1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/arch/parisc/mm/init.c
4   *
5   *  Copyright (C) 1995	Linus Torvalds
6   *  Copyright 1999 SuSE GmbH
7   *    changed by Philipp Rumpf
8   *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9   *  Copyright 2004 Randolph Chung (tausq@debian.org)
10   *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
11   *
12   */
13  
14  
15  #include <linux/module.h>
16  #include <linux/mm.h>
17  #include <linux/memblock.h>
18  #include <linux/gfp.h>
19  #include <linux/delay.h>
20  #include <linux/init.h>
21  #include <linux/initrd.h>
22  #include <linux/swap.h>
23  #include <linux/unistd.h>
24  #include <linux/nodemask.h>	/* for node_online_map */
25  #include <linux/pagemap.h>	/* for release_pages */
26  #include <linux/compat.h>
27  #include <linux/execmem.h>
28  
29  #include <asm/pgalloc.h>
30  #include <asm/tlb.h>
31  #include <asm/pdc_chassis.h>
32  #include <asm/mmzone.h>
33  #include <asm/sections.h>
34  #include <asm/msgbuf.h>
35  #include <asm/sparsemem.h>
36  #include <asm/asm-offsets.h>
37  #include <asm/shmbuf.h>
38  
39  extern int  data_start;
40  extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
41  
42  #if CONFIG_PGTABLE_LEVELS == 3
43  pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
44  #endif
45  
46  pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
47  pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));
48  
49  static struct resource data_resource = {
50  	.name	= "Kernel data",
51  	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
52  };
53  
54  static struct resource code_resource = {
55  	.name	= "Kernel code",
56  	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
57  };
58  
59  static struct resource pdcdata_resource = {
60  	.name	= "PDC data (Page Zero)",
61  	.start	= 0,
62  	.end	= 0x9ff,
63  	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
64  };
65  
66  static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
67  
68  /* The following array is initialized from the firmware specific
69   * information retrieved in kernel/inventory.c.
70   */
71  
72  physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
73  int npmem_ranges __initdata;
74  
75  #ifdef CONFIG_64BIT
76  #define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
77  #else /* !CONFIG_64BIT */
78  #define MAX_MEM         (3584U*1024U*1024U)
79  #endif /* !CONFIG_64BIT */
80  
81  static unsigned long mem_limit __read_mostly = MAX_MEM;
82  
mem_limit_func(void)83  static void __init mem_limit_func(void)
84  {
85  	char *cp, *end;
86  	unsigned long limit;
87  
88  	/* We need this before __setup() functions are called */
89  
90  	limit = MAX_MEM;
91  	for (cp = boot_command_line; *cp; ) {
92  		if (memcmp(cp, "mem=", 4) == 0) {
93  			cp += 4;
94  			limit = memparse(cp, &end);
95  			if (end != cp)
96  				break;
97  			cp = end;
98  		} else {
99  			while (*cp != ' ' && *cp)
100  				++cp;
101  			while (*cp == ' ')
102  				++cp;
103  		}
104  	}
105  
106  	if (limit < mem_limit)
107  		mem_limit = limit;
108  }
109  
110  #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
111  
setup_bootmem(void)112  static void __init setup_bootmem(void)
113  {
114  	unsigned long mem_max;
115  #ifndef CONFIG_SPARSEMEM
116  	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
117  	int npmem_holes;
118  #endif
119  	int i, sysram_resource_count;
120  
121  	disable_sr_hashing(); /* Turn off space register hashing */
122  
123  	/*
124  	 * Sort the ranges. Since the number of ranges is typically
125  	 * small, and performance is not an issue here, just do
126  	 * a simple insertion sort.
127  	 */
128  
129  	for (i = 1; i < npmem_ranges; i++) {
130  		int j;
131  
132  		for (j = i; j > 0; j--) {
133  			if (pmem_ranges[j-1].start_pfn <
134  			    pmem_ranges[j].start_pfn) {
135  
136  				break;
137  			}
138  			swap(pmem_ranges[j-1], pmem_ranges[j]);
139  		}
140  	}
141  
142  #ifndef CONFIG_SPARSEMEM
143  	/*
144  	 * Throw out ranges that are too far apart (controlled by
145  	 * MAX_GAP).
146  	 */
147  
148  	for (i = 1; i < npmem_ranges; i++) {
149  		if (pmem_ranges[i].start_pfn -
150  			(pmem_ranges[i-1].start_pfn +
151  			 pmem_ranges[i-1].pages) > MAX_GAP) {
152  			npmem_ranges = i;
153  			printk("Large gap in memory detected (%ld pages). "
154  			       "Consider turning on CONFIG_SPARSEMEM\n",
155  			       pmem_ranges[i].start_pfn -
156  			       (pmem_ranges[i-1].start_pfn +
157  			        pmem_ranges[i-1].pages));
158  			break;
159  		}
160  	}
161  #endif
162  
163  	/* Print the memory ranges */
164  	pr_info("Memory Ranges:\n");
165  
166  	for (i = 0; i < npmem_ranges; i++) {
167  		struct resource *res = &sysram_resources[i];
168  		unsigned long start;
169  		unsigned long size;
170  
171  		size = (pmem_ranges[i].pages << PAGE_SHIFT);
172  		start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
173  		pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
174  			i, start, start + (size - 1), size >> 20);
175  
176  		/* request memory resource */
177  		res->name = "System RAM";
178  		res->start = start;
179  		res->end = start + size - 1;
180  		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
181  		request_resource(&iomem_resource, res);
182  	}
183  
184  	sysram_resource_count = npmem_ranges;
185  
186  	/*
187  	 * For 32 bit kernels we limit the amount of memory we can
188  	 * support, in order to preserve enough kernel address space
189  	 * for other purposes. For 64 bit kernels we don't normally
190  	 * limit the memory, but this mechanism can be used to
191  	 * artificially limit the amount of memory (and it is written
192  	 * to work with multiple memory ranges).
193  	 */
194  
195  	mem_limit_func();       /* check for "mem=" argument */
196  
197  	mem_max = 0;
198  	for (i = 0; i < npmem_ranges; i++) {
199  		unsigned long rsize;
200  
201  		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
202  		if ((mem_max + rsize) > mem_limit) {
203  			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
204  			if (mem_max == mem_limit)
205  				npmem_ranges = i;
206  			else {
207  				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
208  						       - (mem_max >> PAGE_SHIFT);
209  				npmem_ranges = i + 1;
210  				mem_max = mem_limit;
211  			}
212  			break;
213  		}
214  		mem_max += rsize;
215  	}
216  
217  	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
218  
219  #ifndef CONFIG_SPARSEMEM
220  	/* Merge the ranges, keeping track of the holes */
221  	{
222  		unsigned long end_pfn;
223  		unsigned long hole_pages;
224  
225  		npmem_holes = 0;
226  		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
227  		for (i = 1; i < npmem_ranges; i++) {
228  
229  			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
230  			if (hole_pages) {
231  				pmem_holes[npmem_holes].start_pfn = end_pfn;
232  				pmem_holes[npmem_holes++].pages = hole_pages;
233  				end_pfn += hole_pages;
234  			}
235  			end_pfn += pmem_ranges[i].pages;
236  		}
237  
238  		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
239  		npmem_ranges = 1;
240  	}
241  #endif
242  
243  	/*
244  	 * Initialize and free the full range of memory in each range.
245  	 */
246  
247  	max_pfn = 0;
248  	for (i = 0; i < npmem_ranges; i++) {
249  		unsigned long start_pfn;
250  		unsigned long npages;
251  		unsigned long start;
252  		unsigned long size;
253  
254  		start_pfn = pmem_ranges[i].start_pfn;
255  		npages = pmem_ranges[i].pages;
256  
257  		start = start_pfn << PAGE_SHIFT;
258  		size = npages << PAGE_SHIFT;
259  
260  		/* add system RAM memblock */
261  		memblock_add(start, size);
262  
263  		if ((start_pfn + npages) > max_pfn)
264  			max_pfn = start_pfn + npages;
265  	}
266  
267  	/*
268  	 * We can't use memblock top-down allocations because we only
269  	 * created the initial mapping up to KERNEL_INITIAL_SIZE in
270  	 * the assembly bootup code.
271  	 */
272  	memblock_set_bottom_up(true);
273  
274  	/* IOMMU is always used to access "high mem" on those boxes
275  	 * that can support enough mem that a PCI device couldn't
276  	 * directly DMA to any physical addresses.
277  	 * ISA DMA support will need to revisit this.
278  	 */
279  	max_low_pfn = max_pfn;
280  
281  	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
282  
283  #define PDC_CONSOLE_IO_IODC_SIZE 32768
284  
285  	memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
286  				PDC_CONSOLE_IO_IODC_SIZE));
287  	memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
288  			(unsigned long)(_end - KERNEL_BINARY_TEXT_START));
289  
290  #ifndef CONFIG_SPARSEMEM
291  
292  	/* reserve the holes */
293  
294  	for (i = 0; i < npmem_holes; i++) {
295  		memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
296  				(pmem_holes[i].pages << PAGE_SHIFT));
297  	}
298  #endif
299  
300  #ifdef CONFIG_BLK_DEV_INITRD
301  	if (initrd_start) {
302  		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
303  		if (__pa(initrd_start) < mem_max) {
304  			unsigned long initrd_reserve;
305  
306  			if (__pa(initrd_end) > mem_max) {
307  				initrd_reserve = mem_max - __pa(initrd_start);
308  			} else {
309  				initrd_reserve = initrd_end - initrd_start;
310  			}
311  			initrd_below_start_ok = 1;
312  			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
313  
314  			memblock_reserve(__pa(initrd_start), initrd_reserve);
315  		}
316  	}
317  #endif
318  
319  	data_resource.start =  virt_to_phys(&data_start);
320  	data_resource.end = virt_to_phys(_end) - 1;
321  	code_resource.start = virt_to_phys(_text);
322  	code_resource.end = virt_to_phys(&data_start)-1;
323  
324  	/* We don't know which region the kernel will be in, so try
325  	 * all of them.
326  	 */
327  	for (i = 0; i < sysram_resource_count; i++) {
328  		struct resource *res = &sysram_resources[i];
329  		request_resource(res, &code_resource);
330  		request_resource(res, &data_resource);
331  	}
332  	request_resource(&sysram_resources[0], &pdcdata_resource);
333  
334  	/* Initialize Page Deallocation Table (PDT) and check for bad memory. */
335  	pdc_pdt_init();
336  
337  	memblock_allow_resize();
338  	memblock_dump_all();
339  }
340  
341  static bool kernel_set_to_readonly;
342  
map_pages(unsigned long start_vaddr,unsigned long start_paddr,unsigned long size,pgprot_t pgprot,int force)343  static void __ref map_pages(unsigned long start_vaddr,
344  			    unsigned long start_paddr, unsigned long size,
345  			    pgprot_t pgprot, int force)
346  {
347  	pmd_t *pmd;
348  	pte_t *pg_table;
349  	unsigned long end_paddr;
350  	unsigned long start_pmd;
351  	unsigned long start_pte;
352  	unsigned long tmp1;
353  	unsigned long tmp2;
354  	unsigned long address;
355  	unsigned long vaddr;
356  	unsigned long ro_start;
357  	unsigned long ro_end;
358  	unsigned long kernel_start, kernel_end;
359  
360  	ro_start = __pa((unsigned long)_text);
361  	ro_end   = __pa((unsigned long)&data_start);
362  	kernel_start = __pa((unsigned long)&__init_begin);
363  	kernel_end  = __pa((unsigned long)&_end);
364  
365  	end_paddr = start_paddr + size;
366  
367  	/* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
368  	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
369  	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
370  
371  	address = start_paddr;
372  	vaddr = start_vaddr;
373  	while (address < end_paddr) {
374  		pgd_t *pgd = pgd_offset_k(vaddr);
375  		p4d_t *p4d = p4d_offset(pgd, vaddr);
376  		pud_t *pud = pud_offset(p4d, vaddr);
377  
378  #if CONFIG_PGTABLE_LEVELS == 3
379  		if (pud_none(*pud)) {
380  			pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
381  					     PAGE_SIZE << PMD_TABLE_ORDER);
382  			if (!pmd)
383  				panic("pmd allocation failed.\n");
384  			pud_populate(NULL, pud, pmd);
385  		}
386  #endif
387  
388  		pmd = pmd_offset(pud, vaddr);
389  		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
390  			if (pmd_none(*pmd)) {
391  				pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
392  				if (!pg_table)
393  					panic("page table allocation failed\n");
394  				pmd_populate_kernel(NULL, pmd, pg_table);
395  			}
396  
397  			pg_table = pte_offset_kernel(pmd, vaddr);
398  			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
399  				pte_t pte;
400  				pgprot_t prot;
401  				bool huge = false;
402  
403  				if (force) {
404  					prot = pgprot;
405  				} else if (address < kernel_start || address >= kernel_end) {
406  					/* outside kernel memory */
407  					prot = PAGE_KERNEL;
408  				} else if (!kernel_set_to_readonly) {
409  					/* still initializing, allow writing to RO memory */
410  					prot = PAGE_KERNEL_RWX;
411  					huge = true;
412  				} else if (address >= ro_start) {
413  					/* Code (ro) and Data areas */
414  					prot = (address < ro_end) ?
415  						PAGE_KERNEL_EXEC : PAGE_KERNEL;
416  					huge = true;
417  				} else {
418  					prot = PAGE_KERNEL;
419  				}
420  
421  				pte = __mk_pte(address, prot);
422  				if (huge)
423  					pte = pte_mkhuge(pte);
424  
425  				if (address >= end_paddr)
426  					break;
427  
428  				set_pte(pg_table, pte);
429  
430  				address += PAGE_SIZE;
431  				vaddr += PAGE_SIZE;
432  			}
433  			start_pte = 0;
434  
435  			if (address >= end_paddr)
436  			    break;
437  		}
438  		start_pmd = 0;
439  	}
440  }
441  
set_kernel_text_rw(int enable_read_write)442  void __init set_kernel_text_rw(int enable_read_write)
443  {
444  	unsigned long start = (unsigned long) __init_begin;
445  	unsigned long end   = (unsigned long) &data_start;
446  
447  	map_pages(start, __pa(start), end-start,
448  		PAGE_KERNEL_RWX, enable_read_write ? 1:0);
449  
450  	/* force the kernel to see the new page table entries */
451  	flush_cache_all();
452  	flush_tlb_all();
453  }
454  
free_initmem(void)455  void free_initmem(void)
456  {
457  	unsigned long init_begin = (unsigned long)__init_begin;
458  	unsigned long init_end = (unsigned long)__init_end;
459  	unsigned long kernel_end  = (unsigned long)&_end;
460  
461  	/* Remap kernel text and data, but do not touch init section yet. */
462  	map_pages(init_end, __pa(init_end), kernel_end - init_end,
463  		  PAGE_KERNEL, 0);
464  
465  	/* The init text pages are marked R-X.  We have to
466  	 * flush the icache and mark them RW-
467  	 *
468  	 * Do a dummy remap of the data section first (the data
469  	 * section is already PAGE_KERNEL) to pull in the TLB entries
470  	 * for map_kernel */
471  	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
472  		  PAGE_KERNEL_RWX, 1);
473  	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
474  	 * map_pages */
475  	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
476  		  PAGE_KERNEL, 1);
477  
478  	/* force the kernel to see the new TLB entries */
479  	__flush_tlb_range(0, init_begin, kernel_end);
480  
481  	/* finally dump all the instructions which were cached, since the
482  	 * pages are no-longer executable */
483  	flush_icache_range(init_begin, init_end);
484  
485  	free_initmem_default(POISON_FREE_INITMEM);
486  
487  	/* set up a new led state on systems shipped LED State panel */
488  	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
489  }
490  
491  
492  #ifdef CONFIG_STRICT_KERNEL_RWX
mark_rodata_ro(void)493  void mark_rodata_ro(void)
494  {
495  	unsigned long start = (unsigned long) &__start_rodata;
496  	unsigned long end = (unsigned long) &__end_rodata;
497  
498  	pr_info("Write protecting the kernel read-only data: %luk\n",
499  	       (end - start) >> 10);
500  
501  	kernel_set_to_readonly = true;
502  	map_pages(start, __pa(start), end - start, PAGE_KERNEL, 0);
503  
504  	/* force the kernel to see the new page table entries */
505  	flush_cache_all();
506  	flush_tlb_all();
507  }
508  #endif
509  
510  
511  /*
512   * Just an arbitrary offset to serve as a "hole" between mapping areas
513   * (between top of physical memory and a potential pcxl dma mapping
514   * area, and below the vmalloc mapping area).
515   *
516   * The current 32K value just means that there will be a 32K "hole"
517   * between mapping areas. That means that  any out-of-bounds memory
518   * accesses will hopefully be caught. The vmalloc() routines leaves
519   * a hole of 4kB between each vmalloced area for the same reason.
520   */
521  
522   /* Leave room for gateway page expansion */
523  #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
524  #error KERNEL_MAP_START is in gateway reserved region
525  #endif
526  #define MAP_START (KERNEL_MAP_START)
527  
528  #define VM_MAP_OFFSET  (32*1024)
529  #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
530  				     & ~(VM_MAP_OFFSET-1)))
531  
532  void *parisc_vmalloc_start __ro_after_init;
533  EXPORT_SYMBOL(parisc_vmalloc_start);
534  
mem_init(void)535  void __init mem_init(void)
536  {
537  	/* Do sanity checks on IPC (compat) structures */
538  	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
539  #ifndef CONFIG_64BIT
540  	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
541  	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
542  	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
543  #endif
544  #ifdef CONFIG_COMPAT
545  	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
546  	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
547  	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
548  	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
549  #endif
550  
551  	/* Do sanity checks on page table constants */
552  	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
553  	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
554  	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
555  	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
556  			> BITS_PER_LONG);
557  #if CONFIG_PGTABLE_LEVELS == 3
558  	BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD);
559  #else
560  	BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD);
561  #endif
562  
563  #ifdef CONFIG_64BIT
564  	/* avoid ldil_%L() asm statements to sign-extend into upper 32-bits */
565  	BUILD_BUG_ON(__PAGE_OFFSET >= 0x80000000);
566  	BUILD_BUG_ON(TMPALIAS_MAP_START >= 0x80000000);
567  #endif
568  
569  	high_memory = __va((max_pfn << PAGE_SHIFT));
570  	set_max_mapnr(max_low_pfn);
571  	memblock_free_all();
572  
573  #ifdef CONFIG_PA11
574  	if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
575  		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
576  		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
577  						+ PCXL_DMA_MAP_SIZE);
578  	} else
579  #endif
580  		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
581  
582  #if 0
583  	/*
584  	 * Do not expose the virtual kernel memory layout to userspace.
585  	 * But keep code for debugging purposes.
586  	 */
587  	printk("virtual kernel memory layout:\n"
588  	       "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
589  	       "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
590  	       "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
591  	       "       .init : 0x%px - 0x%px   (%4ld kB)\n"
592  	       "       .data : 0x%px - 0x%px   (%4ld kB)\n"
593  	       "       .text : 0x%px - 0x%px   (%4ld kB)\n",
594  
595  	       (void*)VMALLOC_START, (void*)VMALLOC_END,
596  	       (VMALLOC_END - VMALLOC_START) >> 20,
597  
598  	       (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
599  	       (unsigned long)(FIXMAP_SIZE / 1024),
600  
601  	       __va(0), high_memory,
602  	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
603  
604  	       __init_begin, __init_end,
605  	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
606  
607  	       _etext, _edata,
608  	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
609  
610  	       _text, _etext,
611  	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
612  #endif
613  }
614  
615  unsigned long *empty_zero_page __ro_after_init;
616  EXPORT_SYMBOL(empty_zero_page);
617  
618  /*
619   * pagetable_init() sets up the page tables
620   *
621   * Note that gateway_init() places the Linux gateway page at page 0.
622   * Since gateway pages cannot be dereferenced this has the desirable
623   * side effect of trapping those pesky NULL-reference errors in the
624   * kernel.
625   */
pagetable_init(void)626  static void __init pagetable_init(void)
627  {
628  	int range;
629  
630  	/* Map each physical memory range to its kernel vaddr */
631  
632  	for (range = 0; range < npmem_ranges; range++) {
633  		unsigned long start_paddr;
634  		unsigned long size;
635  
636  		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
637  		size = pmem_ranges[range].pages << PAGE_SHIFT;
638  
639  		map_pages((unsigned long)__va(start_paddr), start_paddr,
640  			  size, PAGE_KERNEL, 0);
641  	}
642  
643  #ifdef CONFIG_BLK_DEV_INITRD
644  	if (initrd_end && initrd_end > mem_limit) {
645  		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
646  		map_pages(initrd_start, __pa(initrd_start),
647  			  initrd_end - initrd_start, PAGE_KERNEL, 0);
648  	}
649  #endif
650  
651  	empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
652  	if (!empty_zero_page)
653  		panic("zero page allocation failed.\n");
654  
655  }
656  
gateway_init(void)657  static void __init gateway_init(void)
658  {
659  	unsigned long linux_gateway_page_addr;
660  	/* FIXME: This is 'const' in order to trick the compiler
661  	   into not treating it as DP-relative data. */
662  	extern void * const linux_gateway_page;
663  
664  	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
665  
666  	/*
667  	 * Setup Linux Gateway page.
668  	 *
669  	 * The Linux gateway page will reside in kernel space (on virtual
670  	 * page 0), so it doesn't need to be aliased into user space.
671  	 */
672  
673  	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
674  		  PAGE_SIZE, PAGE_GATEWAY, 1);
675  }
676  
fixmap_init(void)677  static void __init fixmap_init(void)
678  {
679  	unsigned long addr = FIXMAP_START;
680  	unsigned long end = FIXMAP_START + FIXMAP_SIZE;
681  	pgd_t *pgd = pgd_offset_k(addr);
682  	p4d_t *p4d = p4d_offset(pgd, addr);
683  	pud_t *pud = pud_offset(p4d, addr);
684  	pmd_t *pmd;
685  
686  	BUILD_BUG_ON(FIXMAP_SIZE > PMD_SIZE);
687  
688  #if CONFIG_PGTABLE_LEVELS == 3
689  	if (pud_none(*pud)) {
690  		pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
691  				     PAGE_SIZE << PMD_TABLE_ORDER);
692  		if (!pmd)
693  			panic("fixmap: pmd allocation failed.\n");
694  		pud_populate(NULL, pud, pmd);
695  	}
696  #endif
697  
698  	pmd = pmd_offset(pud, addr);
699  	do {
700  		pte_t *pte = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
701  		if (!pte)
702  			panic("fixmap: pte allocation failed.\n");
703  
704  		pmd_populate_kernel(&init_mm, pmd, pte);
705  
706  		addr += PAGE_SIZE;
707  	} while (addr < end);
708  }
709  
parisc_bootmem_free(void)710  static void __init parisc_bootmem_free(void)
711  {
712  	unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
713  
714  	max_zone_pfn[0] = memblock_end_of_DRAM();
715  
716  	free_area_init(max_zone_pfn);
717  }
718  
paging_init(void)719  void __init paging_init(void)
720  {
721  	setup_bootmem();
722  	pagetable_init();
723  	gateway_init();
724  	fixmap_init();
725  	flush_cache_all_local(); /* start with known state */
726  	flush_tlb_all_local(NULL);
727  
728  	sparse_init();
729  	parisc_bootmem_free();
730  }
731  
alloc_btlb(unsigned long start,unsigned long end,int * slot,unsigned long entry_info)732  static void alloc_btlb(unsigned long start, unsigned long end, int *slot,
733  			unsigned long entry_info)
734  {
735  	const int slot_max = btlb_info.fixed_range_info.num_comb;
736  	int min_num_pages = btlb_info.min_size;
737  	unsigned long size;
738  
739  	/* map at minimum 4 pages */
740  	if (min_num_pages < 4)
741  		min_num_pages = 4;
742  
743  	size = HUGEPAGE_SIZE;
744  	while (start < end && *slot < slot_max && size >= PAGE_SIZE) {
745  		/* starting address must have same alignment as size! */
746  		/* if correctly aligned and fits in double size, increase */
747  		if (((start & (2 * size - 1)) == 0) &&
748  		    (end - start) >= (2 * size)) {
749  			size <<= 1;
750  			continue;
751  		}
752  		/* if current size alignment is too big, try smaller size */
753  		if ((start & (size - 1)) != 0) {
754  			size >>= 1;
755  			continue;
756  		}
757  		if ((end - start) >= size) {
758  			if ((size >> PAGE_SHIFT) >= min_num_pages)
759  				pdc_btlb_insert(start >> PAGE_SHIFT, __pa(start) >> PAGE_SHIFT,
760  					size >> PAGE_SHIFT, entry_info, *slot);
761  			(*slot)++;
762  			start += size;
763  			continue;
764  		}
765  		size /= 2;
766  		continue;
767  	}
768  }
769  
btlb_init_per_cpu(void)770  void btlb_init_per_cpu(void)
771  {
772  	unsigned long s, t, e;
773  	int slot;
774  
775  	/* BTLBs are not available on 64-bit CPUs */
776  	if (IS_ENABLED(CONFIG_PA20))
777  		return;
778  	else if (pdc_btlb_info(&btlb_info) < 0) {
779  		memset(&btlb_info, 0, sizeof btlb_info);
780  	}
781  
782  	/* insert BLTLBs for code and data segments */
783  	s = (uintptr_t) dereference_function_descriptor(&_stext);
784  	e = (uintptr_t) dereference_function_descriptor(&_etext);
785  	t = (uintptr_t) dereference_function_descriptor(&_sdata);
786  	BUG_ON(t != e);
787  
788  	/* code segments */
789  	slot = 0;
790  	alloc_btlb(s, e, &slot, 0x13800000);
791  
792  	/* sanity check */
793  	t = (uintptr_t) dereference_function_descriptor(&_edata);
794  	e = (uintptr_t) dereference_function_descriptor(&__bss_start);
795  	BUG_ON(t != e);
796  
797  	/* data segments */
798  	s = (uintptr_t) dereference_function_descriptor(&_sdata);
799  	e = (uintptr_t) dereference_function_descriptor(&__bss_stop);
800  	alloc_btlb(s, e, &slot, 0x11800000);
801  }
802  
803  #ifdef CONFIG_PA20
804  
805  /*
806   * Currently, all PA20 chips have 18 bit protection IDs, which is the
807   * limiting factor (space ids are 32 bits).
808   */
809  
810  #define NR_SPACE_IDS 262144
811  
812  #else
813  
814  /*
815   * Currently we have a one-to-one relationship between space IDs and
816   * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
817   * support 15 bit protection IDs, so that is the limiting factor.
818   * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
819   * probably not worth the effort for a special case here.
820   */
821  
822  #define NR_SPACE_IDS 32768
823  
824  #endif  /* !CONFIG_PA20 */
825  
826  #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
827  #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
828  
829  static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
830  static unsigned long dirty_space_id[SID_ARRAY_SIZE];
831  static unsigned long space_id_index;
832  static unsigned long free_space_ids = NR_SPACE_IDS - 1;
833  static unsigned long dirty_space_ids;
834  
835  static DEFINE_SPINLOCK(sid_lock);
836  
alloc_sid(void)837  unsigned long alloc_sid(void)
838  {
839  	unsigned long index;
840  
841  	spin_lock(&sid_lock);
842  
843  	if (free_space_ids == 0) {
844  		if (dirty_space_ids != 0) {
845  			spin_unlock(&sid_lock);
846  			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
847  			spin_lock(&sid_lock);
848  		}
849  		BUG_ON(free_space_ids == 0);
850  	}
851  
852  	free_space_ids--;
853  
854  	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
855  	space_id[BIT_WORD(index)] |= BIT_MASK(index);
856  	space_id_index = index;
857  
858  	spin_unlock(&sid_lock);
859  
860  	return index << SPACEID_SHIFT;
861  }
862  
free_sid(unsigned long spaceid)863  void free_sid(unsigned long spaceid)
864  {
865  	unsigned long index = spaceid >> SPACEID_SHIFT;
866  	unsigned long *dirty_space_offset, mask;
867  
868  	dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
869  	mask = BIT_MASK(index);
870  
871  	spin_lock(&sid_lock);
872  
873  	BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
874  
875  	*dirty_space_offset |= mask;
876  	dirty_space_ids++;
877  
878  	spin_unlock(&sid_lock);
879  }
880  
881  
882  #ifdef CONFIG_SMP
get_dirty_sids(unsigned long * ndirtyptr,unsigned long * dirty_array)883  static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
884  {
885  	int i;
886  
887  	/* NOTE: sid_lock must be held upon entry */
888  
889  	*ndirtyptr = dirty_space_ids;
890  	if (dirty_space_ids != 0) {
891  	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
892  		dirty_array[i] = dirty_space_id[i];
893  		dirty_space_id[i] = 0;
894  	    }
895  	    dirty_space_ids = 0;
896  	}
897  
898  	return;
899  }
900  
recycle_sids(unsigned long ndirty,unsigned long * dirty_array)901  static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
902  {
903  	int i;
904  
905  	/* NOTE: sid_lock must be held upon entry */
906  
907  	if (ndirty != 0) {
908  		for (i = 0; i < SID_ARRAY_SIZE; i++) {
909  			space_id[i] ^= dirty_array[i];
910  		}
911  
912  		free_space_ids += ndirty;
913  		space_id_index = 0;
914  	}
915  }
916  
917  #else /* CONFIG_SMP */
918  
recycle_sids(void)919  static void recycle_sids(void)
920  {
921  	int i;
922  
923  	/* NOTE: sid_lock must be held upon entry */
924  
925  	if (dirty_space_ids != 0) {
926  		for (i = 0; i < SID_ARRAY_SIZE; i++) {
927  			space_id[i] ^= dirty_space_id[i];
928  			dirty_space_id[i] = 0;
929  		}
930  
931  		free_space_ids += dirty_space_ids;
932  		dirty_space_ids = 0;
933  		space_id_index = 0;
934  	}
935  }
936  #endif
937  
938  /*
939   * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
940   * purged, we can safely reuse the space ids that were released but
941   * not flushed from the tlb.
942   */
943  
944  #ifdef CONFIG_SMP
945  
946  static unsigned long recycle_ndirty;
947  static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
948  static unsigned int recycle_inuse;
949  
flush_tlb_all(void)950  void flush_tlb_all(void)
951  {
952  	int do_recycle;
953  
954  	do_recycle = 0;
955  	spin_lock(&sid_lock);
956  	__inc_irq_stat(irq_tlb_count);
957  	if (dirty_space_ids > RECYCLE_THRESHOLD) {
958  	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
959  	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
960  	    recycle_inuse++;
961  	    do_recycle++;
962  	}
963  	spin_unlock(&sid_lock);
964  	on_each_cpu(flush_tlb_all_local, NULL, 1);
965  	if (do_recycle) {
966  	    spin_lock(&sid_lock);
967  	    recycle_sids(recycle_ndirty,recycle_dirty_array);
968  	    recycle_inuse = 0;
969  	    spin_unlock(&sid_lock);
970  	}
971  }
972  #else
flush_tlb_all(void)973  void flush_tlb_all(void)
974  {
975  	spin_lock(&sid_lock);
976  	__inc_irq_stat(irq_tlb_count);
977  	flush_tlb_all_local(NULL);
978  	recycle_sids();
979  	spin_unlock(&sid_lock);
980  }
981  #endif
982  
983  static const pgprot_t protection_map[16] = {
984  	[VM_NONE]					= PAGE_NONE,
985  	[VM_READ]					= PAGE_READONLY,
986  	[VM_WRITE]					= PAGE_NONE,
987  	[VM_WRITE | VM_READ]				= PAGE_READONLY,
988  	[VM_EXEC]					= PAGE_EXECREAD,
989  	[VM_EXEC | VM_READ]				= PAGE_EXECREAD,
990  	[VM_EXEC | VM_WRITE]				= PAGE_EXECREAD,
991  	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_EXECREAD,
992  	[VM_SHARED]					= PAGE_NONE,
993  	[VM_SHARED | VM_READ]				= PAGE_READONLY,
994  	[VM_SHARED | VM_WRITE]				= PAGE_WRITEONLY,
995  	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
996  	[VM_SHARED | VM_EXEC]				= PAGE_EXECREAD,
997  	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_EXECREAD,
998  	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_RWX,
999  	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_RWX
1000  };
1001  DECLARE_VM_GET_PAGE_PROT
1002  
1003  #ifdef CONFIG_EXECMEM
1004  static struct execmem_info execmem_info __ro_after_init;
1005  
execmem_arch_setup(void)1006  struct execmem_info __init *execmem_arch_setup(void)
1007  {
1008  	execmem_info = (struct execmem_info){
1009  		.ranges = {
1010  			[EXECMEM_DEFAULT] = {
1011  				.start	= VMALLOC_START,
1012  				.end	= VMALLOC_END,
1013  				.pgprot	= PAGE_KERNEL_RWX,
1014  				.alignment = 1,
1015  			},
1016  		},
1017  	};
1018  
1019  	return &execmem_info;
1020  }
1021  #endif /* CONFIG_EXECMEM */
1022