1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Helper functions used by the EFI stub on multiple
4  * architectures. This should be #included by the EFI stub
5  * implementation files.
6  *
7  * Copyright 2011 Intel Corporation; author Matt Fleming
8  */
9 
10 #include <linux/stdarg.h>
11 
12 #include <linux/efi.h>
13 #include <linux/kernel.h>
14 #include <linux/overflow.h>
15 #include <asm/efi.h>
16 #include <asm/setup.h>
17 
18 #include "efistub.h"
19 
20 bool efi_nochunk;
21 bool efi_nokaslr = !IS_ENABLED(CONFIG_RANDOMIZE_BASE);
22 bool efi_novamap;
23 
24 static bool efi_noinitrd;
25 static bool efi_nosoftreserve;
26 static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA);
27 
28 int efi_mem_encrypt;
29 
__efi_soft_reserve_enabled(void)30 bool __pure __efi_soft_reserve_enabled(void)
31 {
32 	return !efi_nosoftreserve;
33 }
34 
35 /**
36  * efi_parse_options() - Parse EFI command line options
37  * @cmdline:	kernel command line
38  *
39  * Parse the ASCII string @cmdline for EFI options, denoted by the efi=
40  * option, e.g. efi=nochunk.
41  *
42  * It should be noted that efi= is parsed in two very different
43  * environments, first in the early boot environment of the EFI boot
44  * stub, and subsequently during the kernel boot.
45  *
46  * Return:	status code
47  */
efi_parse_options(char const * cmdline)48 efi_status_t efi_parse_options(char const *cmdline)
49 {
50 	size_t len;
51 	efi_status_t status;
52 	char *str, *buf;
53 
54 	if (!cmdline)
55 		return EFI_SUCCESS;
56 
57 	len = strnlen(cmdline, COMMAND_LINE_SIZE - 1) + 1;
58 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf);
59 	if (status != EFI_SUCCESS)
60 		return status;
61 
62 	memcpy(buf, cmdline, len - 1);
63 	buf[len - 1] = '\0';
64 	str = skip_spaces(buf);
65 
66 	while (*str) {
67 		char *param, *val;
68 
69 		str = next_arg(str, &param, &val);
70 		if (!val && !strcmp(param, "--"))
71 			break;
72 
73 		if (!strcmp(param, "nokaslr")) {
74 			efi_nokaslr = true;
75 		} else if (!strcmp(param, "quiet")) {
76 			efi_loglevel = CONSOLE_LOGLEVEL_QUIET;
77 		} else if (!strcmp(param, "noinitrd")) {
78 			efi_noinitrd = true;
79 		} else if (IS_ENABLED(CONFIG_X86_64) && !strcmp(param, "no5lvl")) {
80 			efi_no5lvl = true;
81 		} else if (IS_ENABLED(CONFIG_ARCH_HAS_MEM_ENCRYPT) &&
82 			   !strcmp(param, "mem_encrypt") && val) {
83 			if (parse_option_str(val, "on"))
84 				efi_mem_encrypt = 1;
85 			else if (parse_option_str(val, "off"))
86 				efi_mem_encrypt = -1;
87 		} else if (!strcmp(param, "efi") && val) {
88 			efi_nochunk = parse_option_str(val, "nochunk");
89 			efi_novamap |= parse_option_str(val, "novamap");
90 
91 			efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) &&
92 					    parse_option_str(val, "nosoftreserve");
93 
94 			if (parse_option_str(val, "disable_early_pci_dma"))
95 				efi_disable_pci_dma = true;
96 			if (parse_option_str(val, "no_disable_early_pci_dma"))
97 				efi_disable_pci_dma = false;
98 			if (parse_option_str(val, "debug"))
99 				efi_loglevel = CONSOLE_LOGLEVEL_DEBUG;
100 		} else if (!strcmp(param, "video") &&
101 			   val && strstarts(val, "efifb:")) {
102 			efi_parse_option_graphics(val + strlen("efifb:"));
103 		}
104 	}
105 	efi_bs_call(free_pool, buf);
106 	return EFI_SUCCESS;
107 }
108 
109 /*
110  * The EFI_LOAD_OPTION descriptor has the following layout:
111  *	u32 Attributes;
112  *	u16 FilePathListLength;
113  *	u16 Description[];
114  *	efi_device_path_protocol_t FilePathList[];
115  *	u8 OptionalData[];
116  *
117  * This function validates and unpacks the variable-size data fields.
118  */
119 static
efi_load_option_unpack(efi_load_option_unpacked_t * dest,const efi_load_option_t * src,size_t size)120 bool efi_load_option_unpack(efi_load_option_unpacked_t *dest,
121 			    const efi_load_option_t *src, size_t size)
122 {
123 	const void *pos;
124 	u16 c;
125 	efi_device_path_protocol_t header;
126 	const efi_char16_t *description;
127 	const efi_device_path_protocol_t *file_path_list;
128 
129 	if (size < offsetof(efi_load_option_t, variable_data))
130 		return false;
131 	pos = src->variable_data;
132 	size -= offsetof(efi_load_option_t, variable_data);
133 
134 	if ((src->attributes & ~EFI_LOAD_OPTION_MASK) != 0)
135 		return false;
136 
137 	/* Scan description. */
138 	description = pos;
139 	do {
140 		if (size < sizeof(c))
141 			return false;
142 		c = *(const u16 *)pos;
143 		pos += sizeof(c);
144 		size -= sizeof(c);
145 	} while (c != L'\0');
146 
147 	/* Scan file_path_list. */
148 	file_path_list = pos;
149 	do {
150 		if (size < sizeof(header))
151 			return false;
152 		header = *(const efi_device_path_protocol_t *)pos;
153 		if (header.length < sizeof(header))
154 			return false;
155 		if (size < header.length)
156 			return false;
157 		pos += header.length;
158 		size -= header.length;
159 	} while ((header.type != EFI_DEV_END_PATH && header.type != EFI_DEV_END_PATH2) ||
160 		 (header.sub_type != EFI_DEV_END_ENTIRE));
161 	if (pos != (const void *)file_path_list + src->file_path_list_length)
162 		return false;
163 
164 	dest->attributes = src->attributes;
165 	dest->file_path_list_length = src->file_path_list_length;
166 	dest->description = description;
167 	dest->file_path_list = file_path_list;
168 	dest->optional_data_size = size;
169 	dest->optional_data = size ? pos : NULL;
170 
171 	return true;
172 }
173 
174 /*
175  * At least some versions of Dell firmware pass the entire contents of the
176  * Boot#### variable, i.e. the EFI_LOAD_OPTION descriptor, rather than just the
177  * OptionalData field.
178  *
179  * Detect this case and extract OptionalData.
180  */
efi_apply_loadoptions_quirk(const void ** load_options,u32 * load_options_size)181 void efi_apply_loadoptions_quirk(const void **load_options, u32 *load_options_size)
182 {
183 	const efi_load_option_t *load_option = *load_options;
184 	efi_load_option_unpacked_t load_option_unpacked;
185 
186 	if (!IS_ENABLED(CONFIG_X86))
187 		return;
188 	if (!load_option)
189 		return;
190 	if (*load_options_size < sizeof(*load_option))
191 		return;
192 	if ((load_option->attributes & ~EFI_LOAD_OPTION_BOOT_MASK) != 0)
193 		return;
194 
195 	if (!efi_load_option_unpack(&load_option_unpacked, load_option, *load_options_size))
196 		return;
197 
198 	efi_warn_once(FW_BUG "LoadOptions is an EFI_LOAD_OPTION descriptor\n");
199 	efi_warn_once(FW_BUG "Using OptionalData as a workaround\n");
200 
201 	*load_options = load_option_unpacked.optional_data;
202 	*load_options_size = load_option_unpacked.optional_data_size;
203 }
204 
205 enum efistub_event_type {
206 	EFISTUB_EVT_INITRD,
207 	EFISTUB_EVT_LOAD_OPTIONS,
208 	EFISTUB_EVT_COUNT,
209 };
210 
211 #define STR_WITH_SIZE(s)	sizeof(s), s
212 
213 static const struct {
214 	u32		pcr_index;
215 	u32		event_id;
216 	u32		event_data_len;
217 	u8		event_data[52];
218 } events[] = {
219 	[EFISTUB_EVT_INITRD] = {
220 		9,
221 		INITRD_EVENT_TAG_ID,
222 		STR_WITH_SIZE("Linux initrd")
223 	},
224 	[EFISTUB_EVT_LOAD_OPTIONS] = {
225 		9,
226 		LOAD_OPTIONS_EVENT_TAG_ID,
227 		STR_WITH_SIZE("LOADED_IMAGE::LoadOptions")
228 	},
229 };
230 
231 static_assert(sizeof(efi_tcg2_event_t) == sizeof(efi_cc_event_t));
232 
233 union efistub_event {
234 	efi_tcg2_event_t	tcg2_data;
235 	efi_cc_event_t		cc_data;
236 };
237 
238 struct efistub_measured_event {
239 	union efistub_event	event_data;
240 	TCG_PCClientTaggedEvent tagged_event __packed;
241 };
242 
efi_measure_tagged_event(unsigned long load_addr,unsigned long load_size,enum efistub_event_type event)243 static efi_status_t efi_measure_tagged_event(unsigned long load_addr,
244 					     unsigned long load_size,
245 					     enum efistub_event_type event)
246 {
247 	union {
248 		efi_status_t
249 		(__efiapi *hash_log_extend_event)(void *, u64, efi_physical_addr_t,
250 						  u64, const union efistub_event *);
251 		struct { u32 hash_log_extend_event; } mixed_mode;
252 	} method;
253 	struct efistub_measured_event *evt;
254 	int size = struct_size(evt, tagged_event.tagged_event_data,
255 			       events[event].event_data_len);
256 	efi_guid_t tcg2_guid = EFI_TCG2_PROTOCOL_GUID;
257 	efi_tcg2_protocol_t *tcg2 = NULL;
258 	union efistub_event ev;
259 	efi_status_t status;
260 	void *protocol;
261 
262 	efi_bs_call(locate_protocol, &tcg2_guid, NULL, (void **)&tcg2);
263 	if (tcg2) {
264 		ev.tcg2_data = (struct efi_tcg2_event){
265 			.event_size			= size,
266 			.event_header.header_size	= sizeof(ev.tcg2_data.event_header),
267 			.event_header.header_version	= EFI_TCG2_EVENT_HEADER_VERSION,
268 			.event_header.pcr_index		= events[event].pcr_index,
269 			.event_header.event_type	= EV_EVENT_TAG,
270 		};
271 		protocol = tcg2;
272 		method.hash_log_extend_event =
273 			(void *)efi_table_attr(tcg2, hash_log_extend_event);
274 	} else {
275 		efi_guid_t cc_guid = EFI_CC_MEASUREMENT_PROTOCOL_GUID;
276 		efi_cc_protocol_t *cc = NULL;
277 
278 		efi_bs_call(locate_protocol, &cc_guid, NULL, (void **)&cc);
279 		if (!cc)
280 			return EFI_UNSUPPORTED;
281 
282 		ev.cc_data = (struct efi_cc_event){
283 			.event_size			= size,
284 			.event_header.header_size	= sizeof(ev.cc_data.event_header),
285 			.event_header.header_version	= EFI_CC_EVENT_HEADER_VERSION,
286 			.event_header.event_type	= EV_EVENT_TAG,
287 		};
288 
289 		status = efi_call_proto(cc, map_pcr_to_mr_index,
290 					events[event].pcr_index,
291 					&ev.cc_data.event_header.mr_index);
292 		if (status != EFI_SUCCESS)
293 			goto fail;
294 
295 		protocol = cc;
296 		method.hash_log_extend_event =
297 			(void *)efi_table_attr(cc, hash_log_extend_event);
298 	}
299 
300 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, (void **)&evt);
301 	if (status != EFI_SUCCESS)
302 		goto fail;
303 
304 	*evt = (struct efistub_measured_event) {
305 		.event_data			     = ev,
306 		.tagged_event.tagged_event_id	     = events[event].event_id,
307 		.tagged_event.tagged_event_data_size = events[event].event_data_len,
308 	};
309 
310 	memcpy(evt->tagged_event.tagged_event_data, events[event].event_data,
311 	       events[event].event_data_len);
312 
313 	status = efi_fn_call(&method, hash_log_extend_event, protocol, 0,
314 			     load_addr, load_size, &evt->event_data);
315 	efi_bs_call(free_pool, evt);
316 
317 	if (status == EFI_SUCCESS)
318 		return EFI_SUCCESS;
319 
320 fail:
321 	efi_warn("Failed to measure data for event %d: 0x%lx\n", event, status);
322 	return status;
323 }
324 
325 /*
326  * Convert the unicode UEFI command line to ASCII to pass to kernel.
327  * Size of memory allocated return in *cmd_line_len.
328  * Returns NULL on error.
329  */
efi_convert_cmdline(efi_loaded_image_t * image,int * cmd_line_len)330 char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len)
331 {
332 	const efi_char16_t *options = efi_table_attr(image, load_options);
333 	u32 options_size = efi_table_attr(image, load_options_size);
334 	int options_bytes = 0, safe_options_bytes = 0;  /* UTF-8 bytes */
335 	unsigned long cmdline_addr = 0;
336 	const efi_char16_t *s2;
337 	bool in_quote = false;
338 	efi_status_t status;
339 	u32 options_chars;
340 
341 	if (options_size > 0)
342 		efi_measure_tagged_event((unsigned long)options, options_size,
343 					 EFISTUB_EVT_LOAD_OPTIONS);
344 
345 	efi_apply_loadoptions_quirk((const void **)&options, &options_size);
346 	options_chars = options_size / sizeof(efi_char16_t);
347 
348 	if (options) {
349 		s2 = options;
350 		while (options_bytes < COMMAND_LINE_SIZE && options_chars--) {
351 			efi_char16_t c = *s2++;
352 
353 			if (c < 0x80) {
354 				if (c == L'\0' || c == L'\n')
355 					break;
356 				if (c == L'"')
357 					in_quote = !in_quote;
358 				else if (!in_quote && isspace((char)c))
359 					safe_options_bytes = options_bytes;
360 
361 				options_bytes++;
362 				continue;
363 			}
364 
365 			/*
366 			 * Get the number of UTF-8 bytes corresponding to a
367 			 * UTF-16 character.
368 			 * The first part handles everything in the BMP.
369 			 */
370 			options_bytes += 2 + (c >= 0x800);
371 			/*
372 			 * Add one more byte for valid surrogate pairs. Invalid
373 			 * surrogates will be replaced with 0xfffd and take up
374 			 * only 3 bytes.
375 			 */
376 			if ((c & 0xfc00) == 0xd800) {
377 				/*
378 				 * If the very last word is a high surrogate,
379 				 * we must ignore it since we can't access the
380 				 * low surrogate.
381 				 */
382 				if (!options_chars) {
383 					options_bytes -= 3;
384 				} else if ((*s2 & 0xfc00) == 0xdc00) {
385 					options_bytes++;
386 					options_chars--;
387 					s2++;
388 				}
389 			}
390 		}
391 		if (options_bytes >= COMMAND_LINE_SIZE) {
392 			options_bytes = safe_options_bytes;
393 			efi_err("Command line is too long: truncated to %d bytes\n",
394 				options_bytes);
395 		}
396 	}
397 
398 	options_bytes++;	/* NUL termination */
399 
400 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes,
401 			     (void **)&cmdline_addr);
402 	if (status != EFI_SUCCESS)
403 		return NULL;
404 
405 	snprintf((char *)cmdline_addr, options_bytes, "%.*ls",
406 		 options_bytes - 1, options);
407 
408 	*cmd_line_len = options_bytes;
409 	return (char *)cmdline_addr;
410 }
411 
412 /**
413  * efi_exit_boot_services() - Exit boot services
414  * @handle:	handle of the exiting image
415  * @priv:	argument to be passed to @priv_func
416  * @priv_func:	function to process the memory map before exiting boot services
417  *
418  * Handle calling ExitBootServices according to the requirements set out by the
419  * spec.  Obtains the current memory map, and returns that info after calling
420  * ExitBootServices.  The client must specify a function to perform any
421  * processing of the memory map data prior to ExitBootServices.  A client
422  * specific structure may be passed to the function via priv.  The client
423  * function may be called multiple times.
424  *
425  * Return:	status code
426  */
efi_exit_boot_services(void * handle,void * priv,efi_exit_boot_map_processing priv_func)427 efi_status_t efi_exit_boot_services(void *handle, void *priv,
428 				    efi_exit_boot_map_processing priv_func)
429 {
430 	struct efi_boot_memmap *map;
431 	efi_status_t status;
432 
433 	if (efi_disable_pci_dma)
434 		efi_pci_disable_bridge_busmaster();
435 
436 	status = efi_get_memory_map(&map, true);
437 	if (status != EFI_SUCCESS)
438 		return status;
439 
440 	status = priv_func(map, priv);
441 	if (status != EFI_SUCCESS) {
442 		efi_bs_call(free_pool, map);
443 		return status;
444 	}
445 
446 	status = efi_bs_call(exit_boot_services, handle, map->map_key);
447 
448 	if (status == EFI_INVALID_PARAMETER) {
449 		/*
450 		 * The memory map changed between efi_get_memory_map() and
451 		 * exit_boot_services().  Per the UEFI Spec v2.6, Section 6.4:
452 		 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
453 		 * updated map, and try again.  The spec implies one retry
454 		 * should be sufficent, which is confirmed against the EDK2
455 		 * implementation.  Per the spec, we can only invoke
456 		 * get_memory_map() and exit_boot_services() - we cannot alloc
457 		 * so efi_get_memory_map() cannot be used, and we must reuse
458 		 * the buffer.  For all practical purposes, the headroom in the
459 		 * buffer should account for any changes in the map so the call
460 		 * to get_memory_map() is expected to succeed here.
461 		 */
462 		map->map_size = map->buff_size;
463 		status = efi_bs_call(get_memory_map,
464 				     &map->map_size,
465 				     &map->map,
466 				     &map->map_key,
467 				     &map->desc_size,
468 				     &map->desc_ver);
469 
470 		/* exit_boot_services() was called, thus cannot free */
471 		if (status != EFI_SUCCESS)
472 			return status;
473 
474 		status = priv_func(map, priv);
475 		/* exit_boot_services() was called, thus cannot free */
476 		if (status != EFI_SUCCESS)
477 			return status;
478 
479 		status = efi_bs_call(exit_boot_services, handle, map->map_key);
480 	}
481 
482 	return status;
483 }
484 
485 /**
486  * get_efi_config_table() - retrieve UEFI configuration table
487  * @guid:	GUID of the configuration table to be retrieved
488  * Return:	pointer to the configuration table or NULL
489  */
get_efi_config_table(efi_guid_t guid)490 void *get_efi_config_table(efi_guid_t guid)
491 {
492 	unsigned long tables = efi_table_attr(efi_system_table, tables);
493 	int nr_tables = efi_table_attr(efi_system_table, nr_tables);
494 	int i;
495 
496 	for (i = 0; i < nr_tables; i++) {
497 		efi_config_table_t *t = (void *)tables;
498 
499 		if (efi_guidcmp(t->guid, guid) == 0)
500 			return efi_table_attr(t, table);
501 
502 		tables += efi_is_native() ? sizeof(efi_config_table_t)
503 					  : sizeof(efi_config_table_32_t);
504 	}
505 	return NULL;
506 }
507 
508 /*
509  * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way
510  * for the firmware or bootloader to expose the initrd data directly to the stub
511  * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is
512  * very easy to implement. It is a simple Linux initrd specific conduit between
513  * kernel and firmware, allowing us to put the EFI stub (being part of the
514  * kernel) in charge of where and when to load the initrd, while leaving it up
515  * to the firmware to decide whether it needs to expose its filesystem hierarchy
516  * via EFI protocols.
517  */
518 static const struct {
519 	struct efi_vendor_dev_path	vendor;
520 	struct efi_generic_dev_path	end;
521 } __packed initrd_dev_path = {
522 	{
523 		{
524 			EFI_DEV_MEDIA,
525 			EFI_DEV_MEDIA_VENDOR,
526 			sizeof(struct efi_vendor_dev_path),
527 		},
528 		LINUX_EFI_INITRD_MEDIA_GUID
529 	}, {
530 		EFI_DEV_END_PATH,
531 		EFI_DEV_END_ENTIRE,
532 		sizeof(struct efi_generic_dev_path)
533 	}
534 };
535 
536 /**
537  * efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path
538  * @initrd:	pointer of struct to store the address where the initrd was loaded
539  *		and the size of the loaded initrd
540  * @max:	upper limit for the initrd memory allocation
541  *
542  * Return:
543  * * %EFI_SUCCESS if the initrd was loaded successfully, in which
544  *   case @load_addr and @load_size are assigned accordingly
545  * * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path
546  * * %EFI_OUT_OF_RESOURCES if memory allocation failed
547  * * %EFI_LOAD_ERROR in all other cases
548  */
549 static
efi_load_initrd_dev_path(struct linux_efi_initrd * initrd,unsigned long max)550 efi_status_t efi_load_initrd_dev_path(struct linux_efi_initrd *initrd,
551 				      unsigned long max)
552 {
553 	efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID;
554 	efi_device_path_protocol_t *dp;
555 	efi_load_file2_protocol_t *lf2;
556 	efi_handle_t handle;
557 	efi_status_t status;
558 
559 	dp = (efi_device_path_protocol_t *)&initrd_dev_path;
560 	status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle);
561 	if (status != EFI_SUCCESS)
562 		return status;
563 
564 	status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid,
565 			     (void **)&lf2);
566 	if (status != EFI_SUCCESS)
567 		return status;
568 
569 	initrd->size = 0;
570 	status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, NULL);
571 	if (status != EFI_BUFFER_TOO_SMALL)
572 		return EFI_LOAD_ERROR;
573 
574 	status = efi_allocate_pages(initrd->size, &initrd->base, max);
575 	if (status != EFI_SUCCESS)
576 		return status;
577 
578 	status = efi_call_proto(lf2, load_file, dp, false, &initrd->size,
579 				(void *)initrd->base);
580 	if (status != EFI_SUCCESS) {
581 		efi_free(initrd->size, initrd->base);
582 		return EFI_LOAD_ERROR;
583 	}
584 	return EFI_SUCCESS;
585 }
586 
587 static
efi_load_initrd_cmdline(efi_loaded_image_t * image,struct linux_efi_initrd * initrd,unsigned long soft_limit,unsigned long hard_limit)588 efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image,
589 				     struct linux_efi_initrd *initrd,
590 				     unsigned long soft_limit,
591 				     unsigned long hard_limit)
592 {
593 	if (image == NULL)
594 		return EFI_UNSUPPORTED;
595 
596 	return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2,
597 				    soft_limit, hard_limit,
598 				    &initrd->base, &initrd->size);
599 }
600 
601 /**
602  * efi_load_initrd() - Load initial RAM disk
603  * @image:	EFI loaded image protocol
604  * @soft_limit:	preferred address for loading the initrd
605  * @hard_limit:	upper limit address for loading the initrd
606  *
607  * Return:	status code
608  */
efi_load_initrd(efi_loaded_image_t * image,unsigned long soft_limit,unsigned long hard_limit,const struct linux_efi_initrd ** out)609 efi_status_t efi_load_initrd(efi_loaded_image_t *image,
610 			     unsigned long soft_limit,
611 			     unsigned long hard_limit,
612 			     const struct linux_efi_initrd **out)
613 {
614 	efi_guid_t tbl_guid = LINUX_EFI_INITRD_MEDIA_GUID;
615 	efi_status_t status = EFI_SUCCESS;
616 	struct linux_efi_initrd initrd, *tbl;
617 
618 	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD) || efi_noinitrd)
619 		return EFI_SUCCESS;
620 
621 	status = efi_load_initrd_dev_path(&initrd, hard_limit);
622 	if (status == EFI_SUCCESS) {
623 		efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
624 		if (initrd.size > 0 &&
625 		    efi_measure_tagged_event(initrd.base, initrd.size,
626 					     EFISTUB_EVT_INITRD) == EFI_SUCCESS)
627 			efi_info("Measured initrd data into PCR 9\n");
628 	} else if (status == EFI_NOT_FOUND) {
629 		status = efi_load_initrd_cmdline(image, &initrd, soft_limit,
630 						 hard_limit);
631 		/* command line loader disabled or no initrd= passed? */
632 		if (status == EFI_UNSUPPORTED || status == EFI_NOT_READY)
633 			return EFI_SUCCESS;
634 		if (status == EFI_SUCCESS)
635 			efi_info("Loaded initrd from command line option\n");
636 	}
637 	if (status != EFI_SUCCESS)
638 		goto failed;
639 
640 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(initrd),
641 			     (void **)&tbl);
642 	if (status != EFI_SUCCESS)
643 		goto free_initrd;
644 
645 	*tbl = initrd;
646 	status = efi_bs_call(install_configuration_table, &tbl_guid, tbl);
647 	if (status != EFI_SUCCESS)
648 		goto free_tbl;
649 
650 	if (out)
651 		*out = tbl;
652 	return EFI_SUCCESS;
653 
654 free_tbl:
655 	efi_bs_call(free_pool, tbl);
656 free_initrd:
657 	efi_free(initrd.size, initrd.base);
658 failed:
659 	efi_err("Failed to load initrd: 0x%lx\n", status);
660 	return status;
661 }
662 
663 /**
664  * efi_wait_for_key() - Wait for key stroke
665  * @usec:	number of microseconds to wait for key stroke
666  * @key:	key entered
667  *
668  * Wait for up to @usec microseconds for a key stroke.
669  *
670  * Return:	status code, EFI_SUCCESS if key received
671  */
efi_wait_for_key(unsigned long usec,efi_input_key_t * key)672 efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key)
673 {
674 	efi_event_t events[2], timer;
675 	unsigned long index;
676 	efi_simple_text_input_protocol_t *con_in;
677 	efi_status_t status;
678 
679 	con_in = efi_table_attr(efi_system_table, con_in);
680 	if (!con_in)
681 		return EFI_UNSUPPORTED;
682 	efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key));
683 
684 	status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer);
685 	if (status != EFI_SUCCESS)
686 		return status;
687 
688 	status = efi_bs_call(set_timer, timer, EfiTimerRelative,
689 			     EFI_100NSEC_PER_USEC * usec);
690 	if (status != EFI_SUCCESS)
691 		return status;
692 	efi_set_event_at(events, 1, timer);
693 
694 	status = efi_bs_call(wait_for_event, 2, events, &index);
695 	if (status == EFI_SUCCESS) {
696 		if (index == 0)
697 			status = efi_call_proto(con_in, read_keystroke, key);
698 		else
699 			status = EFI_TIMEOUT;
700 	}
701 
702 	efi_bs_call(close_event, timer);
703 
704 	return status;
705 }
706 
707 /**
708  * efi_remap_image - Remap a loaded image with the appropriate permissions
709  *                   for code and data
710  *
711  * @image_base:	the base of the image in memory
712  * @alloc_size:	the size of the area in memory occupied by the image
713  * @code_size:	the size of the leading part of the image containing code
714  * 		and read-only data
715  *
716  * efi_remap_image() uses the EFI memory attribute protocol to remap the code
717  * region of the loaded image read-only/executable, and the remainder
718  * read-write/non-executable. The code region is assumed to start at the base
719  * of the image, and will therefore cover the PE/COFF header as well.
720  */
efi_remap_image(unsigned long image_base,unsigned alloc_size,unsigned long code_size)721 void efi_remap_image(unsigned long image_base, unsigned alloc_size,
722 		     unsigned long code_size)
723 {
724 	efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID;
725 	efi_memory_attribute_protocol_t *memattr;
726 	efi_status_t status;
727 	u64 attr;
728 
729 	/*
730 	 * If the firmware implements the EFI_MEMORY_ATTRIBUTE_PROTOCOL, let's
731 	 * invoke it to remap the text/rodata region of the decompressed image
732 	 * as read-only and the data/bss region as non-executable.
733 	 */
734 	status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr);
735 	if (status != EFI_SUCCESS)
736 		return;
737 
738 	// Get the current attributes for the entire region
739 	status = memattr->get_memory_attributes(memattr, image_base,
740 						alloc_size, &attr);
741 	if (status != EFI_SUCCESS) {
742 		efi_warn("Failed to retrieve memory attributes for image region: 0x%lx\n",
743 			 status);
744 		return;
745 	}
746 
747 	// Mark the code region as read-only
748 	status = memattr->set_memory_attributes(memattr, image_base, code_size,
749 						EFI_MEMORY_RO);
750 	if (status != EFI_SUCCESS) {
751 		efi_warn("Failed to remap code region read-only\n");
752 		return;
753 	}
754 
755 	// If the entire region was already mapped as non-exec, clear the
756 	// attribute from the code region. Otherwise, set it on the data
757 	// region.
758 	if (attr & EFI_MEMORY_XP) {
759 		status = memattr->clear_memory_attributes(memattr, image_base,
760 							  code_size,
761 							  EFI_MEMORY_XP);
762 		if (status != EFI_SUCCESS)
763 			efi_warn("Failed to remap code region executable\n");
764 	} else {
765 		status = memattr->set_memory_attributes(memattr,
766 							image_base + code_size,
767 							alloc_size - code_size,
768 							EFI_MEMORY_XP);
769 		if (status != EFI_SUCCESS)
770 			efi_warn("Failed to remap data region non-executable\n");
771 	}
772 }
773