1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/cred.h>
48 
49 #include <asm/tlb.h>
50 #include "internal.h"
51 #include "slab.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/oom.h>
55 
56 static int sysctl_panic_on_oom;
57 static int sysctl_oom_kill_allocating_task;
58 static int sysctl_oom_dump_tasks = 1;
59 
60 /*
61  * Serializes oom killer invocations (out_of_memory()) from all contexts to
62  * prevent from over eager oom killing (e.g. when the oom killer is invoked
63  * from different domains).
64  *
65  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
66  * and mark_oom_victim
67  */
68 DEFINE_MUTEX(oom_lock);
69 /* Serializes oom_score_adj and oom_score_adj_min updates */
70 DEFINE_MUTEX(oom_adj_mutex);
71 
is_memcg_oom(struct oom_control * oc)72 static inline bool is_memcg_oom(struct oom_control *oc)
73 {
74 	return oc->memcg != NULL;
75 }
76 
77 #ifdef CONFIG_NUMA
78 /**
79  * oom_cpuset_eligible() - check task eligibility for kill
80  * @start: task struct of which task to consider
81  * @oc: pointer to struct oom_control
82  *
83  * Task eligibility is determined by whether or not a candidate task, @tsk,
84  * shares the same mempolicy nodes as current if it is bound by such a policy
85  * and whether or not it has the same set of allowed cpuset nodes.
86  *
87  * This function is assuming oom-killer context and 'current' has triggered
88  * the oom-killer.
89  */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)90 static bool oom_cpuset_eligible(struct task_struct *start,
91 				struct oom_control *oc)
92 {
93 	struct task_struct *tsk;
94 	bool ret = false;
95 	const nodemask_t *mask = oc->nodemask;
96 
97 	rcu_read_lock();
98 	for_each_thread(start, tsk) {
99 		if (mask) {
100 			/*
101 			 * If this is a mempolicy constrained oom, tsk's
102 			 * cpuset is irrelevant.  Only return true if its
103 			 * mempolicy intersects current, otherwise it may be
104 			 * needlessly killed.
105 			 */
106 			ret = mempolicy_in_oom_domain(tsk, mask);
107 		} else {
108 			/*
109 			 * This is not a mempolicy constrained oom, so only
110 			 * check the mems of tsk's cpuset.
111 			 */
112 			ret = cpuset_mems_allowed_intersects(current, tsk);
113 		}
114 		if (ret)
115 			break;
116 	}
117 	rcu_read_unlock();
118 
119 	return ret;
120 }
121 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)122 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
123 {
124 	return true;
125 }
126 #endif /* CONFIG_NUMA */
127 
128 /*
129  * The process p may have detached its own ->mm while exiting or through
130  * kthread_use_mm(), but one or more of its subthreads may still have a valid
131  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
132  * task_lock() held.
133  */
find_lock_task_mm(struct task_struct * p)134 struct task_struct *find_lock_task_mm(struct task_struct *p)
135 {
136 	struct task_struct *t;
137 
138 	rcu_read_lock();
139 
140 	for_each_thread(p, t) {
141 		task_lock(t);
142 		if (likely(t->mm))
143 			goto found;
144 		task_unlock(t);
145 	}
146 	t = NULL;
147 found:
148 	rcu_read_unlock();
149 
150 	return t;
151 }
152 
153 /*
154  * order == -1 means the oom kill is required by sysrq, otherwise only
155  * for display purposes.
156  */
is_sysrq_oom(struct oom_control * oc)157 static inline bool is_sysrq_oom(struct oom_control *oc)
158 {
159 	return oc->order == -1;
160 }
161 
162 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)163 static bool oom_unkillable_task(struct task_struct *p)
164 {
165 	if (is_global_init(p))
166 		return true;
167 	if (p->flags & PF_KTHREAD)
168 		return true;
169 	return false;
170 }
171 
172 /*
173  * Check whether unreclaimable slab amount is greater than
174  * all user memory(LRU pages).
175  * dump_unreclaimable_slab() could help in the case that
176  * oom due to too much unreclaimable slab used by kernel.
177 */
should_dump_unreclaim_slab(void)178 static bool should_dump_unreclaim_slab(void)
179 {
180 	unsigned long nr_lru;
181 
182 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183 		 global_node_page_state(NR_INACTIVE_ANON) +
184 		 global_node_page_state(NR_ACTIVE_FILE) +
185 		 global_node_page_state(NR_INACTIVE_FILE) +
186 		 global_node_page_state(NR_ISOLATED_ANON) +
187 		 global_node_page_state(NR_ISOLATED_FILE) +
188 		 global_node_page_state(NR_UNEVICTABLE);
189 
190 	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
191 }
192 
193 /**
194  * oom_badness - heuristic function to determine which candidate task to kill
195  * @p: task struct of which task we should calculate
196  * @totalpages: total present RAM allowed for page allocation
197  *
198  * The heuristic for determining which task to kill is made to be as simple and
199  * predictable as possible.  The goal is to return the highest value for the
200  * task consuming the most memory to avoid subsequent oom failures.
201  */
oom_badness(struct task_struct * p,unsigned long totalpages)202 long oom_badness(struct task_struct *p, unsigned long totalpages)
203 {
204 	long points;
205 	long adj;
206 
207 	if (oom_unkillable_task(p))
208 		return LONG_MIN;
209 
210 	p = find_lock_task_mm(p);
211 	if (!p)
212 		return LONG_MIN;
213 
214 	/*
215 	 * Do not even consider tasks which are explicitly marked oom
216 	 * unkillable or have been already oom reaped or the are in
217 	 * the middle of vfork
218 	 */
219 	adj = (long)p->signal->oom_score_adj;
220 	if (adj == OOM_SCORE_ADJ_MIN ||
221 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
222 			in_vfork(p)) {
223 		task_unlock(p);
224 		return LONG_MIN;
225 	}
226 
227 	/*
228 	 * The baseline for the badness score is the proportion of RAM that each
229 	 * task's rss, pagetable and swap space use.
230 	 */
231 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
232 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
233 	task_unlock(p);
234 
235 	/* Normalize to oom_score_adj units */
236 	adj *= totalpages / 1000;
237 	points += adj;
238 
239 	return points;
240 }
241 
242 static const char * const oom_constraint_text[] = {
243 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
247 };
248 
249 /*
250  * Determine the type of allocation constraint.
251  */
constrained_alloc(struct oom_control * oc)252 static enum oom_constraint constrained_alloc(struct oom_control *oc)
253 {
254 	struct zone *zone;
255 	struct zoneref *z;
256 	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
257 	bool cpuset_limited = false;
258 	int nid;
259 
260 	if (is_memcg_oom(oc)) {
261 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262 		return CONSTRAINT_MEMCG;
263 	}
264 
265 	/* Default to all available memory */
266 	oc->totalpages = totalram_pages() + total_swap_pages;
267 
268 	if (!IS_ENABLED(CONFIG_NUMA))
269 		return CONSTRAINT_NONE;
270 
271 	if (!oc->zonelist)
272 		return CONSTRAINT_NONE;
273 	/*
274 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 	 * to kill current.We have to random task kill in this case.
276 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
277 	 */
278 	if (oc->gfp_mask & __GFP_THISNODE)
279 		return CONSTRAINT_NONE;
280 
281 	/*
282 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
284 	 * is enforced in get_page_from_freelist().
285 	 */
286 	if (oc->nodemask &&
287 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288 		oc->totalpages = total_swap_pages;
289 		for_each_node_mask(nid, *oc->nodemask)
290 			oc->totalpages += node_present_pages(nid);
291 		return CONSTRAINT_MEMORY_POLICY;
292 	}
293 
294 	/* Check this allocation failure is caused by cpuset's wall function */
295 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296 			highest_zoneidx, oc->nodemask)
297 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298 			cpuset_limited = true;
299 
300 	if (cpuset_limited) {
301 		oc->totalpages = total_swap_pages;
302 		for_each_node_mask(nid, cpuset_current_mems_allowed)
303 			oc->totalpages += node_present_pages(nid);
304 		return CONSTRAINT_CPUSET;
305 	}
306 	return CONSTRAINT_NONE;
307 }
308 
oom_evaluate_task(struct task_struct * task,void * arg)309 static int oom_evaluate_task(struct task_struct *task, void *arg)
310 {
311 	struct oom_control *oc = arg;
312 	long points;
313 
314 	if (oom_unkillable_task(task))
315 		goto next;
316 
317 	/* p may not have freeable memory in nodemask */
318 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319 		goto next;
320 
321 	/*
322 	 * This task already has access to memory reserves and is being killed.
323 	 * Don't allow any other task to have access to the reserves unless
324 	 * the task has MMF_OOM_SKIP because chances that it would release
325 	 * any memory is quite low.
326 	 */
327 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
329 			goto next;
330 		goto abort;
331 	}
332 
333 	/*
334 	 * If task is allocating a lot of memory and has been marked to be
335 	 * killed first if it triggers an oom, then select it.
336 	 */
337 	if (oom_task_origin(task)) {
338 		points = LONG_MAX;
339 		goto select;
340 	}
341 
342 	points = oom_badness(task, oc->totalpages);
343 	if (points == LONG_MIN || points < oc->chosen_points)
344 		goto next;
345 
346 select:
347 	if (oc->chosen)
348 		put_task_struct(oc->chosen);
349 	get_task_struct(task);
350 	oc->chosen = task;
351 	oc->chosen_points = points;
352 next:
353 	return 0;
354 abort:
355 	if (oc->chosen)
356 		put_task_struct(oc->chosen);
357 	oc->chosen = (void *)-1UL;
358 	return 1;
359 }
360 
361 /*
362  * Simple selection loop. We choose the process with the highest number of
363  * 'points'. In case scan was aborted, oc->chosen is set to -1.
364  */
select_bad_process(struct oom_control * oc)365 static void select_bad_process(struct oom_control *oc)
366 {
367 	oc->chosen_points = LONG_MIN;
368 
369 	if (is_memcg_oom(oc))
370 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371 	else {
372 		struct task_struct *p;
373 
374 		rcu_read_lock();
375 		for_each_process(p)
376 			if (oom_evaluate_task(p, oc))
377 				break;
378 		rcu_read_unlock();
379 	}
380 }
381 
dump_task(struct task_struct * p,void * arg)382 static int dump_task(struct task_struct *p, void *arg)
383 {
384 	struct oom_control *oc = arg;
385 	struct task_struct *task;
386 
387 	if (oom_unkillable_task(p))
388 		return 0;
389 
390 	/* p may not have freeable memory in nodemask */
391 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
392 		return 0;
393 
394 	task = find_lock_task_mm(p);
395 	if (!task) {
396 		/*
397 		 * All of p's threads have already detached their mm's. There's
398 		 * no need to report them; they can't be oom killed anyway.
399 		 */
400 		return 0;
401 	}
402 
403 	pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu         %5hd %s\n",
404 		task->pid, from_kuid(&init_user_ns, task_uid(task)),
405 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406 		get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
407 		get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
408 		get_mm_counter(task->mm, MM_SWAPENTS),
409 		task->signal->oom_score_adj, task->comm);
410 	task_unlock(task);
411 
412 	return 0;
413 }
414 
415 /**
416  * dump_tasks - dump current memory state of all system tasks
417  * @oc: pointer to struct oom_control
418  *
419  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
420  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421  * are not shown.
422  * State information includes task's pid, uid, tgid, vm size, rss,
423  * pgtables_bytes, swapents, oom_score_adj value, and name.
424  */
dump_tasks(struct oom_control * oc)425 static void dump_tasks(struct oom_control *oc)
426 {
427 	pr_info("Tasks state (memory values in pages):\n");
428 	pr_info("[  pid  ]   uid  tgid total_vm      rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
429 
430 	if (is_memcg_oom(oc))
431 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
432 	else {
433 		struct task_struct *p;
434 
435 		rcu_read_lock();
436 		for_each_process(p)
437 			dump_task(p, oc);
438 		rcu_read_unlock();
439 	}
440 }
441 
dump_oom_victim(struct oom_control * oc,struct task_struct * victim)442 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
443 {
444 	/* one line summary of the oom killer context. */
445 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
446 			oom_constraint_text[oc->constraint],
447 			nodemask_pr_args(oc->nodemask));
448 	cpuset_print_current_mems_allowed();
449 	mem_cgroup_print_oom_context(oc->memcg, victim);
450 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
451 		from_kuid(&init_user_ns, task_uid(victim)));
452 }
453 
dump_header(struct oom_control * oc)454 static void dump_header(struct oom_control *oc)
455 {
456 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
457 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
458 			current->signal->oom_score_adj);
459 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
460 		pr_warn("COMPACTION is disabled!!!\n");
461 
462 	dump_stack();
463 	if (is_memcg_oom(oc))
464 		mem_cgroup_print_oom_meminfo(oc->memcg);
465 	else {
466 		__show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
467 		if (should_dump_unreclaim_slab())
468 			dump_unreclaimable_slab();
469 	}
470 	if (sysctl_oom_dump_tasks)
471 		dump_tasks(oc);
472 }
473 
474 /*
475  * Number of OOM victims in flight
476  */
477 static atomic_t oom_victims = ATOMIC_INIT(0);
478 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
479 
480 static bool oom_killer_disabled __read_mostly;
481 
482 /*
483  * task->mm can be NULL if the task is the exited group leader.  So to
484  * determine whether the task is using a particular mm, we examine all the
485  * task's threads: if one of those is using this mm then this task was also
486  * using it.
487  */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)488 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
489 {
490 	struct task_struct *t;
491 
492 	for_each_thread(p, t) {
493 		struct mm_struct *t_mm = READ_ONCE(t->mm);
494 		if (t_mm)
495 			return t_mm == mm;
496 	}
497 	return false;
498 }
499 
500 #ifdef CONFIG_MMU
501 /*
502  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
503  * victim (if that is possible) to help the OOM killer to move on.
504  */
505 static struct task_struct *oom_reaper_th;
506 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
507 static struct task_struct *oom_reaper_list;
508 static DEFINE_SPINLOCK(oom_reaper_lock);
509 
__oom_reap_task_mm(struct mm_struct * mm)510 static bool __oom_reap_task_mm(struct mm_struct *mm)
511 {
512 	struct vm_area_struct *vma;
513 	bool ret = true;
514 	VMA_ITERATOR(vmi, mm, 0);
515 
516 	/*
517 	 * Tell all users of get_user/copy_from_user etc... that the content
518 	 * is no longer stable. No barriers really needed because unmapping
519 	 * should imply barriers already and the reader would hit a page fault
520 	 * if it stumbled over a reaped memory.
521 	 */
522 	set_bit(MMF_UNSTABLE, &mm->flags);
523 
524 	for_each_vma(vmi, vma) {
525 		if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
526 			continue;
527 
528 		/*
529 		 * Only anonymous pages have a good chance to be dropped
530 		 * without additional steps which we cannot afford as we
531 		 * are OOM already.
532 		 *
533 		 * We do not even care about fs backed pages because all
534 		 * which are reclaimable have already been reclaimed and
535 		 * we do not want to block exit_mmap by keeping mm ref
536 		 * count elevated without a good reason.
537 		 */
538 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
539 			struct mmu_notifier_range range;
540 			struct mmu_gather tlb;
541 
542 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
543 						mm, vma->vm_start,
544 						vma->vm_end);
545 			tlb_gather_mmu(&tlb, mm);
546 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
547 				tlb_finish_mmu(&tlb);
548 				ret = false;
549 				continue;
550 			}
551 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
552 			mmu_notifier_invalidate_range_end(&range);
553 			tlb_finish_mmu(&tlb);
554 		}
555 	}
556 
557 	return ret;
558 }
559 
560 /*
561  * Reaps the address space of the give task.
562  *
563  * Returns true on success and false if none or part of the address space
564  * has been reclaimed and the caller should retry later.
565  */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)566 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
567 {
568 	bool ret = true;
569 
570 	if (!mmap_read_trylock(mm)) {
571 		trace_skip_task_reaping(tsk->pid);
572 		return false;
573 	}
574 
575 	/*
576 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
577 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
578 	 * under mmap_lock for reading because it serializes against the
579 	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
580 	 */
581 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
582 		trace_skip_task_reaping(tsk->pid);
583 		goto out_unlock;
584 	}
585 
586 	trace_start_task_reaping(tsk->pid);
587 
588 	/* failed to reap part of the address space. Try again later */
589 	ret = __oom_reap_task_mm(mm);
590 	if (!ret)
591 		goto out_finish;
592 
593 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
594 			task_pid_nr(tsk), tsk->comm,
595 			K(get_mm_counter(mm, MM_ANONPAGES)),
596 			K(get_mm_counter(mm, MM_FILEPAGES)),
597 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
598 out_finish:
599 	trace_finish_task_reaping(tsk->pid);
600 out_unlock:
601 	mmap_read_unlock(mm);
602 
603 	return ret;
604 }
605 
606 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)607 static void oom_reap_task(struct task_struct *tsk)
608 {
609 	int attempts = 0;
610 	struct mm_struct *mm = tsk->signal->oom_mm;
611 
612 	/* Retry the mmap_read_trylock(mm) a few times */
613 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
614 		schedule_timeout_idle(HZ/10);
615 
616 	if (attempts <= MAX_OOM_REAP_RETRIES ||
617 	    test_bit(MMF_OOM_SKIP, &mm->flags))
618 		goto done;
619 
620 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
621 		task_pid_nr(tsk), tsk->comm);
622 	sched_show_task(tsk);
623 	debug_show_all_locks();
624 
625 done:
626 	tsk->oom_reaper_list = NULL;
627 
628 	/*
629 	 * Hide this mm from OOM killer because it has been either reaped or
630 	 * somebody can't call mmap_write_unlock(mm).
631 	 */
632 	set_bit(MMF_OOM_SKIP, &mm->flags);
633 
634 	/* Drop a reference taken by queue_oom_reaper */
635 	put_task_struct(tsk);
636 }
637 
oom_reaper(void * unused)638 static int oom_reaper(void *unused)
639 {
640 	set_freezable();
641 
642 	while (true) {
643 		struct task_struct *tsk = NULL;
644 
645 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
646 		spin_lock_irq(&oom_reaper_lock);
647 		if (oom_reaper_list != NULL) {
648 			tsk = oom_reaper_list;
649 			oom_reaper_list = tsk->oom_reaper_list;
650 		}
651 		spin_unlock_irq(&oom_reaper_lock);
652 
653 		if (tsk)
654 			oom_reap_task(tsk);
655 	}
656 
657 	return 0;
658 }
659 
wake_oom_reaper(struct timer_list * timer)660 static void wake_oom_reaper(struct timer_list *timer)
661 {
662 	struct task_struct *tsk = container_of(timer, struct task_struct,
663 			oom_reaper_timer);
664 	struct mm_struct *mm = tsk->signal->oom_mm;
665 	unsigned long flags;
666 
667 	/* The victim managed to terminate on its own - see exit_mmap */
668 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
669 		put_task_struct(tsk);
670 		return;
671 	}
672 
673 	spin_lock_irqsave(&oom_reaper_lock, flags);
674 	tsk->oom_reaper_list = oom_reaper_list;
675 	oom_reaper_list = tsk;
676 	spin_unlock_irqrestore(&oom_reaper_lock, flags);
677 	trace_wake_reaper(tsk->pid);
678 	wake_up(&oom_reaper_wait);
679 }
680 
681 /*
682  * Give the OOM victim time to exit naturally before invoking the oom_reaping.
683  * The timers timeout is arbitrary... the longer it is, the longer the worst
684  * case scenario for the OOM can take. If it is too small, the oom_reaper can
685  * get in the way and release resources needed by the process exit path.
686  * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
687  * before the exit path is able to wake the futex waiters.
688  */
689 #define OOM_REAPER_DELAY (2*HZ)
queue_oom_reaper(struct task_struct * tsk)690 static void queue_oom_reaper(struct task_struct *tsk)
691 {
692 	/* mm is already queued? */
693 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
694 		return;
695 
696 	get_task_struct(tsk);
697 	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
698 	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
699 	add_timer(&tsk->oom_reaper_timer);
700 }
701 
702 #ifdef CONFIG_SYSCTL
703 static struct ctl_table vm_oom_kill_table[] = {
704 	{
705 		.procname	= "panic_on_oom",
706 		.data		= &sysctl_panic_on_oom,
707 		.maxlen		= sizeof(sysctl_panic_on_oom),
708 		.mode		= 0644,
709 		.proc_handler	= proc_dointvec_minmax,
710 		.extra1		= SYSCTL_ZERO,
711 		.extra2		= SYSCTL_TWO,
712 	},
713 	{
714 		.procname	= "oom_kill_allocating_task",
715 		.data		= &sysctl_oom_kill_allocating_task,
716 		.maxlen		= sizeof(sysctl_oom_kill_allocating_task),
717 		.mode		= 0644,
718 		.proc_handler	= proc_dointvec,
719 	},
720 	{
721 		.procname	= "oom_dump_tasks",
722 		.data		= &sysctl_oom_dump_tasks,
723 		.maxlen		= sizeof(sysctl_oom_dump_tasks),
724 		.mode		= 0644,
725 		.proc_handler	= proc_dointvec,
726 	},
727 };
728 #endif
729 
oom_init(void)730 static int __init oom_init(void)
731 {
732 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
733 #ifdef CONFIG_SYSCTL
734 	register_sysctl_init("vm", vm_oom_kill_table);
735 #endif
736 	return 0;
737 }
subsys_initcall(oom_init)738 subsys_initcall(oom_init)
739 #else
740 static inline void queue_oom_reaper(struct task_struct *tsk)
741 {
742 }
743 #endif /* CONFIG_MMU */
744 
745 /**
746  * mark_oom_victim - mark the given task as OOM victim
747  * @tsk: task to mark
748  *
749  * Has to be called with oom_lock held and never after
750  * oom has been disabled already.
751  *
752  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
753  * under task_lock or operate on the current).
754  */
755 static void mark_oom_victim(struct task_struct *tsk)
756 {
757 	const struct cred *cred;
758 	struct mm_struct *mm = tsk->mm;
759 
760 	WARN_ON(oom_killer_disabled);
761 	/* OOM killer might race with memcg OOM */
762 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
763 		return;
764 
765 	/* oom_mm is bound to the signal struct life time. */
766 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
767 		mmgrab(tsk->signal->oom_mm);
768 
769 	/*
770 	 * Make sure that the task is woken up from uninterruptible sleep
771 	 * if it is frozen because OOM killer wouldn't be able to free
772 	 * any memory and livelock. freezing_slow_path will tell the freezer
773 	 * that TIF_MEMDIE tasks should be ignored.
774 	 */
775 	__thaw_task(tsk);
776 	atomic_inc(&oom_victims);
777 	cred = get_task_cred(tsk);
778 	trace_mark_victim(tsk, cred->uid.val);
779 	put_cred(cred);
780 }
781 
782 /**
783  * exit_oom_victim - note the exit of an OOM victim
784  */
exit_oom_victim(void)785 void exit_oom_victim(void)
786 {
787 	clear_thread_flag(TIF_MEMDIE);
788 
789 	if (!atomic_dec_return(&oom_victims))
790 		wake_up_all(&oom_victims_wait);
791 }
792 
793 /**
794  * oom_killer_enable - enable OOM killer
795  */
oom_killer_enable(void)796 void oom_killer_enable(void)
797 {
798 	oom_killer_disabled = false;
799 	pr_info("OOM killer enabled.\n");
800 }
801 
802 /**
803  * oom_killer_disable - disable OOM killer
804  * @timeout: maximum timeout to wait for oom victims in jiffies
805  *
806  * Forces all page allocations to fail rather than trigger OOM killer.
807  * Will block and wait until all OOM victims are killed or the given
808  * timeout expires.
809  *
810  * The function cannot be called when there are runnable user tasks because
811  * the userspace would see unexpected allocation failures as a result. Any
812  * new usage of this function should be consulted with MM people.
813  *
814  * Returns true if successful and false if the OOM killer cannot be
815  * disabled.
816  */
oom_killer_disable(signed long timeout)817 bool oom_killer_disable(signed long timeout)
818 {
819 	signed long ret;
820 
821 	/*
822 	 * Make sure to not race with an ongoing OOM killer. Check that the
823 	 * current is not killed (possibly due to sharing the victim's memory).
824 	 */
825 	if (mutex_lock_killable(&oom_lock))
826 		return false;
827 	oom_killer_disabled = true;
828 	mutex_unlock(&oom_lock);
829 
830 	ret = wait_event_interruptible_timeout(oom_victims_wait,
831 			!atomic_read(&oom_victims), timeout);
832 	if (ret <= 0) {
833 		oom_killer_enable();
834 		return false;
835 	}
836 	pr_info("OOM killer disabled.\n");
837 
838 	return true;
839 }
840 
__task_will_free_mem(struct task_struct * task)841 static inline bool __task_will_free_mem(struct task_struct *task)
842 {
843 	struct signal_struct *sig = task->signal;
844 
845 	/*
846 	 * A coredumping process may sleep for an extended period in
847 	 * coredump_task_exit(), so the oom killer cannot assume that
848 	 * the process will promptly exit and release memory.
849 	 */
850 	if (sig->core_state)
851 		return false;
852 
853 	if (sig->flags & SIGNAL_GROUP_EXIT)
854 		return true;
855 
856 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
857 		return true;
858 
859 	return false;
860 }
861 
862 /*
863  * Checks whether the given task is dying or exiting and likely to
864  * release its address space. This means that all threads and processes
865  * sharing the same mm have to be killed or exiting.
866  * Caller has to make sure that task->mm is stable (hold task_lock or
867  * it operates on the current).
868  */
task_will_free_mem(struct task_struct * task)869 static bool task_will_free_mem(struct task_struct *task)
870 {
871 	struct mm_struct *mm = task->mm;
872 	struct task_struct *p;
873 	bool ret = true;
874 
875 	/*
876 	 * Skip tasks without mm because it might have passed its exit_mm and
877 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
878 	 * on that for now. We can consider find_lock_task_mm in future.
879 	 */
880 	if (!mm)
881 		return false;
882 
883 	if (!__task_will_free_mem(task))
884 		return false;
885 
886 	/*
887 	 * This task has already been drained by the oom reaper so there are
888 	 * only small chances it will free some more
889 	 */
890 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
891 		return false;
892 
893 	if (atomic_read(&mm->mm_users) <= 1)
894 		return true;
895 
896 	/*
897 	 * Make sure that all tasks which share the mm with the given tasks
898 	 * are dying as well to make sure that a) nobody pins its mm and
899 	 * b) the task is also reapable by the oom reaper.
900 	 */
901 	rcu_read_lock();
902 	for_each_process(p) {
903 		if (!process_shares_mm(p, mm))
904 			continue;
905 		if (same_thread_group(task, p))
906 			continue;
907 		ret = __task_will_free_mem(p);
908 		if (!ret)
909 			break;
910 	}
911 	rcu_read_unlock();
912 
913 	return ret;
914 }
915 
__oom_kill_process(struct task_struct * victim,const char * message)916 static void __oom_kill_process(struct task_struct *victim, const char *message)
917 {
918 	struct task_struct *p;
919 	struct mm_struct *mm;
920 	bool can_oom_reap = true;
921 
922 	p = find_lock_task_mm(victim);
923 	if (!p) {
924 		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
925 			message, task_pid_nr(victim), victim->comm);
926 		put_task_struct(victim);
927 		return;
928 	} else if (victim != p) {
929 		get_task_struct(p);
930 		put_task_struct(victim);
931 		victim = p;
932 	}
933 
934 	/* Get a reference to safely compare mm after task_unlock(victim) */
935 	mm = victim->mm;
936 	mmgrab(mm);
937 
938 	/* Raise event before sending signal: task reaper must see this */
939 	count_vm_event(OOM_KILL);
940 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
941 
942 	/*
943 	 * We should send SIGKILL before granting access to memory reserves
944 	 * in order to prevent the OOM victim from depleting the memory
945 	 * reserves from the user space under its control.
946 	 */
947 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
948 	mark_oom_victim(victim);
949 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
950 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
951 		K(get_mm_counter(mm, MM_ANONPAGES)),
952 		K(get_mm_counter(mm, MM_FILEPAGES)),
953 		K(get_mm_counter(mm, MM_SHMEMPAGES)),
954 		from_kuid(&init_user_ns, task_uid(victim)),
955 		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
956 	task_unlock(victim);
957 
958 	/*
959 	 * Kill all user processes sharing victim->mm in other thread groups, if
960 	 * any.  They don't get access to memory reserves, though, to avoid
961 	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
962 	 * oom killed thread cannot exit because it requires the semaphore and
963 	 * its contended by another thread trying to allocate memory itself.
964 	 * That thread will now get access to memory reserves since it has a
965 	 * pending fatal signal.
966 	 */
967 	rcu_read_lock();
968 	for_each_process(p) {
969 		if (!process_shares_mm(p, mm))
970 			continue;
971 		if (same_thread_group(p, victim))
972 			continue;
973 		if (is_global_init(p)) {
974 			can_oom_reap = false;
975 			set_bit(MMF_OOM_SKIP, &mm->flags);
976 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
977 					task_pid_nr(victim), victim->comm,
978 					task_pid_nr(p), p->comm);
979 			continue;
980 		}
981 		/*
982 		 * No kthread_use_mm() user needs to read from the userspace so
983 		 * we are ok to reap it.
984 		 */
985 		if (unlikely(p->flags & PF_KTHREAD))
986 			continue;
987 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
988 	}
989 	rcu_read_unlock();
990 
991 	if (can_oom_reap)
992 		queue_oom_reaper(victim);
993 
994 	mmdrop(mm);
995 	put_task_struct(victim);
996 }
997 
998 /*
999  * Kill provided task unless it's secured by setting
1000  * oom_score_adj to OOM_SCORE_ADJ_MIN.
1001  */
oom_kill_memcg_member(struct task_struct * task,void * message)1002 static int oom_kill_memcg_member(struct task_struct *task, void *message)
1003 {
1004 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1005 	    !is_global_init(task)) {
1006 		get_task_struct(task);
1007 		__oom_kill_process(task, message);
1008 	}
1009 	return 0;
1010 }
1011 
oom_kill_process(struct oom_control * oc,const char * message)1012 static void oom_kill_process(struct oom_control *oc, const char *message)
1013 {
1014 	struct task_struct *victim = oc->chosen;
1015 	struct mem_cgroup *oom_group;
1016 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1017 					      DEFAULT_RATELIMIT_BURST);
1018 
1019 	/*
1020 	 * If the task is already exiting, don't alarm the sysadmin or kill
1021 	 * its children or threads, just give it access to memory reserves
1022 	 * so it can die quickly
1023 	 */
1024 	task_lock(victim);
1025 	if (task_will_free_mem(victim)) {
1026 		mark_oom_victim(victim);
1027 		queue_oom_reaper(victim);
1028 		task_unlock(victim);
1029 		put_task_struct(victim);
1030 		return;
1031 	}
1032 	task_unlock(victim);
1033 
1034 	if (__ratelimit(&oom_rs)) {
1035 		dump_header(oc);
1036 		dump_oom_victim(oc, victim);
1037 	}
1038 
1039 	/*
1040 	 * Do we need to kill the entire memory cgroup?
1041 	 * Or even one of the ancestor memory cgroups?
1042 	 * Check this out before killing the victim task.
1043 	 */
1044 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1045 
1046 	__oom_kill_process(victim, message);
1047 
1048 	/*
1049 	 * If necessary, kill all tasks in the selected memory cgroup.
1050 	 */
1051 	if (oom_group) {
1052 		memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1053 		mem_cgroup_print_oom_group(oom_group);
1054 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1055 				      (void *)message);
1056 		mem_cgroup_put(oom_group);
1057 	}
1058 }
1059 
1060 /*
1061  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1062  */
check_panic_on_oom(struct oom_control * oc)1063 static void check_panic_on_oom(struct oom_control *oc)
1064 {
1065 	if (likely(!sysctl_panic_on_oom))
1066 		return;
1067 	if (sysctl_panic_on_oom != 2) {
1068 		/*
1069 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1070 		 * does not panic for cpuset, mempolicy, or memcg allocation
1071 		 * failures.
1072 		 */
1073 		if (oc->constraint != CONSTRAINT_NONE)
1074 			return;
1075 	}
1076 	/* Do not panic for oom kills triggered by sysrq */
1077 	if (is_sysrq_oom(oc))
1078 		return;
1079 	dump_header(oc);
1080 	panic("Out of memory: %s panic_on_oom is enabled\n",
1081 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1082 }
1083 
1084 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1085 
register_oom_notifier(struct notifier_block * nb)1086 int register_oom_notifier(struct notifier_block *nb)
1087 {
1088 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1089 }
1090 EXPORT_SYMBOL_GPL(register_oom_notifier);
1091 
unregister_oom_notifier(struct notifier_block * nb)1092 int unregister_oom_notifier(struct notifier_block *nb)
1093 {
1094 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1095 }
1096 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1097 
1098 /**
1099  * out_of_memory - kill the "best" process when we run out of memory
1100  * @oc: pointer to struct oom_control
1101  *
1102  * If we run out of memory, we have the choice between either
1103  * killing a random task (bad), letting the system crash (worse)
1104  * OR try to be smart about which process to kill. Note that we
1105  * don't have to be perfect here, we just have to be good.
1106  */
out_of_memory(struct oom_control * oc)1107 bool out_of_memory(struct oom_control *oc)
1108 {
1109 	unsigned long freed = 0;
1110 
1111 	if (oom_killer_disabled)
1112 		return false;
1113 
1114 	if (!is_memcg_oom(oc)) {
1115 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1116 		if (freed > 0 && !is_sysrq_oom(oc))
1117 			/* Got some memory back in the last second. */
1118 			return true;
1119 	}
1120 
1121 	/*
1122 	 * If current has a pending SIGKILL or is exiting, then automatically
1123 	 * select it.  The goal is to allow it to allocate so that it may
1124 	 * quickly exit and free its memory.
1125 	 */
1126 	if (task_will_free_mem(current)) {
1127 		mark_oom_victim(current);
1128 		queue_oom_reaper(current);
1129 		return true;
1130 	}
1131 
1132 	/*
1133 	 * The OOM killer does not compensate for IO-less reclaim.
1134 	 * But mem_cgroup_oom() has to invoke the OOM killer even
1135 	 * if it is a GFP_NOFS allocation.
1136 	 */
1137 	if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1138 		return true;
1139 
1140 	/*
1141 	 * Check if there were limitations on the allocation (only relevant for
1142 	 * NUMA and memcg) that may require different handling.
1143 	 */
1144 	oc->constraint = constrained_alloc(oc);
1145 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1146 		oc->nodemask = NULL;
1147 	check_panic_on_oom(oc);
1148 
1149 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1150 	    current->mm && !oom_unkillable_task(current) &&
1151 	    oom_cpuset_eligible(current, oc) &&
1152 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1153 		get_task_struct(current);
1154 		oc->chosen = current;
1155 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1156 		return true;
1157 	}
1158 
1159 	select_bad_process(oc);
1160 	/* Found nothing?!?! */
1161 	if (!oc->chosen) {
1162 		dump_header(oc);
1163 		pr_warn("Out of memory and no killable processes...\n");
1164 		/*
1165 		 * If we got here due to an actual allocation at the
1166 		 * system level, we cannot survive this and will enter
1167 		 * an endless loop in the allocator. Bail out now.
1168 		 */
1169 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1170 			panic("System is deadlocked on memory\n");
1171 	}
1172 	if (oc->chosen && oc->chosen != (void *)-1UL)
1173 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1174 				 "Memory cgroup out of memory");
1175 	return !!oc->chosen;
1176 }
1177 
1178 /*
1179  * The pagefault handler calls here because some allocation has failed. We have
1180  * to take care of the memcg OOM here because this is the only safe context without
1181  * any locks held but let the oom killer triggered from the allocation context care
1182  * about the global OOM.
1183  */
pagefault_out_of_memory(void)1184 void pagefault_out_of_memory(void)
1185 {
1186 	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1187 				      DEFAULT_RATELIMIT_BURST);
1188 
1189 	if (mem_cgroup_oom_synchronize(true))
1190 		return;
1191 
1192 	if (fatal_signal_pending(current))
1193 		return;
1194 
1195 	if (__ratelimit(&pfoom_rs))
1196 		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1197 }
1198 
SYSCALL_DEFINE2(process_mrelease,int,pidfd,unsigned int,flags)1199 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1200 {
1201 #ifdef CONFIG_MMU
1202 	struct mm_struct *mm = NULL;
1203 	struct task_struct *task;
1204 	struct task_struct *p;
1205 	unsigned int f_flags;
1206 	bool reap = false;
1207 	long ret = 0;
1208 
1209 	if (flags)
1210 		return -EINVAL;
1211 
1212 	task = pidfd_get_task(pidfd, &f_flags);
1213 	if (IS_ERR(task))
1214 		return PTR_ERR(task);
1215 
1216 	/*
1217 	 * Make sure to choose a thread which still has a reference to mm
1218 	 * during the group exit
1219 	 */
1220 	p = find_lock_task_mm(task);
1221 	if (!p) {
1222 		ret = -ESRCH;
1223 		goto put_task;
1224 	}
1225 
1226 	mm = p->mm;
1227 	mmgrab(mm);
1228 
1229 	if (task_will_free_mem(p))
1230 		reap = true;
1231 	else {
1232 		/* Error only if the work has not been done already */
1233 		if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1234 			ret = -EINVAL;
1235 	}
1236 	task_unlock(p);
1237 
1238 	if (!reap)
1239 		goto drop_mm;
1240 
1241 	if (mmap_read_lock_killable(mm)) {
1242 		ret = -EINTR;
1243 		goto drop_mm;
1244 	}
1245 	/*
1246 	 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1247 	 * possible change in exit_mmap is seen
1248 	 */
1249 	if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1250 		ret = -EAGAIN;
1251 	mmap_read_unlock(mm);
1252 
1253 drop_mm:
1254 	mmdrop(mm);
1255 put_task:
1256 	put_task_struct(task);
1257 	return ret;
1258 #else
1259 	return -ENOSYS;
1260 #endif /* CONFIG_MMU */
1261 }
1262