1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4   * Copyright (C) 2016-2017 Milan Broz
5   * Copyright (C) 2016-2017 Mikulas Patocka
6   *
7   * This file is released under the GPL.
8   */
9  
10  #include "dm-bio-record.h"
11  
12  #include <linux/compiler.h>
13  #include <linux/module.h>
14  #include <linux/device-mapper.h>
15  #include <linux/dm-io.h>
16  #include <linux/vmalloc.h>
17  #include <linux/sort.h>
18  #include <linux/rbtree.h>
19  #include <linux/delay.h>
20  #include <linux/random.h>
21  #include <linux/reboot.h>
22  #include <crypto/hash.h>
23  #include <crypto/skcipher.h>
24  #include <linux/async_tx.h>
25  #include <linux/dm-bufio.h>
26  
27  #include "dm-audit.h"
28  
29  #define DM_MSG_PREFIX "integrity"
30  
31  #define DEFAULT_INTERLEAVE_SECTORS	32768
32  #define DEFAULT_JOURNAL_SIZE_FACTOR	7
33  #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34  #define DEFAULT_BUFFER_SECTORS		128
35  #define DEFAULT_JOURNAL_WATERMARK	50
36  #define DEFAULT_SYNC_MSEC		10000
37  #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38  #define MIN_LOG2_INTERLEAVE_SECTORS	3
39  #define MAX_LOG2_INTERLEAVE_SECTORS	31
40  #define METADATA_WORKQUEUE_MAX_ACTIVE	16
41  #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42  #define RECALC_WRITE_SUPER		16
43  #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44  #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45  #define DISCARD_FILLER			0xf6
46  #define SALT_SIZE			16
47  #define RECHECK_POOL_SIZE		256
48  
49  /*
50   * Warning - DEBUG_PRINT prints security-sensitive data to the log,
51   * so it should not be enabled in the official kernel
52   */
53  //#define DEBUG_PRINT
54  //#define INTERNAL_VERIFY
55  
56  /*
57   * On disk structures
58   */
59  
60  #define SB_MAGIC			"integrt"
61  #define SB_VERSION_1			1
62  #define SB_VERSION_2			2
63  #define SB_VERSION_3			3
64  #define SB_VERSION_4			4
65  #define SB_VERSION_5			5
66  #define SB_VERSION_6			6
67  #define SB_SECTORS			8
68  #define MAX_SECTORS_PER_BLOCK		8
69  
70  struct superblock {
71  	__u8 magic[8];
72  	__u8 version;
73  	__u8 log2_interleave_sectors;
74  	__le16 integrity_tag_size;
75  	__le32 journal_sections;
76  	__le64 provided_data_sectors;	/* userspace uses this value */
77  	__le32 flags;
78  	__u8 log2_sectors_per_block;
79  	__u8 log2_blocks_per_bitmap_bit;
80  	__u8 pad[2];
81  	__le64 recalc_sector;
82  	__u8 pad2[8];
83  	__u8 salt[SALT_SIZE];
84  };
85  
86  #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
87  #define SB_FLAG_RECALCULATING		0x2
88  #define SB_FLAG_DIRTY_BITMAP		0x4
89  #define SB_FLAG_FIXED_PADDING		0x8
90  #define SB_FLAG_FIXED_HMAC		0x10
91  #define SB_FLAG_INLINE			0x20
92  
93  #define	JOURNAL_ENTRY_ROUNDUP		8
94  
95  typedef __le64 commit_id_t;
96  #define JOURNAL_MAC_PER_SECTOR		8
97  
98  struct journal_entry {
99  	union {
100  		struct {
101  			__le32 sector_lo;
102  			__le32 sector_hi;
103  		} s;
104  		__le64 sector;
105  	} u;
106  	commit_id_t last_bytes[];
107  	/* __u8 tag[0]; */
108  };
109  
110  #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
111  
112  #if BITS_PER_LONG == 64
113  #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
114  #else
115  #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
116  #endif
117  #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
118  #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
119  #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
120  #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
121  #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
122  
123  #define JOURNAL_BLOCK_SECTORS		8
124  #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
125  #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
126  
127  struct journal_sector {
128  	struct_group(sectors,
129  		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
130  		__u8 mac[JOURNAL_MAC_PER_SECTOR];
131  	);
132  	commit_id_t commit_id;
133  };
134  
135  #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
136  
137  #define METADATA_PADDING_SECTORS	8
138  
139  #define N_COMMIT_IDS			4
140  
prev_commit_seq(unsigned char seq)141  static unsigned char prev_commit_seq(unsigned char seq)
142  {
143  	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
144  }
145  
next_commit_seq(unsigned char seq)146  static unsigned char next_commit_seq(unsigned char seq)
147  {
148  	return (seq + 1) % N_COMMIT_IDS;
149  }
150  
151  /*
152   * In-memory structures
153   */
154  
155  struct journal_node {
156  	struct rb_node node;
157  	sector_t sector;
158  };
159  
160  struct alg_spec {
161  	char *alg_string;
162  	char *key_string;
163  	__u8 *key;
164  	unsigned int key_size;
165  };
166  
167  struct dm_integrity_c {
168  	struct dm_dev *dev;
169  	struct dm_dev *meta_dev;
170  	unsigned int tag_size;
171  	__s8 log2_tag_size;
172  	unsigned int tuple_size;
173  	sector_t start;
174  	mempool_t journal_io_mempool;
175  	struct dm_io_client *io;
176  	struct dm_bufio_client *bufio;
177  	struct workqueue_struct *metadata_wq;
178  	struct superblock *sb;
179  	unsigned int journal_pages;
180  	unsigned int n_bitmap_blocks;
181  
182  	struct page_list *journal;
183  	struct page_list *journal_io;
184  	struct page_list *journal_xor;
185  	struct page_list *recalc_bitmap;
186  	struct page_list *may_write_bitmap;
187  	struct bitmap_block_status *bbs;
188  	unsigned int bitmap_flush_interval;
189  	int synchronous_mode;
190  	struct bio_list synchronous_bios;
191  	struct delayed_work bitmap_flush_work;
192  
193  	struct crypto_skcipher *journal_crypt;
194  	struct scatterlist **journal_scatterlist;
195  	struct scatterlist **journal_io_scatterlist;
196  	struct skcipher_request **sk_requests;
197  
198  	struct crypto_shash *journal_mac;
199  
200  	struct journal_node *journal_tree;
201  	struct rb_root journal_tree_root;
202  
203  	sector_t provided_data_sectors;
204  
205  	unsigned short journal_entry_size;
206  	unsigned char journal_entries_per_sector;
207  	unsigned char journal_section_entries;
208  	unsigned short journal_section_sectors;
209  	unsigned int journal_sections;
210  	unsigned int journal_entries;
211  	sector_t data_device_sectors;
212  	sector_t meta_device_sectors;
213  	unsigned int initial_sectors;
214  	unsigned int metadata_run;
215  	__s8 log2_metadata_run;
216  	__u8 log2_buffer_sectors;
217  	__u8 sectors_per_block;
218  	__u8 log2_blocks_per_bitmap_bit;
219  
220  	unsigned char mode;
221  
222  	int failed;
223  
224  	struct crypto_shash *internal_hash;
225  
226  	struct dm_target *ti;
227  
228  	/* these variables are locked with endio_wait.lock */
229  	struct rb_root in_progress;
230  	struct list_head wait_list;
231  	wait_queue_head_t endio_wait;
232  	struct workqueue_struct *wait_wq;
233  	struct workqueue_struct *offload_wq;
234  
235  	unsigned char commit_seq;
236  	commit_id_t commit_ids[N_COMMIT_IDS];
237  
238  	unsigned int committed_section;
239  	unsigned int n_committed_sections;
240  
241  	unsigned int uncommitted_section;
242  	unsigned int n_uncommitted_sections;
243  
244  	unsigned int free_section;
245  	unsigned char free_section_entry;
246  	unsigned int free_sectors;
247  
248  	unsigned int free_sectors_threshold;
249  
250  	struct workqueue_struct *commit_wq;
251  	struct work_struct commit_work;
252  
253  	struct workqueue_struct *writer_wq;
254  	struct work_struct writer_work;
255  
256  	struct workqueue_struct *recalc_wq;
257  	struct work_struct recalc_work;
258  
259  	struct bio_list flush_bio_list;
260  
261  	unsigned long autocommit_jiffies;
262  	struct timer_list autocommit_timer;
263  	unsigned int autocommit_msec;
264  
265  	wait_queue_head_t copy_to_journal_wait;
266  
267  	struct completion crypto_backoff;
268  
269  	bool wrote_to_journal;
270  	bool journal_uptodate;
271  	bool just_formatted;
272  	bool recalculate_flag;
273  	bool reset_recalculate_flag;
274  	bool discard;
275  	bool fix_padding;
276  	bool fix_hmac;
277  	bool legacy_recalculate;
278  
279  	struct alg_spec internal_hash_alg;
280  	struct alg_spec journal_crypt_alg;
281  	struct alg_spec journal_mac_alg;
282  
283  	atomic64_t number_of_mismatches;
284  
285  	mempool_t recheck_pool;
286  	struct bio_set recheck_bios;
287  	struct bio_set recalc_bios;
288  
289  	struct notifier_block reboot_notifier;
290  };
291  
292  struct dm_integrity_range {
293  	sector_t logical_sector;
294  	sector_t n_sectors;
295  	bool waiting;
296  	union {
297  		struct rb_node node;
298  		struct {
299  			struct task_struct *task;
300  			struct list_head wait_entry;
301  		};
302  	};
303  };
304  
305  struct dm_integrity_io {
306  	struct work_struct work;
307  
308  	struct dm_integrity_c *ic;
309  	enum req_op op;
310  	bool fua;
311  
312  	struct dm_integrity_range range;
313  
314  	sector_t metadata_block;
315  	unsigned int metadata_offset;
316  
317  	atomic_t in_flight;
318  	blk_status_t bi_status;
319  
320  	struct completion *completion;
321  
322  	struct dm_bio_details bio_details;
323  
324  	char *integrity_payload;
325  	unsigned payload_len;
326  	bool integrity_payload_from_mempool;
327  	bool integrity_range_locked;
328  };
329  
330  struct journal_completion {
331  	struct dm_integrity_c *ic;
332  	atomic_t in_flight;
333  	struct completion comp;
334  };
335  
336  struct journal_io {
337  	struct dm_integrity_range range;
338  	struct journal_completion *comp;
339  };
340  
341  struct bitmap_block_status {
342  	struct work_struct work;
343  	struct dm_integrity_c *ic;
344  	unsigned int idx;
345  	unsigned long *bitmap;
346  	struct bio_list bio_queue;
347  	spinlock_t bio_queue_lock;
348  
349  };
350  
351  static struct kmem_cache *journal_io_cache;
352  
353  #define JOURNAL_IO_MEMPOOL	32
354  
355  #ifdef DEBUG_PRINT
356  #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
357  #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
358  						       len ? ": " : "", len, bytes)
359  #else
360  #define DEBUG_print(x, ...)			do { } while (0)
361  #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
362  #endif
363  
364  static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
365  static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map);
366  static void integrity_bio_wait(struct work_struct *w);
367  static void dm_integrity_dtr(struct dm_target *ti);
368  
dm_integrity_io_error(struct dm_integrity_c * ic,const char * msg,int err)369  static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
370  {
371  	if (err == -EILSEQ)
372  		atomic64_inc(&ic->number_of_mismatches);
373  	if (!cmpxchg(&ic->failed, 0, err))
374  		DMERR("Error on %s: %d", msg, err);
375  }
376  
dm_integrity_failed(struct dm_integrity_c * ic)377  static int dm_integrity_failed(struct dm_integrity_c *ic)
378  {
379  	return READ_ONCE(ic->failed);
380  }
381  
dm_integrity_disable_recalculate(struct dm_integrity_c * ic)382  static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
383  {
384  	if (ic->legacy_recalculate)
385  		return false;
386  	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
387  	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
388  	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
389  		return true;
390  	return false;
391  }
392  
dm_integrity_commit_id(struct dm_integrity_c * ic,unsigned int i,unsigned int j,unsigned char seq)393  static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
394  					  unsigned int j, unsigned char seq)
395  {
396  	/*
397  	 * Xor the number with section and sector, so that if a piece of
398  	 * journal is written at wrong place, it is detected.
399  	 */
400  	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
401  }
402  
get_area_and_offset(struct dm_integrity_c * ic,sector_t data_sector,sector_t * area,sector_t * offset)403  static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
404  				sector_t *area, sector_t *offset)
405  {
406  	if (!ic->meta_dev) {
407  		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
408  		*area = data_sector >> log2_interleave_sectors;
409  		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
410  	} else {
411  		*area = 0;
412  		*offset = data_sector;
413  	}
414  }
415  
416  #define sector_to_block(ic, n)						\
417  do {									\
418  	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
419  	(n) >>= (ic)->sb->log2_sectors_per_block;			\
420  } while (0)
421  
get_metadata_sector_and_offset(struct dm_integrity_c * ic,sector_t area,sector_t offset,unsigned int * metadata_offset)422  static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
423  					    sector_t offset, unsigned int *metadata_offset)
424  {
425  	__u64 ms;
426  	unsigned int mo;
427  
428  	ms = area << ic->sb->log2_interleave_sectors;
429  	if (likely(ic->log2_metadata_run >= 0))
430  		ms += area << ic->log2_metadata_run;
431  	else
432  		ms += area * ic->metadata_run;
433  	ms >>= ic->log2_buffer_sectors;
434  
435  	sector_to_block(ic, offset);
436  
437  	if (likely(ic->log2_tag_size >= 0)) {
438  		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
439  		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
440  	} else {
441  		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
442  		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
443  	}
444  	*metadata_offset = mo;
445  	return ms;
446  }
447  
get_data_sector(struct dm_integrity_c * ic,sector_t area,sector_t offset)448  static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
449  {
450  	sector_t result;
451  
452  	if (ic->meta_dev)
453  		return offset;
454  
455  	result = area << ic->sb->log2_interleave_sectors;
456  	if (likely(ic->log2_metadata_run >= 0))
457  		result += (area + 1) << ic->log2_metadata_run;
458  	else
459  		result += (area + 1) * ic->metadata_run;
460  
461  	result += (sector_t)ic->initial_sectors + offset;
462  	result += ic->start;
463  
464  	return result;
465  }
466  
wraparound_section(struct dm_integrity_c * ic,unsigned int * sec_ptr)467  static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
468  {
469  	if (unlikely(*sec_ptr >= ic->journal_sections))
470  		*sec_ptr -= ic->journal_sections;
471  }
472  
sb_set_version(struct dm_integrity_c * ic)473  static void sb_set_version(struct dm_integrity_c *ic)
474  {
475  	if (ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE))
476  		ic->sb->version = SB_VERSION_6;
477  	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
478  		ic->sb->version = SB_VERSION_5;
479  	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
480  		ic->sb->version = SB_VERSION_4;
481  	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
482  		ic->sb->version = SB_VERSION_3;
483  	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
484  		ic->sb->version = SB_VERSION_2;
485  	else
486  		ic->sb->version = SB_VERSION_1;
487  }
488  
sb_mac(struct dm_integrity_c * ic,bool wr)489  static int sb_mac(struct dm_integrity_c *ic, bool wr)
490  {
491  	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
492  	int r;
493  	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
494  	__u8 *sb = (__u8 *)ic->sb;
495  	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
496  
497  	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT ||
498  	    mac_size > HASH_MAX_DIGESTSIZE) {
499  		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
500  		return -EINVAL;
501  	}
502  
503  	desc->tfm = ic->journal_mac;
504  
505  	if (likely(wr)) {
506  		r = crypto_shash_digest(desc, sb, mac - sb, mac);
507  		if (unlikely(r < 0)) {
508  			dm_integrity_io_error(ic, "crypto_shash_digest", r);
509  			return r;
510  		}
511  	} else {
512  		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
513  
514  		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
515  		if (unlikely(r < 0)) {
516  			dm_integrity_io_error(ic, "crypto_shash_digest", r);
517  			return r;
518  		}
519  		if (memcmp(mac, actual_mac, mac_size)) {
520  			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
521  			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
522  			return -EILSEQ;
523  		}
524  	}
525  
526  	return 0;
527  }
528  
sync_rw_sb(struct dm_integrity_c * ic,blk_opf_t opf)529  static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
530  {
531  	struct dm_io_request io_req;
532  	struct dm_io_region io_loc;
533  	const enum req_op op = opf & REQ_OP_MASK;
534  	int r;
535  
536  	io_req.bi_opf = opf;
537  	io_req.mem.type = DM_IO_KMEM;
538  	io_req.mem.ptr.addr = ic->sb;
539  	io_req.notify.fn = NULL;
540  	io_req.client = ic->io;
541  	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
542  	io_loc.sector = ic->start;
543  	io_loc.count = SB_SECTORS;
544  
545  	if (op == REQ_OP_WRITE) {
546  		sb_set_version(ic);
547  		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
548  			r = sb_mac(ic, true);
549  			if (unlikely(r))
550  				return r;
551  		}
552  	}
553  
554  	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
555  	if (unlikely(r))
556  		return r;
557  
558  	if (op == REQ_OP_READ) {
559  		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
560  			r = sb_mac(ic, false);
561  			if (unlikely(r))
562  				return r;
563  		}
564  	}
565  
566  	return 0;
567  }
568  
569  #define BITMAP_OP_TEST_ALL_SET		0
570  #define BITMAP_OP_TEST_ALL_CLEAR	1
571  #define BITMAP_OP_SET			2
572  #define BITMAP_OP_CLEAR			3
573  
block_bitmap_op(struct dm_integrity_c * ic,struct page_list * bitmap,sector_t sector,sector_t n_sectors,int mode)574  static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
575  			    sector_t sector, sector_t n_sectors, int mode)
576  {
577  	unsigned long bit, end_bit, this_end_bit, page, end_page;
578  	unsigned long *data;
579  
580  	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
581  		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
582  			sector,
583  			n_sectors,
584  			ic->sb->log2_sectors_per_block,
585  			ic->log2_blocks_per_bitmap_bit,
586  			mode);
587  		BUG();
588  	}
589  
590  	if (unlikely(!n_sectors))
591  		return true;
592  
593  	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
594  	end_bit = (sector + n_sectors - 1) >>
595  		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
596  
597  	page = bit / (PAGE_SIZE * 8);
598  	bit %= PAGE_SIZE * 8;
599  
600  	end_page = end_bit / (PAGE_SIZE * 8);
601  	end_bit %= PAGE_SIZE * 8;
602  
603  repeat:
604  	if (page < end_page)
605  		this_end_bit = PAGE_SIZE * 8 - 1;
606  	else
607  		this_end_bit = end_bit;
608  
609  	data = lowmem_page_address(bitmap[page].page);
610  
611  	if (mode == BITMAP_OP_TEST_ALL_SET) {
612  		while (bit <= this_end_bit) {
613  			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
614  				do {
615  					if (data[bit / BITS_PER_LONG] != -1)
616  						return false;
617  					bit += BITS_PER_LONG;
618  				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
619  				continue;
620  			}
621  			if (!test_bit(bit, data))
622  				return false;
623  			bit++;
624  		}
625  	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
626  		while (bit <= this_end_bit) {
627  			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
628  				do {
629  					if (data[bit / BITS_PER_LONG] != 0)
630  						return false;
631  					bit += BITS_PER_LONG;
632  				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
633  				continue;
634  			}
635  			if (test_bit(bit, data))
636  				return false;
637  			bit++;
638  		}
639  	} else if (mode == BITMAP_OP_SET) {
640  		while (bit <= this_end_bit) {
641  			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
642  				do {
643  					data[bit / BITS_PER_LONG] = -1;
644  					bit += BITS_PER_LONG;
645  				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
646  				continue;
647  			}
648  			__set_bit(bit, data);
649  			bit++;
650  		}
651  	} else if (mode == BITMAP_OP_CLEAR) {
652  		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
653  			clear_page(data);
654  		else {
655  			while (bit <= this_end_bit) {
656  				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
657  					do {
658  						data[bit / BITS_PER_LONG] = 0;
659  						bit += BITS_PER_LONG;
660  					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
661  					continue;
662  				}
663  				__clear_bit(bit, data);
664  				bit++;
665  			}
666  		}
667  	} else {
668  		BUG();
669  	}
670  
671  	if (unlikely(page < end_page)) {
672  		bit = 0;
673  		page++;
674  		goto repeat;
675  	}
676  
677  	return true;
678  }
679  
block_bitmap_copy(struct dm_integrity_c * ic,struct page_list * dst,struct page_list * src)680  static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
681  {
682  	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
683  	unsigned int i;
684  
685  	for (i = 0; i < n_bitmap_pages; i++) {
686  		unsigned long *dst_data = lowmem_page_address(dst[i].page);
687  		unsigned long *src_data = lowmem_page_address(src[i].page);
688  
689  		copy_page(dst_data, src_data);
690  	}
691  }
692  
sector_to_bitmap_block(struct dm_integrity_c * ic,sector_t sector)693  static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
694  {
695  	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
696  	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
697  
698  	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
699  	return &ic->bbs[bitmap_block];
700  }
701  
access_journal_check(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,bool e,const char * function)702  static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
703  				 bool e, const char *function)
704  {
705  #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
706  	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
707  
708  	if (unlikely(section >= ic->journal_sections) ||
709  	    unlikely(offset >= limit)) {
710  		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
711  		       function, section, offset, ic->journal_sections, limit);
712  		BUG();
713  	}
714  #endif
715  }
716  
page_list_location(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int * pl_index,unsigned int * pl_offset)717  static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
718  			       unsigned int *pl_index, unsigned int *pl_offset)
719  {
720  	unsigned int sector;
721  
722  	access_journal_check(ic, section, offset, false, "page_list_location");
723  
724  	sector = section * ic->journal_section_sectors + offset;
725  
726  	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
727  	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
728  }
729  
access_page_list(struct dm_integrity_c * ic,struct page_list * pl,unsigned int section,unsigned int offset,unsigned int * n_sectors)730  static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
731  					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
732  {
733  	unsigned int pl_index, pl_offset;
734  	char *va;
735  
736  	page_list_location(ic, section, offset, &pl_index, &pl_offset);
737  
738  	if (n_sectors)
739  		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
740  
741  	va = lowmem_page_address(pl[pl_index].page);
742  
743  	return (struct journal_sector *)(va + pl_offset);
744  }
745  
access_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset)746  static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
747  {
748  	return access_page_list(ic, ic->journal, section, offset, NULL);
749  }
750  
access_journal_entry(struct dm_integrity_c * ic,unsigned int section,unsigned int n)751  static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
752  {
753  	unsigned int rel_sector, offset;
754  	struct journal_sector *js;
755  
756  	access_journal_check(ic, section, n, true, "access_journal_entry");
757  
758  	rel_sector = n % JOURNAL_BLOCK_SECTORS;
759  	offset = n / JOURNAL_BLOCK_SECTORS;
760  
761  	js = access_journal(ic, section, rel_sector);
762  	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
763  }
764  
access_journal_data(struct dm_integrity_c * ic,unsigned int section,unsigned int n)765  static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
766  {
767  	n <<= ic->sb->log2_sectors_per_block;
768  
769  	n += JOURNAL_BLOCK_SECTORS;
770  
771  	access_journal_check(ic, section, n, false, "access_journal_data");
772  
773  	return access_journal(ic, section, n);
774  }
775  
section_mac(struct dm_integrity_c * ic,unsigned int section,__u8 result[JOURNAL_MAC_SIZE])776  static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
777  {
778  	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
779  	int r;
780  	unsigned int j, size;
781  
782  	desc->tfm = ic->journal_mac;
783  
784  	r = crypto_shash_init(desc);
785  	if (unlikely(r < 0)) {
786  		dm_integrity_io_error(ic, "crypto_shash_init", r);
787  		goto err;
788  	}
789  
790  	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
791  		__le64 section_le;
792  
793  		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
794  		if (unlikely(r < 0)) {
795  			dm_integrity_io_error(ic, "crypto_shash_update", r);
796  			goto err;
797  		}
798  
799  		section_le = cpu_to_le64(section);
800  		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
801  		if (unlikely(r < 0)) {
802  			dm_integrity_io_error(ic, "crypto_shash_update", r);
803  			goto err;
804  		}
805  	}
806  
807  	for (j = 0; j < ic->journal_section_entries; j++) {
808  		struct journal_entry *je = access_journal_entry(ic, section, j);
809  
810  		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
811  		if (unlikely(r < 0)) {
812  			dm_integrity_io_error(ic, "crypto_shash_update", r);
813  			goto err;
814  		}
815  	}
816  
817  	size = crypto_shash_digestsize(ic->journal_mac);
818  
819  	if (likely(size <= JOURNAL_MAC_SIZE)) {
820  		r = crypto_shash_final(desc, result);
821  		if (unlikely(r < 0)) {
822  			dm_integrity_io_error(ic, "crypto_shash_final", r);
823  			goto err;
824  		}
825  		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
826  	} else {
827  		__u8 digest[HASH_MAX_DIGESTSIZE];
828  
829  		if (WARN_ON(size > sizeof(digest))) {
830  			dm_integrity_io_error(ic, "digest_size", -EINVAL);
831  			goto err;
832  		}
833  		r = crypto_shash_final(desc, digest);
834  		if (unlikely(r < 0)) {
835  			dm_integrity_io_error(ic, "crypto_shash_final", r);
836  			goto err;
837  		}
838  		memcpy(result, digest, JOURNAL_MAC_SIZE);
839  	}
840  
841  	return;
842  err:
843  	memset(result, 0, JOURNAL_MAC_SIZE);
844  }
845  
rw_section_mac(struct dm_integrity_c * ic,unsigned int section,bool wr)846  static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
847  {
848  	__u8 result[JOURNAL_MAC_SIZE];
849  	unsigned int j;
850  
851  	if (!ic->journal_mac)
852  		return;
853  
854  	section_mac(ic, section, result);
855  
856  	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
857  		struct journal_sector *js = access_journal(ic, section, j);
858  
859  		if (likely(wr))
860  			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
861  		else {
862  			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
863  				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
864  				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
865  			}
866  		}
867  	}
868  }
869  
complete_journal_op(void * context)870  static void complete_journal_op(void *context)
871  {
872  	struct journal_completion *comp = context;
873  
874  	BUG_ON(!atomic_read(&comp->in_flight));
875  	if (likely(atomic_dec_and_test(&comp->in_flight)))
876  		complete(&comp->comp);
877  }
878  
xor_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)879  static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
880  			unsigned int n_sections, struct journal_completion *comp)
881  {
882  	struct async_submit_ctl submit;
883  	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
884  	unsigned int pl_index, pl_offset, section_index;
885  	struct page_list *source_pl, *target_pl;
886  
887  	if (likely(encrypt)) {
888  		source_pl = ic->journal;
889  		target_pl = ic->journal_io;
890  	} else {
891  		source_pl = ic->journal_io;
892  		target_pl = ic->journal;
893  	}
894  
895  	page_list_location(ic, section, 0, &pl_index, &pl_offset);
896  
897  	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
898  
899  	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
900  
901  	section_index = pl_index;
902  
903  	do {
904  		size_t this_step;
905  		struct page *src_pages[2];
906  		struct page *dst_page;
907  
908  		while (unlikely(pl_index == section_index)) {
909  			unsigned int dummy;
910  
911  			if (likely(encrypt))
912  				rw_section_mac(ic, section, true);
913  			section++;
914  			n_sections--;
915  			if (!n_sections)
916  				break;
917  			page_list_location(ic, section, 0, &section_index, &dummy);
918  		}
919  
920  		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
921  		dst_page = target_pl[pl_index].page;
922  		src_pages[0] = source_pl[pl_index].page;
923  		src_pages[1] = ic->journal_xor[pl_index].page;
924  
925  		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
926  
927  		pl_index++;
928  		pl_offset = 0;
929  		n_bytes -= this_step;
930  	} while (n_bytes);
931  
932  	BUG_ON(n_sections);
933  
934  	async_tx_issue_pending_all();
935  }
936  
complete_journal_encrypt(void * data,int err)937  static void complete_journal_encrypt(void *data, int err)
938  {
939  	struct journal_completion *comp = data;
940  
941  	if (unlikely(err)) {
942  		if (likely(err == -EINPROGRESS)) {
943  			complete(&comp->ic->crypto_backoff);
944  			return;
945  		}
946  		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
947  	}
948  	complete_journal_op(comp);
949  }
950  
do_crypt(bool encrypt,struct skcipher_request * req,struct journal_completion * comp)951  static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
952  {
953  	int r;
954  
955  	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
956  				      complete_journal_encrypt, comp);
957  	if (likely(encrypt))
958  		r = crypto_skcipher_encrypt(req);
959  	else
960  		r = crypto_skcipher_decrypt(req);
961  	if (likely(!r))
962  		return false;
963  	if (likely(r == -EINPROGRESS))
964  		return true;
965  	if (likely(r == -EBUSY)) {
966  		wait_for_completion(&comp->ic->crypto_backoff);
967  		reinit_completion(&comp->ic->crypto_backoff);
968  		return true;
969  	}
970  	dm_integrity_io_error(comp->ic, "encrypt", r);
971  	return false;
972  }
973  
crypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)974  static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
975  			  unsigned int n_sections, struct journal_completion *comp)
976  {
977  	struct scatterlist **source_sg;
978  	struct scatterlist **target_sg;
979  
980  	atomic_add(2, &comp->in_flight);
981  
982  	if (likely(encrypt)) {
983  		source_sg = ic->journal_scatterlist;
984  		target_sg = ic->journal_io_scatterlist;
985  	} else {
986  		source_sg = ic->journal_io_scatterlist;
987  		target_sg = ic->journal_scatterlist;
988  	}
989  
990  	do {
991  		struct skcipher_request *req;
992  		unsigned int ivsize;
993  		char *iv;
994  
995  		if (likely(encrypt))
996  			rw_section_mac(ic, section, true);
997  
998  		req = ic->sk_requests[section];
999  		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1000  		iv = req->iv;
1001  
1002  		memcpy(iv, iv + ivsize, ivsize);
1003  
1004  		req->src = source_sg[section];
1005  		req->dst = target_sg[section];
1006  
1007  		if (unlikely(do_crypt(encrypt, req, comp)))
1008  			atomic_inc(&comp->in_flight);
1009  
1010  		section++;
1011  		n_sections--;
1012  	} while (n_sections);
1013  
1014  	atomic_dec(&comp->in_flight);
1015  	complete_journal_op(comp);
1016  }
1017  
encrypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1018  static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1019  			    unsigned int n_sections, struct journal_completion *comp)
1020  {
1021  	if (ic->journal_xor)
1022  		return xor_journal(ic, encrypt, section, n_sections, comp);
1023  	else
1024  		return crypt_journal(ic, encrypt, section, n_sections, comp);
1025  }
1026  
complete_journal_io(unsigned long error,void * context)1027  static void complete_journal_io(unsigned long error, void *context)
1028  {
1029  	struct journal_completion *comp = context;
1030  
1031  	if (unlikely(error != 0))
1032  		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1033  	complete_journal_op(comp);
1034  }
1035  
rw_journal_sectors(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int sector,unsigned int n_sectors,struct journal_completion * comp)1036  static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1037  			       unsigned int sector, unsigned int n_sectors,
1038  			       struct journal_completion *comp)
1039  {
1040  	struct dm_io_request io_req;
1041  	struct dm_io_region io_loc;
1042  	unsigned int pl_index, pl_offset;
1043  	int r;
1044  
1045  	if (unlikely(dm_integrity_failed(ic))) {
1046  		if (comp)
1047  			complete_journal_io(-1UL, comp);
1048  		return;
1049  	}
1050  
1051  	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1052  	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1053  
1054  	io_req.bi_opf = opf;
1055  	io_req.mem.type = DM_IO_PAGE_LIST;
1056  	if (ic->journal_io)
1057  		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1058  	else
1059  		io_req.mem.ptr.pl = &ic->journal[pl_index];
1060  	io_req.mem.offset = pl_offset;
1061  	if (likely(comp != NULL)) {
1062  		io_req.notify.fn = complete_journal_io;
1063  		io_req.notify.context = comp;
1064  	} else {
1065  		io_req.notify.fn = NULL;
1066  	}
1067  	io_req.client = ic->io;
1068  	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1069  	io_loc.sector = ic->start + SB_SECTORS + sector;
1070  	io_loc.count = n_sectors;
1071  
1072  	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1073  	if (unlikely(r)) {
1074  		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1075  				      "reading journal" : "writing journal", r);
1076  		if (comp) {
1077  			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1078  			complete_journal_io(-1UL, comp);
1079  		}
1080  	}
1081  }
1082  
rw_journal(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1083  static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1084  		       unsigned int section, unsigned int n_sections,
1085  		       struct journal_completion *comp)
1086  {
1087  	unsigned int sector, n_sectors;
1088  
1089  	sector = section * ic->journal_section_sectors;
1090  	n_sectors = n_sections * ic->journal_section_sectors;
1091  
1092  	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1093  }
1094  
write_journal(struct dm_integrity_c * ic,unsigned int commit_start,unsigned int commit_sections)1095  static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1096  {
1097  	struct journal_completion io_comp;
1098  	struct journal_completion crypt_comp_1;
1099  	struct journal_completion crypt_comp_2;
1100  	unsigned int i;
1101  
1102  	io_comp.ic = ic;
1103  	init_completion(&io_comp.comp);
1104  
1105  	if (commit_start + commit_sections <= ic->journal_sections) {
1106  		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1107  		if (ic->journal_io) {
1108  			crypt_comp_1.ic = ic;
1109  			init_completion(&crypt_comp_1.comp);
1110  			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1111  			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1112  			wait_for_completion_io(&crypt_comp_1.comp);
1113  		} else {
1114  			for (i = 0; i < commit_sections; i++)
1115  				rw_section_mac(ic, commit_start + i, true);
1116  		}
1117  		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1118  			   commit_sections, &io_comp);
1119  	} else {
1120  		unsigned int to_end;
1121  
1122  		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1123  		to_end = ic->journal_sections - commit_start;
1124  		if (ic->journal_io) {
1125  			crypt_comp_1.ic = ic;
1126  			init_completion(&crypt_comp_1.comp);
1127  			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1128  			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1129  			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1130  				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1131  					   commit_start, to_end, &io_comp);
1132  				reinit_completion(&crypt_comp_1.comp);
1133  				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1134  				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1135  				wait_for_completion_io(&crypt_comp_1.comp);
1136  			} else {
1137  				crypt_comp_2.ic = ic;
1138  				init_completion(&crypt_comp_2.comp);
1139  				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1140  				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1141  				wait_for_completion_io(&crypt_comp_1.comp);
1142  				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1143  				wait_for_completion_io(&crypt_comp_2.comp);
1144  			}
1145  		} else {
1146  			for (i = 0; i < to_end; i++)
1147  				rw_section_mac(ic, commit_start + i, true);
1148  			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1149  			for (i = 0; i < commit_sections - to_end; i++)
1150  				rw_section_mac(ic, i, true);
1151  		}
1152  		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1153  	}
1154  
1155  	wait_for_completion_io(&io_comp.comp);
1156  }
1157  
copy_from_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int n_sectors,sector_t target,io_notify_fn fn,void * data)1158  static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1159  			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1160  {
1161  	struct dm_io_request io_req;
1162  	struct dm_io_region io_loc;
1163  	int r;
1164  	unsigned int sector, pl_index, pl_offset;
1165  
1166  	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1167  
1168  	if (unlikely(dm_integrity_failed(ic))) {
1169  		fn(-1UL, data);
1170  		return;
1171  	}
1172  
1173  	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1174  
1175  	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1176  	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1177  
1178  	io_req.bi_opf = REQ_OP_WRITE;
1179  	io_req.mem.type = DM_IO_PAGE_LIST;
1180  	io_req.mem.ptr.pl = &ic->journal[pl_index];
1181  	io_req.mem.offset = pl_offset;
1182  	io_req.notify.fn = fn;
1183  	io_req.notify.context = data;
1184  	io_req.client = ic->io;
1185  	io_loc.bdev = ic->dev->bdev;
1186  	io_loc.sector = target;
1187  	io_loc.count = n_sectors;
1188  
1189  	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1190  	if (unlikely(r)) {
1191  		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1192  		fn(-1UL, data);
1193  	}
1194  }
1195  
ranges_overlap(struct dm_integrity_range * range1,struct dm_integrity_range * range2)1196  static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1197  {
1198  	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1199  	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1200  }
1201  
add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range,bool check_waiting)1202  static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1203  {
1204  	struct rb_node **n = &ic->in_progress.rb_node;
1205  	struct rb_node *parent;
1206  
1207  	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1208  
1209  	if (likely(check_waiting)) {
1210  		struct dm_integrity_range *range;
1211  
1212  		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1213  			if (unlikely(ranges_overlap(range, new_range)))
1214  				return false;
1215  		}
1216  	}
1217  
1218  	parent = NULL;
1219  
1220  	while (*n) {
1221  		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1222  
1223  		parent = *n;
1224  		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1225  			n = &range->node.rb_left;
1226  		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1227  			n = &range->node.rb_right;
1228  		else
1229  			return false;
1230  	}
1231  
1232  	rb_link_node(&new_range->node, parent, n);
1233  	rb_insert_color(&new_range->node, &ic->in_progress);
1234  
1235  	return true;
1236  }
1237  
remove_range_unlocked(struct dm_integrity_c * ic,struct dm_integrity_range * range)1238  static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1239  {
1240  	rb_erase(&range->node, &ic->in_progress);
1241  	while (unlikely(!list_empty(&ic->wait_list))) {
1242  		struct dm_integrity_range *last_range =
1243  			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1244  		struct task_struct *last_range_task;
1245  
1246  		last_range_task = last_range->task;
1247  		list_del(&last_range->wait_entry);
1248  		if (!add_new_range(ic, last_range, false)) {
1249  			last_range->task = last_range_task;
1250  			list_add(&last_range->wait_entry, &ic->wait_list);
1251  			break;
1252  		}
1253  		last_range->waiting = false;
1254  		wake_up_process(last_range_task);
1255  	}
1256  }
1257  
remove_range(struct dm_integrity_c * ic,struct dm_integrity_range * range)1258  static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1259  {
1260  	unsigned long flags;
1261  
1262  	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1263  	remove_range_unlocked(ic, range);
1264  	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1265  }
1266  
wait_and_add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1267  static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1268  {
1269  	new_range->waiting = true;
1270  	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1271  	new_range->task = current;
1272  	do {
1273  		__set_current_state(TASK_UNINTERRUPTIBLE);
1274  		spin_unlock_irq(&ic->endio_wait.lock);
1275  		io_schedule();
1276  		spin_lock_irq(&ic->endio_wait.lock);
1277  	} while (unlikely(new_range->waiting));
1278  }
1279  
add_new_range_and_wait(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1280  static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1281  {
1282  	if (unlikely(!add_new_range(ic, new_range, true)))
1283  		wait_and_add_new_range(ic, new_range);
1284  }
1285  
init_journal_node(struct journal_node * node)1286  static void init_journal_node(struct journal_node *node)
1287  {
1288  	RB_CLEAR_NODE(&node->node);
1289  	node->sector = (sector_t)-1;
1290  }
1291  
add_journal_node(struct dm_integrity_c * ic,struct journal_node * node,sector_t sector)1292  static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1293  {
1294  	struct rb_node **link;
1295  	struct rb_node *parent;
1296  
1297  	node->sector = sector;
1298  	BUG_ON(!RB_EMPTY_NODE(&node->node));
1299  
1300  	link = &ic->journal_tree_root.rb_node;
1301  	parent = NULL;
1302  
1303  	while (*link) {
1304  		struct journal_node *j;
1305  
1306  		parent = *link;
1307  		j = container_of(parent, struct journal_node, node);
1308  		if (sector < j->sector)
1309  			link = &j->node.rb_left;
1310  		else
1311  			link = &j->node.rb_right;
1312  	}
1313  
1314  	rb_link_node(&node->node, parent, link);
1315  	rb_insert_color(&node->node, &ic->journal_tree_root);
1316  }
1317  
remove_journal_node(struct dm_integrity_c * ic,struct journal_node * node)1318  static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1319  {
1320  	BUG_ON(RB_EMPTY_NODE(&node->node));
1321  	rb_erase(&node->node, &ic->journal_tree_root);
1322  	init_journal_node(node);
1323  }
1324  
1325  #define NOT_FOUND	(-1U)
1326  
find_journal_node(struct dm_integrity_c * ic,sector_t sector,sector_t * next_sector)1327  static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1328  {
1329  	struct rb_node *n = ic->journal_tree_root.rb_node;
1330  	unsigned int found = NOT_FOUND;
1331  
1332  	*next_sector = (sector_t)-1;
1333  	while (n) {
1334  		struct journal_node *j = container_of(n, struct journal_node, node);
1335  
1336  		if (sector == j->sector)
1337  			found = j - ic->journal_tree;
1338  
1339  		if (sector < j->sector) {
1340  			*next_sector = j->sector;
1341  			n = j->node.rb_left;
1342  		} else
1343  			n = j->node.rb_right;
1344  	}
1345  
1346  	return found;
1347  }
1348  
test_journal_node(struct dm_integrity_c * ic,unsigned int pos,sector_t sector)1349  static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1350  {
1351  	struct journal_node *node, *next_node;
1352  	struct rb_node *next;
1353  
1354  	if (unlikely(pos >= ic->journal_entries))
1355  		return false;
1356  	node = &ic->journal_tree[pos];
1357  	if (unlikely(RB_EMPTY_NODE(&node->node)))
1358  		return false;
1359  	if (unlikely(node->sector != sector))
1360  		return false;
1361  
1362  	next = rb_next(&node->node);
1363  	if (unlikely(!next))
1364  		return true;
1365  
1366  	next_node = container_of(next, struct journal_node, node);
1367  	return next_node->sector != sector;
1368  }
1369  
find_newer_committed_node(struct dm_integrity_c * ic,struct journal_node * node)1370  static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1371  {
1372  	struct rb_node *next;
1373  	struct journal_node *next_node;
1374  	unsigned int next_section;
1375  
1376  	BUG_ON(RB_EMPTY_NODE(&node->node));
1377  
1378  	next = rb_next(&node->node);
1379  	if (unlikely(!next))
1380  		return false;
1381  
1382  	next_node = container_of(next, struct journal_node, node);
1383  
1384  	if (next_node->sector != node->sector)
1385  		return false;
1386  
1387  	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1388  	if (next_section >= ic->committed_section &&
1389  	    next_section < ic->committed_section + ic->n_committed_sections)
1390  		return true;
1391  	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1392  		return true;
1393  
1394  	return false;
1395  }
1396  
1397  #define TAG_READ	0
1398  #define TAG_WRITE	1
1399  #define TAG_CMP		2
1400  
dm_integrity_rw_tag(struct dm_integrity_c * ic,unsigned char * tag,sector_t * metadata_block,unsigned int * metadata_offset,unsigned int total_size,int op)1401  static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1402  			       unsigned int *metadata_offset, unsigned int total_size, int op)
1403  {
1404  #define MAY_BE_FILLER		1
1405  #define MAY_BE_HASH		2
1406  	unsigned int hash_offset = 0;
1407  	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1408  
1409  	do {
1410  		unsigned char *data, *dp;
1411  		struct dm_buffer *b;
1412  		unsigned int to_copy;
1413  		int r;
1414  
1415  		r = dm_integrity_failed(ic);
1416  		if (unlikely(r))
1417  			return r;
1418  
1419  		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1420  		if (IS_ERR(data))
1421  			return PTR_ERR(data);
1422  
1423  		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1424  		dp = data + *metadata_offset;
1425  		if (op == TAG_READ) {
1426  			memcpy(tag, dp, to_copy);
1427  		} else if (op == TAG_WRITE) {
1428  			if (memcmp(dp, tag, to_copy)) {
1429  				memcpy(dp, tag, to_copy);
1430  				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1431  			}
1432  		} else {
1433  			/* e.g.: op == TAG_CMP */
1434  
1435  			if (likely(is_power_of_2(ic->tag_size))) {
1436  				if (unlikely(memcmp(dp, tag, to_copy)))
1437  					if (unlikely(!ic->discard) ||
1438  					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1439  						goto thorough_test;
1440  				}
1441  			} else {
1442  				unsigned int i, ts;
1443  thorough_test:
1444  				ts = total_size;
1445  
1446  				for (i = 0; i < to_copy; i++, ts--) {
1447  					if (unlikely(dp[i] != tag[i]))
1448  						may_be &= ~MAY_BE_HASH;
1449  					if (likely(dp[i] != DISCARD_FILLER))
1450  						may_be &= ~MAY_BE_FILLER;
1451  					hash_offset++;
1452  					if (unlikely(hash_offset == ic->tag_size)) {
1453  						if (unlikely(!may_be)) {
1454  							dm_bufio_release(b);
1455  							return ts;
1456  						}
1457  						hash_offset = 0;
1458  						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1459  					}
1460  				}
1461  			}
1462  		}
1463  		dm_bufio_release(b);
1464  
1465  		tag += to_copy;
1466  		*metadata_offset += to_copy;
1467  		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1468  			(*metadata_block)++;
1469  			*metadata_offset = 0;
1470  		}
1471  
1472  		if (unlikely(!is_power_of_2(ic->tag_size)))
1473  			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1474  
1475  		total_size -= to_copy;
1476  	} while (unlikely(total_size));
1477  
1478  	return 0;
1479  #undef MAY_BE_FILLER
1480  #undef MAY_BE_HASH
1481  }
1482  
1483  struct flush_request {
1484  	struct dm_io_request io_req;
1485  	struct dm_io_region io_reg;
1486  	struct dm_integrity_c *ic;
1487  	struct completion comp;
1488  };
1489  
flush_notify(unsigned long error,void * fr_)1490  static void flush_notify(unsigned long error, void *fr_)
1491  {
1492  	struct flush_request *fr = fr_;
1493  
1494  	if (unlikely(error != 0))
1495  		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1496  	complete(&fr->comp);
1497  }
1498  
dm_integrity_flush_buffers(struct dm_integrity_c * ic,bool flush_data)1499  static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1500  {
1501  	int r;
1502  	struct flush_request fr;
1503  
1504  	if (!ic->meta_dev)
1505  		flush_data = false;
1506  	if (flush_data) {
1507  		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1508  		fr.io_req.mem.type = DM_IO_KMEM;
1509  		fr.io_req.mem.ptr.addr = NULL;
1510  		fr.io_req.notify.fn = flush_notify;
1511  		fr.io_req.notify.context = &fr;
1512  		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio);
1513  		fr.io_reg.bdev = ic->dev->bdev;
1514  		fr.io_reg.sector = 0;
1515  		fr.io_reg.count = 0;
1516  		fr.ic = ic;
1517  		init_completion(&fr.comp);
1518  		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1519  		BUG_ON(r);
1520  	}
1521  
1522  	r = dm_bufio_write_dirty_buffers(ic->bufio);
1523  	if (unlikely(r))
1524  		dm_integrity_io_error(ic, "writing tags", r);
1525  
1526  	if (flush_data)
1527  		wait_for_completion(&fr.comp);
1528  }
1529  
sleep_on_endio_wait(struct dm_integrity_c * ic)1530  static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1531  {
1532  	DECLARE_WAITQUEUE(wait, current);
1533  
1534  	__add_wait_queue(&ic->endio_wait, &wait);
1535  	__set_current_state(TASK_UNINTERRUPTIBLE);
1536  	spin_unlock_irq(&ic->endio_wait.lock);
1537  	io_schedule();
1538  	spin_lock_irq(&ic->endio_wait.lock);
1539  	__remove_wait_queue(&ic->endio_wait, &wait);
1540  }
1541  
autocommit_fn(struct timer_list * t)1542  static void autocommit_fn(struct timer_list *t)
1543  {
1544  	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1545  
1546  	if (likely(!dm_integrity_failed(ic)))
1547  		queue_work(ic->commit_wq, &ic->commit_work);
1548  }
1549  
schedule_autocommit(struct dm_integrity_c * ic)1550  static void schedule_autocommit(struct dm_integrity_c *ic)
1551  {
1552  	if (!timer_pending(&ic->autocommit_timer))
1553  		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1554  }
1555  
submit_flush_bio(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1556  static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1557  {
1558  	struct bio *bio;
1559  	unsigned long flags;
1560  
1561  	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1562  	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1563  	bio_list_add(&ic->flush_bio_list, bio);
1564  	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1565  
1566  	queue_work(ic->commit_wq, &ic->commit_work);
1567  }
1568  
do_endio(struct dm_integrity_c * ic,struct bio * bio)1569  static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1570  {
1571  	int r;
1572  
1573  	r = dm_integrity_failed(ic);
1574  	if (unlikely(r) && !bio->bi_status)
1575  		bio->bi_status = errno_to_blk_status(r);
1576  	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1577  		unsigned long flags;
1578  
1579  		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1580  		bio_list_add(&ic->synchronous_bios, bio);
1581  		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1582  		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1583  		return;
1584  	}
1585  	bio_endio(bio);
1586  }
1587  
do_endio_flush(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1588  static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1589  {
1590  	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1591  
1592  	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1593  		submit_flush_bio(ic, dio);
1594  	else
1595  		do_endio(ic, bio);
1596  }
1597  
dec_in_flight(struct dm_integrity_io * dio)1598  static void dec_in_flight(struct dm_integrity_io *dio)
1599  {
1600  	if (atomic_dec_and_test(&dio->in_flight)) {
1601  		struct dm_integrity_c *ic = dio->ic;
1602  		struct bio *bio;
1603  
1604  		remove_range(ic, &dio->range);
1605  
1606  		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1607  			schedule_autocommit(ic);
1608  
1609  		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1610  		if (unlikely(dio->bi_status) && !bio->bi_status)
1611  			bio->bi_status = dio->bi_status;
1612  		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1613  			dio->range.logical_sector += dio->range.n_sectors;
1614  			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1615  			INIT_WORK(&dio->work, integrity_bio_wait);
1616  			queue_work(ic->offload_wq, &dio->work);
1617  			return;
1618  		}
1619  		do_endio_flush(ic, dio);
1620  	}
1621  }
1622  
integrity_end_io(struct bio * bio)1623  static void integrity_end_io(struct bio *bio)
1624  {
1625  	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1626  
1627  	dm_bio_restore(&dio->bio_details, bio);
1628  	if (bio->bi_integrity)
1629  		bio->bi_opf |= REQ_INTEGRITY;
1630  
1631  	if (dio->completion)
1632  		complete(dio->completion);
1633  
1634  	dec_in_flight(dio);
1635  }
1636  
integrity_sector_checksum(struct dm_integrity_c * ic,sector_t sector,const char * data,char * result)1637  static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1638  				      const char *data, char *result)
1639  {
1640  	__le64 sector_le = cpu_to_le64(sector);
1641  	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1642  	int r;
1643  	unsigned int digest_size;
1644  
1645  	req->tfm = ic->internal_hash;
1646  
1647  	r = crypto_shash_init(req);
1648  	if (unlikely(r < 0)) {
1649  		dm_integrity_io_error(ic, "crypto_shash_init", r);
1650  		goto failed;
1651  	}
1652  
1653  	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1654  		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1655  		if (unlikely(r < 0)) {
1656  			dm_integrity_io_error(ic, "crypto_shash_update", r);
1657  			goto failed;
1658  		}
1659  	}
1660  
1661  	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1662  	if (unlikely(r < 0)) {
1663  		dm_integrity_io_error(ic, "crypto_shash_update", r);
1664  		goto failed;
1665  	}
1666  
1667  	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1668  	if (unlikely(r < 0)) {
1669  		dm_integrity_io_error(ic, "crypto_shash_update", r);
1670  		goto failed;
1671  	}
1672  
1673  	r = crypto_shash_final(req, result);
1674  	if (unlikely(r < 0)) {
1675  		dm_integrity_io_error(ic, "crypto_shash_final", r);
1676  		goto failed;
1677  	}
1678  
1679  	digest_size = crypto_shash_digestsize(ic->internal_hash);
1680  	if (unlikely(digest_size < ic->tag_size))
1681  		memset(result + digest_size, 0, ic->tag_size - digest_size);
1682  
1683  	return;
1684  
1685  failed:
1686  	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1687  	get_random_bytes(result, ic->tag_size);
1688  }
1689  
integrity_recheck(struct dm_integrity_io * dio,char * checksum)1690  static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1691  {
1692  	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1693  	struct dm_integrity_c *ic = dio->ic;
1694  	struct bvec_iter iter;
1695  	struct bio_vec bv;
1696  	sector_t sector, logical_sector, area, offset;
1697  	struct page *page;
1698  
1699  	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1700  	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1701  							     &dio->metadata_offset);
1702  	sector = get_data_sector(ic, area, offset);
1703  	logical_sector = dio->range.logical_sector;
1704  
1705  	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1706  
1707  	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1708  		unsigned pos = 0;
1709  
1710  		do {
1711  			sector_t alignment;
1712  			char *mem;
1713  			char *buffer = page_to_virt(page);
1714  			int r;
1715  			struct dm_io_request io_req;
1716  			struct dm_io_region io_loc;
1717  			io_req.bi_opf = REQ_OP_READ;
1718  			io_req.mem.type = DM_IO_KMEM;
1719  			io_req.mem.ptr.addr = buffer;
1720  			io_req.notify.fn = NULL;
1721  			io_req.client = ic->io;
1722  			io_loc.bdev = ic->dev->bdev;
1723  			io_loc.sector = sector;
1724  			io_loc.count = ic->sectors_per_block;
1725  
1726  			/* Align the bio to logical block size */
1727  			alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1728  			alignment &= -alignment;
1729  			io_loc.sector = round_down(io_loc.sector, alignment);
1730  			io_loc.count += sector - io_loc.sector;
1731  			buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1732  			io_loc.count = round_up(io_loc.count, alignment);
1733  
1734  			r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1735  			if (unlikely(r)) {
1736  				dio->bi_status = errno_to_blk_status(r);
1737  				goto free_ret;
1738  			}
1739  
1740  			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1741  			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1742  						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1743  			if (r) {
1744  				if (r > 0) {
1745  					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1746  						    bio->bi_bdev, logical_sector);
1747  					atomic64_inc(&ic->number_of_mismatches);
1748  					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1749  							 bio, logical_sector, 0);
1750  					r = -EILSEQ;
1751  				}
1752  				dio->bi_status = errno_to_blk_status(r);
1753  				goto free_ret;
1754  			}
1755  
1756  			mem = bvec_kmap_local(&bv);
1757  			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1758  			kunmap_local(mem);
1759  
1760  			pos += ic->sectors_per_block << SECTOR_SHIFT;
1761  			sector += ic->sectors_per_block;
1762  			logical_sector += ic->sectors_per_block;
1763  		} while (pos < bv.bv_len);
1764  	}
1765  free_ret:
1766  	mempool_free(page, &ic->recheck_pool);
1767  }
1768  
integrity_metadata(struct work_struct * w)1769  static void integrity_metadata(struct work_struct *w)
1770  {
1771  	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1772  	struct dm_integrity_c *ic = dio->ic;
1773  
1774  	int r;
1775  
1776  	if (ic->internal_hash) {
1777  		struct bvec_iter iter;
1778  		struct bio_vec bv;
1779  		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1780  		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1781  		char *checksums;
1782  		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1783  		char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1784  		sector_t sector;
1785  		unsigned int sectors_to_process;
1786  
1787  		if (unlikely(ic->mode == 'R'))
1788  			goto skip_io;
1789  
1790  		if (likely(dio->op != REQ_OP_DISCARD))
1791  			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1792  					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1793  		else
1794  			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1795  		if (!checksums) {
1796  			checksums = checksums_onstack;
1797  			if (WARN_ON(extra_space &&
1798  				    digest_size > sizeof(checksums_onstack))) {
1799  				r = -EINVAL;
1800  				goto error;
1801  			}
1802  		}
1803  
1804  		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1805  			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1806  			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1807  			unsigned int max_blocks = max_size / ic->tag_size;
1808  
1809  			memset(checksums, DISCARD_FILLER, max_size);
1810  
1811  			while (bi_size) {
1812  				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1813  
1814  				this_step_blocks = min(this_step_blocks, max_blocks);
1815  				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1816  							this_step_blocks * ic->tag_size, TAG_WRITE);
1817  				if (unlikely(r)) {
1818  					if (likely(checksums != checksums_onstack))
1819  						kfree(checksums);
1820  					goto error;
1821  				}
1822  
1823  				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1824  			}
1825  
1826  			if (likely(checksums != checksums_onstack))
1827  				kfree(checksums);
1828  			goto skip_io;
1829  		}
1830  
1831  		sector = dio->range.logical_sector;
1832  		sectors_to_process = dio->range.n_sectors;
1833  
1834  		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1835  			struct bio_vec bv_copy = bv;
1836  			unsigned int pos;
1837  			char *mem, *checksums_ptr;
1838  
1839  again:
1840  			mem = bvec_kmap_local(&bv_copy);
1841  			pos = 0;
1842  			checksums_ptr = checksums;
1843  			do {
1844  				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1845  				checksums_ptr += ic->tag_size;
1846  				sectors_to_process -= ic->sectors_per_block;
1847  				pos += ic->sectors_per_block << SECTOR_SHIFT;
1848  				sector += ic->sectors_per_block;
1849  			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1850  			kunmap_local(mem);
1851  
1852  			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1853  						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1854  			if (unlikely(r)) {
1855  				if (likely(checksums != checksums_onstack))
1856  					kfree(checksums);
1857  				if (r > 0) {
1858  					integrity_recheck(dio, checksums_onstack);
1859  					goto skip_io;
1860  				}
1861  				goto error;
1862  			}
1863  
1864  			if (!sectors_to_process)
1865  				break;
1866  
1867  			if (unlikely(pos < bv_copy.bv_len)) {
1868  				bv_copy.bv_offset += pos;
1869  				bv_copy.bv_len -= pos;
1870  				goto again;
1871  			}
1872  		}
1873  
1874  		if (likely(checksums != checksums_onstack))
1875  			kfree(checksums);
1876  	} else {
1877  		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1878  
1879  		if (bip) {
1880  			struct bio_vec biv;
1881  			struct bvec_iter iter;
1882  			unsigned int data_to_process = dio->range.n_sectors;
1883  
1884  			sector_to_block(ic, data_to_process);
1885  			data_to_process *= ic->tag_size;
1886  
1887  			bip_for_each_vec(biv, bip, iter) {
1888  				unsigned char *tag;
1889  				unsigned int this_len;
1890  
1891  				BUG_ON(PageHighMem(biv.bv_page));
1892  				tag = bvec_virt(&biv);
1893  				this_len = min(biv.bv_len, data_to_process);
1894  				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1895  							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1896  				if (unlikely(r))
1897  					goto error;
1898  				data_to_process -= this_len;
1899  				if (!data_to_process)
1900  					break;
1901  			}
1902  		}
1903  	}
1904  skip_io:
1905  	dec_in_flight(dio);
1906  	return;
1907  error:
1908  	dio->bi_status = errno_to_blk_status(r);
1909  	dec_in_flight(dio);
1910  }
1911  
dm_integrity_check_limits(struct dm_integrity_c * ic,sector_t logical_sector,struct bio * bio)1912  static inline bool dm_integrity_check_limits(struct dm_integrity_c *ic, sector_t logical_sector, struct bio *bio)
1913  {
1914  	if (unlikely(logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1915  		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1916  		      logical_sector, bio_sectors(bio),
1917  		      ic->provided_data_sectors);
1918  		return false;
1919  	}
1920  	if (unlikely((logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1921  		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1922  		      ic->sectors_per_block,
1923  		      logical_sector, bio_sectors(bio));
1924  		return false;
1925  	}
1926  	if (ic->sectors_per_block > 1 && likely(bio_op(bio) != REQ_OP_DISCARD)) {
1927  		struct bvec_iter iter;
1928  		struct bio_vec bv;
1929  
1930  		bio_for_each_segment(bv, bio, iter) {
1931  			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1932  				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1933  					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1934  				return false;
1935  			}
1936  		}
1937  	}
1938  	return true;
1939  }
1940  
dm_integrity_map(struct dm_target * ti,struct bio * bio)1941  static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1942  {
1943  	struct dm_integrity_c *ic = ti->private;
1944  	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1945  	struct bio_integrity_payload *bip;
1946  
1947  	sector_t area, offset;
1948  
1949  	dio->ic = ic;
1950  	dio->bi_status = 0;
1951  	dio->op = bio_op(bio);
1952  
1953  	if (ic->mode == 'I') {
1954  		bio->bi_iter.bi_sector = dm_target_offset(ic->ti, bio->bi_iter.bi_sector);
1955  		dio->integrity_payload = NULL;
1956  		dio->integrity_payload_from_mempool = false;
1957  		dio->integrity_range_locked = false;
1958  		return dm_integrity_map_inline(dio, true);
1959  	}
1960  
1961  	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1962  		if (ti->max_io_len) {
1963  			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1964  			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1965  			sector_t start_boundary = sec >> log2_max_io_len;
1966  			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1967  
1968  			if (start_boundary < end_boundary) {
1969  				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1970  
1971  				dm_accept_partial_bio(bio, len);
1972  			}
1973  		}
1974  	}
1975  
1976  	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1977  		submit_flush_bio(ic, dio);
1978  		return DM_MAPIO_SUBMITTED;
1979  	}
1980  
1981  	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1982  	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1983  	if (unlikely(dio->fua)) {
1984  		/*
1985  		 * Don't pass down the FUA flag because we have to flush
1986  		 * disk cache anyway.
1987  		 */
1988  		bio->bi_opf &= ~REQ_FUA;
1989  	}
1990  	if (unlikely(!dm_integrity_check_limits(ic, dio->range.logical_sector, bio)))
1991  		return DM_MAPIO_KILL;
1992  
1993  	bip = bio_integrity(bio);
1994  	if (!ic->internal_hash) {
1995  		if (bip) {
1996  			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1997  
1998  			if (ic->log2_tag_size >= 0)
1999  				wanted_tag_size <<= ic->log2_tag_size;
2000  			else
2001  				wanted_tag_size *= ic->tag_size;
2002  			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
2003  				DMERR("Invalid integrity data size %u, expected %u",
2004  				      bip->bip_iter.bi_size, wanted_tag_size);
2005  				return DM_MAPIO_KILL;
2006  			}
2007  		}
2008  	} else {
2009  		if (unlikely(bip != NULL)) {
2010  			DMERR("Unexpected integrity data when using internal hash");
2011  			return DM_MAPIO_KILL;
2012  		}
2013  	}
2014  
2015  	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2016  		return DM_MAPIO_KILL;
2017  
2018  	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2019  	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2020  	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2021  
2022  	dm_integrity_map_continue(dio, true);
2023  	return DM_MAPIO_SUBMITTED;
2024  }
2025  
__journal_read_write(struct dm_integrity_io * dio,struct bio * bio,unsigned int journal_section,unsigned int journal_entry)2026  static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2027  				 unsigned int journal_section, unsigned int journal_entry)
2028  {
2029  	struct dm_integrity_c *ic = dio->ic;
2030  	sector_t logical_sector;
2031  	unsigned int n_sectors;
2032  
2033  	logical_sector = dio->range.logical_sector;
2034  	n_sectors = dio->range.n_sectors;
2035  	do {
2036  		struct bio_vec bv = bio_iovec(bio);
2037  		char *mem;
2038  
2039  		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2040  			bv.bv_len = n_sectors << SECTOR_SHIFT;
2041  		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2042  		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2043  retry_kmap:
2044  		mem = kmap_local_page(bv.bv_page);
2045  		if (likely(dio->op == REQ_OP_WRITE))
2046  			flush_dcache_page(bv.bv_page);
2047  
2048  		do {
2049  			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2050  
2051  			if (unlikely(dio->op == REQ_OP_READ)) {
2052  				struct journal_sector *js;
2053  				char *mem_ptr;
2054  				unsigned int s;
2055  
2056  				if (unlikely(journal_entry_is_inprogress(je))) {
2057  					flush_dcache_page(bv.bv_page);
2058  					kunmap_local(mem);
2059  
2060  					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2061  					goto retry_kmap;
2062  				}
2063  				smp_rmb();
2064  				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2065  				js = access_journal_data(ic, journal_section, journal_entry);
2066  				mem_ptr = mem + bv.bv_offset;
2067  				s = 0;
2068  				do {
2069  					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2070  					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2071  					js++;
2072  					mem_ptr += 1 << SECTOR_SHIFT;
2073  				} while (++s < ic->sectors_per_block);
2074  #ifdef INTERNAL_VERIFY
2075  				if (ic->internal_hash) {
2076  					char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2077  
2078  					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2079  					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2080  						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2081  							    logical_sector);
2082  						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2083  								 bio, logical_sector, 0);
2084  					}
2085  				}
2086  #endif
2087  			}
2088  
2089  			if (!ic->internal_hash) {
2090  				struct bio_integrity_payload *bip = bio_integrity(bio);
2091  				unsigned int tag_todo = ic->tag_size;
2092  				char *tag_ptr = journal_entry_tag(ic, je);
2093  
2094  				if (bip) {
2095  					do {
2096  						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2097  						unsigned int tag_now = min(biv.bv_len, tag_todo);
2098  						char *tag_addr;
2099  
2100  						BUG_ON(PageHighMem(biv.bv_page));
2101  						tag_addr = bvec_virt(&biv);
2102  						if (likely(dio->op == REQ_OP_WRITE))
2103  							memcpy(tag_ptr, tag_addr, tag_now);
2104  						else
2105  							memcpy(tag_addr, tag_ptr, tag_now);
2106  						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2107  						tag_ptr += tag_now;
2108  						tag_todo -= tag_now;
2109  					} while (unlikely(tag_todo));
2110  				} else if (likely(dio->op == REQ_OP_WRITE))
2111  					memset(tag_ptr, 0, tag_todo);
2112  			}
2113  
2114  			if (likely(dio->op == REQ_OP_WRITE)) {
2115  				struct journal_sector *js;
2116  				unsigned int s;
2117  
2118  				js = access_journal_data(ic, journal_section, journal_entry);
2119  				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2120  
2121  				s = 0;
2122  				do {
2123  					je->last_bytes[s] = js[s].commit_id;
2124  				} while (++s < ic->sectors_per_block);
2125  
2126  				if (ic->internal_hash) {
2127  					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2128  
2129  					if (unlikely(digest_size > ic->tag_size)) {
2130  						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2131  
2132  						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2133  						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2134  					} else
2135  						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2136  				}
2137  
2138  				journal_entry_set_sector(je, logical_sector);
2139  			}
2140  			logical_sector += ic->sectors_per_block;
2141  
2142  			journal_entry++;
2143  			if (unlikely(journal_entry == ic->journal_section_entries)) {
2144  				journal_entry = 0;
2145  				journal_section++;
2146  				wraparound_section(ic, &journal_section);
2147  			}
2148  
2149  			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2150  		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2151  
2152  		if (unlikely(dio->op == REQ_OP_READ))
2153  			flush_dcache_page(bv.bv_page);
2154  		kunmap_local(mem);
2155  	} while (n_sectors);
2156  
2157  	if (likely(dio->op == REQ_OP_WRITE)) {
2158  		smp_mb();
2159  		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2160  			wake_up(&ic->copy_to_journal_wait);
2161  		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2162  			queue_work(ic->commit_wq, &ic->commit_work);
2163  		else
2164  			schedule_autocommit(ic);
2165  	} else
2166  		remove_range(ic, &dio->range);
2167  
2168  	if (unlikely(bio->bi_iter.bi_size)) {
2169  		sector_t area, offset;
2170  
2171  		dio->range.logical_sector = logical_sector;
2172  		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2173  		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2174  		return true;
2175  	}
2176  
2177  	return false;
2178  }
2179  
dm_integrity_map_continue(struct dm_integrity_io * dio,bool from_map)2180  static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2181  {
2182  	struct dm_integrity_c *ic = dio->ic;
2183  	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2184  	unsigned int journal_section, journal_entry;
2185  	unsigned int journal_read_pos;
2186  	sector_t recalc_sector;
2187  	struct completion read_comp;
2188  	bool discard_retried = false;
2189  	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2190  
2191  	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2192  		need_sync_io = true;
2193  
2194  	if (need_sync_io && from_map) {
2195  		INIT_WORK(&dio->work, integrity_bio_wait);
2196  		queue_work(ic->offload_wq, &dio->work);
2197  		return;
2198  	}
2199  
2200  lock_retry:
2201  	spin_lock_irq(&ic->endio_wait.lock);
2202  retry:
2203  	if (unlikely(dm_integrity_failed(ic))) {
2204  		spin_unlock_irq(&ic->endio_wait.lock);
2205  		do_endio(ic, bio);
2206  		return;
2207  	}
2208  	dio->range.n_sectors = bio_sectors(bio);
2209  	journal_read_pos = NOT_FOUND;
2210  	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2211  		if (dio->op == REQ_OP_WRITE) {
2212  			unsigned int next_entry, i, pos;
2213  			unsigned int ws, we, range_sectors;
2214  
2215  			dio->range.n_sectors = min(dio->range.n_sectors,
2216  						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2217  			if (unlikely(!dio->range.n_sectors)) {
2218  				if (from_map)
2219  					goto offload_to_thread;
2220  				sleep_on_endio_wait(ic);
2221  				goto retry;
2222  			}
2223  			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2224  			ic->free_sectors -= range_sectors;
2225  			journal_section = ic->free_section;
2226  			journal_entry = ic->free_section_entry;
2227  
2228  			next_entry = ic->free_section_entry + range_sectors;
2229  			ic->free_section_entry = next_entry % ic->journal_section_entries;
2230  			ic->free_section += next_entry / ic->journal_section_entries;
2231  			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2232  			wraparound_section(ic, &ic->free_section);
2233  
2234  			pos = journal_section * ic->journal_section_entries + journal_entry;
2235  			ws = journal_section;
2236  			we = journal_entry;
2237  			i = 0;
2238  			do {
2239  				struct journal_entry *je;
2240  
2241  				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2242  				pos++;
2243  				if (unlikely(pos >= ic->journal_entries))
2244  					pos = 0;
2245  
2246  				je = access_journal_entry(ic, ws, we);
2247  				BUG_ON(!journal_entry_is_unused(je));
2248  				journal_entry_set_inprogress(je);
2249  				we++;
2250  				if (unlikely(we == ic->journal_section_entries)) {
2251  					we = 0;
2252  					ws++;
2253  					wraparound_section(ic, &ws);
2254  				}
2255  			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2256  
2257  			spin_unlock_irq(&ic->endio_wait.lock);
2258  			goto journal_read_write;
2259  		} else {
2260  			sector_t next_sector;
2261  
2262  			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2263  			if (likely(journal_read_pos == NOT_FOUND)) {
2264  				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2265  					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2266  			} else {
2267  				unsigned int i;
2268  				unsigned int jp = journal_read_pos + 1;
2269  
2270  				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2271  					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2272  						break;
2273  				}
2274  				dio->range.n_sectors = i;
2275  			}
2276  		}
2277  	}
2278  	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2279  		/*
2280  		 * We must not sleep in the request routine because it could
2281  		 * stall bios on current->bio_list.
2282  		 * So, we offload the bio to a workqueue if we have to sleep.
2283  		 */
2284  		if (from_map) {
2285  offload_to_thread:
2286  			spin_unlock_irq(&ic->endio_wait.lock);
2287  			INIT_WORK(&dio->work, integrity_bio_wait);
2288  			queue_work(ic->wait_wq, &dio->work);
2289  			return;
2290  		}
2291  		if (journal_read_pos != NOT_FOUND)
2292  			dio->range.n_sectors = ic->sectors_per_block;
2293  		wait_and_add_new_range(ic, &dio->range);
2294  		/*
2295  		 * wait_and_add_new_range drops the spinlock, so the journal
2296  		 * may have been changed arbitrarily. We need to recheck.
2297  		 * To simplify the code, we restrict I/O size to just one block.
2298  		 */
2299  		if (journal_read_pos != NOT_FOUND) {
2300  			sector_t next_sector;
2301  			unsigned int new_pos;
2302  
2303  			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2304  			if (unlikely(new_pos != journal_read_pos)) {
2305  				remove_range_unlocked(ic, &dio->range);
2306  				goto retry;
2307  			}
2308  		}
2309  	}
2310  	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2311  		sector_t next_sector;
2312  		unsigned int new_pos;
2313  
2314  		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2315  		if (unlikely(new_pos != NOT_FOUND) ||
2316  		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2317  			remove_range_unlocked(ic, &dio->range);
2318  			spin_unlock_irq(&ic->endio_wait.lock);
2319  			queue_work(ic->commit_wq, &ic->commit_work);
2320  			flush_workqueue(ic->commit_wq);
2321  			queue_work(ic->writer_wq, &ic->writer_work);
2322  			flush_workqueue(ic->writer_wq);
2323  			discard_retried = true;
2324  			goto lock_retry;
2325  		}
2326  	}
2327  	recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2328  	spin_unlock_irq(&ic->endio_wait.lock);
2329  
2330  	if (unlikely(journal_read_pos != NOT_FOUND)) {
2331  		journal_section = journal_read_pos / ic->journal_section_entries;
2332  		journal_entry = journal_read_pos % ic->journal_section_entries;
2333  		goto journal_read_write;
2334  	}
2335  
2336  	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2337  		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2338  				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2339  			struct bitmap_block_status *bbs;
2340  
2341  			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2342  			spin_lock(&bbs->bio_queue_lock);
2343  			bio_list_add(&bbs->bio_queue, bio);
2344  			spin_unlock(&bbs->bio_queue_lock);
2345  			queue_work(ic->writer_wq, &bbs->work);
2346  			return;
2347  		}
2348  	}
2349  
2350  	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2351  
2352  	if (need_sync_io) {
2353  		init_completion(&read_comp);
2354  		dio->completion = &read_comp;
2355  	} else
2356  		dio->completion = NULL;
2357  
2358  	dm_bio_record(&dio->bio_details, bio);
2359  	bio_set_dev(bio, ic->dev->bdev);
2360  	bio->bi_integrity = NULL;
2361  	bio->bi_opf &= ~REQ_INTEGRITY;
2362  	bio->bi_end_io = integrity_end_io;
2363  	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2364  
2365  	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2366  		integrity_metadata(&dio->work);
2367  		dm_integrity_flush_buffers(ic, false);
2368  
2369  		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2370  		dio->completion = NULL;
2371  
2372  		submit_bio_noacct(bio);
2373  
2374  		return;
2375  	}
2376  
2377  	submit_bio_noacct(bio);
2378  
2379  	if (need_sync_io) {
2380  		wait_for_completion_io(&read_comp);
2381  		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2382  		    dio->range.logical_sector + dio->range.n_sectors > recalc_sector)
2383  			goto skip_check;
2384  		if (ic->mode == 'B') {
2385  			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2386  					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2387  				goto skip_check;
2388  		}
2389  
2390  		if (likely(!bio->bi_status))
2391  			integrity_metadata(&dio->work);
2392  		else
2393  skip_check:
2394  			dec_in_flight(dio);
2395  	} else {
2396  		INIT_WORK(&dio->work, integrity_metadata);
2397  		queue_work(ic->metadata_wq, &dio->work);
2398  	}
2399  
2400  	return;
2401  
2402  journal_read_write:
2403  	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2404  		goto lock_retry;
2405  
2406  	do_endio_flush(ic, dio);
2407  }
2408  
dm_integrity_map_inline(struct dm_integrity_io * dio,bool from_map)2409  static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map)
2410  {
2411  	struct dm_integrity_c *ic = dio->ic;
2412  	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2413  	struct bio_integrity_payload *bip;
2414  	unsigned ret;
2415  	sector_t recalc_sector;
2416  
2417  	if (unlikely(bio_integrity(bio))) {
2418  		bio->bi_status = BLK_STS_NOTSUPP;
2419  		bio_endio(bio);
2420  		return DM_MAPIO_SUBMITTED;
2421  	}
2422  
2423  	bio_set_dev(bio, ic->dev->bdev);
2424  	if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0))
2425  		return DM_MAPIO_REMAPPED;
2426  
2427  retry:
2428  	if (!dio->integrity_payload) {
2429  		unsigned digest_size, extra_size;
2430  		dio->payload_len = ic->tuple_size * (bio_sectors(bio) >> ic->sb->log2_sectors_per_block);
2431  		digest_size = crypto_shash_digestsize(ic->internal_hash);
2432  		extra_size = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
2433  		dio->payload_len += extra_size;
2434  		dio->integrity_payload = kmalloc(dio->payload_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
2435  		if (unlikely(!dio->integrity_payload)) {
2436  			const unsigned x_size = PAGE_SIZE << 1;
2437  			if (dio->payload_len > x_size) {
2438  				unsigned sectors = ((x_size - extra_size) / ic->tuple_size) << ic->sb->log2_sectors_per_block;
2439  				if (WARN_ON(!sectors || sectors >= bio_sectors(bio))) {
2440  					bio->bi_status = BLK_STS_NOTSUPP;
2441  					bio_endio(bio);
2442  					return DM_MAPIO_SUBMITTED;
2443  				}
2444  				dm_accept_partial_bio(bio, sectors);
2445  				goto retry;
2446  			}
2447  		}
2448  	}
2449  
2450  	dio->range.logical_sector = bio->bi_iter.bi_sector;
2451  	dio->range.n_sectors = bio_sectors(bio);
2452  
2453  	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)))
2454  		goto skip_spinlock;
2455  #ifdef CONFIG_64BIT
2456  	/*
2457  	 * On 64-bit CPUs we can optimize the lock away (so that it won't cause
2458  	 * cache line bouncing) and use acquire/release barriers instead.
2459  	 *
2460  	 * Paired with smp_store_release in integrity_recalc_inline.
2461  	 */
2462  	recalc_sector = le64_to_cpu(smp_load_acquire(&ic->sb->recalc_sector));
2463  	if (likely(dio->range.logical_sector + dio->range.n_sectors <= recalc_sector))
2464  		goto skip_spinlock;
2465  #endif
2466  	spin_lock_irq(&ic->endio_wait.lock);
2467  	recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2468  	if (dio->range.logical_sector + dio->range.n_sectors <= recalc_sector)
2469  		goto skip_unlock;
2470  	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2471  		if (from_map) {
2472  			spin_unlock_irq(&ic->endio_wait.lock);
2473  			INIT_WORK(&dio->work, integrity_bio_wait);
2474  			queue_work(ic->wait_wq, &dio->work);
2475  			return DM_MAPIO_SUBMITTED;
2476  		}
2477  		wait_and_add_new_range(ic, &dio->range);
2478  	}
2479  	dio->integrity_range_locked = true;
2480  skip_unlock:
2481  	spin_unlock_irq(&ic->endio_wait.lock);
2482  skip_spinlock:
2483  
2484  	if (unlikely(!dio->integrity_payload)) {
2485  		dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2486  		dio->integrity_payload_from_mempool = true;
2487  	}
2488  
2489  	dio->bio_details.bi_iter = bio->bi_iter;
2490  
2491  	if (unlikely(!dm_integrity_check_limits(ic, bio->bi_iter.bi_sector, bio))) {
2492  		return DM_MAPIO_KILL;
2493  	}
2494  
2495  	bio->bi_iter.bi_sector += ic->start + SB_SECTORS;
2496  
2497  	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
2498  	if (IS_ERR(bip)) {
2499  		bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2500  		bio_endio(bio);
2501  		return DM_MAPIO_SUBMITTED;
2502  	}
2503  
2504  	if (dio->op == REQ_OP_WRITE) {
2505  		unsigned pos = 0;
2506  		while (dio->bio_details.bi_iter.bi_size) {
2507  			struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2508  			const char *mem = bvec_kmap_local(&bv);
2509  			if (ic->tag_size < ic->tuple_size)
2510  				memset(dio->integrity_payload + pos + ic->tag_size, 0, ic->tuple_size - ic->tuple_size);
2511  			integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, dio->integrity_payload + pos);
2512  			kunmap_local(mem);
2513  			pos += ic->tuple_size;
2514  			bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2515  		}
2516  	}
2517  
2518  	ret = bio_integrity_add_page(bio, virt_to_page(dio->integrity_payload),
2519  					dio->payload_len, offset_in_page(dio->integrity_payload));
2520  	if (unlikely(ret != dio->payload_len)) {
2521  		bio->bi_status = BLK_STS_RESOURCE;
2522  		bio_endio(bio);
2523  		return DM_MAPIO_SUBMITTED;
2524  	}
2525  
2526  	return DM_MAPIO_REMAPPED;
2527  }
2528  
dm_integrity_free_payload(struct dm_integrity_io * dio)2529  static inline void dm_integrity_free_payload(struct dm_integrity_io *dio)
2530  {
2531  	struct dm_integrity_c *ic = dio->ic;
2532  	if (unlikely(dio->integrity_payload_from_mempool))
2533  		mempool_free(virt_to_page(dio->integrity_payload), &ic->recheck_pool);
2534  	else
2535  		kfree(dio->integrity_payload);
2536  	dio->integrity_payload = NULL;
2537  	dio->integrity_payload_from_mempool = false;
2538  }
2539  
dm_integrity_inline_recheck(struct work_struct * w)2540  static void dm_integrity_inline_recheck(struct work_struct *w)
2541  {
2542  	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2543  	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2544  	struct dm_integrity_c *ic = dio->ic;
2545  	struct bio *outgoing_bio;
2546  	void *outgoing_data;
2547  
2548  	dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2549  	dio->integrity_payload_from_mempool = true;
2550  
2551  	outgoing_data = dio->integrity_payload + PAGE_SIZE;
2552  
2553  	while (dio->bio_details.bi_iter.bi_size) {
2554  		char digest[HASH_MAX_DIGESTSIZE];
2555  		int r;
2556  		struct bio_integrity_payload *bip;
2557  		struct bio_vec bv;
2558  		char *mem;
2559  
2560  		outgoing_bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recheck_bios);
2561  
2562  		r = bio_add_page(outgoing_bio, virt_to_page(outgoing_data), ic->sectors_per_block << SECTOR_SHIFT, 0);
2563  		if (unlikely(r != (ic->sectors_per_block << SECTOR_SHIFT))) {
2564  			bio_put(outgoing_bio);
2565  			bio->bi_status = BLK_STS_RESOURCE;
2566  			bio_endio(bio);
2567  			return;
2568  		}
2569  
2570  		bip = bio_integrity_alloc(outgoing_bio, GFP_NOIO, 1);
2571  		if (IS_ERR(bip)) {
2572  			bio_put(outgoing_bio);
2573  			bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2574  			bio_endio(bio);
2575  			return;
2576  		}
2577  
2578  		r = bio_integrity_add_page(outgoing_bio, virt_to_page(dio->integrity_payload), ic->tuple_size, 0);
2579  		if (unlikely(r != ic->tuple_size)) {
2580  			bio_put(outgoing_bio);
2581  			bio->bi_status = BLK_STS_RESOURCE;
2582  			bio_endio(bio);
2583  			return;
2584  		}
2585  
2586  		outgoing_bio->bi_iter.bi_sector = dio->bio_details.bi_iter.bi_sector + ic->start + SB_SECTORS;
2587  
2588  		r = submit_bio_wait(outgoing_bio);
2589  		if (unlikely(r != 0)) {
2590  			bio_put(outgoing_bio);
2591  			bio->bi_status = errno_to_blk_status(r);
2592  			bio_endio(bio);
2593  			return;
2594  		}
2595  		bio_put(outgoing_bio);
2596  
2597  		integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, outgoing_data, digest);
2598  		if (unlikely(memcmp(digest, dio->integrity_payload, min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2599  			DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
2600  				ic->dev->bdev, dio->bio_details.bi_iter.bi_sector);
2601  			atomic64_inc(&ic->number_of_mismatches);
2602  			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
2603  				bio, dio->bio_details.bi_iter.bi_sector, 0);
2604  
2605  			bio->bi_status = BLK_STS_PROTECTION;
2606  			bio_endio(bio);
2607  			return;
2608  		}
2609  
2610  		bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2611  		mem = bvec_kmap_local(&bv);
2612  		memcpy(mem, outgoing_data, ic->sectors_per_block << SECTOR_SHIFT);
2613  		kunmap_local(mem);
2614  
2615  		bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2616  	}
2617  
2618  	bio_endio(bio);
2619  }
2620  
dm_integrity_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * status)2621  static int dm_integrity_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
2622  {
2623  	struct dm_integrity_c *ic = ti->private;
2624  	if (ic->mode == 'I') {
2625  		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2626  		if (dio->op == REQ_OP_READ && likely(*status == BLK_STS_OK)) {
2627  			unsigned pos = 0;
2628  			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2629  			    unlikely(dio->integrity_range_locked))
2630  				goto skip_check;
2631  			while (dio->bio_details.bi_iter.bi_size) {
2632  				char digest[HASH_MAX_DIGESTSIZE];
2633  				struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2634  				char *mem = bvec_kmap_local(&bv);
2635  				//memset(mem, 0xff, ic->sectors_per_block << SECTOR_SHIFT);
2636  				integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, digest);
2637  				if (unlikely(memcmp(digest, dio->integrity_payload + pos,
2638  						min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2639  					kunmap_local(mem);
2640  					dm_integrity_free_payload(dio);
2641  					INIT_WORK(&dio->work, dm_integrity_inline_recheck);
2642  					queue_work(ic->offload_wq, &dio->work);
2643  					return DM_ENDIO_INCOMPLETE;
2644  				}
2645  				kunmap_local(mem);
2646  				pos += ic->tuple_size;
2647  				bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2648  			}
2649  		}
2650  skip_check:
2651  		dm_integrity_free_payload(dio);
2652  		if (unlikely(dio->integrity_range_locked))
2653  			remove_range(ic, &dio->range);
2654  	}
2655  	return DM_ENDIO_DONE;
2656  }
2657  
integrity_bio_wait(struct work_struct * w)2658  static void integrity_bio_wait(struct work_struct *w)
2659  {
2660  	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2661  	struct dm_integrity_c *ic = dio->ic;
2662  
2663  	if (ic->mode == 'I') {
2664  		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2665  		int r = dm_integrity_map_inline(dio, false);
2666  		switch (r) {
2667  			case DM_MAPIO_KILL:
2668  				bio->bi_status = BLK_STS_IOERR;
2669  				fallthrough;
2670  			case DM_MAPIO_REMAPPED:
2671  				submit_bio_noacct(bio);
2672  				fallthrough;
2673  			case DM_MAPIO_SUBMITTED:
2674  				return;
2675  			default:
2676  				BUG();
2677  		}
2678  	} else {
2679  		dm_integrity_map_continue(dio, false);
2680  	}
2681  }
2682  
pad_uncommitted(struct dm_integrity_c * ic)2683  static void pad_uncommitted(struct dm_integrity_c *ic)
2684  {
2685  	if (ic->free_section_entry) {
2686  		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2687  		ic->free_section_entry = 0;
2688  		ic->free_section++;
2689  		wraparound_section(ic, &ic->free_section);
2690  		ic->n_uncommitted_sections++;
2691  	}
2692  	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2693  		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2694  		    ic->journal_section_entries + ic->free_sectors)) {
2695  		DMCRIT("journal_sections %u, journal_section_entries %u, "
2696  		       "n_uncommitted_sections %u, n_committed_sections %u, "
2697  		       "journal_section_entries %u, free_sectors %u",
2698  		       ic->journal_sections, ic->journal_section_entries,
2699  		       ic->n_uncommitted_sections, ic->n_committed_sections,
2700  		       ic->journal_section_entries, ic->free_sectors);
2701  	}
2702  }
2703  
integrity_commit(struct work_struct * w)2704  static void integrity_commit(struct work_struct *w)
2705  {
2706  	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2707  	unsigned int commit_start, commit_sections;
2708  	unsigned int i, j, n;
2709  	struct bio *flushes;
2710  
2711  	del_timer(&ic->autocommit_timer);
2712  
2713  	if (ic->mode == 'I')
2714  		return;
2715  
2716  	spin_lock_irq(&ic->endio_wait.lock);
2717  	flushes = bio_list_get(&ic->flush_bio_list);
2718  	if (unlikely(ic->mode != 'J')) {
2719  		spin_unlock_irq(&ic->endio_wait.lock);
2720  		dm_integrity_flush_buffers(ic, true);
2721  		goto release_flush_bios;
2722  	}
2723  
2724  	pad_uncommitted(ic);
2725  	commit_start = ic->uncommitted_section;
2726  	commit_sections = ic->n_uncommitted_sections;
2727  	spin_unlock_irq(&ic->endio_wait.lock);
2728  
2729  	if (!commit_sections)
2730  		goto release_flush_bios;
2731  
2732  	ic->wrote_to_journal = true;
2733  
2734  	i = commit_start;
2735  	for (n = 0; n < commit_sections; n++) {
2736  		for (j = 0; j < ic->journal_section_entries; j++) {
2737  			struct journal_entry *je;
2738  
2739  			je = access_journal_entry(ic, i, j);
2740  			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2741  		}
2742  		for (j = 0; j < ic->journal_section_sectors; j++) {
2743  			struct journal_sector *js;
2744  
2745  			js = access_journal(ic, i, j);
2746  			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2747  		}
2748  		i++;
2749  		if (unlikely(i >= ic->journal_sections))
2750  			ic->commit_seq = next_commit_seq(ic->commit_seq);
2751  		wraparound_section(ic, &i);
2752  	}
2753  	smp_rmb();
2754  
2755  	write_journal(ic, commit_start, commit_sections);
2756  
2757  	spin_lock_irq(&ic->endio_wait.lock);
2758  	ic->uncommitted_section += commit_sections;
2759  	wraparound_section(ic, &ic->uncommitted_section);
2760  	ic->n_uncommitted_sections -= commit_sections;
2761  	ic->n_committed_sections += commit_sections;
2762  	spin_unlock_irq(&ic->endio_wait.lock);
2763  
2764  	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2765  		queue_work(ic->writer_wq, &ic->writer_work);
2766  
2767  release_flush_bios:
2768  	while (flushes) {
2769  		struct bio *next = flushes->bi_next;
2770  
2771  		flushes->bi_next = NULL;
2772  		do_endio(ic, flushes);
2773  		flushes = next;
2774  	}
2775  }
2776  
complete_copy_from_journal(unsigned long error,void * context)2777  static void complete_copy_from_journal(unsigned long error, void *context)
2778  {
2779  	struct journal_io *io = context;
2780  	struct journal_completion *comp = io->comp;
2781  	struct dm_integrity_c *ic = comp->ic;
2782  
2783  	remove_range(ic, &io->range);
2784  	mempool_free(io, &ic->journal_io_mempool);
2785  	if (unlikely(error != 0))
2786  		dm_integrity_io_error(ic, "copying from journal", -EIO);
2787  	complete_journal_op(comp);
2788  }
2789  
restore_last_bytes(struct dm_integrity_c * ic,struct journal_sector * js,struct journal_entry * je)2790  static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2791  			       struct journal_entry *je)
2792  {
2793  	unsigned int s = 0;
2794  
2795  	do {
2796  		js->commit_id = je->last_bytes[s];
2797  		js++;
2798  	} while (++s < ic->sectors_per_block);
2799  }
2800  
do_journal_write(struct dm_integrity_c * ic,unsigned int write_start,unsigned int write_sections,bool from_replay)2801  static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2802  			     unsigned int write_sections, bool from_replay)
2803  {
2804  	unsigned int i, j, n;
2805  	struct journal_completion comp;
2806  	struct blk_plug plug;
2807  
2808  	blk_start_plug(&plug);
2809  
2810  	comp.ic = ic;
2811  	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2812  	init_completion(&comp.comp);
2813  
2814  	i = write_start;
2815  	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2816  #ifndef INTERNAL_VERIFY
2817  		if (unlikely(from_replay))
2818  #endif
2819  			rw_section_mac(ic, i, false);
2820  		for (j = 0; j < ic->journal_section_entries; j++) {
2821  			struct journal_entry *je = access_journal_entry(ic, i, j);
2822  			sector_t sec, area, offset;
2823  			unsigned int k, l, next_loop;
2824  			sector_t metadata_block;
2825  			unsigned int metadata_offset;
2826  			struct journal_io *io;
2827  
2828  			if (journal_entry_is_unused(je))
2829  				continue;
2830  			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2831  			sec = journal_entry_get_sector(je);
2832  			if (unlikely(from_replay)) {
2833  				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2834  					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2835  					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2836  				}
2837  				if (unlikely(sec >= ic->provided_data_sectors)) {
2838  					journal_entry_set_unused(je);
2839  					continue;
2840  				}
2841  			}
2842  			get_area_and_offset(ic, sec, &area, &offset);
2843  			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2844  			for (k = j + 1; k < ic->journal_section_entries; k++) {
2845  				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2846  				sector_t sec2, area2, offset2;
2847  
2848  				if (journal_entry_is_unused(je2))
2849  					break;
2850  				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2851  				sec2 = journal_entry_get_sector(je2);
2852  				if (unlikely(sec2 >= ic->provided_data_sectors))
2853  					break;
2854  				get_area_and_offset(ic, sec2, &area2, &offset2);
2855  				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2856  					break;
2857  				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2858  			}
2859  			next_loop = k - 1;
2860  
2861  			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2862  			io->comp = &comp;
2863  			io->range.logical_sector = sec;
2864  			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2865  
2866  			spin_lock_irq(&ic->endio_wait.lock);
2867  			add_new_range_and_wait(ic, &io->range);
2868  
2869  			if (likely(!from_replay)) {
2870  				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2871  
2872  				/* don't write if there is newer committed sector */
2873  				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2874  					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2875  
2876  					journal_entry_set_unused(je2);
2877  					remove_journal_node(ic, &section_node[j]);
2878  					j++;
2879  					sec += ic->sectors_per_block;
2880  					offset += ic->sectors_per_block;
2881  				}
2882  				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2883  					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2884  
2885  					journal_entry_set_unused(je2);
2886  					remove_journal_node(ic, &section_node[k - 1]);
2887  					k--;
2888  				}
2889  				if (j == k) {
2890  					remove_range_unlocked(ic, &io->range);
2891  					spin_unlock_irq(&ic->endio_wait.lock);
2892  					mempool_free(io, &ic->journal_io_mempool);
2893  					goto skip_io;
2894  				}
2895  				for (l = j; l < k; l++)
2896  					remove_journal_node(ic, &section_node[l]);
2897  			}
2898  			spin_unlock_irq(&ic->endio_wait.lock);
2899  
2900  			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2901  			for (l = j; l < k; l++) {
2902  				int r;
2903  				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2904  
2905  				if (
2906  #ifndef INTERNAL_VERIFY
2907  				    unlikely(from_replay) &&
2908  #endif
2909  				    ic->internal_hash) {
2910  					char test_tag[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2911  
2912  					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2913  								  (char *)access_journal_data(ic, i, l), test_tag);
2914  					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2915  						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2916  						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2917  					}
2918  				}
2919  
2920  				journal_entry_set_unused(je2);
2921  				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2922  							ic->tag_size, TAG_WRITE);
2923  				if (unlikely(r))
2924  					dm_integrity_io_error(ic, "reading tags", r);
2925  			}
2926  
2927  			atomic_inc(&comp.in_flight);
2928  			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2929  					  (k - j) << ic->sb->log2_sectors_per_block,
2930  					  get_data_sector(ic, area, offset),
2931  					  complete_copy_from_journal, io);
2932  skip_io:
2933  			j = next_loop;
2934  		}
2935  	}
2936  
2937  	dm_bufio_write_dirty_buffers_async(ic->bufio);
2938  
2939  	blk_finish_plug(&plug);
2940  
2941  	complete_journal_op(&comp);
2942  	wait_for_completion_io(&comp.comp);
2943  
2944  	dm_integrity_flush_buffers(ic, true);
2945  }
2946  
integrity_writer(struct work_struct * w)2947  static void integrity_writer(struct work_struct *w)
2948  {
2949  	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2950  	unsigned int write_start, write_sections;
2951  	unsigned int prev_free_sectors;
2952  
2953  	spin_lock_irq(&ic->endio_wait.lock);
2954  	write_start = ic->committed_section;
2955  	write_sections = ic->n_committed_sections;
2956  	spin_unlock_irq(&ic->endio_wait.lock);
2957  
2958  	if (!write_sections)
2959  		return;
2960  
2961  	do_journal_write(ic, write_start, write_sections, false);
2962  
2963  	spin_lock_irq(&ic->endio_wait.lock);
2964  
2965  	ic->committed_section += write_sections;
2966  	wraparound_section(ic, &ic->committed_section);
2967  	ic->n_committed_sections -= write_sections;
2968  
2969  	prev_free_sectors = ic->free_sectors;
2970  	ic->free_sectors += write_sections * ic->journal_section_entries;
2971  	if (unlikely(!prev_free_sectors))
2972  		wake_up_locked(&ic->endio_wait);
2973  
2974  	spin_unlock_irq(&ic->endio_wait.lock);
2975  }
2976  
recalc_write_super(struct dm_integrity_c * ic)2977  static void recalc_write_super(struct dm_integrity_c *ic)
2978  {
2979  	int r;
2980  
2981  	dm_integrity_flush_buffers(ic, false);
2982  	if (dm_integrity_failed(ic))
2983  		return;
2984  
2985  	r = sync_rw_sb(ic, REQ_OP_WRITE);
2986  	if (unlikely(r))
2987  		dm_integrity_io_error(ic, "writing superblock", r);
2988  }
2989  
integrity_recalc(struct work_struct * w)2990  static void integrity_recalc(struct work_struct *w)
2991  {
2992  	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2993  	size_t recalc_tags_size;
2994  	u8 *recalc_buffer = NULL;
2995  	u8 *recalc_tags = NULL;
2996  	struct dm_integrity_range range;
2997  	struct dm_io_request io_req;
2998  	struct dm_io_region io_loc;
2999  	sector_t area, offset;
3000  	sector_t metadata_block;
3001  	unsigned int metadata_offset;
3002  	sector_t logical_sector, n_sectors;
3003  	__u8 *t;
3004  	unsigned int i;
3005  	int r;
3006  	unsigned int super_counter = 0;
3007  	unsigned recalc_sectors = RECALC_SECTORS;
3008  
3009  retry:
3010  	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
3011  	if (!recalc_buffer) {
3012  oom:
3013  		recalc_sectors >>= 1;
3014  		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3015  			goto retry;
3016  		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3017  		goto free_ret;
3018  	}
3019  	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3020  	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
3021  		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
3022  	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
3023  	if (!recalc_tags) {
3024  		vfree(recalc_buffer);
3025  		recalc_buffer = NULL;
3026  		goto oom;
3027  	}
3028  
3029  	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
3030  
3031  	spin_lock_irq(&ic->endio_wait.lock);
3032  
3033  next_chunk:
3034  
3035  	if (unlikely(dm_post_suspending(ic->ti)))
3036  		goto unlock_ret;
3037  
3038  	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3039  	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
3040  		if (ic->mode == 'B') {
3041  			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3042  			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
3043  			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3044  		}
3045  		goto unlock_ret;
3046  	}
3047  
3048  	get_area_and_offset(ic, range.logical_sector, &area, &offset);
3049  	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3050  	if (!ic->meta_dev)
3051  		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
3052  
3053  	add_new_range_and_wait(ic, &range);
3054  	spin_unlock_irq(&ic->endio_wait.lock);
3055  	logical_sector = range.logical_sector;
3056  	n_sectors = range.n_sectors;
3057  
3058  	if (ic->mode == 'B') {
3059  		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
3060  			goto advance_and_next;
3061  
3062  		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
3063  				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3064  			logical_sector += ic->sectors_per_block;
3065  			n_sectors -= ic->sectors_per_block;
3066  			cond_resched();
3067  		}
3068  		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
3069  				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3070  			n_sectors -= ic->sectors_per_block;
3071  			cond_resched();
3072  		}
3073  		get_area_and_offset(ic, logical_sector, &area, &offset);
3074  	}
3075  
3076  	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
3077  
3078  	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3079  		recalc_write_super(ic);
3080  		if (ic->mode == 'B')
3081  			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3082  
3083  		super_counter = 0;
3084  	}
3085  
3086  	if (unlikely(dm_integrity_failed(ic)))
3087  		goto err;
3088  
3089  	io_req.bi_opf = REQ_OP_READ;
3090  	io_req.mem.type = DM_IO_VMA;
3091  	io_req.mem.ptr.addr = recalc_buffer;
3092  	io_req.notify.fn = NULL;
3093  	io_req.client = ic->io;
3094  	io_loc.bdev = ic->dev->bdev;
3095  	io_loc.sector = get_data_sector(ic, area, offset);
3096  	io_loc.count = n_sectors;
3097  
3098  	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
3099  	if (unlikely(r)) {
3100  		dm_integrity_io_error(ic, "reading data", r);
3101  		goto err;
3102  	}
3103  
3104  	t = recalc_tags;
3105  	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
3106  		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
3107  		t += ic->tag_size;
3108  	}
3109  
3110  	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
3111  
3112  	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
3113  	if (unlikely(r)) {
3114  		dm_integrity_io_error(ic, "writing tags", r);
3115  		goto err;
3116  	}
3117  
3118  	if (ic->mode == 'B') {
3119  		sector_t start, end;
3120  
3121  		start = (range.logical_sector >>
3122  			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3123  			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3124  		end = ((range.logical_sector + range.n_sectors) >>
3125  		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3126  			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3127  		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
3128  	}
3129  
3130  advance_and_next:
3131  	cond_resched();
3132  
3133  	spin_lock_irq(&ic->endio_wait.lock);
3134  	remove_range_unlocked(ic, &range);
3135  	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3136  	goto next_chunk;
3137  
3138  err:
3139  	remove_range(ic, &range);
3140  	goto free_ret;
3141  
3142  unlock_ret:
3143  	spin_unlock_irq(&ic->endio_wait.lock);
3144  
3145  	recalc_write_super(ic);
3146  
3147  free_ret:
3148  	vfree(recalc_buffer);
3149  	kvfree(recalc_tags);
3150  }
3151  
integrity_recalc_inline(struct work_struct * w)3152  static void integrity_recalc_inline(struct work_struct *w)
3153  {
3154  	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
3155  	size_t recalc_tags_size;
3156  	u8 *recalc_buffer = NULL;
3157  	u8 *recalc_tags = NULL;
3158  	struct dm_integrity_range range;
3159  	struct bio *bio;
3160  	struct bio_integrity_payload *bip;
3161  	__u8 *t;
3162  	unsigned int i;
3163  	int r;
3164  	unsigned ret;
3165  	unsigned int super_counter = 0;
3166  	unsigned recalc_sectors = RECALC_SECTORS;
3167  
3168  retry:
3169  	recalc_buffer = kmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO | __GFP_NOWARN);
3170  	if (!recalc_buffer) {
3171  oom:
3172  		recalc_sectors >>= 1;
3173  		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3174  			goto retry;
3175  		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3176  		goto free_ret;
3177  	}
3178  
3179  	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tuple_size;
3180  	if (crypto_shash_digestsize(ic->internal_hash) > ic->tuple_size)
3181  		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tuple_size;
3182  	recalc_tags = kmalloc(recalc_tags_size, GFP_NOIO | __GFP_NOWARN);
3183  	if (!recalc_tags) {
3184  		kfree(recalc_buffer);
3185  		recalc_buffer = NULL;
3186  		goto oom;
3187  	}
3188  
3189  	spin_lock_irq(&ic->endio_wait.lock);
3190  
3191  next_chunk:
3192  	if (unlikely(dm_post_suspending(ic->ti)))
3193  		goto unlock_ret;
3194  
3195  	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3196  	if (unlikely(range.logical_sector >= ic->provided_data_sectors))
3197  		goto unlock_ret;
3198  	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3199  
3200  	add_new_range_and_wait(ic, &range);
3201  	spin_unlock_irq(&ic->endio_wait.lock);
3202  
3203  	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3204  		recalc_write_super(ic);
3205  		super_counter = 0;
3206  	}
3207  
3208  	if (unlikely(dm_integrity_failed(ic)))
3209  		goto err;
3210  
3211  	DEBUG_print("recalculating: %llx - %llx\n", range.logical_sector, range.n_sectors);
3212  
3213  	bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recalc_bios);
3214  	bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3215  	__bio_add_page(bio, virt_to_page(recalc_buffer), range.n_sectors << SECTOR_SHIFT, offset_in_page(recalc_buffer));
3216  	r = submit_bio_wait(bio);
3217  	bio_put(bio);
3218  	if (unlikely(r)) {
3219  		dm_integrity_io_error(ic, "reading data", r);
3220  		goto err;
3221  	}
3222  
3223  	t = recalc_tags;
3224  	for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
3225  		memset(t, 0, ic->tuple_size);
3226  		integrity_sector_checksum(ic, range.logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
3227  		t += ic->tuple_size;
3228  	}
3229  
3230  	bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_WRITE, GFP_NOIO, &ic->recalc_bios);
3231  	bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3232  	__bio_add_page(bio, virt_to_page(recalc_buffer), range.n_sectors << SECTOR_SHIFT, offset_in_page(recalc_buffer));
3233  
3234  	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
3235  	if (unlikely(IS_ERR(bip))) {
3236  		bio_put(bio);
3237  		DMCRIT("out of memory for bio integrity payload - recalculation disabled");
3238  		goto err;
3239  	}
3240  	ret = bio_integrity_add_page(bio, virt_to_page(recalc_tags), t - recalc_tags, offset_in_page(recalc_tags));
3241  	if (unlikely(ret != t - recalc_tags)) {
3242  		bio_put(bio);
3243  		dm_integrity_io_error(ic, "attaching integrity tags", -ENOMEM);
3244  		goto err;
3245  	}
3246  
3247  	r = submit_bio_wait(bio);
3248  	bio_put(bio);
3249  	if (unlikely(r)) {
3250  		dm_integrity_io_error(ic, "writing data", r);
3251  		goto err;
3252  	}
3253  
3254  	cond_resched();
3255  	spin_lock_irq(&ic->endio_wait.lock);
3256  	remove_range_unlocked(ic, &range);
3257  #ifdef CONFIG_64BIT
3258  	/* Paired with smp_load_acquire in dm_integrity_map_inline. */
3259  	smp_store_release(&ic->sb->recalc_sector, cpu_to_le64(range.logical_sector + range.n_sectors));
3260  #else
3261  	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3262  #endif
3263  	goto next_chunk;
3264  
3265  err:
3266  	remove_range(ic, &range);
3267  	goto free_ret;
3268  
3269  unlock_ret:
3270  	spin_unlock_irq(&ic->endio_wait.lock);
3271  
3272  	recalc_write_super(ic);
3273  
3274  free_ret:
3275  	kfree(recalc_buffer);
3276  	kfree(recalc_tags);
3277  }
3278  
bitmap_block_work(struct work_struct * w)3279  static void bitmap_block_work(struct work_struct *w)
3280  {
3281  	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
3282  	struct dm_integrity_c *ic = bbs->ic;
3283  	struct bio *bio;
3284  	struct bio_list bio_queue;
3285  	struct bio_list waiting;
3286  
3287  	bio_list_init(&waiting);
3288  
3289  	spin_lock(&bbs->bio_queue_lock);
3290  	bio_queue = bbs->bio_queue;
3291  	bio_list_init(&bbs->bio_queue);
3292  	spin_unlock(&bbs->bio_queue_lock);
3293  
3294  	while ((bio = bio_list_pop(&bio_queue))) {
3295  		struct dm_integrity_io *dio;
3296  
3297  		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3298  
3299  		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3300  				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
3301  			remove_range(ic, &dio->range);
3302  			INIT_WORK(&dio->work, integrity_bio_wait);
3303  			queue_work(ic->offload_wq, &dio->work);
3304  		} else {
3305  			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
3306  					dio->range.n_sectors, BITMAP_OP_SET);
3307  			bio_list_add(&waiting, bio);
3308  		}
3309  	}
3310  
3311  	if (bio_list_empty(&waiting))
3312  		return;
3313  
3314  	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
3315  			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
3316  			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
3317  
3318  	while ((bio = bio_list_pop(&waiting))) {
3319  		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3320  
3321  		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3322  				dio->range.n_sectors, BITMAP_OP_SET);
3323  
3324  		remove_range(ic, &dio->range);
3325  		INIT_WORK(&dio->work, integrity_bio_wait);
3326  		queue_work(ic->offload_wq, &dio->work);
3327  	}
3328  
3329  	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3330  }
3331  
bitmap_flush_work(struct work_struct * work)3332  static void bitmap_flush_work(struct work_struct *work)
3333  {
3334  	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
3335  	struct dm_integrity_range range;
3336  	unsigned long limit;
3337  	struct bio *bio;
3338  
3339  	dm_integrity_flush_buffers(ic, false);
3340  
3341  	range.logical_sector = 0;
3342  	range.n_sectors = ic->provided_data_sectors;
3343  
3344  	spin_lock_irq(&ic->endio_wait.lock);
3345  	add_new_range_and_wait(ic, &range);
3346  	spin_unlock_irq(&ic->endio_wait.lock);
3347  
3348  	dm_integrity_flush_buffers(ic, true);
3349  
3350  	limit = ic->provided_data_sectors;
3351  	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3352  		limit = le64_to_cpu(ic->sb->recalc_sector)
3353  			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
3354  			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3355  	}
3356  	/*DEBUG_print("zeroing journal\n");*/
3357  	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
3358  	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
3359  
3360  	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3361  			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3362  
3363  	spin_lock_irq(&ic->endio_wait.lock);
3364  	remove_range_unlocked(ic, &range);
3365  	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
3366  		bio_endio(bio);
3367  		spin_unlock_irq(&ic->endio_wait.lock);
3368  		spin_lock_irq(&ic->endio_wait.lock);
3369  	}
3370  	spin_unlock_irq(&ic->endio_wait.lock);
3371  }
3372  
3373  
init_journal(struct dm_integrity_c * ic,unsigned int start_section,unsigned int n_sections,unsigned char commit_seq)3374  static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
3375  			 unsigned int n_sections, unsigned char commit_seq)
3376  {
3377  	unsigned int i, j, n;
3378  
3379  	if (!n_sections)
3380  		return;
3381  
3382  	for (n = 0; n < n_sections; n++) {
3383  		i = start_section + n;
3384  		wraparound_section(ic, &i);
3385  		for (j = 0; j < ic->journal_section_sectors; j++) {
3386  			struct journal_sector *js = access_journal(ic, i, j);
3387  
3388  			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
3389  			memset(&js->sectors, 0, sizeof(js->sectors));
3390  			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
3391  		}
3392  		for (j = 0; j < ic->journal_section_entries; j++) {
3393  			struct journal_entry *je = access_journal_entry(ic, i, j);
3394  
3395  			journal_entry_set_unused(je);
3396  		}
3397  	}
3398  
3399  	write_journal(ic, start_section, n_sections);
3400  }
3401  
find_commit_seq(struct dm_integrity_c * ic,unsigned int i,unsigned int j,commit_id_t id)3402  static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
3403  {
3404  	unsigned char k;
3405  
3406  	for (k = 0; k < N_COMMIT_IDS; k++) {
3407  		if (dm_integrity_commit_id(ic, i, j, k) == id)
3408  			return k;
3409  	}
3410  	dm_integrity_io_error(ic, "journal commit id", -EIO);
3411  	return -EIO;
3412  }
3413  
replay_journal(struct dm_integrity_c * ic)3414  static void replay_journal(struct dm_integrity_c *ic)
3415  {
3416  	unsigned int i, j;
3417  	bool used_commit_ids[N_COMMIT_IDS];
3418  	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3419  	unsigned int write_start, write_sections;
3420  	unsigned int continue_section;
3421  	bool journal_empty;
3422  	unsigned char unused, last_used, want_commit_seq;
3423  
3424  	if (ic->mode == 'R')
3425  		return;
3426  
3427  	if (ic->journal_uptodate)
3428  		return;
3429  
3430  	last_used = 0;
3431  	write_start = 0;
3432  
3433  	if (!ic->just_formatted) {
3434  		DEBUG_print("reading journal\n");
3435  		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3436  		if (ic->journal_io)
3437  			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3438  		if (ic->journal_io) {
3439  			struct journal_completion crypt_comp;
3440  
3441  			crypt_comp.ic = ic;
3442  			init_completion(&crypt_comp.comp);
3443  			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3444  			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3445  			wait_for_completion(&crypt_comp.comp);
3446  		}
3447  		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3448  	}
3449  
3450  	if (dm_integrity_failed(ic))
3451  		goto clear_journal;
3452  
3453  	journal_empty = true;
3454  	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3455  	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3456  	for (i = 0; i < ic->journal_sections; i++) {
3457  		for (j = 0; j < ic->journal_section_sectors; j++) {
3458  			int k;
3459  			struct journal_sector *js = access_journal(ic, i, j);
3460  
3461  			k = find_commit_seq(ic, i, j, js->commit_id);
3462  			if (k < 0)
3463  				goto clear_journal;
3464  			used_commit_ids[k] = true;
3465  			max_commit_id_sections[k] = i;
3466  		}
3467  		if (journal_empty) {
3468  			for (j = 0; j < ic->journal_section_entries; j++) {
3469  				struct journal_entry *je = access_journal_entry(ic, i, j);
3470  
3471  				if (!journal_entry_is_unused(je)) {
3472  					journal_empty = false;
3473  					break;
3474  				}
3475  			}
3476  		}
3477  	}
3478  
3479  	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3480  		unused = N_COMMIT_IDS - 1;
3481  		while (unused && !used_commit_ids[unused - 1])
3482  			unused--;
3483  	} else {
3484  		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3485  			if (!used_commit_ids[unused])
3486  				break;
3487  		if (unused == N_COMMIT_IDS) {
3488  			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3489  			goto clear_journal;
3490  		}
3491  	}
3492  	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3493  		    unused, used_commit_ids[0], used_commit_ids[1],
3494  		    used_commit_ids[2], used_commit_ids[3]);
3495  
3496  	last_used = prev_commit_seq(unused);
3497  	want_commit_seq = prev_commit_seq(last_used);
3498  
3499  	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3500  		journal_empty = true;
3501  
3502  	write_start = max_commit_id_sections[last_used] + 1;
3503  	if (unlikely(write_start >= ic->journal_sections))
3504  		want_commit_seq = next_commit_seq(want_commit_seq);
3505  	wraparound_section(ic, &write_start);
3506  
3507  	i = write_start;
3508  	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3509  		for (j = 0; j < ic->journal_section_sectors; j++) {
3510  			struct journal_sector *js = access_journal(ic, i, j);
3511  
3512  			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3513  				/*
3514  				 * This could be caused by crash during writing.
3515  				 * We won't replay the inconsistent part of the
3516  				 * journal.
3517  				 */
3518  				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3519  					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3520  				goto brk;
3521  			}
3522  		}
3523  		i++;
3524  		if (unlikely(i >= ic->journal_sections))
3525  			want_commit_seq = next_commit_seq(want_commit_seq);
3526  		wraparound_section(ic, &i);
3527  	}
3528  brk:
3529  
3530  	if (!journal_empty) {
3531  		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3532  			    write_sections, write_start, want_commit_seq);
3533  		do_journal_write(ic, write_start, write_sections, true);
3534  	}
3535  
3536  	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3537  		continue_section = write_start;
3538  		ic->commit_seq = want_commit_seq;
3539  		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3540  	} else {
3541  		unsigned int s;
3542  		unsigned char erase_seq;
3543  
3544  clear_journal:
3545  		DEBUG_print("clearing journal\n");
3546  
3547  		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3548  		s = write_start;
3549  		init_journal(ic, s, 1, erase_seq);
3550  		s++;
3551  		wraparound_section(ic, &s);
3552  		if (ic->journal_sections >= 2) {
3553  			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3554  			s += ic->journal_sections - 2;
3555  			wraparound_section(ic, &s);
3556  			init_journal(ic, s, 1, erase_seq);
3557  		}
3558  
3559  		continue_section = 0;
3560  		ic->commit_seq = next_commit_seq(erase_seq);
3561  	}
3562  
3563  	ic->committed_section = continue_section;
3564  	ic->n_committed_sections = 0;
3565  
3566  	ic->uncommitted_section = continue_section;
3567  	ic->n_uncommitted_sections = 0;
3568  
3569  	ic->free_section = continue_section;
3570  	ic->free_section_entry = 0;
3571  	ic->free_sectors = ic->journal_entries;
3572  
3573  	ic->journal_tree_root = RB_ROOT;
3574  	for (i = 0; i < ic->journal_entries; i++)
3575  		init_journal_node(&ic->journal_tree[i]);
3576  }
3577  
dm_integrity_enter_synchronous_mode(struct dm_integrity_c * ic)3578  static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3579  {
3580  	DEBUG_print("%s\n", __func__);
3581  
3582  	if (ic->mode == 'B') {
3583  		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3584  		ic->synchronous_mode = 1;
3585  
3586  		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3587  		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3588  		flush_workqueue(ic->commit_wq);
3589  	}
3590  }
3591  
dm_integrity_reboot(struct notifier_block * n,unsigned long code,void * x)3592  static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3593  {
3594  	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3595  
3596  	DEBUG_print("%s\n", __func__);
3597  
3598  	dm_integrity_enter_synchronous_mode(ic);
3599  
3600  	return NOTIFY_DONE;
3601  }
3602  
dm_integrity_postsuspend(struct dm_target * ti)3603  static void dm_integrity_postsuspend(struct dm_target *ti)
3604  {
3605  	struct dm_integrity_c *ic = ti->private;
3606  	int r;
3607  
3608  	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3609  
3610  	del_timer_sync(&ic->autocommit_timer);
3611  
3612  	if (ic->recalc_wq)
3613  		drain_workqueue(ic->recalc_wq);
3614  
3615  	if (ic->mode == 'B')
3616  		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3617  
3618  	queue_work(ic->commit_wq, &ic->commit_work);
3619  	drain_workqueue(ic->commit_wq);
3620  
3621  	if (ic->mode == 'J') {
3622  		queue_work(ic->writer_wq, &ic->writer_work);
3623  		drain_workqueue(ic->writer_wq);
3624  		dm_integrity_flush_buffers(ic, true);
3625  		if (ic->wrote_to_journal) {
3626  			init_journal(ic, ic->free_section,
3627  				     ic->journal_sections - ic->free_section, ic->commit_seq);
3628  			if (ic->free_section) {
3629  				init_journal(ic, 0, ic->free_section,
3630  					     next_commit_seq(ic->commit_seq));
3631  			}
3632  		}
3633  	}
3634  
3635  	if (ic->mode == 'B') {
3636  		dm_integrity_flush_buffers(ic, true);
3637  #if 1
3638  		/* set to 0 to test bitmap replay code */
3639  		init_journal(ic, 0, ic->journal_sections, 0);
3640  		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3641  		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3642  		if (unlikely(r))
3643  			dm_integrity_io_error(ic, "writing superblock", r);
3644  #endif
3645  	}
3646  
3647  	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3648  
3649  	ic->journal_uptodate = true;
3650  }
3651  
dm_integrity_resume(struct dm_target * ti)3652  static void dm_integrity_resume(struct dm_target *ti)
3653  {
3654  	struct dm_integrity_c *ic = ti->private;
3655  	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3656  	int r;
3657  
3658  	DEBUG_print("resume\n");
3659  
3660  	ic->wrote_to_journal = false;
3661  
3662  	if (ic->provided_data_sectors != old_provided_data_sectors) {
3663  		if (ic->provided_data_sectors > old_provided_data_sectors &&
3664  		    ic->mode == 'B' &&
3665  		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3666  			rw_journal_sectors(ic, REQ_OP_READ, 0,
3667  					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3668  			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3669  					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3670  			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3671  					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3672  		}
3673  
3674  		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3675  		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3676  		if (unlikely(r))
3677  			dm_integrity_io_error(ic, "writing superblock", r);
3678  	}
3679  
3680  	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3681  		DEBUG_print("resume dirty_bitmap\n");
3682  		rw_journal_sectors(ic, REQ_OP_READ, 0,
3683  				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3684  		if (ic->mode == 'B') {
3685  			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3686  			    !ic->reset_recalculate_flag) {
3687  				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3688  				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3689  				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3690  						     BITMAP_OP_TEST_ALL_CLEAR)) {
3691  					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3692  					ic->sb->recalc_sector = cpu_to_le64(0);
3693  				}
3694  			} else {
3695  				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3696  					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3697  				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3698  				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3699  				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3700  				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3701  				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3702  						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3703  				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3704  				ic->sb->recalc_sector = cpu_to_le64(0);
3705  			}
3706  		} else {
3707  			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3708  			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3709  			    ic->reset_recalculate_flag) {
3710  				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3711  				ic->sb->recalc_sector = cpu_to_le64(0);
3712  			}
3713  			init_journal(ic, 0, ic->journal_sections, 0);
3714  			replay_journal(ic);
3715  			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3716  		}
3717  		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3718  		if (unlikely(r))
3719  			dm_integrity_io_error(ic, "writing superblock", r);
3720  	} else {
3721  		replay_journal(ic);
3722  		if (ic->reset_recalculate_flag) {
3723  			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3724  			ic->sb->recalc_sector = cpu_to_le64(0);
3725  		}
3726  		if (ic->mode == 'B') {
3727  			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3728  			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3729  			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3730  			if (unlikely(r))
3731  				dm_integrity_io_error(ic, "writing superblock", r);
3732  
3733  			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3734  			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3735  			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3736  			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3737  			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3738  				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3739  						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3740  				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3741  						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3742  				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3743  						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3744  			}
3745  			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3746  					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3747  		}
3748  	}
3749  
3750  	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3751  	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3752  		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3753  
3754  		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3755  		if (recalc_pos < ic->provided_data_sectors) {
3756  			queue_work(ic->recalc_wq, &ic->recalc_work);
3757  		} else if (recalc_pos > ic->provided_data_sectors) {
3758  			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3759  			recalc_write_super(ic);
3760  		}
3761  	}
3762  
3763  	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3764  	ic->reboot_notifier.next = NULL;
3765  	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3766  	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3767  
3768  #if 0
3769  	/* set to 1 to stress test synchronous mode */
3770  	dm_integrity_enter_synchronous_mode(ic);
3771  #endif
3772  }
3773  
dm_integrity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3774  static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3775  				unsigned int status_flags, char *result, unsigned int maxlen)
3776  {
3777  	struct dm_integrity_c *ic = ti->private;
3778  	unsigned int arg_count;
3779  	size_t sz = 0;
3780  
3781  	switch (type) {
3782  	case STATUSTYPE_INFO:
3783  		DMEMIT("%llu %llu",
3784  			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3785  			ic->provided_data_sectors);
3786  		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3787  			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3788  		else
3789  			DMEMIT(" -");
3790  		break;
3791  
3792  	case STATUSTYPE_TABLE: {
3793  		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3794  
3795  		watermark_percentage += ic->journal_entries / 2;
3796  		do_div(watermark_percentage, ic->journal_entries);
3797  		arg_count = 3;
3798  		arg_count += !!ic->meta_dev;
3799  		arg_count += ic->sectors_per_block != 1;
3800  		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3801  		arg_count += ic->reset_recalculate_flag;
3802  		arg_count += ic->discard;
3803  		arg_count += ic->mode == 'J';
3804  		arg_count += ic->mode == 'J';
3805  		arg_count += ic->mode == 'B';
3806  		arg_count += ic->mode == 'B';
3807  		arg_count += !!ic->internal_hash_alg.alg_string;
3808  		arg_count += !!ic->journal_crypt_alg.alg_string;
3809  		arg_count += !!ic->journal_mac_alg.alg_string;
3810  		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3811  		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3812  		arg_count += ic->legacy_recalculate;
3813  		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3814  		       ic->tag_size, ic->mode, arg_count);
3815  		if (ic->meta_dev)
3816  			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3817  		if (ic->sectors_per_block != 1)
3818  			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3819  		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3820  			DMEMIT(" recalculate");
3821  		if (ic->reset_recalculate_flag)
3822  			DMEMIT(" reset_recalculate");
3823  		if (ic->discard)
3824  			DMEMIT(" allow_discards");
3825  		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3826  		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3827  		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3828  		if (ic->mode == 'J') {
3829  			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3830  			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3831  		}
3832  		if (ic->mode == 'B') {
3833  			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3834  			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3835  		}
3836  		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3837  			DMEMIT(" fix_padding");
3838  		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3839  			DMEMIT(" fix_hmac");
3840  		if (ic->legacy_recalculate)
3841  			DMEMIT(" legacy_recalculate");
3842  
3843  #define EMIT_ALG(a, n)							\
3844  		do {							\
3845  			if (ic->a.alg_string) {				\
3846  				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3847  				if (ic->a.key_string)			\
3848  					DMEMIT(":%s", ic->a.key_string);\
3849  			}						\
3850  		} while (0)
3851  		EMIT_ALG(internal_hash_alg, "internal_hash");
3852  		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3853  		EMIT_ALG(journal_mac_alg, "journal_mac");
3854  		break;
3855  	}
3856  	case STATUSTYPE_IMA:
3857  		DMEMIT_TARGET_NAME_VERSION(ti->type);
3858  		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3859  			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3860  
3861  		if (ic->meta_dev)
3862  			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3863  		if (ic->sectors_per_block != 1)
3864  			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3865  
3866  		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3867  		       'y' : 'n');
3868  		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3869  		DMEMIT(",fix_padding=%c",
3870  		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3871  		DMEMIT(",fix_hmac=%c",
3872  		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3873  		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3874  
3875  		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3876  		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3877  		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3878  		DMEMIT(";");
3879  		break;
3880  	}
3881  }
3882  
dm_integrity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3883  static int dm_integrity_iterate_devices(struct dm_target *ti,
3884  					iterate_devices_callout_fn fn, void *data)
3885  {
3886  	struct dm_integrity_c *ic = ti->private;
3887  
3888  	if (!ic->meta_dev)
3889  		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3890  	else
3891  		return fn(ti, ic->dev, 0, ti->len, data);
3892  }
3893  
dm_integrity_io_hints(struct dm_target * ti,struct queue_limits * limits)3894  static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3895  {
3896  	struct dm_integrity_c *ic = ti->private;
3897  
3898  	if (ic->sectors_per_block > 1) {
3899  		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3900  		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3901  		limits->io_min = ic->sectors_per_block << SECTOR_SHIFT;
3902  		limits->dma_alignment = limits->logical_block_size - 1;
3903  		limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT;
3904  	}
3905  
3906  	if (!ic->internal_hash) {
3907  		struct blk_integrity *bi = &limits->integrity;
3908  
3909  		memset(bi, 0, sizeof(*bi));
3910  		bi->tuple_size = ic->tag_size;
3911  		bi->tag_size = bi->tuple_size;
3912  		bi->interval_exp =
3913  			ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3914  	}
3915  
3916  	limits->max_integrity_segments = USHRT_MAX;
3917  }
3918  
calculate_journal_section_size(struct dm_integrity_c * ic)3919  static void calculate_journal_section_size(struct dm_integrity_c *ic)
3920  {
3921  	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3922  
3923  	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3924  	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3925  					 JOURNAL_ENTRY_ROUNDUP);
3926  
3927  	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3928  		sector_space -= JOURNAL_MAC_PER_SECTOR;
3929  	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3930  	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3931  	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3932  	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3933  }
3934  
calculate_device_limits(struct dm_integrity_c * ic)3935  static int calculate_device_limits(struct dm_integrity_c *ic)
3936  {
3937  	__u64 initial_sectors;
3938  
3939  	calculate_journal_section_size(ic);
3940  	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3941  	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3942  		return -EINVAL;
3943  	ic->initial_sectors = initial_sectors;
3944  
3945  	if (ic->mode == 'I') {
3946  		if (ic->initial_sectors + ic->provided_data_sectors > ic->meta_device_sectors)
3947  			return -EINVAL;
3948  	} else if (!ic->meta_dev) {
3949  		sector_t last_sector, last_area, last_offset;
3950  
3951  		/* we have to maintain excessive padding for compatibility with existing volumes */
3952  		__u64 metadata_run_padding =
3953  			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3954  			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3955  			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3956  
3957  		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3958  					    metadata_run_padding) >> SECTOR_SHIFT;
3959  		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3960  			ic->log2_metadata_run = __ffs(ic->metadata_run);
3961  		else
3962  			ic->log2_metadata_run = -1;
3963  
3964  		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3965  		last_sector = get_data_sector(ic, last_area, last_offset);
3966  		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3967  			return -EINVAL;
3968  	} else {
3969  		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3970  
3971  		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3972  				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3973  		meta_size <<= ic->log2_buffer_sectors;
3974  		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3975  		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3976  			return -EINVAL;
3977  		ic->metadata_run = 1;
3978  		ic->log2_metadata_run = 0;
3979  	}
3980  
3981  	return 0;
3982  }
3983  
get_provided_data_sectors(struct dm_integrity_c * ic)3984  static void get_provided_data_sectors(struct dm_integrity_c *ic)
3985  {
3986  	if (!ic->meta_dev) {
3987  		int test_bit;
3988  
3989  		ic->provided_data_sectors = 0;
3990  		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3991  			__u64 prev_data_sectors = ic->provided_data_sectors;
3992  
3993  			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3994  			if (calculate_device_limits(ic))
3995  				ic->provided_data_sectors = prev_data_sectors;
3996  		}
3997  	} else {
3998  		ic->provided_data_sectors = ic->data_device_sectors;
3999  		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
4000  	}
4001  }
4002  
initialize_superblock(struct dm_integrity_c * ic,unsigned int journal_sectors,unsigned int interleave_sectors)4003  static int initialize_superblock(struct dm_integrity_c *ic,
4004  				 unsigned int journal_sectors, unsigned int interleave_sectors)
4005  {
4006  	unsigned int journal_sections;
4007  	int test_bit;
4008  
4009  	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
4010  	memcpy(ic->sb->magic, SB_MAGIC, 8);
4011  	if (ic->mode == 'I')
4012  		ic->sb->flags |= cpu_to_le32(SB_FLAG_INLINE);
4013  	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
4014  	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
4015  	if (ic->journal_mac_alg.alg_string)
4016  		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
4017  
4018  	calculate_journal_section_size(ic);
4019  	journal_sections = journal_sectors / ic->journal_section_sectors;
4020  	if (!journal_sections)
4021  		journal_sections = 1;
4022  	if (ic->mode == 'I')
4023  		journal_sections = 0;
4024  
4025  	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
4026  		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
4027  		get_random_bytes(ic->sb->salt, SALT_SIZE);
4028  	}
4029  
4030  	if (!ic->meta_dev) {
4031  		if (ic->fix_padding)
4032  			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
4033  		ic->sb->journal_sections = cpu_to_le32(journal_sections);
4034  		if (!interleave_sectors)
4035  			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4036  		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
4037  		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4038  		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4039  
4040  		get_provided_data_sectors(ic);
4041  		if (!ic->provided_data_sectors)
4042  			return -EINVAL;
4043  	} else {
4044  		ic->sb->log2_interleave_sectors = 0;
4045  
4046  		get_provided_data_sectors(ic);
4047  		if (!ic->provided_data_sectors)
4048  			return -EINVAL;
4049  
4050  try_smaller_buffer:
4051  		ic->sb->journal_sections = cpu_to_le32(0);
4052  		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
4053  			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
4054  			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
4055  
4056  			if (test_journal_sections > journal_sections)
4057  				continue;
4058  			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
4059  			if (calculate_device_limits(ic))
4060  				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
4061  
4062  		}
4063  		if (!le32_to_cpu(ic->sb->journal_sections)) {
4064  			if (ic->log2_buffer_sectors > 3) {
4065  				ic->log2_buffer_sectors--;
4066  				goto try_smaller_buffer;
4067  			}
4068  			return -EINVAL;
4069  		}
4070  	}
4071  
4072  	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
4073  
4074  	sb_set_version(ic);
4075  
4076  	return 0;
4077  }
4078  
dm_integrity_free_page_list(struct page_list * pl)4079  static void dm_integrity_free_page_list(struct page_list *pl)
4080  {
4081  	unsigned int i;
4082  
4083  	if (!pl)
4084  		return;
4085  	for (i = 0; pl[i].page; i++)
4086  		__free_page(pl[i].page);
4087  	kvfree(pl);
4088  }
4089  
dm_integrity_alloc_page_list(unsigned int n_pages)4090  static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
4091  {
4092  	struct page_list *pl;
4093  	unsigned int i;
4094  
4095  	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
4096  	if (!pl)
4097  		return NULL;
4098  
4099  	for (i = 0; i < n_pages; i++) {
4100  		pl[i].page = alloc_page(GFP_KERNEL);
4101  		if (!pl[i].page) {
4102  			dm_integrity_free_page_list(pl);
4103  			return NULL;
4104  		}
4105  		if (i)
4106  			pl[i - 1].next = &pl[i];
4107  	}
4108  	pl[i].page = NULL;
4109  	pl[i].next = NULL;
4110  
4111  	return pl;
4112  }
4113  
dm_integrity_free_journal_scatterlist(struct dm_integrity_c * ic,struct scatterlist ** sl)4114  static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
4115  {
4116  	unsigned int i;
4117  
4118  	for (i = 0; i < ic->journal_sections; i++)
4119  		kvfree(sl[i]);
4120  	kvfree(sl);
4121  }
4122  
dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c * ic,struct page_list * pl)4123  static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
4124  								   struct page_list *pl)
4125  {
4126  	struct scatterlist **sl;
4127  	unsigned int i;
4128  
4129  	sl = kvmalloc_array(ic->journal_sections,
4130  			    sizeof(struct scatterlist *),
4131  			    GFP_KERNEL | __GFP_ZERO);
4132  	if (!sl)
4133  		return NULL;
4134  
4135  	for (i = 0; i < ic->journal_sections; i++) {
4136  		struct scatterlist *s;
4137  		unsigned int start_index, start_offset;
4138  		unsigned int end_index, end_offset;
4139  		unsigned int n_pages;
4140  		unsigned int idx;
4141  
4142  		page_list_location(ic, i, 0, &start_index, &start_offset);
4143  		page_list_location(ic, i, ic->journal_section_sectors - 1,
4144  				   &end_index, &end_offset);
4145  
4146  		n_pages = (end_index - start_index + 1);
4147  
4148  		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
4149  				   GFP_KERNEL);
4150  		if (!s) {
4151  			dm_integrity_free_journal_scatterlist(ic, sl);
4152  			return NULL;
4153  		}
4154  
4155  		sg_init_table(s, n_pages);
4156  		for (idx = start_index; idx <= end_index; idx++) {
4157  			char *va = lowmem_page_address(pl[idx].page);
4158  			unsigned int start = 0, end = PAGE_SIZE;
4159  
4160  			if (idx == start_index)
4161  				start = start_offset;
4162  			if (idx == end_index)
4163  				end = end_offset + (1 << SECTOR_SHIFT);
4164  			sg_set_buf(&s[idx - start_index], va + start, end - start);
4165  		}
4166  
4167  		sl[i] = s;
4168  	}
4169  
4170  	return sl;
4171  }
4172  
free_alg(struct alg_spec * a)4173  static void free_alg(struct alg_spec *a)
4174  {
4175  	kfree_sensitive(a->alg_string);
4176  	kfree_sensitive(a->key);
4177  	memset(a, 0, sizeof(*a));
4178  }
4179  
get_alg_and_key(const char * arg,struct alg_spec * a,char ** error,char * error_inval)4180  static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
4181  {
4182  	char *k;
4183  
4184  	free_alg(a);
4185  
4186  	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
4187  	if (!a->alg_string)
4188  		goto nomem;
4189  
4190  	k = strchr(a->alg_string, ':');
4191  	if (k) {
4192  		*k = 0;
4193  		a->key_string = k + 1;
4194  		if (strlen(a->key_string) & 1)
4195  			goto inval;
4196  
4197  		a->key_size = strlen(a->key_string) / 2;
4198  		a->key = kmalloc(a->key_size, GFP_KERNEL);
4199  		if (!a->key)
4200  			goto nomem;
4201  		if (hex2bin(a->key, a->key_string, a->key_size))
4202  			goto inval;
4203  	}
4204  
4205  	return 0;
4206  inval:
4207  	*error = error_inval;
4208  	return -EINVAL;
4209  nomem:
4210  	*error = "Out of memory for an argument";
4211  	return -ENOMEM;
4212  }
4213  
get_mac(struct crypto_shash ** hash,struct alg_spec * a,char ** error,char * error_alg,char * error_key)4214  static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
4215  		   char *error_alg, char *error_key)
4216  {
4217  	int r;
4218  
4219  	if (a->alg_string) {
4220  		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4221  		if (IS_ERR(*hash)) {
4222  			*error = error_alg;
4223  			r = PTR_ERR(*hash);
4224  			*hash = NULL;
4225  			return r;
4226  		}
4227  
4228  		if (a->key) {
4229  			r = crypto_shash_setkey(*hash, a->key, a->key_size);
4230  			if (r) {
4231  				*error = error_key;
4232  				return r;
4233  			}
4234  		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
4235  			*error = error_key;
4236  			return -ENOKEY;
4237  		}
4238  	}
4239  
4240  	return 0;
4241  }
4242  
create_journal(struct dm_integrity_c * ic,char ** error)4243  static int create_journal(struct dm_integrity_c *ic, char **error)
4244  {
4245  	int r = 0;
4246  	unsigned int i;
4247  	__u64 journal_pages, journal_desc_size, journal_tree_size;
4248  	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
4249  	struct skcipher_request *req = NULL;
4250  
4251  	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
4252  	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
4253  	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
4254  	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
4255  
4256  	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
4257  				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
4258  	journal_desc_size = journal_pages * sizeof(struct page_list);
4259  	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
4260  		*error = "Journal doesn't fit into memory";
4261  		r = -ENOMEM;
4262  		goto bad;
4263  	}
4264  	ic->journal_pages = journal_pages;
4265  
4266  	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
4267  	if (!ic->journal) {
4268  		*error = "Could not allocate memory for journal";
4269  		r = -ENOMEM;
4270  		goto bad;
4271  	}
4272  	if (ic->journal_crypt_alg.alg_string) {
4273  		unsigned int ivsize, blocksize;
4274  		struct journal_completion comp;
4275  
4276  		comp.ic = ic;
4277  		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4278  		if (IS_ERR(ic->journal_crypt)) {
4279  			*error = "Invalid journal cipher";
4280  			r = PTR_ERR(ic->journal_crypt);
4281  			ic->journal_crypt = NULL;
4282  			goto bad;
4283  		}
4284  		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
4285  		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
4286  
4287  		if (ic->journal_crypt_alg.key) {
4288  			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
4289  						   ic->journal_crypt_alg.key_size);
4290  			if (r) {
4291  				*error = "Error setting encryption key";
4292  				goto bad;
4293  			}
4294  		}
4295  		DEBUG_print("cipher %s, block size %u iv size %u\n",
4296  			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
4297  
4298  		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
4299  		if (!ic->journal_io) {
4300  			*error = "Could not allocate memory for journal io";
4301  			r = -ENOMEM;
4302  			goto bad;
4303  		}
4304  
4305  		if (blocksize == 1) {
4306  			struct scatterlist *sg;
4307  
4308  			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4309  			if (!req) {
4310  				*error = "Could not allocate crypt request";
4311  				r = -ENOMEM;
4312  				goto bad;
4313  			}
4314  
4315  			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
4316  			if (!crypt_iv) {
4317  				*error = "Could not allocate iv";
4318  				r = -ENOMEM;
4319  				goto bad;
4320  			}
4321  
4322  			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
4323  			if (!ic->journal_xor) {
4324  				*error = "Could not allocate memory for journal xor";
4325  				r = -ENOMEM;
4326  				goto bad;
4327  			}
4328  
4329  			sg = kvmalloc_array(ic->journal_pages + 1,
4330  					    sizeof(struct scatterlist),
4331  					    GFP_KERNEL);
4332  			if (!sg) {
4333  				*error = "Unable to allocate sg list";
4334  				r = -ENOMEM;
4335  				goto bad;
4336  			}
4337  			sg_init_table(sg, ic->journal_pages + 1);
4338  			for (i = 0; i < ic->journal_pages; i++) {
4339  				char *va = lowmem_page_address(ic->journal_xor[i].page);
4340  
4341  				clear_page(va);
4342  				sg_set_buf(&sg[i], va, PAGE_SIZE);
4343  			}
4344  			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
4345  
4346  			skcipher_request_set_crypt(req, sg, sg,
4347  						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
4348  			init_completion(&comp.comp);
4349  			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4350  			if (do_crypt(true, req, &comp))
4351  				wait_for_completion(&comp.comp);
4352  			kvfree(sg);
4353  			r = dm_integrity_failed(ic);
4354  			if (r) {
4355  				*error = "Unable to encrypt journal";
4356  				goto bad;
4357  			}
4358  			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
4359  
4360  			crypto_free_skcipher(ic->journal_crypt);
4361  			ic->journal_crypt = NULL;
4362  		} else {
4363  			unsigned int crypt_len = roundup(ivsize, blocksize);
4364  
4365  			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4366  			if (!req) {
4367  				*error = "Could not allocate crypt request";
4368  				r = -ENOMEM;
4369  				goto bad;
4370  			}
4371  
4372  			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
4373  			if (!crypt_iv) {
4374  				*error = "Could not allocate iv";
4375  				r = -ENOMEM;
4376  				goto bad;
4377  			}
4378  
4379  			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
4380  			if (!crypt_data) {
4381  				*error = "Unable to allocate crypt data";
4382  				r = -ENOMEM;
4383  				goto bad;
4384  			}
4385  
4386  			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
4387  			if (!ic->journal_scatterlist) {
4388  				*error = "Unable to allocate sg list";
4389  				r = -ENOMEM;
4390  				goto bad;
4391  			}
4392  			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
4393  			if (!ic->journal_io_scatterlist) {
4394  				*error = "Unable to allocate sg list";
4395  				r = -ENOMEM;
4396  				goto bad;
4397  			}
4398  			ic->sk_requests = kvmalloc_array(ic->journal_sections,
4399  							 sizeof(struct skcipher_request *),
4400  							 GFP_KERNEL | __GFP_ZERO);
4401  			if (!ic->sk_requests) {
4402  				*error = "Unable to allocate sk requests";
4403  				r = -ENOMEM;
4404  				goto bad;
4405  			}
4406  			for (i = 0; i < ic->journal_sections; i++) {
4407  				struct scatterlist sg;
4408  				struct skcipher_request *section_req;
4409  				__le32 section_le = cpu_to_le32(i);
4410  
4411  				memset(crypt_iv, 0x00, ivsize);
4412  				memset(crypt_data, 0x00, crypt_len);
4413  				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4414  
4415  				sg_init_one(&sg, crypt_data, crypt_len);
4416  				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4417  				init_completion(&comp.comp);
4418  				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4419  				if (do_crypt(true, req, &comp))
4420  					wait_for_completion(&comp.comp);
4421  
4422  				r = dm_integrity_failed(ic);
4423  				if (r) {
4424  					*error = "Unable to generate iv";
4425  					goto bad;
4426  				}
4427  
4428  				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4429  				if (!section_req) {
4430  					*error = "Unable to allocate crypt request";
4431  					r = -ENOMEM;
4432  					goto bad;
4433  				}
4434  				section_req->iv = kmalloc_array(ivsize, 2,
4435  								GFP_KERNEL);
4436  				if (!section_req->iv) {
4437  					skcipher_request_free(section_req);
4438  					*error = "Unable to allocate iv";
4439  					r = -ENOMEM;
4440  					goto bad;
4441  				}
4442  				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4443  				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4444  				ic->sk_requests[i] = section_req;
4445  				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4446  			}
4447  		}
4448  	}
4449  
4450  	for (i = 0; i < N_COMMIT_IDS; i++) {
4451  		unsigned int j;
4452  
4453  retest_commit_id:
4454  		for (j = 0; j < i; j++) {
4455  			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4456  				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4457  				goto retest_commit_id;
4458  			}
4459  		}
4460  		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4461  	}
4462  
4463  	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4464  	if (journal_tree_size > ULONG_MAX) {
4465  		*error = "Journal doesn't fit into memory";
4466  		r = -ENOMEM;
4467  		goto bad;
4468  	}
4469  	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4470  	if (!ic->journal_tree) {
4471  		*error = "Could not allocate memory for journal tree";
4472  		r = -ENOMEM;
4473  	}
4474  bad:
4475  	kfree(crypt_data);
4476  	kfree(crypt_iv);
4477  	skcipher_request_free(req);
4478  
4479  	return r;
4480  }
4481  
4482  /*
4483   * Construct a integrity mapping
4484   *
4485   * Arguments:
4486   *	device
4487   *	offset from the start of the device
4488   *	tag size
4489   *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4490   *	number of optional arguments
4491   *	optional arguments:
4492   *		journal_sectors
4493   *		interleave_sectors
4494   *		buffer_sectors
4495   *		journal_watermark
4496   *		commit_time
4497   *		meta_device
4498   *		block_size
4499   *		sectors_per_bit
4500   *		bitmap_flush_interval
4501   *		internal_hash
4502   *		journal_crypt
4503   *		journal_mac
4504   *		recalculate
4505   */
dm_integrity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)4506  static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4507  {
4508  	struct dm_integrity_c *ic;
4509  	char dummy;
4510  	int r;
4511  	unsigned int extra_args;
4512  	struct dm_arg_set as;
4513  	static const struct dm_arg _args[] = {
4514  		{0, 18, "Invalid number of feature args"},
4515  	};
4516  	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4517  	bool should_write_sb;
4518  	__u64 threshold;
4519  	unsigned long long start;
4520  	__s8 log2_sectors_per_bitmap_bit = -1;
4521  	__s8 log2_blocks_per_bitmap_bit;
4522  	__u64 bits_in_journal;
4523  	__u64 n_bitmap_bits;
4524  
4525  #define DIRECT_ARGUMENTS	4
4526  
4527  	if (argc <= DIRECT_ARGUMENTS) {
4528  		ti->error = "Invalid argument count";
4529  		return -EINVAL;
4530  	}
4531  
4532  	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4533  	if (!ic) {
4534  		ti->error = "Cannot allocate integrity context";
4535  		return -ENOMEM;
4536  	}
4537  	ti->private = ic;
4538  	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4539  	ic->ti = ti;
4540  
4541  	ic->in_progress = RB_ROOT;
4542  	INIT_LIST_HEAD(&ic->wait_list);
4543  	init_waitqueue_head(&ic->endio_wait);
4544  	bio_list_init(&ic->flush_bio_list);
4545  	init_waitqueue_head(&ic->copy_to_journal_wait);
4546  	init_completion(&ic->crypto_backoff);
4547  	atomic64_set(&ic->number_of_mismatches, 0);
4548  	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4549  
4550  	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4551  	if (r) {
4552  		ti->error = "Device lookup failed";
4553  		goto bad;
4554  	}
4555  
4556  	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4557  		ti->error = "Invalid starting offset";
4558  		r = -EINVAL;
4559  		goto bad;
4560  	}
4561  	ic->start = start;
4562  
4563  	if (strcmp(argv[2], "-")) {
4564  		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4565  			ti->error = "Invalid tag size";
4566  			r = -EINVAL;
4567  			goto bad;
4568  		}
4569  	}
4570  
4571  	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4572  	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R") ||
4573  	    !strcmp(argv[3], "I")) {
4574  		ic->mode = argv[3][0];
4575  	} else {
4576  		ti->error = "Invalid mode (expecting J, B, D, R, I)";
4577  		r = -EINVAL;
4578  		goto bad;
4579  	}
4580  
4581  	journal_sectors = 0;
4582  	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4583  	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4584  	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4585  	sync_msec = DEFAULT_SYNC_MSEC;
4586  	ic->sectors_per_block = 1;
4587  
4588  	as.argc = argc - DIRECT_ARGUMENTS;
4589  	as.argv = argv + DIRECT_ARGUMENTS;
4590  	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4591  	if (r)
4592  		goto bad;
4593  
4594  	while (extra_args--) {
4595  		const char *opt_string;
4596  		unsigned int val;
4597  		unsigned long long llval;
4598  
4599  		opt_string = dm_shift_arg(&as);
4600  		if (!opt_string) {
4601  			r = -EINVAL;
4602  			ti->error = "Not enough feature arguments";
4603  			goto bad;
4604  		}
4605  		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4606  			journal_sectors = val ? val : 1;
4607  		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4608  			interleave_sectors = val;
4609  		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4610  			buffer_sectors = val;
4611  		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4612  			journal_watermark = val;
4613  		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4614  			sync_msec = val;
4615  		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4616  			if (ic->meta_dev) {
4617  				dm_put_device(ti, ic->meta_dev);
4618  				ic->meta_dev = NULL;
4619  			}
4620  			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4621  					  dm_table_get_mode(ti->table), &ic->meta_dev);
4622  			if (r) {
4623  				ti->error = "Device lookup failed";
4624  				goto bad;
4625  			}
4626  		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4627  			if (val < 1 << SECTOR_SHIFT ||
4628  			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4629  			    (val & (val - 1))) {
4630  				r = -EINVAL;
4631  				ti->error = "Invalid block_size argument";
4632  				goto bad;
4633  			}
4634  			ic->sectors_per_block = val >> SECTOR_SHIFT;
4635  		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4636  			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4637  		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4638  			if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4639  				r = -EINVAL;
4640  				ti->error = "Invalid bitmap_flush_interval argument";
4641  				goto bad;
4642  			}
4643  			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4644  		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4645  			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4646  					    "Invalid internal_hash argument");
4647  			if (r)
4648  				goto bad;
4649  		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4650  			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4651  					    "Invalid journal_crypt argument");
4652  			if (r)
4653  				goto bad;
4654  		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4655  			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4656  					    "Invalid journal_mac argument");
4657  			if (r)
4658  				goto bad;
4659  		} else if (!strcmp(opt_string, "recalculate")) {
4660  			ic->recalculate_flag = true;
4661  		} else if (!strcmp(opt_string, "reset_recalculate")) {
4662  			ic->recalculate_flag = true;
4663  			ic->reset_recalculate_flag = true;
4664  		} else if (!strcmp(opt_string, "allow_discards")) {
4665  			ic->discard = true;
4666  		} else if (!strcmp(opt_string, "fix_padding")) {
4667  			ic->fix_padding = true;
4668  		} else if (!strcmp(opt_string, "fix_hmac")) {
4669  			ic->fix_hmac = true;
4670  		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4671  			ic->legacy_recalculate = true;
4672  		} else {
4673  			r = -EINVAL;
4674  			ti->error = "Invalid argument";
4675  			goto bad;
4676  		}
4677  	}
4678  
4679  	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4680  	if (!ic->meta_dev)
4681  		ic->meta_device_sectors = ic->data_device_sectors;
4682  	else
4683  		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4684  
4685  	if (!journal_sectors) {
4686  		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4687  				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4688  	}
4689  
4690  	if (!buffer_sectors)
4691  		buffer_sectors = 1;
4692  	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4693  
4694  	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4695  		    "Invalid internal hash", "Error setting internal hash key");
4696  	if (r)
4697  		goto bad;
4698  
4699  	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4700  		    "Invalid journal mac", "Error setting journal mac key");
4701  	if (r)
4702  		goto bad;
4703  
4704  	if (!ic->tag_size) {
4705  		if (!ic->internal_hash) {
4706  			ti->error = "Unknown tag size";
4707  			r = -EINVAL;
4708  			goto bad;
4709  		}
4710  		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4711  	}
4712  	if (ic->tag_size > MAX_TAG_SIZE) {
4713  		ti->error = "Too big tag size";
4714  		r = -EINVAL;
4715  		goto bad;
4716  	}
4717  	if (!(ic->tag_size & (ic->tag_size - 1)))
4718  		ic->log2_tag_size = __ffs(ic->tag_size);
4719  	else
4720  		ic->log2_tag_size = -1;
4721  
4722  	if (ic->mode == 'I') {
4723  		struct blk_integrity *bi;
4724  		if (ic->meta_dev) {
4725  			r = -EINVAL;
4726  			ti->error = "Metadata device not supported in inline mode";
4727  			goto bad;
4728  		}
4729  		if (!ic->internal_hash_alg.alg_string) {
4730  			r = -EINVAL;
4731  			ti->error = "Internal hash not set in inline mode";
4732  			goto bad;
4733  		}
4734  		if (ic->journal_crypt_alg.alg_string || ic->journal_mac_alg.alg_string) {
4735  			r = -EINVAL;
4736  			ti->error = "Journal crypt not supported in inline mode";
4737  			goto bad;
4738  		}
4739  		if (ic->discard) {
4740  			r = -EINVAL;
4741  			ti->error = "Discards not supported in inline mode";
4742  			goto bad;
4743  		}
4744  		bi = blk_get_integrity(ic->dev->bdev->bd_disk);
4745  		if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
4746  			r = -EINVAL;
4747  			ti->error = "Integrity profile not supported";
4748  			goto bad;
4749  		}
4750  		/*printk("tag_size: %u, tuple_size: %u\n", bi->tag_size, bi->tuple_size);*/
4751  		if (bi->tuple_size < ic->tag_size) {
4752  			r = -EINVAL;
4753  			ti->error = "The integrity profile is smaller than tag size";
4754  			goto bad;
4755  		}
4756  		if ((unsigned long)bi->tuple_size > PAGE_SIZE / 2) {
4757  			r = -EINVAL;
4758  			ti->error = "Too big tuple size";
4759  			goto bad;
4760  		}
4761  		ic->tuple_size = bi->tuple_size;
4762  		if (1 << bi->interval_exp != ic->sectors_per_block << SECTOR_SHIFT) {
4763  			r = -EINVAL;
4764  			ti->error = "Integrity profile sector size mismatch";
4765  			goto bad;
4766  		}
4767  	}
4768  
4769  	if (ic->mode == 'B' && !ic->internal_hash) {
4770  		r = -EINVAL;
4771  		ti->error = "Bitmap mode can be only used with internal hash";
4772  		goto bad;
4773  	}
4774  
4775  	if (ic->discard && !ic->internal_hash) {
4776  		r = -EINVAL;
4777  		ti->error = "Discard can be only used with internal hash";
4778  		goto bad;
4779  	}
4780  
4781  	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4782  	ic->autocommit_msec = sync_msec;
4783  	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4784  
4785  	ic->io = dm_io_client_create();
4786  	if (IS_ERR(ic->io)) {
4787  		r = PTR_ERR(ic->io);
4788  		ic->io = NULL;
4789  		ti->error = "Cannot allocate dm io";
4790  		goto bad;
4791  	}
4792  
4793  	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4794  	if (r) {
4795  		ti->error = "Cannot allocate mempool";
4796  		goto bad;
4797  	}
4798  
4799  	r = mempool_init_page_pool(&ic->recheck_pool, 1, ic->mode == 'I' ? 1 : 0);
4800  	if (r) {
4801  		ti->error = "Cannot allocate mempool";
4802  		goto bad;
4803  	}
4804  
4805  	if (ic->mode == 'I') {
4806  		r = bioset_init(&ic->recheck_bios, RECHECK_POOL_SIZE, 0, BIOSET_NEED_BVECS);
4807  		if (r) {
4808  			ti->error = "Cannot allocate bio set";
4809  			goto bad;
4810  		}
4811  		r = bioset_integrity_create(&ic->recheck_bios, RECHECK_POOL_SIZE);
4812  		if (r) {
4813  			ti->error = "Cannot allocate bio integrity set";
4814  			r = -ENOMEM;
4815  			goto bad;
4816  		}
4817  		r = bioset_init(&ic->recalc_bios, 1, 0, BIOSET_NEED_BVECS);
4818  		if (r) {
4819  			ti->error = "Cannot allocate bio set";
4820  			goto bad;
4821  		}
4822  		r = bioset_integrity_create(&ic->recalc_bios, 1);
4823  		if (r) {
4824  			ti->error = "Cannot allocate bio integrity set";
4825  			r = -ENOMEM;
4826  			goto bad;
4827  		}
4828  	}
4829  
4830  	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4831  					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4832  	if (!ic->metadata_wq) {
4833  		ti->error = "Cannot allocate workqueue";
4834  		r = -ENOMEM;
4835  		goto bad;
4836  	}
4837  
4838  	/*
4839  	 * If this workqueue weren't ordered, it would cause bio reordering
4840  	 * and reduced performance.
4841  	 */
4842  	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4843  	if (!ic->wait_wq) {
4844  		ti->error = "Cannot allocate workqueue";
4845  		r = -ENOMEM;
4846  		goto bad;
4847  	}
4848  
4849  	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4850  					  METADATA_WORKQUEUE_MAX_ACTIVE);
4851  	if (!ic->offload_wq) {
4852  		ti->error = "Cannot allocate workqueue";
4853  		r = -ENOMEM;
4854  		goto bad;
4855  	}
4856  
4857  	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4858  	if (!ic->commit_wq) {
4859  		ti->error = "Cannot allocate workqueue";
4860  		r = -ENOMEM;
4861  		goto bad;
4862  	}
4863  	INIT_WORK(&ic->commit_work, integrity_commit);
4864  
4865  	if (ic->mode == 'J' || ic->mode == 'B') {
4866  		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4867  		if (!ic->writer_wq) {
4868  			ti->error = "Cannot allocate workqueue";
4869  			r = -ENOMEM;
4870  			goto bad;
4871  		}
4872  		INIT_WORK(&ic->writer_work, integrity_writer);
4873  	}
4874  
4875  	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4876  	if (!ic->sb) {
4877  		r = -ENOMEM;
4878  		ti->error = "Cannot allocate superblock area";
4879  		goto bad;
4880  	}
4881  
4882  	r = sync_rw_sb(ic, REQ_OP_READ);
4883  	if (r) {
4884  		ti->error = "Error reading superblock";
4885  		goto bad;
4886  	}
4887  	should_write_sb = false;
4888  	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4889  		if (ic->mode != 'R') {
4890  			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4891  				r = -EINVAL;
4892  				ti->error = "The device is not initialized";
4893  				goto bad;
4894  			}
4895  		}
4896  
4897  		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4898  		if (r) {
4899  			ti->error = "Could not initialize superblock";
4900  			goto bad;
4901  		}
4902  		if (ic->mode != 'R')
4903  			should_write_sb = true;
4904  	}
4905  
4906  	if (!ic->sb->version || ic->sb->version > SB_VERSION_6) {
4907  		r = -EINVAL;
4908  		ti->error = "Unknown version";
4909  		goto bad;
4910  	}
4911  	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) != (ic->mode == 'I')) {
4912  		r = -EINVAL;
4913  		ti->error = "Inline flag mismatch";
4914  		goto bad;
4915  	}
4916  	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4917  		r = -EINVAL;
4918  		ti->error = "Tag size doesn't match the information in superblock";
4919  		goto bad;
4920  	}
4921  	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4922  		r = -EINVAL;
4923  		ti->error = "Block size doesn't match the information in superblock";
4924  		goto bad;
4925  	}
4926  	if (ic->mode != 'I') {
4927  		if (!le32_to_cpu(ic->sb->journal_sections)) {
4928  			r = -EINVAL;
4929  			ti->error = "Corrupted superblock, journal_sections is 0";
4930  			goto bad;
4931  		}
4932  	} else {
4933  		if (le32_to_cpu(ic->sb->journal_sections)) {
4934  			r = -EINVAL;
4935  			ti->error = "Corrupted superblock, journal_sections is not 0";
4936  			goto bad;
4937  		}
4938  	}
4939  	/* make sure that ti->max_io_len doesn't overflow */
4940  	if (!ic->meta_dev) {
4941  		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4942  		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4943  			r = -EINVAL;
4944  			ti->error = "Invalid interleave_sectors in the superblock";
4945  			goto bad;
4946  		}
4947  	} else {
4948  		if (ic->sb->log2_interleave_sectors) {
4949  			r = -EINVAL;
4950  			ti->error = "Invalid interleave_sectors in the superblock";
4951  			goto bad;
4952  		}
4953  	}
4954  	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4955  		r = -EINVAL;
4956  		ti->error = "Journal mac mismatch";
4957  		goto bad;
4958  	}
4959  
4960  	get_provided_data_sectors(ic);
4961  	if (!ic->provided_data_sectors) {
4962  		r = -EINVAL;
4963  		ti->error = "The device is too small";
4964  		goto bad;
4965  	}
4966  
4967  try_smaller_buffer:
4968  	r = calculate_device_limits(ic);
4969  	if (r) {
4970  		if (ic->meta_dev) {
4971  			if (ic->log2_buffer_sectors > 3) {
4972  				ic->log2_buffer_sectors--;
4973  				goto try_smaller_buffer;
4974  			}
4975  		}
4976  		ti->error = "The device is too small";
4977  		goto bad;
4978  	}
4979  
4980  	if (log2_sectors_per_bitmap_bit < 0)
4981  		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4982  	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4983  		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4984  
4985  	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4986  	if (bits_in_journal > UINT_MAX)
4987  		bits_in_journal = UINT_MAX;
4988  	if (bits_in_journal)
4989  		while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4990  			log2_sectors_per_bitmap_bit++;
4991  
4992  	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4993  	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4994  	if (should_write_sb)
4995  		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4996  
4997  	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4998  				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4999  	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
5000  
5001  	if (!ic->meta_dev)
5002  		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
5003  
5004  	if (ti->len > ic->provided_data_sectors) {
5005  		r = -EINVAL;
5006  		ti->error = "Not enough provided sectors for requested mapping size";
5007  		goto bad;
5008  	}
5009  
5010  	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
5011  	threshold += 50;
5012  	do_div(threshold, 100);
5013  	ic->free_sectors_threshold = threshold;
5014  
5015  	DEBUG_print("initialized:\n");
5016  	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
5017  	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
5018  	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
5019  	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
5020  	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
5021  	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
5022  	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
5023  	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
5024  	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
5025  	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
5026  	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
5027  	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
5028  	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
5029  	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
5030  	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
5031  
5032  	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
5033  		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
5034  		ic->sb->recalc_sector = cpu_to_le64(0);
5035  	}
5036  
5037  	if (ic->internal_hash) {
5038  		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
5039  		if (!ic->recalc_wq) {
5040  			ti->error = "Cannot allocate workqueue";
5041  			r = -ENOMEM;
5042  			goto bad;
5043  		}
5044  		INIT_WORK(&ic->recalc_work, ic->mode == 'I' ? integrity_recalc_inline : integrity_recalc);
5045  	} else {
5046  		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
5047  			ti->error = "Recalculate can only be specified with internal_hash";
5048  			r = -EINVAL;
5049  			goto bad;
5050  		}
5051  	}
5052  
5053  	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
5054  	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
5055  	    dm_integrity_disable_recalculate(ic)) {
5056  		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
5057  		r = -EOPNOTSUPP;
5058  		goto bad;
5059  	}
5060  
5061  	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
5062  			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
5063  	if (IS_ERR(ic->bufio)) {
5064  		r = PTR_ERR(ic->bufio);
5065  		ti->error = "Cannot initialize dm-bufio";
5066  		ic->bufio = NULL;
5067  		goto bad;
5068  	}
5069  	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
5070  
5071  	if (ic->mode != 'R' && ic->mode != 'I') {
5072  		r = create_journal(ic, &ti->error);
5073  		if (r)
5074  			goto bad;
5075  
5076  	}
5077  
5078  	if (ic->mode == 'B') {
5079  		unsigned int i;
5080  		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
5081  
5082  		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5083  		if (!ic->recalc_bitmap) {
5084  			r = -ENOMEM;
5085  			goto bad;
5086  		}
5087  		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5088  		if (!ic->may_write_bitmap) {
5089  			r = -ENOMEM;
5090  			goto bad;
5091  		}
5092  		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
5093  		if (!ic->bbs) {
5094  			r = -ENOMEM;
5095  			goto bad;
5096  		}
5097  		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
5098  		for (i = 0; i < ic->n_bitmap_blocks; i++) {
5099  			struct bitmap_block_status *bbs = &ic->bbs[i];
5100  			unsigned int sector, pl_index, pl_offset;
5101  
5102  			INIT_WORK(&bbs->work, bitmap_block_work);
5103  			bbs->ic = ic;
5104  			bbs->idx = i;
5105  			bio_list_init(&bbs->bio_queue);
5106  			spin_lock_init(&bbs->bio_queue_lock);
5107  
5108  			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
5109  			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
5110  			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
5111  
5112  			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
5113  		}
5114  	}
5115  
5116  	if (should_write_sb) {
5117  		init_journal(ic, 0, ic->journal_sections, 0);
5118  		r = dm_integrity_failed(ic);
5119  		if (unlikely(r)) {
5120  			ti->error = "Error initializing journal";
5121  			goto bad;
5122  		}
5123  		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
5124  		if (r) {
5125  			ti->error = "Error initializing superblock";
5126  			goto bad;
5127  		}
5128  		ic->just_formatted = true;
5129  	}
5130  
5131  	if (!ic->meta_dev && ic->mode != 'I') {
5132  		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
5133  		if (r)
5134  			goto bad;
5135  	}
5136  	if (ic->mode == 'B') {
5137  		unsigned int max_io_len;
5138  
5139  		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
5140  		if (!max_io_len)
5141  			max_io_len = 1U << 31;
5142  		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
5143  		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
5144  			r = dm_set_target_max_io_len(ti, max_io_len);
5145  			if (r)
5146  				goto bad;
5147  		}
5148  	}
5149  
5150  	ti->num_flush_bios = 1;
5151  	ti->flush_supported = true;
5152  	if (ic->discard)
5153  		ti->num_discard_bios = 1;
5154  
5155  	if (ic->mode == 'I')
5156  		ti->mempool_needs_integrity = true;
5157  
5158  	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
5159  	return 0;
5160  
5161  bad:
5162  	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
5163  	dm_integrity_dtr(ti);
5164  	return r;
5165  }
5166  
dm_integrity_dtr(struct dm_target * ti)5167  static void dm_integrity_dtr(struct dm_target *ti)
5168  {
5169  	struct dm_integrity_c *ic = ti->private;
5170  
5171  	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
5172  	BUG_ON(!list_empty(&ic->wait_list));
5173  
5174  	if (ic->mode == 'B')
5175  		cancel_delayed_work_sync(&ic->bitmap_flush_work);
5176  	if (ic->metadata_wq)
5177  		destroy_workqueue(ic->metadata_wq);
5178  	if (ic->wait_wq)
5179  		destroy_workqueue(ic->wait_wq);
5180  	if (ic->offload_wq)
5181  		destroy_workqueue(ic->offload_wq);
5182  	if (ic->commit_wq)
5183  		destroy_workqueue(ic->commit_wq);
5184  	if (ic->writer_wq)
5185  		destroy_workqueue(ic->writer_wq);
5186  	if (ic->recalc_wq)
5187  		destroy_workqueue(ic->recalc_wq);
5188  	kvfree(ic->bbs);
5189  	if (ic->bufio)
5190  		dm_bufio_client_destroy(ic->bufio);
5191  	bioset_exit(&ic->recalc_bios);
5192  	bioset_exit(&ic->recheck_bios);
5193  	mempool_exit(&ic->recheck_pool);
5194  	mempool_exit(&ic->journal_io_mempool);
5195  	if (ic->io)
5196  		dm_io_client_destroy(ic->io);
5197  	if (ic->dev)
5198  		dm_put_device(ti, ic->dev);
5199  	if (ic->meta_dev)
5200  		dm_put_device(ti, ic->meta_dev);
5201  	dm_integrity_free_page_list(ic->journal);
5202  	dm_integrity_free_page_list(ic->journal_io);
5203  	dm_integrity_free_page_list(ic->journal_xor);
5204  	dm_integrity_free_page_list(ic->recalc_bitmap);
5205  	dm_integrity_free_page_list(ic->may_write_bitmap);
5206  	if (ic->journal_scatterlist)
5207  		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
5208  	if (ic->journal_io_scatterlist)
5209  		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
5210  	if (ic->sk_requests) {
5211  		unsigned int i;
5212  
5213  		for (i = 0; i < ic->journal_sections; i++) {
5214  			struct skcipher_request *req;
5215  
5216  			req = ic->sk_requests[i];
5217  			if (req) {
5218  				kfree_sensitive(req->iv);
5219  				skcipher_request_free(req);
5220  			}
5221  		}
5222  		kvfree(ic->sk_requests);
5223  	}
5224  	kvfree(ic->journal_tree);
5225  	if (ic->sb)
5226  		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
5227  
5228  	if (ic->internal_hash)
5229  		crypto_free_shash(ic->internal_hash);
5230  	free_alg(&ic->internal_hash_alg);
5231  
5232  	if (ic->journal_crypt)
5233  		crypto_free_skcipher(ic->journal_crypt);
5234  	free_alg(&ic->journal_crypt_alg);
5235  
5236  	if (ic->journal_mac)
5237  		crypto_free_shash(ic->journal_mac);
5238  	free_alg(&ic->journal_mac_alg);
5239  
5240  	kfree(ic);
5241  	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
5242  }
5243  
5244  static struct target_type integrity_target = {
5245  	.name			= "integrity",
5246  	.version		= {1, 13, 0},
5247  	.module			= THIS_MODULE,
5248  	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
5249  	.ctr			= dm_integrity_ctr,
5250  	.dtr			= dm_integrity_dtr,
5251  	.map			= dm_integrity_map,
5252  	.end_io			= dm_integrity_end_io,
5253  	.postsuspend		= dm_integrity_postsuspend,
5254  	.resume			= dm_integrity_resume,
5255  	.status			= dm_integrity_status,
5256  	.iterate_devices	= dm_integrity_iterate_devices,
5257  	.io_hints		= dm_integrity_io_hints,
5258  };
5259  
dm_integrity_init(void)5260  static int __init dm_integrity_init(void)
5261  {
5262  	int r;
5263  
5264  	journal_io_cache = kmem_cache_create("integrity_journal_io",
5265  					     sizeof(struct journal_io), 0, 0, NULL);
5266  	if (!journal_io_cache) {
5267  		DMERR("can't allocate journal io cache");
5268  		return -ENOMEM;
5269  	}
5270  
5271  	r = dm_register_target(&integrity_target);
5272  	if (r < 0) {
5273  		kmem_cache_destroy(journal_io_cache);
5274  		return r;
5275  	}
5276  
5277  	return 0;
5278  }
5279  
dm_integrity_exit(void)5280  static void __exit dm_integrity_exit(void)
5281  {
5282  	dm_unregister_target(&integrity_target);
5283  	kmem_cache_destroy(journal_io_cache);
5284  }
5285  
5286  module_init(dm_integrity_init);
5287  module_exit(dm_integrity_exit);
5288  
5289  MODULE_AUTHOR("Milan Broz");
5290  MODULE_AUTHOR("Mikulas Patocka");
5291  MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
5292  MODULE_LICENSE("GPL");
5293