1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file handles the architecture dependent parts of process handling.
4  *
5  *    Copyright IBM Corp. 1999, 2009
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *		 Hartmut Penner <hp@de.ibm.com>,
8  *		 Denis Joseph Barrow,
9  */
10 
11 #include <linux/elf-randomize.h>
12 #include <linux/compiler.h>
13 #include <linux/cpu.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/tick.h>
25 #include <linux/personality.h>
26 #include <linux/syscalls.h>
27 #include <linux/compat.h>
28 #include <linux/kprobes.h>
29 #include <linux/random.h>
30 #include <linux/export.h>
31 #include <linux/init_task.h>
32 #include <linux/entry-common.h>
33 #include <linux/io.h>
34 #include <asm/guarded_storage.h>
35 #include <asm/access-regs.h>
36 #include <asm/switch_to.h>
37 #include <asm/cpu_mf.h>
38 #include <asm/processor.h>
39 #include <asm/ptrace.h>
40 #include <asm/vtimer.h>
41 #include <asm/exec.h>
42 #include <asm/fpu.h>
43 #include <asm/irq.h>
44 #include <asm/nmi.h>
45 #include <asm/smp.h>
46 #include <asm/stacktrace.h>
47 #include <asm/runtime_instr.h>
48 #include <asm/unwind.h>
49 #include "entry.h"
50 
51 void ret_from_fork(void) asm("ret_from_fork");
52 
__ret_from_fork(struct task_struct * prev,struct pt_regs * regs)53 void __ret_from_fork(struct task_struct *prev, struct pt_regs *regs)
54 {
55 	void (*func)(void *arg);
56 
57 	schedule_tail(prev);
58 
59 	if (!user_mode(regs)) {
60 		/* Kernel thread */
61 		func = (void *)regs->gprs[9];
62 		func((void *)regs->gprs[10]);
63 	}
64 	clear_pt_regs_flag(regs, PIF_SYSCALL);
65 	syscall_exit_to_user_mode(regs);
66 }
67 
flush_thread(void)68 void flush_thread(void)
69 {
70 }
71 
arch_setup_new_exec(void)72 void arch_setup_new_exec(void)
73 {
74 	if (get_lowcore()->current_pid != current->pid) {
75 		get_lowcore()->current_pid = current->pid;
76 		if (test_facility(40))
77 			lpp(&get_lowcore()->lpp);
78 	}
79 }
80 
arch_release_task_struct(struct task_struct * tsk)81 void arch_release_task_struct(struct task_struct *tsk)
82 {
83 	runtime_instr_release(tsk);
84 	guarded_storage_release(tsk);
85 }
86 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)87 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
88 {
89 	save_user_fpu_regs();
90 
91 	*dst = *src;
92 	dst->thread.kfpu_flags = 0;
93 
94 	/*
95 	 * Don't transfer over the runtime instrumentation or the guarded
96 	 * storage control block pointers. These fields are cleared here instead
97 	 * of in copy_thread() to avoid premature freeing of associated memory
98 	 * on fork() failure. Wait to clear the RI flag because ->stack still
99 	 * refers to the source thread.
100 	 */
101 	dst->thread.ri_cb = NULL;
102 	dst->thread.gs_cb = NULL;
103 	dst->thread.gs_bc_cb = NULL;
104 
105 	return 0;
106 }
107 
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)108 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
109 {
110 	unsigned long clone_flags = args->flags;
111 	unsigned long new_stackp = args->stack;
112 	unsigned long tls = args->tls;
113 	struct fake_frame
114 	{
115 		struct stack_frame sf;
116 		struct pt_regs childregs;
117 	} *frame;
118 
119 	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
120 	p->thread.ksp = (unsigned long) frame;
121 	/* Save access registers to new thread structure. */
122 	save_access_regs(&p->thread.acrs[0]);
123 	/* start new process with ar4 pointing to the correct address space */
124 	/* Don't copy debug registers */
125 	memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
126 	memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
127 	clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
128 	p->thread.per_flags = 0;
129 	/* Initialize per thread user and system timer values */
130 	p->thread.user_timer = 0;
131 	p->thread.guest_timer = 0;
132 	p->thread.system_timer = 0;
133 	p->thread.hardirq_timer = 0;
134 	p->thread.softirq_timer = 0;
135 	p->thread.last_break = 1;
136 
137 	frame->sf.back_chain = 0;
138 	frame->sf.gprs[11 - 6] = (unsigned long)&frame->childregs;
139 	frame->sf.gprs[12 - 6] = (unsigned long)p;
140 	/* new return point is ret_from_fork */
141 	frame->sf.gprs[14 - 6] = (unsigned long)ret_from_fork;
142 	/* fake return stack for resume(), don't go back to schedule */
143 	frame->sf.gprs[15 - 6] = (unsigned long)frame;
144 
145 	/* Store access registers to kernel stack of new process. */
146 	if (unlikely(args->fn)) {
147 		/* kernel thread */
148 		memset(&frame->childregs, 0, sizeof(struct pt_regs));
149 		frame->childregs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_IO |
150 					    PSW_MASK_EXT | PSW_MASK_MCHECK;
151 		frame->childregs.gprs[9] = (unsigned long)args->fn;
152 		frame->childregs.gprs[10] = (unsigned long)args->fn_arg;
153 		frame->childregs.orig_gpr2 = -1;
154 		frame->childregs.last_break = 1;
155 		return 0;
156 	}
157 	frame->childregs = *current_pt_regs();
158 	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
159 	frame->childregs.flags = 0;
160 	if (new_stackp)
161 		frame->childregs.gprs[15] = new_stackp;
162 	/*
163 	 * Clear the runtime instrumentation flag after the above childregs
164 	 * copy. The CB pointer was already cleared in arch_dup_task_struct().
165 	 */
166 	frame->childregs.psw.mask &= ~PSW_MASK_RI;
167 
168 	/* Set a new TLS ?  */
169 	if (clone_flags & CLONE_SETTLS) {
170 		if (is_compat_task()) {
171 			p->thread.acrs[0] = (unsigned int)tls;
172 		} else {
173 			p->thread.acrs[0] = (unsigned int)(tls >> 32);
174 			p->thread.acrs[1] = (unsigned int)tls;
175 		}
176 	}
177 	/*
178 	 * s390 stores the svc return address in arch_data when calling
179 	 * sigreturn()/restart_syscall() via vdso. 1 means no valid address
180 	 * stored.
181 	 */
182 	p->restart_block.arch_data = 1;
183 	return 0;
184 }
185 
execve_tail(void)186 void execve_tail(void)
187 {
188 	current->thread.ufpu.fpc = 0;
189 	fpu_sfpc(0);
190 }
191 
__switch_to(struct task_struct * prev,struct task_struct * next)192 struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *next)
193 {
194 	save_user_fpu_regs();
195 	save_kernel_fpu_regs(&prev->thread);
196 	save_access_regs(&prev->thread.acrs[0]);
197 	save_ri_cb(prev->thread.ri_cb);
198 	save_gs_cb(prev->thread.gs_cb);
199 	update_cr_regs(next);
200 	restore_kernel_fpu_regs(&next->thread);
201 	restore_access_regs(&next->thread.acrs[0]);
202 	restore_ri_cb(next->thread.ri_cb, prev->thread.ri_cb);
203 	restore_gs_cb(next->thread.gs_cb);
204 	return __switch_to_asm(prev, next);
205 }
206 
__get_wchan(struct task_struct * p)207 unsigned long __get_wchan(struct task_struct *p)
208 {
209 	struct unwind_state state;
210 	unsigned long ip = 0;
211 
212 	if (!task_stack_page(p))
213 		return 0;
214 
215 	if (!try_get_task_stack(p))
216 		return 0;
217 
218 	unwind_for_each_frame(&state, p, NULL, 0) {
219 		if (state.stack_info.type != STACK_TYPE_TASK) {
220 			ip = 0;
221 			break;
222 		}
223 
224 		ip = unwind_get_return_address(&state);
225 		if (!ip)
226 			break;
227 
228 		if (!in_sched_functions(ip))
229 			break;
230 	}
231 
232 	put_task_stack(p);
233 	return ip;
234 }
235 
arch_align_stack(unsigned long sp)236 unsigned long arch_align_stack(unsigned long sp)
237 {
238 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
239 		sp -= get_random_u32_below(PAGE_SIZE);
240 	return sp & ~0xf;
241 }
242 
brk_rnd(void)243 static inline unsigned long brk_rnd(void)
244 {
245 	return (get_random_u16() & BRK_RND_MASK) << PAGE_SHIFT;
246 }
247 
arch_randomize_brk(struct mm_struct * mm)248 unsigned long arch_randomize_brk(struct mm_struct *mm)
249 {
250 	unsigned long ret;
251 
252 	ret = PAGE_ALIGN(mm->brk + brk_rnd());
253 	return (ret > mm->brk) ? ret : mm->brk;
254 }
255