {
489 	int ret = -EPERM;
490 
491 	write_lock_irq(&tasklist_lock);
492 	/* Are we already being traced? */
493 	if (!current->ptrace) {
494 		ret = security_ptrace_traceme(current->parent);
495 		/*
496 		 * Check PF_EXITING to ensure ->real_parent has not passed
497 		 * exit_ptrace(). Otherwise we don't report the error but
498 		 * pretend ->real_parent untraces us right after return.
499 		 */
500 		if (!ret && !(current->real_parent->flags & PF_EXITING)) {
501 			current->ptrace = PT_PTRACED;
502 			ptrace_link(current, current->real_parent);
503 		}
504 	}
505 	write_unlock_irq(&tasklist_lock);
506 
507 	return ret;
508 }
509 
510 /*
511  * Called with irqs disabled, returns true if childs should reap themselves.
512  */
ignoring_children(struct sighand_struct * sigh)513 static int ignoring_children(struct sighand_struct *sigh)
514 {
515 	int ret;
516 	spin_lock(&sigh->siglock);
517 	ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
518 	      (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
519 	spin_unlock(&sigh->siglock);
520 	return ret;
521 }
522 
523 /*
524  * Called with tasklist_lock held for writing.
525  * Unlink a traced task, and clean it up if it was a traced zombie.
526  * Return true if it needs to be reaped with release_task().
527  * (We can't call release_task() here because we already hold tasklist_lock.)
528  *
529  * If it's a zombie, our attachedness prevented normal parent notification
530  * or self-reaping.  Do notification now if it would have happened earlier.
531  * If it should reap itself, return true.
532  *
533  * If it's our own child, there is no notification to do. But if our normal
534  * children self-reap, then this child was prevented by ptrace and we must
535  * reap it now, in that case we must also wake up sub-threads sleeping in
536  * do_wait().
537  */
__ptrace_detach(struct task_struct * tracer,struct task_struct * p)538 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
539 {
540 	bool dead;
541 
542 	__ptrace_unlink(p);
543 
544 	if (p->exit_state != EXIT_ZOMBIE)
545 		return false;
546 
547 	dead = !thread_group_leader(p);
548 
549 	if (!dead && thread_group_empty(p)) {
550 		if (!same_thread_group(p->real_parent, tracer))
551 			dead = do_notify_parent(p, p->exit_signal);
552 		else if (ignoring_children(tracer->sighand)) {
553 			__wake_up_parent(p, tracer);
554 			dead = true;
555 		}
556 	}
557 	/* Mark it as in the process of being reaped. */
558 	if (dead)
559 		p->exit_state = EXIT_DEAD;
560 	return dead;
561 }
562 
ptrace_detach(struct task_struct * child,unsigned int data)563 static int ptrace_detach(struct task_struct *child, unsigned int data)
564 {
565 	if (!valid_signal(data))
566 		return -EIO;
567 
568 	/* Architecture-specific hardware disable .. */
569 	ptrace_disable(child);
570 
571 	write_lock_irq(&tasklist_lock);
572 	/*
573 	 * We rely on ptrace_freeze_traced(). It can't be killed and
574 	 * untraced by another thread, it can't be a zombie.
575 	 */
576 	WARN_ON(!child->ptrace || child->exit_state);
577 	/*
578 	 * tasklist_lock avoids the race with wait_task_stopped(), see
579 	 * the comment in ptrace_resume().
580 	 */
581 	child->exit_code = data;
582 	__ptrace_detach(current, child);
583 	write_unlock_irq(&tasklist_lock);
584 
585 	proc_ptrace_connector(child, PTRACE_DETACH);
586 
587 	return 0;
588 }
589 
590 /*
591  * Detach all tasks we were using ptrace on. Called with tasklist held
592  * for writing.
593  */
exit_ptrace(struct task_struct * tracer,struct list_head * dead)594 void exit_ptrace(struct task_struct *tracer, struct list_head *dead)
595 {
596 	struct task_struct *p, *n;
597 
598 	list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
599 		if (unlikely(p->ptrace & PT_EXITKILL))
600 			send_sig_info(SIGKILL, SEND_SIG_PRIV, p);
601 
602 		if (__ptrace_detach(tracer, p))
603 			list_add(&p->ptrace_entry, dead);
604 	}
605 }
606 
ptrace_readdata(struct task_struct * tsk,unsigned long src,char __user * dst,int len)607 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
608 {
609 	int copied = 0;
610 
611 	while (len > 0) {
612 		char buf[128];
613 		int this_len, retval;
614 
615 		this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
616 		retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE);
617 
618 		if (!retval) {
619 			if (copied)
620 				break;
621 			return -EIO;
622 		}
623 		if (copy_to_user(dst, buf, retval))
624 			return -EFAULT;
625 		copied += retval;
626 		src += retval;
627 		dst += retval;
628 		len -= retval;
629 	}
630 	return copied;
631 }
632 
ptrace_writedata(struct task_struct * tsk,char __user * src,unsigned long dst,int len)633 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
634 {
635 	int copied = 0;
636 
637 	while (len > 0) {
638 		char buf[128];
639 		int this_len, retval;
640 
641 		this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
642 		if (copy_from_user(buf, src, this_len))
643 			return -EFAULT;
644 		retval = ptrace_access_vm(tsk, dst, buf, this_len,
645 				FOLL_FORCE | FOLL_WRITE);
646 		if (!retval) {
647 			if (copied)
648 				break;
649 			return -EIO;
650 		}
651 		copied += retval;
652 		src += retval;
653 		dst += retval;
654 		len -= retval;
655 	}
656 	return copied;
657 }
658 
ptrace_setoptions(struct task_struct * child,unsigned long data)659 static int ptrace_setoptions(struct task_struct *child, unsigned long data)
660 {
661 	unsigned flags;
662 	int ret;
663 
664 	ret = check_ptrace_options(data);
665 	if (ret)
666 		return ret;
667 
668 	/* Avoid intermediate state when all opts are cleared */
669 	flags = child->ptrace;
670 	flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
671 	flags |= (data << PT_OPT_FLAG_SHIFT);
672 	child->ptrace = flags;
673 
674 	return 0;
675 }
676 
ptrace_getsiginfo(struct task_struct * child,kernel_siginfo_t * info)677 static int ptrace_getsiginfo(struct task_struct *child, kernel_siginfo_t *info)
678 {
679 	unsigned long flags;
680 	int error = -ESRCH;
681 
682 	if (lock_task_sighand(child, &flags)) {
683 		error = -EINVAL;
684 		if (likely(child->last_siginfo != NULL)) {
685 			copy_siginfo(info, child->last_siginfo);
686 			error = 0;
687 		}
688 		unlock_task_sighand(child, &flags);
689 	}
690 	return error;
691 }
692 
ptrace_setsiginfo(struct task_struct * child,const kernel_siginfo_t * info)693 static int ptrace_setsiginfo(struct task_struct *child, const kernel_siginfo_t *info)
694 {
695 	unsigned long flags;
696 	int error = -ESRCH;
697 
698 	if (lock_task_sighand(child, &flags)) {
699 		error = -EINVAL;
700 		if (likely(child->last_siginfo != NULL)) {
701 			copy_siginfo(child->last_siginfo, info);
702 			error = 0;
703 		}
704 		unlock_task_sighand(child, &flags);
705 	}
706 	return error;
707 }
708 
ptrace_peek_siginfo(struct task_struct * child,unsigned long addr,unsigned long data)709 static int ptrace_peek_siginfo(struct task_struct *child,
710 				unsigned long addr,
711 				unsigned long data)
712 {
713 	struct ptrace_peeksiginfo_args arg;
714 	struct sigpending *pending;
715 	struct sigqueue *q;
716 	int ret, i;
717 
718 	ret = copy_from_user(&arg, (void __user *) addr,
719 				sizeof(struct ptrace_peeksiginfo_args));
720 	if (ret)
721 		return -EFAULT;
722 
723 	if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
724 		return -EINVAL; /* unknown flags */
725 
726 	if (arg.nr < 0)
727 		return -EINVAL;
728 
729 	/* Ensure arg.off fits in an unsigned long */
730 	if (arg.off > ULONG_MAX)
731 		return 0;
732 
733 	if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
734 		pending = &child->signal->shared_pending;
735 	else
736 		pending = &child->pending;
737 
738 	for (i = 0; i < arg.nr; ) {
739 		kernel_siginfo_t info;
740 		unsigned long off = arg.off + i;
741 		bool found = false;
742 
743 		spin_lock_irq(&child->sighand->siglock);
744 		list_for_each_entry(q, &pending->list, list) {
745 			if (!off--) {
746 				found = true;
747 				copy_siginfo(&info, &q->info);
748 				break;
749 			}
750 		}
751 		spin_unlock_irq(&child->sighand->siglock);
752 
753 		if (!found) /* beyond the end of the list */
754 			break;
755 
756 #ifdef CONFIG_COMPAT
757 		if (unlikely(in_compat_syscall())) {
758 			compat_siginfo_t __user *uinfo = compat_ptr(data);
759 
760 			if (copy_siginfo_to_user32(uinfo, &info)) {
761 				ret = -EFAULT;
762 				break;
763 			}
764 
765 		} else
766 #endif
767 		{
768 			siginfo_t __user *uinfo = (siginfo_t __user *) data;
769 
770 			if (copy_siginfo_to_user(uinfo, &info)) {
771 				ret = -EFAULT;
772 				break;
773 			}
774 		}
775 
776 		data += sizeof(siginfo_t);
777 		i++;
778 
779 		if (signal_pending(current))
780 			break;
781 
782 		cond_resched();
783 	}
784 
785 	if (i > 0)
786 		return i;
787 
788 	return ret;
789 }
790 
791 #ifdef CONFIG_RSEQ
ptrace_get_rseq_configuration(struct task_struct * task,unsigned long size,void __user * data)792 static long ptrace_get_rseq_configuration(struct task_struct *task,
793 					  unsigned long size, void __user *data)
794 {
795 	struct ptrace_rseq_configuration conf = {
796 		.rseq_abi_pointer = (u64)(uintptr_t)task->rseq,
797 		.rseq_abi_size = task->rseq_len,
798 		.signature = task->rseq_sig,
799 		.flags = 0,
800 	};
801 
802 	size = min_t(unsigned long, size, sizeof(conf));
803 	if (copy_to_user(data, &conf, size))
804 		return -EFAULT;
805 	return sizeof(conf);
806 }
807 #endif
808 
809 #define is_singlestep(request)		((request) == PTRACE_SINGLESTEP)
810 
811 #ifdef PTRACE_SINGLEBLOCK
812 #define is_singleblock(request)		((request) == PTRACE_SINGLEBLOCK)
813 #else
814 #define is_singleblock(request)		0
815 #endif
816 
817 #ifdef PTRACE_SYSEMU
818 #define is_sysemu_singlestep(request)	((request) == PTRACE_SYSEMU_SINGLESTEP)
819 #else
820 #define is_sysemu_singlestep(request)	0
821 #endif
822 
ptrace_resume(struct task_struct * child,long request,unsigned long data)823 static int ptrace_resume(struct task_struct *child, long request,
824 			 unsigned long data)
825 {
826 	if (!valid_signal(data))
827 		return -EIO;
828 
829 	if (request == PTRACE_SYSCALL)
830 		set_task_syscall_work(child, SYSCALL_TRACE);
831 	else
832 		clear_task_syscall_work(child, SYSCALL_TRACE);
833 
834 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
835 	if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
836 		set_task_syscall_work(child, SYSCALL_EMU);
837 	else
838 		clear_task_syscall_work(child, SYSCALL_EMU);
839 #endif
840 
841 	if (is_singleblock(request)) {
842 		if (unlikely(!arch_has_block_step()))
843 			return -EIO;
844 		user_enable_block_step(child);
845 	} else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
846 		if (unlikely(!arch_has_single_step()))
847 			return -EIO;
848 		user_enable_single_step(child);
849 	} else {
850 		user_disable_single_step(child);
851 	}
852 
853 	/*
854 	 * Change ->exit_code and ->state under siglock to avoid the race
855 	 * with wait_task_stopped() in between; a non-zero ->exit_code will
856 	 * wrongly look like another report from tracee.
857 	 *
858 	 * Note that we need siglock even if ->exit_code == data and/or this
859 	 * status was not reported yet, the new status must not be cleared by
860 	 * wait_task_stopped() after resume.
861 	 */
862 	spin_lock_irq(&child->sighand->siglock);
863 	child->exit_code = data;
864 	child->jobctl &= ~JOBCTL_TRACED;
865 	wake_up_state(child, __TASK_TRACED);
866 	spin_unlock_irq(&child->sighand->siglock);
867 
868 	return 0;
869 }
870 
871 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
872 
873 static const struct user_regset *
find_regset(const struct user_regset_view * view,unsigned int type)874 find_regset(const struct user_regset_view *view, unsigned int type)
875 {
876 	const struct user_regset *regset;
877 	int n;
878 
879 	for (n = 0; n < view->n; ++n) {
880 		regset = view->regsets + n;
881 		if (regset->core_note_type == type)
882 			return regset;
883 	}
884 
885 	return NULL;
886 }
887 
ptrace_regset(struct task_struct * task,int req,unsigned int type,struct iovec * kiov)888 static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
889 			 struct iovec *kiov)
890 {
891 	const struct user_regset_view *view = task_user_regset_view(task);
892 	const struct user_regset *regset = find_regset(view, type);
893 	int regset_no;
894 
895 	if (!regset || (kiov->iov_len % regset->size) != 0)
896 		return -EINVAL;
897 
898 	regset_no = regset - view->regsets;
899 	kiov->iov_len = min(kiov->iov_len,
900 			    (__kernel_size_t) (regset->n * regset->size));
901 
902 	if (req == PTRACE_GETREGSET)
903 		return copy_regset_to_user(task, view, regset_no, 0,
904 					   kiov->iov_len, kiov->iov_base);
905 	else
906 		return copy_regset_from_user(task, view, regset_no, 0,
907 					     kiov->iov_len, kiov->iov_base);
908 }
909 
910 /*
911  * This is declared in linux/regset.h and defined in machine-dependent
912  * code.  We put the export here, near the primary machine-neutral use,
913  * to ensure no machine forgets it.
914  */
915 EXPORT_SYMBOL_GPL(task_user_regset_view);
916 
917 static unsigned long
ptrace_get_syscall_info_entry(struct task_struct * child,struct pt_regs * regs,struct ptrace_syscall_info * info)918 ptrace_get_syscall_info_entry(struct task_struct *child, struct pt_regs *regs,
919 			      struct ptrace_syscall_info *info)
920 {
921 	unsigned long args[ARRAY_SIZE(info->entry.args)];
922 	int i;
923 
924 	info->op = PTRACE_SYSCALL_INFO_ENTRY;
925 	info->entry.nr = syscall_get_nr(child, regs);
926 	syscall_get_arguments(child, regs, args);
927 	for (i = 0; i < ARRAY_SIZE(args); i++)
928 		info->entry.args[i] = args[i];
929 
930 	/* args is the last field in struct ptrace_syscall_info.entry */
931 	return offsetofend(struct ptrace_syscall_info, entry.args);
932 }
933 
934 static unsigned long
ptrace_get_syscall_info_seccomp(struct task_struct * child,struct pt_regs * regs,struct ptrace_syscall_info * info)935 ptrace_get_syscall_info_seccomp(struct task_struct *child, struct pt_regs *regs,
936 				struct ptrace_syscall_info *info)
937 {
938 	/*
939 	 * As struct ptrace_syscall_info.entry is currently a subset
940 	 * of struct ptrace_syscall_info.seccomp, it makes sense to
941 	 * initialize that subset using ptrace_get_syscall_info_entry().
942 	 * This can be reconsidered in the future if these structures
943 	 * diverge significantly enough.
944 	 */
945 	ptrace_get_syscall_info_entry(child, regs, info);
946 	info->op = PTRACE_SYSCALL_INFO_SECCOMP;
947 	info->seccomp.ret_data = child->ptrace_message;
948 
949 	/* ret_data is the last field in struct ptrace_syscall_info.seccomp */
950 	return offsetofend(struct ptrace_syscall_info, seccomp.ret_data);
951 }
952 
953 static unsigned long
ptrace_get_syscall_info_exit(struct task_struct * child,struct pt_regs * regs,struct ptrace_syscall_info * info)954 ptrace_get_syscall_info_exit(struct task_struct *child, struct pt_regs *regs,
955 			     struct ptrace_syscall_info *info)
956 {
957 	info->op = PTRACE_SYSCALL_INFO_EXIT;
958 	info->exit.rval = syscall_get_error(child, regs);
959 	info->exit.is_error = !!info->exit.rval;
960 	if (!info->exit.is_error)
961 		info->exit.rval = syscall_get_return_value(child, regs);
962 
963 	/* is_error is the last field in struct ptrace_syscall_info.exit */
964 	return offsetofend(struct ptrace_syscall_info, exit.is_error);
965 }
966 
967 static int
ptrace_get_syscall_info(struct task_struct * child,unsigned long user_size,void __user * datavp)968 ptrace_get_syscall_info(struct task_struct *child, unsigned long user_size,
969 			void __user *datavp)
970 {
971 	struct pt_regs *regs = task_pt_regs(child);
972 	struct ptrace_syscall_info info = {
973 		.op = PTRACE_SYSCALL_INFO_NONE,
974 		.arch = syscall_get_arch(child),
975 		.instruction_pointer = instruction_pointer(regs),
976 		.stack_pointer = user_stack_pointer(regs),
977 	};
978 	unsigned long actual_size = offsetof(struct ptrace_syscall_info, entry);
979 	unsigned long write_size;
980 
981 	/*
982 	 * This does not need lock_task_sighand() to access
983 	 * child->last_siginfo because ptrace_freeze_traced()
984 	 * called earlier by ptrace_check_attach() ensures that
985 	 * the tracee cannot go away and clear its last_siginfo.
986 	 */
987 	switch (child->last_siginfo ? child->last_siginfo->si_code : 0) {
988 	case SIGTRAP | 0x80:
989 		switch (child->ptrace_message) {
990 		case PTRACE_EVENTMSG_SYSCALL_ENTRY:
991 			actual_size = ptrace_get_syscall_info_entry(child, regs,
992 								    &info);
993 			break;
994 		case PTRACE_EVENTMSG_SYSCALL_EXIT:
995 			actual_size = ptrace_get_syscall_info_exit(child, regs,
996 								   &info);
997 			break;
998 		}
999 		break;
1000 	case SIGTRAP | (PTRACE_EVENT_SECCOMP << 8):
1001 		actual_size = ptrace_get_syscall_info_seccomp(child, regs,
1002 							      &info);
1003 		break;
1004 	}
1005 
1006 	write_size = min(actual_size, user_size);
1007 	return copy_to_user(datavp, &info, write_size) ? -EFAULT : actual_size;
1008 }
1009 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
1010 
ptrace_request(struct task_struct * child,long request,unsigned long addr,unsigned long data)1011 int ptrace_request(struct task_struct *child, long request,
1012 		   unsigned long addr, unsigned long data)
1013 {
1014 	bool seized = child->ptrace & PT_SEIZED;
1015 	int ret = -EIO;
1016 	kernel_siginfo_t siginfo, *si;
1017 	void __user *datavp = (void __user *) data;
1018 	unsigned long __user *datalp = datavp;
1019 	unsigned long flags;
1020 
1021 	switch (request) {
1022 	case PTRACE_PEEKTEXT:
1023 	case PTRACE_PEEKDATA:
1024 		return generic_ptrace_peekdata(child, addr, data);
1025 	case PTRACE_POKETEXT:
1026 	case PTRACE_POKEDATA:
1027 		return generic_ptrace_pokedata(child, addr, data);
1028 
1029 #ifdef PTRACE_OLDSETOPTIONS
1030 	case PTRACE_OLDSETOPTIONS:
1031 #endif
1032 	case PTRACE_SETOPTIONS:
1033 		ret = ptrace_setoptions(child, data);
1034 		break;
1035 	case PTRACE_GETEVENTMSG:
1036 		ret = put_user(child->ptrace_message, datalp);
1037 		break;
1038 
1039 	case PTRACE_PEEKSIGINFO:
1040 		ret = ptrace_peek_siginfo(child, addr, data);
1041 		break;
1042 
1043 	case PTRACE_GETSIGINFO:
1044 		ret = ptrace_getsiginfo(child, &siginfo);
1045 		if (!ret)
1046 			ret = copy_siginfo_to_user(datavp, &siginfo);
1047 		break;
1048 
1049 	case PTRACE_SETSIGINFO:
1050 		ret = copy_siginfo_from_user(&siginfo, datavp);
1051 		if (!ret)
1052 			ret = ptrace_setsiginfo(child, &siginfo);
1053 		break;
1054 
1055 	case PTRACE_GETSIGMASK: {
1056 		sigset_t *mask;
1057 
1058 		if (addr != sizeof(sigset_t)) {
1059 			ret = -EINVAL;
1060 			break;
1061 		}
1062 
1063 		if (test_tsk_restore_sigmask(child))
1064 			mask = &child->saved_sigmask;
1065 		else
1066 			mask = &child->blocked;
1067 
1068 		if (copy_to_user(datavp, mask, sizeof(sigset_t)))
1069 			ret = -EFAULT;
1070 		else
1071 			ret = 0;
1072 
1073 		break;
1074 	}
1075 
1076 	case PTRACE_SETSIGMASK: {
1077 		sigset_t new_set;
1078 
1079 		if (addr != sizeof(sigset_t)) {
1080 			ret = -EINVAL;
1081 			break;
1082 		}
1083 
1084 		if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) {
1085 			ret = -EFAULT;
1086 			break;
1087 		}
1088 
1089 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1090 
1091 		/*
1092 		 * Every thread does recalc_sigpending() after resume, so
1093 		 * retarget_shared_pending() and recalc_sigpending() are not
1094 		 * called here.
1095 		 */
1096 		spin_lock_irq(&child->sighand->siglock);
1097 		child->blocked = new_set;
1098 		spin_unlock_irq(&child->sighand->siglock);
1099 
1100 		clear_tsk_restore_sigmask(child);
1101 
1102 		ret = 0;
1103 		break;
1104 	}
1105 
1106 	case PTRACE_INTERRUPT:
1107 		/*
1108 		 * Stop tracee without any side-effect on signal or job
1109 		 * control.  At least one trap is guaranteed to happen
1110 		 * after this request.  If @child is already trapped, the
1111 		 * current trap is not disturbed and another trap will
1112 		 * happen after the current trap is ended with PTRACE_CONT.
1113 		 *
1114 		 * The actual trap might not be PTRACE_EVENT_STOP trap but
1115 		 * the pending condition is cleared regardless.
1116 		 */
1117 		if (unlikely(!seized || !lock_task_sighand(child, &flags)))
1118 			break;
1119 
1120 		/*
1121 		 * INTERRUPT doesn't disturb existing trap sans one
1122 		 * exception.  If ptracer issued LISTEN for the current
1123 		 * STOP, this INTERRUPT should clear LISTEN and re-trap
1124 		 * tracee into STOP.
1125 		 */
1126 		if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
1127 			ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
1128 
1129 		unlock_task_sighand(child, &flags);
1130 		ret = 0;
1131 		break;
1132 
1133 	case PTRACE_LISTEN:
1134 		/*
1135 		 * Listen for events.  Tracee must be in STOP.  It's not
1136 		 * resumed per-se but is not considered to be in TRACED by
1137 		 * wait(2) or ptrace(2).  If an async event (e.g. group
1138 		 * stop state change) happens, tracee will enter STOP trap
1139 		 * again.  Alternatively, ptracer can issue INTERRUPT to
1140 		 * finish listening and re-trap tracee into STOP.
1141 		 */
1142 		if (unlikely(!seized || !lock_task_sighand(child, &flags)))
1143 			break;
1144 
1145 		si = child->last_siginfo;
1146 		if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
1147 			child->jobctl |= JOBCTL_LISTENING;
1148 			/*
1149 			 * If NOTIFY is set, it means event happened between
1150 			 * start of this trap and now.  Trigger re-trap.
1151 			 */
1152 			if (child->jobctl & JOBCTL_TRAP_NOTIFY)
1153 				ptrace_signal_wake_up(child, true);
1154 			ret = 0;
1155 		}
1156 		unlock_task_sighand(child, &flags);
1157 		break;
1158 
1159 	case PTRACE_DETACH:	 /* detach a process that was attached. */
1160 		ret = ptrace_detach(child, data);
1161 		break;
1162 
1163 #ifdef CONFIG_BINFMT_ELF_FDPIC
1164 	case PTRACE_GETFDPIC: {
1165 		struct mm_struct *mm = get_task_mm(child);
1166 		unsigned long tmp = 0;
1167 
1168 		ret = -ESRCH;
1169 		if (!mm)
1170 			break;
1171 
1172 		switch (addr) {
1173 		case PTRACE_GETFDPIC_EXEC:
1174 			tmp = mm->context.exec_fdpic_loadmap;
1175 			break;
1176 		case PTRACE_GETFDPIC_INTERP:
1177 			tmp = mm->context.interp_fdpic_loadmap;
1178 			break;
1179 		default:
1180 			break;
1181 		}
1182 		mmput(mm);
1183 
1184 		ret = put_user(tmp, datalp);
1185 		break;
1186 	}
1187 #endif
1188 
1189 	case PTRACE_SINGLESTEP:
1190 #ifdef PTRACE_SINGLEBLOCK
1191 	case PTRACE_SINGLEBLOCK:
1192 #endif
1193 #ifdef PTRACE_SYSEMU
1194 	case PTRACE_SYSEMU:
1195 	case PTRACE_SYSEMU_SINGLESTEP:
1196 #endif
1197 	case PTRACE_SYSCALL:
1198 	case PTRACE_CONT:
1199 		return ptrace_resume(child, request, data);
1200 
1201 	case PTRACE_KILL:
1202 		send_sig_info(SIGKILL, SEND_SIG_NOINFO, child);
1203 		return 0;
1204 
1205 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1206 	case PTRACE_GETREGSET:
1207 	case PTRACE_SETREGSET: {
1208 		struct iovec kiov;
1209 		struct iovec __user *uiov = datavp;
1210 
1211 		if (!access_ok(uiov, sizeof(*uiov)))
1212 			return -EFAULT;
1213 
1214 		if (__get_user(kiov.iov_base, &uiov->iov_base) ||
1215 		    __get_user(kiov.iov_len, &uiov->iov_len))
1216 			return -EFAULT;
1217 
1218 		ret = ptrace_regset(child, request, addr, &kiov);
1219 		if (!ret)
1220 			ret = __put_user(kiov.iov_len, &uiov->iov_len);
1221 		break;
1222 	}
1223 
1224 	case PTRACE_GET_SYSCALL_INFO:
1225 		ret = ptrace_get_syscall_info(child, addr, datavp);
1226 		break;
1227 #endif
1228 
1229 	case PTRACE_SECCOMP_GET_FILTER:
1230 		ret = seccomp_get_filter(child, addr, datavp);
1231 		break;
1232 
1233 	case PTRACE_SECCOMP_GET_METADATA:
1234 		ret = seccomp_get_metadata(child, addr, datavp);
1235 		break;
1236 
1237 #ifdef CONFIG_RSEQ
1238 	case PTRACE_GET_RSEQ_CONFIGURATION:
1239 		ret = ptrace_get_rseq_configuration(child, addr, datavp);
1240 		break;
1241 #endif
1242 
1243 	case PTRACE_SET_SYSCALL_USER_DISPATCH_CONFIG:
1244 		ret = syscall_user_dispatch_set_config(child, addr, datavp);
1245 		break;
1246 
1247 	case PTRACE_GET_SYSCALL_USER_DISPATCH_CONFIG:
1248 		ret = syscall_user_dispatch_get_config(child, addr, datavp);
1249 		break;
1250 
1251 	default:
1252 		break;
1253 	}
1254 
1255 	return ret;
1256 }
1257 
SYSCALL_DEFINE4(ptrace,long,request,long,pid,unsigned long,addr,unsigned long,data)1258 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
1259 		unsigned long, data)
1260 {
1261 	struct task_struct *child;
1262 	long ret;
1263 
1264 	if (request == PTRACE_TRACEME) {
1265 		ret = ptrace_traceme();
1266 		goto out;
1267 	}
1268 
1269 	child = find_get_task_by_vpid(pid);
1270 	if (!child) {
1271 		ret = -ESRCH;
1272 		goto out;
1273 	}
1274 
1275 	if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1276 		ret = ptrace_attach(child, request, addr, data);
1277 		goto out_put_task_struct;
1278 	}
1279 
1280 	ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1281 				  request == PTRACE_INTERRUPT);
1282 	if (ret < 0)
1283 		goto out_put_task_struct;
1284 
1285 	ret = arch_ptrace(child, request, addr, data);
1286 	if (ret || request != PTRACE_DETACH)
1287 		ptrace_unfreeze_traced(child);
1288 
1289  out_put_task_struct:
1290 	put_task_struct(child);
1291  out:
1292 	return ret;
1293 }
1294 
generic_ptrace_peekdata(struct task_struct * tsk,unsigned long addr,unsigned long data)1295 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
1296 			    unsigned long data)
1297 {
1298 	unsigned long tmp;
1299 	int copied;
1300 
1301 	copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE);
1302 	if (copied != sizeof(tmp))
1303 		return -EIO;
1304 	return put_user(tmp, (unsigned long __user *)data);
1305 }
1306 
generic_ptrace_pokedata(struct task_struct * tsk,unsigned long addr,unsigned long data)1307 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
1308 			    unsigned long data)
1309 {
1310 	int copied;
1311 
1312 	copied = ptrace_access_vm(tsk, addr, &data, sizeof(data),
1313 			FOLL_FORCE | FOLL_WRITE);
1314 	return (copied == sizeof(data)) ? 0 : -EIO;
1315 }
1316 
1317 #if defined CONFIG_COMPAT
1318 
compat_ptrace_request(struct task_struct * child,compat_long_t request,compat_ulong_t addr,compat_ulong_t data)1319 int compat_ptrace_request(struct task_struct *child, compat_long_t request,
1320 			  compat_ulong_t addr, compat_ulong_t data)
1321 {
1322 	compat_ulong_t __user *datap = compat_ptr(data);
1323 	compat_ulong_t word;
1324 	kernel_siginfo_t siginfo;
1325 	int ret;
1326 
1327 	switch (request) {
1328 	case PTRACE_PEEKTEXT:
1329 	case PTRACE_PEEKDATA:
1330 		ret = ptrace_access_vm(child, addr, &word, sizeof(word),
1331 				FOLL_FORCE);
1332 		if (ret != sizeof(word))
1333 			ret = -EIO;
1334 		else
1335 			ret = put_user(word, datap);
1336 		break;
1337 
1338 	case PTRACE_POKETEXT:
1339 	case PTRACE_POKEDATA:
1340 		ret = ptrace_access_vm(child, addr, &data, sizeof(data),
1341 				FOLL_FORCE | FOLL_WRITE);
1342 		ret = (ret != sizeof(data) ? -EIO : 0);
1343 		break;
1344 
1345 	case PTRACE_GETEVENTMSG:
1346 		ret = put_user((compat_ulong_t) child->ptrace_message, datap);
1347 		break;
1348 
1349 	case PTRACE_GETSIGINFO:
1350 		ret = ptrace_getsiginfo(child, &siginfo);
1351 		if (!ret)
1352 			ret = copy_siginfo_to_user32(
1353 				(struct compat_siginfo __user *) datap,
1354 				&siginfo);
1355 		break;
1356 
1357 	case PTRACE_SETSIGINFO:
1358 		ret = copy_siginfo_from_user32(
1359 			&siginfo, (struct compat_siginfo __user *) datap);
1360 		if (!ret)
1361 			ret = ptrace_setsiginfo(child, &siginfo);
1362 		break;
1363 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1364 	case PTRACE_GETREGSET:
1365 	case PTRACE_SETREGSET:
1366 	{
1367 		struct iovec kiov;
1368 		struct compat_iovec __user *uiov =
1369 			(struct compat_iovec __user *) datap;
1370 		compat_uptr_t ptr;
1371 		compat_size_t len;
1372 
1373 		if (!access_ok(uiov, sizeof(*uiov)))
1374 			return -EFAULT;
1375 
1376 		if (__get_user(ptr, &uiov->iov_base) ||
1377 		    __get_user(len, &uiov->iov_len))
1378 			return -EFAULT;
1379 
1380 		kiov.iov_base = compat_ptr(ptr);
1381 		kiov.iov_len = len;
1382 
1383 		ret = ptrace_regset(child, request, addr, &kiov);
1384 		if (!ret)
1385 			ret = __put_user(kiov.iov_len, &uiov->iov_len);
1386 		break;
1387 	}
1388 #endif
1389 
1390 	default:
1391 		ret = ptrace_request(child, request, addr, data);
1392 	}
1393 
1394 	return ret;
1395 }
1396 
COMPAT_SYSCALL_DEFINE4(ptrace,compat_long_t,request,compat_long_t,pid,compat_long_t,addr,compat_long_t,data)1397 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid,
1398 		       compat_long_t, addr, compat_long_t, data)
1399 {
1400 	struct task_struct *child;
1401 	long ret;
1402 
1403 	if (request == PTRACE_TRACEME) {
1404 		ret = ptrace_traceme();
1405 		goto out;
1406 	}
1407 
1408 	child = find_get_task_by_vpid(pid);
1409 	if (!child) {
1410 		ret = -ESRCH;
1411 		goto out;
1412 	}
1413 
1414 	if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1415 		ret = ptrace_attach(child, request, addr, data);
1416 		goto out_put_task_struct;
1417 	}
1418 
1419 	ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1420 				  request == PTRACE_INTERRUPT);
1421 	if (!ret) {
1422 		ret = compat_arch_ptrace(child, request, addr, data);
1423 		if (ret || request != PTRACE_DETACH)
1424 			ptrace_unfreeze_traced(child);
1425 	}
1426 
1427  out_put_task_struct:
1428 	put_task_struct(child);
1429  out:
1430 	return ret;
1431 }
1432 #endif	/* CONFIG_COMPAT */
1433