1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4   *
5   *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6   *
7   *  Interactivity improvements by Mike Galbraith
8   *  (C) 2007 Mike Galbraith <efault@gmx.de>
9   *
10   *  Various enhancements by Dmitry Adamushko.
11   *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12   *
13   *  Group scheduling enhancements by Srivatsa Vaddagiri
14   *  Copyright IBM Corporation, 2007
15   *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16   *
17   *  Scaled math optimizations by Thomas Gleixner
18   *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19   *
20   *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21   *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22   */
23  #include <linux/energy_model.h>
24  #include <linux/mmap_lock.h>
25  #include <linux/hugetlb_inline.h>
26  #include <linux/jiffies.h>
27  #include <linux/mm_api.h>
28  #include <linux/highmem.h>
29  #include <linux/spinlock_api.h>
30  #include <linux/cpumask_api.h>
31  #include <linux/lockdep_api.h>
32  #include <linux/softirq.h>
33  #include <linux/refcount_api.h>
34  #include <linux/topology.h>
35  #include <linux/sched/clock.h>
36  #include <linux/sched/cond_resched.h>
37  #include <linux/sched/cputime.h>
38  #include <linux/sched/isolation.h>
39  #include <linux/sched/nohz.h>
40  
41  #include <linux/cpuidle.h>
42  #include <linux/interrupt.h>
43  #include <linux/memory-tiers.h>
44  #include <linux/mempolicy.h>
45  #include <linux/mutex_api.h>
46  #include <linux/profile.h>
47  #include <linux/psi.h>
48  #include <linux/ratelimit.h>
49  #include <linux/task_work.h>
50  #include <linux/rbtree_augmented.h>
51  
52  #include <asm/switch_to.h>
53  
54  #include "sched.h"
55  #include "stats.h"
56  #include "autogroup.h"
57  
58  /*
59   * The initial- and re-scaling of tunables is configurable
60   *
61   * Options are:
62   *
63   *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64   *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65   *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66   *
67   * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68   */
69  unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70  
71  /*
72   * Minimal preemption granularity for CPU-bound tasks:
73   *
74   * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75   */
76  unsigned int sysctl_sched_base_slice			= 750000ULL;
77  static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78  
79  const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80  
setup_sched_thermal_decay_shift(char * str)81  static int __init setup_sched_thermal_decay_shift(char *str)
82  {
83  	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
84  	return 1;
85  }
86  __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
87  
88  #ifdef CONFIG_SMP
89  /*
90   * For asym packing, by default the lower numbered CPU has higher priority.
91   */
arch_asym_cpu_priority(int cpu)92  int __weak arch_asym_cpu_priority(int cpu)
93  {
94  	return -cpu;
95  }
96  
97  /*
98   * The margin used when comparing utilization with CPU capacity.
99   *
100   * (default: ~20%)
101   */
102  #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
103  
104  /*
105   * The margin used when comparing CPU capacities.
106   * is 'cap1' noticeably greater than 'cap2'
107   *
108   * (default: ~5%)
109   */
110  #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
111  #endif
112  
113  #ifdef CONFIG_CFS_BANDWIDTH
114  /*
115   * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116   * each time a cfs_rq requests quota.
117   *
118   * Note: in the case that the slice exceeds the runtime remaining (either due
119   * to consumption or the quota being specified to be smaller than the slice)
120   * we will always only issue the remaining available time.
121   *
122   * (default: 5 msec, units: microseconds)
123   */
124  static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
125  #endif
126  
127  #ifdef CONFIG_NUMA_BALANCING
128  /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129  static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
130  #endif
131  
132  #ifdef CONFIG_SYSCTL
133  static struct ctl_table sched_fair_sysctls[] = {
134  #ifdef CONFIG_CFS_BANDWIDTH
135  	{
136  		.procname       = "sched_cfs_bandwidth_slice_us",
137  		.data           = &sysctl_sched_cfs_bandwidth_slice,
138  		.maxlen         = sizeof(unsigned int),
139  		.mode           = 0644,
140  		.proc_handler   = proc_dointvec_minmax,
141  		.extra1         = SYSCTL_ONE,
142  	},
143  #endif
144  #ifdef CONFIG_NUMA_BALANCING
145  	{
146  		.procname	= "numa_balancing_promote_rate_limit_MBps",
147  		.data		= &sysctl_numa_balancing_promote_rate_limit,
148  		.maxlen		= sizeof(unsigned int),
149  		.mode		= 0644,
150  		.proc_handler	= proc_dointvec_minmax,
151  		.extra1		= SYSCTL_ZERO,
152  	},
153  #endif /* CONFIG_NUMA_BALANCING */
154  };
155  
sched_fair_sysctl_init(void)156  static int __init sched_fair_sysctl_init(void)
157  {
158  	register_sysctl_init("kernel", sched_fair_sysctls);
159  	return 0;
160  }
161  late_initcall(sched_fair_sysctl_init);
162  #endif
163  
update_load_add(struct load_weight * lw,unsigned long inc)164  static inline void update_load_add(struct load_weight *lw, unsigned long inc)
165  {
166  	lw->weight += inc;
167  	lw->inv_weight = 0;
168  }
169  
update_load_sub(struct load_weight * lw,unsigned long dec)170  static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
171  {
172  	lw->weight -= dec;
173  	lw->inv_weight = 0;
174  }
175  
update_load_set(struct load_weight * lw,unsigned long w)176  static inline void update_load_set(struct load_weight *lw, unsigned long w)
177  {
178  	lw->weight = w;
179  	lw->inv_weight = 0;
180  }
181  
182  /*
183   * Increase the granularity value when there are more CPUs,
184   * because with more CPUs the 'effective latency' as visible
185   * to users decreases. But the relationship is not linear,
186   * so pick a second-best guess by going with the log2 of the
187   * number of CPUs.
188   *
189   * This idea comes from the SD scheduler of Con Kolivas:
190   */
get_update_sysctl_factor(void)191  static unsigned int get_update_sysctl_factor(void)
192  {
193  	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
194  	unsigned int factor;
195  
196  	switch (sysctl_sched_tunable_scaling) {
197  	case SCHED_TUNABLESCALING_NONE:
198  		factor = 1;
199  		break;
200  	case SCHED_TUNABLESCALING_LINEAR:
201  		factor = cpus;
202  		break;
203  	case SCHED_TUNABLESCALING_LOG:
204  	default:
205  		factor = 1 + ilog2(cpus);
206  		break;
207  	}
208  
209  	return factor;
210  }
211  
update_sysctl(void)212  static void update_sysctl(void)
213  {
214  	unsigned int factor = get_update_sysctl_factor();
215  
216  #define SET_SYSCTL(name) \
217  	(sysctl_##name = (factor) * normalized_sysctl_##name)
218  	SET_SYSCTL(sched_base_slice);
219  #undef SET_SYSCTL
220  }
221  
sched_init_granularity(void)222  void __init sched_init_granularity(void)
223  {
224  	update_sysctl();
225  }
226  
227  #define WMULT_CONST	(~0U)
228  #define WMULT_SHIFT	32
229  
__update_inv_weight(struct load_weight * lw)230  static void __update_inv_weight(struct load_weight *lw)
231  {
232  	unsigned long w;
233  
234  	if (likely(lw->inv_weight))
235  		return;
236  
237  	w = scale_load_down(lw->weight);
238  
239  	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
240  		lw->inv_weight = 1;
241  	else if (unlikely(!w))
242  		lw->inv_weight = WMULT_CONST;
243  	else
244  		lw->inv_weight = WMULT_CONST / w;
245  }
246  
247  /*
248   * delta_exec * weight / lw.weight
249   *   OR
250   * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
251   *
252   * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253   * we're guaranteed shift stays positive because inv_weight is guaranteed to
254   * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
255   *
256   * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257   * weight/lw.weight <= 1, and therefore our shift will also be positive.
258   */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)259  static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
260  {
261  	u64 fact = scale_load_down(weight);
262  	u32 fact_hi = (u32)(fact >> 32);
263  	int shift = WMULT_SHIFT;
264  	int fs;
265  
266  	__update_inv_weight(lw);
267  
268  	if (unlikely(fact_hi)) {
269  		fs = fls(fact_hi);
270  		shift -= fs;
271  		fact >>= fs;
272  	}
273  
274  	fact = mul_u32_u32(fact, lw->inv_weight);
275  
276  	fact_hi = (u32)(fact >> 32);
277  	if (fact_hi) {
278  		fs = fls(fact_hi);
279  		shift -= fs;
280  		fact >>= fs;
281  	}
282  
283  	return mul_u64_u32_shr(delta_exec, fact, shift);
284  }
285  
286  /*
287   * delta /= w
288   */
calc_delta_fair(u64 delta,struct sched_entity * se)289  static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
290  {
291  	if (unlikely(se->load.weight != NICE_0_LOAD))
292  		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
293  
294  	return delta;
295  }
296  
297  const struct sched_class fair_sched_class;
298  
299  /**************************************************************
300   * CFS operations on generic schedulable entities:
301   */
302  
303  #ifdef CONFIG_FAIR_GROUP_SCHED
304  
305  /* Walk up scheduling entities hierarchy */
306  #define for_each_sched_entity(se) \
307  		for (; se; se = se->parent)
308  
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)309  static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310  {
311  	struct rq *rq = rq_of(cfs_rq);
312  	int cpu = cpu_of(rq);
313  
314  	if (cfs_rq->on_list)
315  		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
316  
317  	cfs_rq->on_list = 1;
318  
319  	/*
320  	 * Ensure we either appear before our parent (if already
321  	 * enqueued) or force our parent to appear after us when it is
322  	 * enqueued. The fact that we always enqueue bottom-up
323  	 * reduces this to two cases and a special case for the root
324  	 * cfs_rq. Furthermore, it also means that we will always reset
325  	 * tmp_alone_branch either when the branch is connected
326  	 * to a tree or when we reach the top of the tree
327  	 */
328  	if (cfs_rq->tg->parent &&
329  	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
330  		/*
331  		 * If parent is already on the list, we add the child
332  		 * just before. Thanks to circular linked property of
333  		 * the list, this means to put the child at the tail
334  		 * of the list that starts by parent.
335  		 */
336  		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337  			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
338  		/*
339  		 * The branch is now connected to its tree so we can
340  		 * reset tmp_alone_branch to the beginning of the
341  		 * list.
342  		 */
343  		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344  		return true;
345  	}
346  
347  	if (!cfs_rq->tg->parent) {
348  		/*
349  		 * cfs rq without parent should be put
350  		 * at the tail of the list.
351  		 */
352  		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353  			&rq->leaf_cfs_rq_list);
354  		/*
355  		 * We have reach the top of a tree so we can reset
356  		 * tmp_alone_branch to the beginning of the list.
357  		 */
358  		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
359  		return true;
360  	}
361  
362  	/*
363  	 * The parent has not already been added so we want to
364  	 * make sure that it will be put after us.
365  	 * tmp_alone_branch points to the begin of the branch
366  	 * where we will add parent.
367  	 */
368  	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
369  	/*
370  	 * update tmp_alone_branch to points to the new begin
371  	 * of the branch
372  	 */
373  	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
374  	return false;
375  }
376  
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)377  static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
378  {
379  	if (cfs_rq->on_list) {
380  		struct rq *rq = rq_of(cfs_rq);
381  
382  		/*
383  		 * With cfs_rq being unthrottled/throttled during an enqueue,
384  		 * it can happen the tmp_alone_branch points to the leaf that
385  		 * we finally want to delete. In this case, tmp_alone_branch moves
386  		 * to the prev element but it will point to rq->leaf_cfs_rq_list
387  		 * at the end of the enqueue.
388  		 */
389  		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390  			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
391  
392  		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
393  		cfs_rq->on_list = 0;
394  	}
395  }
396  
assert_list_leaf_cfs_rq(struct rq * rq)397  static inline void assert_list_leaf_cfs_rq(struct rq *rq)
398  {
399  	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
400  }
401  
402  /* Iterate through all leaf cfs_rq's on a runqueue */
403  #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
404  	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
405  				 leaf_cfs_rq_list)
406  
407  /* Do the two (enqueued) entities belong to the same group ? */
408  static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)409  is_same_group(struct sched_entity *se, struct sched_entity *pse)
410  {
411  	if (se->cfs_rq == pse->cfs_rq)
412  		return se->cfs_rq;
413  
414  	return NULL;
415  }
416  
parent_entity(const struct sched_entity * se)417  static inline struct sched_entity *parent_entity(const struct sched_entity *se)
418  {
419  	return se->parent;
420  }
421  
422  static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)423  find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424  {
425  	int se_depth, pse_depth;
426  
427  	/*
428  	 * preemption test can be made between sibling entities who are in the
429  	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430  	 * both tasks until we find their ancestors who are siblings of common
431  	 * parent.
432  	 */
433  
434  	/* First walk up until both entities are at same depth */
435  	se_depth = (*se)->depth;
436  	pse_depth = (*pse)->depth;
437  
438  	while (se_depth > pse_depth) {
439  		se_depth--;
440  		*se = parent_entity(*se);
441  	}
442  
443  	while (pse_depth > se_depth) {
444  		pse_depth--;
445  		*pse = parent_entity(*pse);
446  	}
447  
448  	while (!is_same_group(*se, *pse)) {
449  		*se = parent_entity(*se);
450  		*pse = parent_entity(*pse);
451  	}
452  }
453  
tg_is_idle(struct task_group * tg)454  static int tg_is_idle(struct task_group *tg)
455  {
456  	return tg->idle > 0;
457  }
458  
cfs_rq_is_idle(struct cfs_rq * cfs_rq)459  static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
460  {
461  	return cfs_rq->idle > 0;
462  }
463  
se_is_idle(struct sched_entity * se)464  static int se_is_idle(struct sched_entity *se)
465  {
466  	if (entity_is_task(se))
467  		return task_has_idle_policy(task_of(se));
468  	return cfs_rq_is_idle(group_cfs_rq(se));
469  }
470  
471  #else	/* !CONFIG_FAIR_GROUP_SCHED */
472  
473  #define for_each_sched_entity(se) \
474  		for (; se; se = NULL)
475  
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)476  static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477  {
478  	return true;
479  }
480  
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)481  static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482  {
483  }
484  
assert_list_leaf_cfs_rq(struct rq * rq)485  static inline void assert_list_leaf_cfs_rq(struct rq *rq)
486  {
487  }
488  
489  #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
490  		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
491  
parent_entity(struct sched_entity * se)492  static inline struct sched_entity *parent_entity(struct sched_entity *se)
493  {
494  	return NULL;
495  }
496  
497  static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)498  find_matching_se(struct sched_entity **se, struct sched_entity **pse)
499  {
500  }
501  
tg_is_idle(struct task_group * tg)502  static inline int tg_is_idle(struct task_group *tg)
503  {
504  	return 0;
505  }
506  
cfs_rq_is_idle(struct cfs_rq * cfs_rq)507  static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
508  {
509  	return 0;
510  }
511  
se_is_idle(struct sched_entity * se)512  static int se_is_idle(struct sched_entity *se)
513  {
514  	return task_has_idle_policy(task_of(se));
515  }
516  
517  #endif	/* CONFIG_FAIR_GROUP_SCHED */
518  
519  static __always_inline
520  void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521  
522  /**************************************************************
523   * Scheduling class tree data structure manipulation methods:
524   */
525  
max_vruntime(u64 max_vruntime,u64 vruntime)526  static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527  {
528  	s64 delta = (s64)(vruntime - max_vruntime);
529  	if (delta > 0)
530  		max_vruntime = vruntime;
531  
532  	return max_vruntime;
533  }
534  
min_vruntime(u64 min_vruntime,u64 vruntime)535  static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536  {
537  	s64 delta = (s64)(vruntime - min_vruntime);
538  	if (delta < 0)
539  		min_vruntime = vruntime;
540  
541  	return min_vruntime;
542  }
543  
entity_before(const struct sched_entity * a,const struct sched_entity * b)544  static inline bool entity_before(const struct sched_entity *a,
545  				 const struct sched_entity *b)
546  {
547  	/*
548  	 * Tiebreak on vruntime seems unnecessary since it can
549  	 * hardly happen.
550  	 */
551  	return (s64)(a->deadline - b->deadline) < 0;
552  }
553  
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)554  static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
555  {
556  	return (s64)(se->vruntime - cfs_rq->min_vruntime);
557  }
558  
559  #define __node_2_se(node) \
560  	rb_entry((node), struct sched_entity, run_node)
561  
562  /*
563   * Compute virtual time from the per-task service numbers:
564   *
565   * Fair schedulers conserve lag:
566   *
567   *   \Sum lag_i = 0
568   *
569   * Where lag_i is given by:
570   *
571   *   lag_i = S - s_i = w_i * (V - v_i)
572   *
573   * Where S is the ideal service time and V is it's virtual time counterpart.
574   * Therefore:
575   *
576   *   \Sum lag_i = 0
577   *   \Sum w_i * (V - v_i) = 0
578   *   \Sum w_i * V - w_i * v_i = 0
579   *
580   * From which we can solve an expression for V in v_i (which we have in
581   * se->vruntime):
582   *
583   *       \Sum v_i * w_i   \Sum v_i * w_i
584   *   V = -------------- = --------------
585   *          \Sum w_i            W
586   *
587   * Specifically, this is the weighted average of all entity virtual runtimes.
588   *
589   * [[ NOTE: this is only equal to the ideal scheduler under the condition
590   *          that join/leave operations happen at lag_i = 0, otherwise the
591   *          virtual time has non-contiguous motion equivalent to:
592   *
593   *	      V +-= lag_i / W
594   *
595   *	    Also see the comment in place_entity() that deals with this. ]]
596   *
597   * However, since v_i is u64, and the multiplication could easily overflow
598   * transform it into a relative form that uses smaller quantities:
599   *
600   * Substitute: v_i == (v_i - v0) + v0
601   *
602   *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
603   * V = ---------------------------- = --------------------- + v0
604   *                  W                            W
605   *
606   * Which we track using:
607   *
608   *                    v0 := cfs_rq->min_vruntime
609   * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610   *              \Sum w_i := cfs_rq->avg_load
611   *
612   * Since min_vruntime is a monotonic increasing variable that closely tracks
613   * the per-task service, these deltas: (v_i - v), will be in the order of the
614   * maximal (virtual) lag induced in the system due to quantisation.
615   *
616   * Also, we use scale_load_down() to reduce the size.
617   *
618   * As measured, the max (key * weight) value was ~44 bits for a kernel build.
619   */
620  static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)621  avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
622  {
623  	unsigned long weight = scale_load_down(se->load.weight);
624  	s64 key = entity_key(cfs_rq, se);
625  
626  	cfs_rq->avg_vruntime += key * weight;
627  	cfs_rq->avg_load += weight;
628  }
629  
630  static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)631  avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
632  {
633  	unsigned long weight = scale_load_down(se->load.weight);
634  	s64 key = entity_key(cfs_rq, se);
635  
636  	cfs_rq->avg_vruntime -= key * weight;
637  	cfs_rq->avg_load -= weight;
638  }
639  
640  static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)641  void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
642  {
643  	/*
644  	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
645  	 */
646  	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
647  }
648  
649  /*
650   * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651   * For this to be so, the result of this function must have a left bias.
652   */
avg_vruntime(struct cfs_rq * cfs_rq)653  u64 avg_vruntime(struct cfs_rq *cfs_rq)
654  {
655  	struct sched_entity *curr = cfs_rq->curr;
656  	s64 avg = cfs_rq->avg_vruntime;
657  	long load = cfs_rq->avg_load;
658  
659  	if (curr && curr->on_rq) {
660  		unsigned long weight = scale_load_down(curr->load.weight);
661  
662  		avg += entity_key(cfs_rq, curr) * weight;
663  		load += weight;
664  	}
665  
666  	if (load) {
667  		/* sign flips effective floor / ceiling */
668  		if (avg < 0)
669  			avg -= (load - 1);
670  		avg = div_s64(avg, load);
671  	}
672  
673  	return cfs_rq->min_vruntime + avg;
674  }
675  
676  /*
677   * lag_i = S - s_i = w_i * (V - v_i)
678   *
679   * However, since V is approximated by the weighted average of all entities it
680   * is possible -- by addition/removal/reweight to the tree -- to move V around
681   * and end up with a larger lag than we started with.
682   *
683   * Limit this to either double the slice length with a minimum of TICK_NSEC
684   * since that is the timing granularity.
685   *
686   * EEVDF gives the following limit for a steady state system:
687   *
688   *   -r_max < lag < max(r_max, q)
689   *
690   * XXX could add max_slice to the augmented data to track this.
691   */
entity_lag(u64 avruntime,struct sched_entity * se)692  static s64 entity_lag(u64 avruntime, struct sched_entity *se)
693  {
694  	s64 vlag, limit;
695  
696  	vlag = avruntime - se->vruntime;
697  	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
698  
699  	return clamp(vlag, -limit, limit);
700  }
701  
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)702  static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
703  {
704  	SCHED_WARN_ON(!se->on_rq);
705  
706  	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
707  }
708  
709  /*
710   * Entity is eligible once it received less service than it ought to have,
711   * eg. lag >= 0.
712   *
713   * lag_i = S - s_i = w_i*(V - v_i)
714   *
715   * lag_i >= 0 -> V >= v_i
716   *
717   *     \Sum (v_i - v)*w_i
718   * V = ------------------ + v
719   *          \Sum w_i
720   *
721   * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
722   *
723   * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724   *       to the loss in precision caused by the division.
725   */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)726  static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
727  {
728  	struct sched_entity *curr = cfs_rq->curr;
729  	s64 avg = cfs_rq->avg_vruntime;
730  	long load = cfs_rq->avg_load;
731  
732  	if (curr && curr->on_rq) {
733  		unsigned long weight = scale_load_down(curr->load.weight);
734  
735  		avg += entity_key(cfs_rq, curr) * weight;
736  		load += weight;
737  	}
738  
739  	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
740  }
741  
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)742  int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
743  {
744  	return vruntime_eligible(cfs_rq, se->vruntime);
745  }
746  
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)747  static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
748  {
749  	u64 min_vruntime = cfs_rq->min_vruntime;
750  	/*
751  	 * open coded max_vruntime() to allow updating avg_vruntime
752  	 */
753  	s64 delta = (s64)(vruntime - min_vruntime);
754  	if (delta > 0) {
755  		avg_vruntime_update(cfs_rq, delta);
756  		min_vruntime = vruntime;
757  	}
758  	return min_vruntime;
759  }
760  
update_min_vruntime(struct cfs_rq * cfs_rq)761  static void update_min_vruntime(struct cfs_rq *cfs_rq)
762  {
763  	struct sched_entity *se = __pick_root_entity(cfs_rq);
764  	struct sched_entity *curr = cfs_rq->curr;
765  	u64 vruntime = cfs_rq->min_vruntime;
766  
767  	if (curr) {
768  		if (curr->on_rq)
769  			vruntime = curr->vruntime;
770  		else
771  			curr = NULL;
772  	}
773  
774  	if (se) {
775  		if (!curr)
776  			vruntime = se->min_vruntime;
777  		else
778  			vruntime = min_vruntime(vruntime, se->min_vruntime);
779  	}
780  
781  	/* ensure we never gain time by being placed backwards. */
782  	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
783  }
784  
cfs_rq_min_slice(struct cfs_rq * cfs_rq)785  static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
786  {
787  	struct sched_entity *root = __pick_root_entity(cfs_rq);
788  	struct sched_entity *curr = cfs_rq->curr;
789  	u64 min_slice = ~0ULL;
790  
791  	if (curr && curr->on_rq)
792  		min_slice = curr->slice;
793  
794  	if (root)
795  		min_slice = min(min_slice, root->min_slice);
796  
797  	return min_slice;
798  }
799  
__entity_less(struct rb_node * a,const struct rb_node * b)800  static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801  {
802  	return entity_before(__node_2_se(a), __node_2_se(b));
803  }
804  
805  #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806  
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)807  static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
808  {
809  	if (node) {
810  		struct sched_entity *rse = __node_2_se(node);
811  		if (vruntime_gt(min_vruntime, se, rse))
812  			se->min_vruntime = rse->min_vruntime;
813  	}
814  }
815  
__min_slice_update(struct sched_entity * se,struct rb_node * node)816  static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
817  {
818  	if (node) {
819  		struct sched_entity *rse = __node_2_se(node);
820  		if (rse->min_slice < se->min_slice)
821  			se->min_slice = rse->min_slice;
822  	}
823  }
824  
825  /*
826   * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
827   */
min_vruntime_update(struct sched_entity * se,bool exit)828  static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
829  {
830  	u64 old_min_vruntime = se->min_vruntime;
831  	u64 old_min_slice = se->min_slice;
832  	struct rb_node *node = &se->run_node;
833  
834  	se->min_vruntime = se->vruntime;
835  	__min_vruntime_update(se, node->rb_right);
836  	__min_vruntime_update(se, node->rb_left);
837  
838  	se->min_slice = se->slice;
839  	__min_slice_update(se, node->rb_right);
840  	__min_slice_update(se, node->rb_left);
841  
842  	return se->min_vruntime == old_min_vruntime &&
843  	       se->min_slice == old_min_slice;
844  }
845  
846  RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
847  		     run_node, min_vruntime, min_vruntime_update);
848  
849  /*
850   * Enqueue an entity into the rb-tree:
851   */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)852  static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
853  {
854  	avg_vruntime_add(cfs_rq, se);
855  	se->min_vruntime = se->vruntime;
856  	se->min_slice = se->slice;
857  	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
858  				__entity_less, &min_vruntime_cb);
859  }
860  
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)861  static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
862  {
863  	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
864  				  &min_vruntime_cb);
865  	avg_vruntime_sub(cfs_rq, se);
866  }
867  
__pick_root_entity(struct cfs_rq * cfs_rq)868  struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
869  {
870  	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
871  
872  	if (!root)
873  		return NULL;
874  
875  	return __node_2_se(root);
876  }
877  
__pick_first_entity(struct cfs_rq * cfs_rq)878  struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
879  {
880  	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
881  
882  	if (!left)
883  		return NULL;
884  
885  	return __node_2_se(left);
886  }
887  
888  /*
889   * Earliest Eligible Virtual Deadline First
890   *
891   * In order to provide latency guarantees for different request sizes
892   * EEVDF selects the best runnable task from two criteria:
893   *
894   *  1) the task must be eligible (must be owed service)
895   *
896   *  2) from those tasks that meet 1), we select the one
897   *     with the earliest virtual deadline.
898   *
899   * We can do this in O(log n) time due to an augmented RB-tree. The
900   * tree keeps the entries sorted on deadline, but also functions as a
901   * heap based on the vruntime by keeping:
902   *
903   *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
904   *
905   * Which allows tree pruning through eligibility.
906   */
pick_eevdf(struct cfs_rq * cfs_rq)907  static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
908  {
909  	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
910  	struct sched_entity *se = __pick_first_entity(cfs_rq);
911  	struct sched_entity *curr = cfs_rq->curr;
912  	struct sched_entity *best = NULL;
913  
914  	/*
915  	 * We can safely skip eligibility check if there is only one entity
916  	 * in this cfs_rq, saving some cycles.
917  	 */
918  	if (cfs_rq->nr_running == 1)
919  		return curr && curr->on_rq ? curr : se;
920  
921  	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
922  		curr = NULL;
923  
924  	/*
925  	 * Once selected, run a task until it either becomes non-eligible or
926  	 * until it gets a new slice. See the HACK in set_next_entity().
927  	 */
928  	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
929  		return curr;
930  
931  	/* Pick the leftmost entity if it's eligible */
932  	if (se && entity_eligible(cfs_rq, se)) {
933  		best = se;
934  		goto found;
935  	}
936  
937  	/* Heap search for the EEVD entity */
938  	while (node) {
939  		struct rb_node *left = node->rb_left;
940  
941  		/*
942  		 * Eligible entities in left subtree are always better
943  		 * choices, since they have earlier deadlines.
944  		 */
945  		if (left && vruntime_eligible(cfs_rq,
946  					__node_2_se(left)->min_vruntime)) {
947  			node = left;
948  			continue;
949  		}
950  
951  		se = __node_2_se(node);
952  
953  		/*
954  		 * The left subtree either is empty or has no eligible
955  		 * entity, so check the current node since it is the one
956  		 * with earliest deadline that might be eligible.
957  		 */
958  		if (entity_eligible(cfs_rq, se)) {
959  			best = se;
960  			break;
961  		}
962  
963  		node = node->rb_right;
964  	}
965  found:
966  	if (!best || (curr && entity_before(curr, best)))
967  		best = curr;
968  
969  	return best;
970  }
971  
972  #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)973  struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
974  {
975  	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
976  
977  	if (!last)
978  		return NULL;
979  
980  	return __node_2_se(last);
981  }
982  
983  /**************************************************************
984   * Scheduling class statistics methods:
985   */
986  #ifdef CONFIG_SMP
sched_update_scaling(void)987  int sched_update_scaling(void)
988  {
989  	unsigned int factor = get_update_sysctl_factor();
990  
991  #define WRT_SYSCTL(name) \
992  	(normalized_sysctl_##name = sysctl_##name / (factor))
993  	WRT_SYSCTL(sched_base_slice);
994  #undef WRT_SYSCTL
995  
996  	return 0;
997  }
998  #endif
999  #endif
1000  
1001  static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1002  
1003  /*
1004   * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1005   * this is probably good enough.
1006   */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1007  static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1008  {
1009  	if ((s64)(se->vruntime - se->deadline) < 0)
1010  		return false;
1011  
1012  	/*
1013  	 * For EEVDF the virtual time slope is determined by w_i (iow.
1014  	 * nice) while the request time r_i is determined by
1015  	 * sysctl_sched_base_slice.
1016  	 */
1017  	if (!se->custom_slice)
1018  		se->slice = sysctl_sched_base_slice;
1019  
1020  	/*
1021  	 * EEVDF: vd_i = ve_i + r_i / w_i
1022  	 */
1023  	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1024  
1025  	/*
1026  	 * The task has consumed its request, reschedule.
1027  	 */
1028  	return true;
1029  }
1030  
1031  #include "pelt.h"
1032  #ifdef CONFIG_SMP
1033  
1034  static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1035  static unsigned long task_h_load(struct task_struct *p);
1036  static unsigned long capacity_of(int cpu);
1037  
1038  /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1039  void init_entity_runnable_average(struct sched_entity *se)
1040  {
1041  	struct sched_avg *sa = &se->avg;
1042  
1043  	memset(sa, 0, sizeof(*sa));
1044  
1045  	/*
1046  	 * Tasks are initialized with full load to be seen as heavy tasks until
1047  	 * they get a chance to stabilize to their real load level.
1048  	 * Group entities are initialized with zero load to reflect the fact that
1049  	 * nothing has been attached to the task group yet.
1050  	 */
1051  	if (entity_is_task(se))
1052  		sa->load_avg = scale_load_down(se->load.weight);
1053  
1054  	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1055  }
1056  
1057  /*
1058   * With new tasks being created, their initial util_avgs are extrapolated
1059   * based on the cfs_rq's current util_avg:
1060   *
1061   *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1062   *		* se_weight(se)
1063   *
1064   * However, in many cases, the above util_avg does not give a desired
1065   * value. Moreover, the sum of the util_avgs may be divergent, such
1066   * as when the series is a harmonic series.
1067   *
1068   * To solve this problem, we also cap the util_avg of successive tasks to
1069   * only 1/2 of the left utilization budget:
1070   *
1071   *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1072   *
1073   * where n denotes the nth task and cpu_scale the CPU capacity.
1074   *
1075   * For example, for a CPU with 1024 of capacity, a simplest series from
1076   * the beginning would be like:
1077   *
1078   *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1079   * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1080   *
1081   * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1082   * if util_avg > util_avg_cap.
1083   */
post_init_entity_util_avg(struct task_struct * p)1084  void post_init_entity_util_avg(struct task_struct *p)
1085  {
1086  	struct sched_entity *se = &p->se;
1087  	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1088  	struct sched_avg *sa = &se->avg;
1089  	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1090  	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1091  
1092  	if (p->sched_class != &fair_sched_class) {
1093  		/*
1094  		 * For !fair tasks do:
1095  		 *
1096  		update_cfs_rq_load_avg(now, cfs_rq);
1097  		attach_entity_load_avg(cfs_rq, se);
1098  		switched_from_fair(rq, p);
1099  		 *
1100  		 * such that the next switched_to_fair() has the
1101  		 * expected state.
1102  		 */
1103  		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1104  		return;
1105  	}
1106  
1107  	if (cap > 0) {
1108  		if (cfs_rq->avg.util_avg != 0) {
1109  			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1110  			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1111  
1112  			if (sa->util_avg > cap)
1113  				sa->util_avg = cap;
1114  		} else {
1115  			sa->util_avg = cap;
1116  		}
1117  	}
1118  
1119  	sa->runnable_avg = sa->util_avg;
1120  }
1121  
1122  #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1123  void init_entity_runnable_average(struct sched_entity *se)
1124  {
1125  }
post_init_entity_util_avg(struct task_struct * p)1126  void post_init_entity_util_avg(struct task_struct *p)
1127  {
1128  }
update_tg_load_avg(struct cfs_rq * cfs_rq)1129  static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1130  {
1131  }
1132  #endif /* CONFIG_SMP */
1133  
update_curr_se(struct rq * rq,struct sched_entity * curr)1134  static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1135  {
1136  	u64 now = rq_clock_task(rq);
1137  	s64 delta_exec;
1138  
1139  	delta_exec = now - curr->exec_start;
1140  	if (unlikely(delta_exec <= 0))
1141  		return delta_exec;
1142  
1143  	curr->exec_start = now;
1144  	curr->sum_exec_runtime += delta_exec;
1145  
1146  	if (schedstat_enabled()) {
1147  		struct sched_statistics *stats;
1148  
1149  		stats = __schedstats_from_se(curr);
1150  		__schedstat_set(stats->exec_max,
1151  				max(delta_exec, stats->exec_max));
1152  	}
1153  
1154  	return delta_exec;
1155  }
1156  
update_curr_task(struct task_struct * p,s64 delta_exec)1157  static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1158  {
1159  	trace_sched_stat_runtime(p, delta_exec);
1160  	account_group_exec_runtime(p, delta_exec);
1161  	cgroup_account_cputime(p, delta_exec);
1162  	if (p->dl_server)
1163  		dl_server_update(p->dl_server, delta_exec);
1164  }
1165  
did_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * curr)1166  static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1167  {
1168  	if (!sched_feat(PREEMPT_SHORT))
1169  		return false;
1170  
1171  	if (curr->vlag == curr->deadline)
1172  		return false;
1173  
1174  	return !entity_eligible(cfs_rq, curr);
1175  }
1176  
do_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * pse,struct sched_entity * se)1177  static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1178  				    struct sched_entity *pse, struct sched_entity *se)
1179  {
1180  	if (!sched_feat(PREEMPT_SHORT))
1181  		return false;
1182  
1183  	if (pse->slice >= se->slice)
1184  		return false;
1185  
1186  	if (!entity_eligible(cfs_rq, pse))
1187  		return false;
1188  
1189  	if (entity_before(pse, se))
1190  		return true;
1191  
1192  	if (!entity_eligible(cfs_rq, se))
1193  		return true;
1194  
1195  	return false;
1196  }
1197  
1198  /*
1199   * Used by other classes to account runtime.
1200   */
update_curr_common(struct rq * rq)1201  s64 update_curr_common(struct rq *rq)
1202  {
1203  	struct task_struct *curr = rq->curr;
1204  	s64 delta_exec;
1205  
1206  	delta_exec = update_curr_se(rq, &curr->se);
1207  	if (likely(delta_exec > 0))
1208  		update_curr_task(curr, delta_exec);
1209  
1210  	return delta_exec;
1211  }
1212  
1213  /*
1214   * Update the current task's runtime statistics.
1215   */
update_curr(struct cfs_rq * cfs_rq)1216  static void update_curr(struct cfs_rq *cfs_rq)
1217  {
1218  	struct sched_entity *curr = cfs_rq->curr;
1219  	struct rq *rq = rq_of(cfs_rq);
1220  	s64 delta_exec;
1221  	bool resched;
1222  
1223  	if (unlikely(!curr))
1224  		return;
1225  
1226  	delta_exec = update_curr_se(rq, curr);
1227  	if (unlikely(delta_exec <= 0))
1228  		return;
1229  
1230  	curr->vruntime += calc_delta_fair(delta_exec, curr);
1231  	resched = update_deadline(cfs_rq, curr);
1232  	update_min_vruntime(cfs_rq);
1233  
1234  	if (entity_is_task(curr)) {
1235  		struct task_struct *p = task_of(curr);
1236  
1237  		update_curr_task(p, delta_exec);
1238  
1239  		/*
1240  		 * Any fair task that runs outside of fair_server should
1241  		 * account against fair_server such that it can account for
1242  		 * this time and possibly avoid running this period.
1243  		 */
1244  		if (p->dl_server != &rq->fair_server)
1245  			dl_server_update(&rq->fair_server, delta_exec);
1246  	}
1247  
1248  	account_cfs_rq_runtime(cfs_rq, delta_exec);
1249  
1250  	if (cfs_rq->nr_running == 1)
1251  		return;
1252  
1253  	if (resched || did_preempt_short(cfs_rq, curr)) {
1254  		resched_curr(rq);
1255  		clear_buddies(cfs_rq, curr);
1256  	}
1257  }
1258  
update_curr_fair(struct rq * rq)1259  static void update_curr_fair(struct rq *rq)
1260  {
1261  	update_curr(cfs_rq_of(&rq->curr->se));
1262  }
1263  
1264  static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1265  update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1266  {
1267  	struct sched_statistics *stats;
1268  	struct task_struct *p = NULL;
1269  
1270  	if (!schedstat_enabled())
1271  		return;
1272  
1273  	stats = __schedstats_from_se(se);
1274  
1275  	if (entity_is_task(se))
1276  		p = task_of(se);
1277  
1278  	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1279  }
1280  
1281  static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1282  update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1283  {
1284  	struct sched_statistics *stats;
1285  	struct task_struct *p = NULL;
1286  
1287  	if (!schedstat_enabled())
1288  		return;
1289  
1290  	stats = __schedstats_from_se(se);
1291  
1292  	/*
1293  	 * When the sched_schedstat changes from 0 to 1, some sched se
1294  	 * maybe already in the runqueue, the se->statistics.wait_start
1295  	 * will be 0.So it will let the delta wrong. We need to avoid this
1296  	 * scenario.
1297  	 */
1298  	if (unlikely(!schedstat_val(stats->wait_start)))
1299  		return;
1300  
1301  	if (entity_is_task(se))
1302  		p = task_of(se);
1303  
1304  	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1305  }
1306  
1307  static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1308  update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1309  {
1310  	struct sched_statistics *stats;
1311  	struct task_struct *tsk = NULL;
1312  
1313  	if (!schedstat_enabled())
1314  		return;
1315  
1316  	stats = __schedstats_from_se(se);
1317  
1318  	if (entity_is_task(se))
1319  		tsk = task_of(se);
1320  
1321  	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1322  }
1323  
1324  /*
1325   * Task is being enqueued - update stats:
1326   */
1327  static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1328  update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1329  {
1330  	if (!schedstat_enabled())
1331  		return;
1332  
1333  	/*
1334  	 * Are we enqueueing a waiting task? (for current tasks
1335  	 * a dequeue/enqueue event is a NOP)
1336  	 */
1337  	if (se != cfs_rq->curr)
1338  		update_stats_wait_start_fair(cfs_rq, se);
1339  
1340  	if (flags & ENQUEUE_WAKEUP)
1341  		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1342  }
1343  
1344  static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1345  update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1346  {
1347  
1348  	if (!schedstat_enabled())
1349  		return;
1350  
1351  	/*
1352  	 * Mark the end of the wait period if dequeueing a
1353  	 * waiting task:
1354  	 */
1355  	if (se != cfs_rq->curr)
1356  		update_stats_wait_end_fair(cfs_rq, se);
1357  
1358  	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1359  		struct task_struct *tsk = task_of(se);
1360  		unsigned int state;
1361  
1362  		/* XXX racy against TTWU */
1363  		state = READ_ONCE(tsk->__state);
1364  		if (state & TASK_INTERRUPTIBLE)
1365  			__schedstat_set(tsk->stats.sleep_start,
1366  				      rq_clock(rq_of(cfs_rq)));
1367  		if (state & TASK_UNINTERRUPTIBLE)
1368  			__schedstat_set(tsk->stats.block_start,
1369  				      rq_clock(rq_of(cfs_rq)));
1370  	}
1371  }
1372  
1373  /*
1374   * We are picking a new current task - update its stats:
1375   */
1376  static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1377  update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1378  {
1379  	/*
1380  	 * We are starting a new run period:
1381  	 */
1382  	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1383  }
1384  
1385  /**************************************************
1386   * Scheduling class queueing methods:
1387   */
1388  
is_core_idle(int cpu)1389  static inline bool is_core_idle(int cpu)
1390  {
1391  #ifdef CONFIG_SCHED_SMT
1392  	int sibling;
1393  
1394  	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1395  		if (cpu == sibling)
1396  			continue;
1397  
1398  		if (!idle_cpu(sibling))
1399  			return false;
1400  	}
1401  #endif
1402  
1403  	return true;
1404  }
1405  
1406  #ifdef CONFIG_NUMA
1407  #define NUMA_IMBALANCE_MIN 2
1408  
1409  static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1410  adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1411  {
1412  	/*
1413  	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1414  	 * threshold. Above this threshold, individual tasks may be contending
1415  	 * for both memory bandwidth and any shared HT resources.  This is an
1416  	 * approximation as the number of running tasks may not be related to
1417  	 * the number of busy CPUs due to sched_setaffinity.
1418  	 */
1419  	if (dst_running > imb_numa_nr)
1420  		return imbalance;
1421  
1422  	/*
1423  	 * Allow a small imbalance based on a simple pair of communicating
1424  	 * tasks that remain local when the destination is lightly loaded.
1425  	 */
1426  	if (imbalance <= NUMA_IMBALANCE_MIN)
1427  		return 0;
1428  
1429  	return imbalance;
1430  }
1431  #endif /* CONFIG_NUMA */
1432  
1433  #ifdef CONFIG_NUMA_BALANCING
1434  /*
1435   * Approximate time to scan a full NUMA task in ms. The task scan period is
1436   * calculated based on the tasks virtual memory size and
1437   * numa_balancing_scan_size.
1438   */
1439  unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1440  unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1441  
1442  /* Portion of address space to scan in MB */
1443  unsigned int sysctl_numa_balancing_scan_size = 256;
1444  
1445  /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1446  unsigned int sysctl_numa_balancing_scan_delay = 1000;
1447  
1448  /* The page with hint page fault latency < threshold in ms is considered hot */
1449  unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1450  
1451  struct numa_group {
1452  	refcount_t refcount;
1453  
1454  	spinlock_t lock; /* nr_tasks, tasks */
1455  	int nr_tasks;
1456  	pid_t gid;
1457  	int active_nodes;
1458  
1459  	struct rcu_head rcu;
1460  	unsigned long total_faults;
1461  	unsigned long max_faults_cpu;
1462  	/*
1463  	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1464  	 *
1465  	 * Faults_cpu is used to decide whether memory should move
1466  	 * towards the CPU. As a consequence, these stats are weighted
1467  	 * more by CPU use than by memory faults.
1468  	 */
1469  	unsigned long faults[];
1470  };
1471  
1472  /*
1473   * For functions that can be called in multiple contexts that permit reading
1474   * ->numa_group (see struct task_struct for locking rules).
1475   */
deref_task_numa_group(struct task_struct * p)1476  static struct numa_group *deref_task_numa_group(struct task_struct *p)
1477  {
1478  	return rcu_dereference_check(p->numa_group, p == current ||
1479  		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1480  }
1481  
deref_curr_numa_group(struct task_struct * p)1482  static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1483  {
1484  	return rcu_dereference_protected(p->numa_group, p == current);
1485  }
1486  
1487  static inline unsigned long group_faults_priv(struct numa_group *ng);
1488  static inline unsigned long group_faults_shared(struct numa_group *ng);
1489  
task_nr_scan_windows(struct task_struct * p)1490  static unsigned int task_nr_scan_windows(struct task_struct *p)
1491  {
1492  	unsigned long rss = 0;
1493  	unsigned long nr_scan_pages;
1494  
1495  	/*
1496  	 * Calculations based on RSS as non-present and empty pages are skipped
1497  	 * by the PTE scanner and NUMA hinting faults should be trapped based
1498  	 * on resident pages
1499  	 */
1500  	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1501  	rss = get_mm_rss(p->mm);
1502  	if (!rss)
1503  		rss = nr_scan_pages;
1504  
1505  	rss = round_up(rss, nr_scan_pages);
1506  	return rss / nr_scan_pages;
1507  }
1508  
1509  /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1510  #define MAX_SCAN_WINDOW 2560
1511  
task_scan_min(struct task_struct * p)1512  static unsigned int task_scan_min(struct task_struct *p)
1513  {
1514  	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1515  	unsigned int scan, floor;
1516  	unsigned int windows = 1;
1517  
1518  	if (scan_size < MAX_SCAN_WINDOW)
1519  		windows = MAX_SCAN_WINDOW / scan_size;
1520  	floor = 1000 / windows;
1521  
1522  	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1523  	return max_t(unsigned int, floor, scan);
1524  }
1525  
task_scan_start(struct task_struct * p)1526  static unsigned int task_scan_start(struct task_struct *p)
1527  {
1528  	unsigned long smin = task_scan_min(p);
1529  	unsigned long period = smin;
1530  	struct numa_group *ng;
1531  
1532  	/* Scale the maximum scan period with the amount of shared memory. */
1533  	rcu_read_lock();
1534  	ng = rcu_dereference(p->numa_group);
1535  	if (ng) {
1536  		unsigned long shared = group_faults_shared(ng);
1537  		unsigned long private = group_faults_priv(ng);
1538  
1539  		period *= refcount_read(&ng->refcount);
1540  		period *= shared + 1;
1541  		period /= private + shared + 1;
1542  	}
1543  	rcu_read_unlock();
1544  
1545  	return max(smin, period);
1546  }
1547  
task_scan_max(struct task_struct * p)1548  static unsigned int task_scan_max(struct task_struct *p)
1549  {
1550  	unsigned long smin = task_scan_min(p);
1551  	unsigned long smax;
1552  	struct numa_group *ng;
1553  
1554  	/* Watch for min being lower than max due to floor calculations */
1555  	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1556  
1557  	/* Scale the maximum scan period with the amount of shared memory. */
1558  	ng = deref_curr_numa_group(p);
1559  	if (ng) {
1560  		unsigned long shared = group_faults_shared(ng);
1561  		unsigned long private = group_faults_priv(ng);
1562  		unsigned long period = smax;
1563  
1564  		period *= refcount_read(&ng->refcount);
1565  		period *= shared + 1;
1566  		period /= private + shared + 1;
1567  
1568  		smax = max(smax, period);
1569  	}
1570  
1571  	return max(smin, smax);
1572  }
1573  
account_numa_enqueue(struct rq * rq,struct task_struct * p)1574  static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1575  {
1576  	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1577  	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1578  }
1579  
account_numa_dequeue(struct rq * rq,struct task_struct * p)1580  static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1581  {
1582  	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1583  	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1584  }
1585  
1586  /* Shared or private faults. */
1587  #define NR_NUMA_HINT_FAULT_TYPES 2
1588  
1589  /* Memory and CPU locality */
1590  #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1591  
1592  /* Averaged statistics, and temporary buffers. */
1593  #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1594  
task_numa_group_id(struct task_struct * p)1595  pid_t task_numa_group_id(struct task_struct *p)
1596  {
1597  	struct numa_group *ng;
1598  	pid_t gid = 0;
1599  
1600  	rcu_read_lock();
1601  	ng = rcu_dereference(p->numa_group);
1602  	if (ng)
1603  		gid = ng->gid;
1604  	rcu_read_unlock();
1605  
1606  	return gid;
1607  }
1608  
1609  /*
1610   * The averaged statistics, shared & private, memory & CPU,
1611   * occupy the first half of the array. The second half of the
1612   * array is for current counters, which are averaged into the
1613   * first set by task_numa_placement.
1614   */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1615  static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1616  {
1617  	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1618  }
1619  
task_faults(struct task_struct * p,int nid)1620  static inline unsigned long task_faults(struct task_struct *p, int nid)
1621  {
1622  	if (!p->numa_faults)
1623  		return 0;
1624  
1625  	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1626  		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1627  }
1628  
group_faults(struct task_struct * p,int nid)1629  static inline unsigned long group_faults(struct task_struct *p, int nid)
1630  {
1631  	struct numa_group *ng = deref_task_numa_group(p);
1632  
1633  	if (!ng)
1634  		return 0;
1635  
1636  	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1637  		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1638  }
1639  
group_faults_cpu(struct numa_group * group,int nid)1640  static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1641  {
1642  	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1643  		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1644  }
1645  
group_faults_priv(struct numa_group * ng)1646  static inline unsigned long group_faults_priv(struct numa_group *ng)
1647  {
1648  	unsigned long faults = 0;
1649  	int node;
1650  
1651  	for_each_online_node(node) {
1652  		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1653  	}
1654  
1655  	return faults;
1656  }
1657  
group_faults_shared(struct numa_group * ng)1658  static inline unsigned long group_faults_shared(struct numa_group *ng)
1659  {
1660  	unsigned long faults = 0;
1661  	int node;
1662  
1663  	for_each_online_node(node) {
1664  		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1665  	}
1666  
1667  	return faults;
1668  }
1669  
1670  /*
1671   * A node triggering more than 1/3 as many NUMA faults as the maximum is
1672   * considered part of a numa group's pseudo-interleaving set. Migrations
1673   * between these nodes are slowed down, to allow things to settle down.
1674   */
1675  #define ACTIVE_NODE_FRACTION 3
1676  
numa_is_active_node(int nid,struct numa_group * ng)1677  static bool numa_is_active_node(int nid, struct numa_group *ng)
1678  {
1679  	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1680  }
1681  
1682  /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1683  static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1684  					int lim_dist, bool task)
1685  {
1686  	unsigned long score = 0;
1687  	int node, max_dist;
1688  
1689  	/*
1690  	 * All nodes are directly connected, and the same distance
1691  	 * from each other. No need for fancy placement algorithms.
1692  	 */
1693  	if (sched_numa_topology_type == NUMA_DIRECT)
1694  		return 0;
1695  
1696  	/* sched_max_numa_distance may be changed in parallel. */
1697  	max_dist = READ_ONCE(sched_max_numa_distance);
1698  	/*
1699  	 * This code is called for each node, introducing N^2 complexity,
1700  	 * which should be OK given the number of nodes rarely exceeds 8.
1701  	 */
1702  	for_each_online_node(node) {
1703  		unsigned long faults;
1704  		int dist = node_distance(nid, node);
1705  
1706  		/*
1707  		 * The furthest away nodes in the system are not interesting
1708  		 * for placement; nid was already counted.
1709  		 */
1710  		if (dist >= max_dist || node == nid)
1711  			continue;
1712  
1713  		/*
1714  		 * On systems with a backplane NUMA topology, compare groups
1715  		 * of nodes, and move tasks towards the group with the most
1716  		 * memory accesses. When comparing two nodes at distance
1717  		 * "hoplimit", only nodes closer by than "hoplimit" are part
1718  		 * of each group. Skip other nodes.
1719  		 */
1720  		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1721  			continue;
1722  
1723  		/* Add up the faults from nearby nodes. */
1724  		if (task)
1725  			faults = task_faults(p, node);
1726  		else
1727  			faults = group_faults(p, node);
1728  
1729  		/*
1730  		 * On systems with a glueless mesh NUMA topology, there are
1731  		 * no fixed "groups of nodes". Instead, nodes that are not
1732  		 * directly connected bounce traffic through intermediate
1733  		 * nodes; a numa_group can occupy any set of nodes.
1734  		 * The further away a node is, the less the faults count.
1735  		 * This seems to result in good task placement.
1736  		 */
1737  		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1738  			faults *= (max_dist - dist);
1739  			faults /= (max_dist - LOCAL_DISTANCE);
1740  		}
1741  
1742  		score += faults;
1743  	}
1744  
1745  	return score;
1746  }
1747  
1748  /*
1749   * These return the fraction of accesses done by a particular task, or
1750   * task group, on a particular numa node.  The group weight is given a
1751   * larger multiplier, in order to group tasks together that are almost
1752   * evenly spread out between numa nodes.
1753   */
task_weight(struct task_struct * p,int nid,int dist)1754  static inline unsigned long task_weight(struct task_struct *p, int nid,
1755  					int dist)
1756  {
1757  	unsigned long faults, total_faults;
1758  
1759  	if (!p->numa_faults)
1760  		return 0;
1761  
1762  	total_faults = p->total_numa_faults;
1763  
1764  	if (!total_faults)
1765  		return 0;
1766  
1767  	faults = task_faults(p, nid);
1768  	faults += score_nearby_nodes(p, nid, dist, true);
1769  
1770  	return 1000 * faults / total_faults;
1771  }
1772  
group_weight(struct task_struct * p,int nid,int dist)1773  static inline unsigned long group_weight(struct task_struct *p, int nid,
1774  					 int dist)
1775  {
1776  	struct numa_group *ng = deref_task_numa_group(p);
1777  	unsigned long faults, total_faults;
1778  
1779  	if (!ng)
1780  		return 0;
1781  
1782  	total_faults = ng->total_faults;
1783  
1784  	if (!total_faults)
1785  		return 0;
1786  
1787  	faults = group_faults(p, nid);
1788  	faults += score_nearby_nodes(p, nid, dist, false);
1789  
1790  	return 1000 * faults / total_faults;
1791  }
1792  
1793  /*
1794   * If memory tiering mode is enabled, cpupid of slow memory page is
1795   * used to record scan time instead of CPU and PID.  When tiering mode
1796   * is disabled at run time, the scan time (in cpupid) will be
1797   * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1798   * access out of array bound.
1799   */
cpupid_valid(int cpupid)1800  static inline bool cpupid_valid(int cpupid)
1801  {
1802  	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1803  }
1804  
1805  /*
1806   * For memory tiering mode, if there are enough free pages (more than
1807   * enough watermark defined here) in fast memory node, to take full
1808   * advantage of fast memory capacity, all recently accessed slow
1809   * memory pages will be migrated to fast memory node without
1810   * considering hot threshold.
1811   */
pgdat_free_space_enough(struct pglist_data * pgdat)1812  static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1813  {
1814  	int z;
1815  	unsigned long enough_wmark;
1816  
1817  	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1818  			   pgdat->node_present_pages >> 4);
1819  	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1820  		struct zone *zone = pgdat->node_zones + z;
1821  
1822  		if (!populated_zone(zone))
1823  			continue;
1824  
1825  		if (zone_watermark_ok(zone, 0,
1826  				      promo_wmark_pages(zone) + enough_wmark,
1827  				      ZONE_MOVABLE, 0))
1828  			return true;
1829  	}
1830  	return false;
1831  }
1832  
1833  /*
1834   * For memory tiering mode, when page tables are scanned, the scan
1835   * time will be recorded in struct page in addition to make page
1836   * PROT_NONE for slow memory page.  So when the page is accessed, in
1837   * hint page fault handler, the hint page fault latency is calculated
1838   * via,
1839   *
1840   *	hint page fault latency = hint page fault time - scan time
1841   *
1842   * The smaller the hint page fault latency, the higher the possibility
1843   * for the page to be hot.
1844   */
numa_hint_fault_latency(struct folio * folio)1845  static int numa_hint_fault_latency(struct folio *folio)
1846  {
1847  	int last_time, time;
1848  
1849  	time = jiffies_to_msecs(jiffies);
1850  	last_time = folio_xchg_access_time(folio, time);
1851  
1852  	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1853  }
1854  
1855  /*
1856   * For memory tiering mode, too high promotion/demotion throughput may
1857   * hurt application latency.  So we provide a mechanism to rate limit
1858   * the number of pages that are tried to be promoted.
1859   */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1860  static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1861  				      unsigned long rate_limit, int nr)
1862  {
1863  	unsigned long nr_cand;
1864  	unsigned int now, start;
1865  
1866  	now = jiffies_to_msecs(jiffies);
1867  	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1868  	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1869  	start = pgdat->nbp_rl_start;
1870  	if (now - start > MSEC_PER_SEC &&
1871  	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1872  		pgdat->nbp_rl_nr_cand = nr_cand;
1873  	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1874  		return true;
1875  	return false;
1876  }
1877  
1878  #define NUMA_MIGRATION_ADJUST_STEPS	16
1879  
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1880  static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1881  					    unsigned long rate_limit,
1882  					    unsigned int ref_th)
1883  {
1884  	unsigned int now, start, th_period, unit_th, th;
1885  	unsigned long nr_cand, ref_cand, diff_cand;
1886  
1887  	now = jiffies_to_msecs(jiffies);
1888  	th_period = sysctl_numa_balancing_scan_period_max;
1889  	start = pgdat->nbp_th_start;
1890  	if (now - start > th_period &&
1891  	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1892  		ref_cand = rate_limit *
1893  			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1894  		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1895  		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1896  		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1897  		th = pgdat->nbp_threshold ? : ref_th;
1898  		if (diff_cand > ref_cand * 11 / 10)
1899  			th = max(th - unit_th, unit_th);
1900  		else if (diff_cand < ref_cand * 9 / 10)
1901  			th = min(th + unit_th, ref_th * 2);
1902  		pgdat->nbp_th_nr_cand = nr_cand;
1903  		pgdat->nbp_threshold = th;
1904  	}
1905  }
1906  
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1907  bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1908  				int src_nid, int dst_cpu)
1909  {
1910  	struct numa_group *ng = deref_curr_numa_group(p);
1911  	int dst_nid = cpu_to_node(dst_cpu);
1912  	int last_cpupid, this_cpupid;
1913  
1914  	/*
1915  	 * Cannot migrate to memoryless nodes.
1916  	 */
1917  	if (!node_state(dst_nid, N_MEMORY))
1918  		return false;
1919  
1920  	/*
1921  	 * The pages in slow memory node should be migrated according
1922  	 * to hot/cold instead of private/shared.
1923  	 */
1924  	if (folio_use_access_time(folio)) {
1925  		struct pglist_data *pgdat;
1926  		unsigned long rate_limit;
1927  		unsigned int latency, th, def_th;
1928  
1929  		pgdat = NODE_DATA(dst_nid);
1930  		if (pgdat_free_space_enough(pgdat)) {
1931  			/* workload changed, reset hot threshold */
1932  			pgdat->nbp_threshold = 0;
1933  			return true;
1934  		}
1935  
1936  		def_th = sysctl_numa_balancing_hot_threshold;
1937  		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1938  			(20 - PAGE_SHIFT);
1939  		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1940  
1941  		th = pgdat->nbp_threshold ? : def_th;
1942  		latency = numa_hint_fault_latency(folio);
1943  		if (latency >= th)
1944  			return false;
1945  
1946  		return !numa_promotion_rate_limit(pgdat, rate_limit,
1947  						  folio_nr_pages(folio));
1948  	}
1949  
1950  	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1951  	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1952  
1953  	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1954  	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1955  		return false;
1956  
1957  	/*
1958  	 * Allow first faults or private faults to migrate immediately early in
1959  	 * the lifetime of a task. The magic number 4 is based on waiting for
1960  	 * two full passes of the "multi-stage node selection" test that is
1961  	 * executed below.
1962  	 */
1963  	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1964  	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1965  		return true;
1966  
1967  	/*
1968  	 * Multi-stage node selection is used in conjunction with a periodic
1969  	 * migration fault to build a temporal task<->page relation. By using
1970  	 * a two-stage filter we remove short/unlikely relations.
1971  	 *
1972  	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1973  	 * a task's usage of a particular page (n_p) per total usage of this
1974  	 * page (n_t) (in a given time-span) to a probability.
1975  	 *
1976  	 * Our periodic faults will sample this probability and getting the
1977  	 * same result twice in a row, given these samples are fully
1978  	 * independent, is then given by P(n)^2, provided our sample period
1979  	 * is sufficiently short compared to the usage pattern.
1980  	 *
1981  	 * This quadric squishes small probabilities, making it less likely we
1982  	 * act on an unlikely task<->page relation.
1983  	 */
1984  	if (!cpupid_pid_unset(last_cpupid) &&
1985  				cpupid_to_nid(last_cpupid) != dst_nid)
1986  		return false;
1987  
1988  	/* Always allow migrate on private faults */
1989  	if (cpupid_match_pid(p, last_cpupid))
1990  		return true;
1991  
1992  	/* A shared fault, but p->numa_group has not been set up yet. */
1993  	if (!ng)
1994  		return true;
1995  
1996  	/*
1997  	 * Destination node is much more heavily used than the source
1998  	 * node? Allow migration.
1999  	 */
2000  	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2001  					ACTIVE_NODE_FRACTION)
2002  		return true;
2003  
2004  	/*
2005  	 * Distribute memory according to CPU & memory use on each node,
2006  	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2007  	 *
2008  	 * faults_cpu(dst)   3   faults_cpu(src)
2009  	 * --------------- * - > ---------------
2010  	 * faults_mem(dst)   4   faults_mem(src)
2011  	 */
2012  	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2013  	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2014  }
2015  
2016  /*
2017   * 'numa_type' describes the node at the moment of load balancing.
2018   */
2019  enum numa_type {
2020  	/* The node has spare capacity that can be used to run more tasks.  */
2021  	node_has_spare = 0,
2022  	/*
2023  	 * The node is fully used and the tasks don't compete for more CPU
2024  	 * cycles. Nevertheless, some tasks might wait before running.
2025  	 */
2026  	node_fully_busy,
2027  	/*
2028  	 * The node is overloaded and can't provide expected CPU cycles to all
2029  	 * tasks.
2030  	 */
2031  	node_overloaded
2032  };
2033  
2034  /* Cached statistics for all CPUs within a node */
2035  struct numa_stats {
2036  	unsigned long load;
2037  	unsigned long runnable;
2038  	unsigned long util;
2039  	/* Total compute capacity of CPUs on a node */
2040  	unsigned long compute_capacity;
2041  	unsigned int nr_running;
2042  	unsigned int weight;
2043  	enum numa_type node_type;
2044  	int idle_cpu;
2045  };
2046  
2047  struct task_numa_env {
2048  	struct task_struct *p;
2049  
2050  	int src_cpu, src_nid;
2051  	int dst_cpu, dst_nid;
2052  	int imb_numa_nr;
2053  
2054  	struct numa_stats src_stats, dst_stats;
2055  
2056  	int imbalance_pct;
2057  	int dist;
2058  
2059  	struct task_struct *best_task;
2060  	long best_imp;
2061  	int best_cpu;
2062  };
2063  
2064  static unsigned long cpu_load(struct rq *rq);
2065  static unsigned long cpu_runnable(struct rq *rq);
2066  
2067  static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2068  numa_type numa_classify(unsigned int imbalance_pct,
2069  			 struct numa_stats *ns)
2070  {
2071  	if ((ns->nr_running > ns->weight) &&
2072  	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2073  	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2074  		return node_overloaded;
2075  
2076  	if ((ns->nr_running < ns->weight) ||
2077  	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2078  	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2079  		return node_has_spare;
2080  
2081  	return node_fully_busy;
2082  }
2083  
2084  #ifdef CONFIG_SCHED_SMT
2085  /* Forward declarations of select_idle_sibling helpers */
2086  static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2087  static inline int numa_idle_core(int idle_core, int cpu)
2088  {
2089  	if (!static_branch_likely(&sched_smt_present) ||
2090  	    idle_core >= 0 || !test_idle_cores(cpu))
2091  		return idle_core;
2092  
2093  	/*
2094  	 * Prefer cores instead of packing HT siblings
2095  	 * and triggering future load balancing.
2096  	 */
2097  	if (is_core_idle(cpu))
2098  		idle_core = cpu;
2099  
2100  	return idle_core;
2101  }
2102  #else
numa_idle_core(int idle_core,int cpu)2103  static inline int numa_idle_core(int idle_core, int cpu)
2104  {
2105  	return idle_core;
2106  }
2107  #endif
2108  
2109  /*
2110   * Gather all necessary information to make NUMA balancing placement
2111   * decisions that are compatible with standard load balancer. This
2112   * borrows code and logic from update_sg_lb_stats but sharing a
2113   * common implementation is impractical.
2114   */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2115  static void update_numa_stats(struct task_numa_env *env,
2116  			      struct numa_stats *ns, int nid,
2117  			      bool find_idle)
2118  {
2119  	int cpu, idle_core = -1;
2120  
2121  	memset(ns, 0, sizeof(*ns));
2122  	ns->idle_cpu = -1;
2123  
2124  	rcu_read_lock();
2125  	for_each_cpu(cpu, cpumask_of_node(nid)) {
2126  		struct rq *rq = cpu_rq(cpu);
2127  
2128  		ns->load += cpu_load(rq);
2129  		ns->runnable += cpu_runnable(rq);
2130  		ns->util += cpu_util_cfs(cpu);
2131  		ns->nr_running += rq->cfs.h_nr_running;
2132  		ns->compute_capacity += capacity_of(cpu);
2133  
2134  		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2135  			if (READ_ONCE(rq->numa_migrate_on) ||
2136  			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2137  				continue;
2138  
2139  			if (ns->idle_cpu == -1)
2140  				ns->idle_cpu = cpu;
2141  
2142  			idle_core = numa_idle_core(idle_core, cpu);
2143  		}
2144  	}
2145  	rcu_read_unlock();
2146  
2147  	ns->weight = cpumask_weight(cpumask_of_node(nid));
2148  
2149  	ns->node_type = numa_classify(env->imbalance_pct, ns);
2150  
2151  	if (idle_core >= 0)
2152  		ns->idle_cpu = idle_core;
2153  }
2154  
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2155  static void task_numa_assign(struct task_numa_env *env,
2156  			     struct task_struct *p, long imp)
2157  {
2158  	struct rq *rq = cpu_rq(env->dst_cpu);
2159  
2160  	/* Check if run-queue part of active NUMA balance. */
2161  	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2162  		int cpu;
2163  		int start = env->dst_cpu;
2164  
2165  		/* Find alternative idle CPU. */
2166  		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2167  			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2168  			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2169  				continue;
2170  			}
2171  
2172  			env->dst_cpu = cpu;
2173  			rq = cpu_rq(env->dst_cpu);
2174  			if (!xchg(&rq->numa_migrate_on, 1))
2175  				goto assign;
2176  		}
2177  
2178  		/* Failed to find an alternative idle CPU */
2179  		return;
2180  	}
2181  
2182  assign:
2183  	/*
2184  	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2185  	 * found a better CPU to move/swap.
2186  	 */
2187  	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2188  		rq = cpu_rq(env->best_cpu);
2189  		WRITE_ONCE(rq->numa_migrate_on, 0);
2190  	}
2191  
2192  	if (env->best_task)
2193  		put_task_struct(env->best_task);
2194  	if (p)
2195  		get_task_struct(p);
2196  
2197  	env->best_task = p;
2198  	env->best_imp = imp;
2199  	env->best_cpu = env->dst_cpu;
2200  }
2201  
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2202  static bool load_too_imbalanced(long src_load, long dst_load,
2203  				struct task_numa_env *env)
2204  {
2205  	long imb, old_imb;
2206  	long orig_src_load, orig_dst_load;
2207  	long src_capacity, dst_capacity;
2208  
2209  	/*
2210  	 * The load is corrected for the CPU capacity available on each node.
2211  	 *
2212  	 * src_load        dst_load
2213  	 * ------------ vs ---------
2214  	 * src_capacity    dst_capacity
2215  	 */
2216  	src_capacity = env->src_stats.compute_capacity;
2217  	dst_capacity = env->dst_stats.compute_capacity;
2218  
2219  	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2220  
2221  	orig_src_load = env->src_stats.load;
2222  	orig_dst_load = env->dst_stats.load;
2223  
2224  	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2225  
2226  	/* Would this change make things worse? */
2227  	return (imb > old_imb);
2228  }
2229  
2230  /*
2231   * Maximum NUMA importance can be 1998 (2*999);
2232   * SMALLIMP @ 30 would be close to 1998/64.
2233   * Used to deter task migration.
2234   */
2235  #define SMALLIMP	30
2236  
2237  /*
2238   * This checks if the overall compute and NUMA accesses of the system would
2239   * be improved if the source tasks was migrated to the target dst_cpu taking
2240   * into account that it might be best if task running on the dst_cpu should
2241   * be exchanged with the source task
2242   */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2243  static bool task_numa_compare(struct task_numa_env *env,
2244  			      long taskimp, long groupimp, bool maymove)
2245  {
2246  	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2247  	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2248  	long imp = p_ng ? groupimp : taskimp;
2249  	struct task_struct *cur;
2250  	long src_load, dst_load;
2251  	int dist = env->dist;
2252  	long moveimp = imp;
2253  	long load;
2254  	bool stopsearch = false;
2255  
2256  	if (READ_ONCE(dst_rq->numa_migrate_on))
2257  		return false;
2258  
2259  	rcu_read_lock();
2260  	cur = rcu_dereference(dst_rq->curr);
2261  	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2262  		cur = NULL;
2263  
2264  	/*
2265  	 * Because we have preemption enabled we can get migrated around and
2266  	 * end try selecting ourselves (current == env->p) as a swap candidate.
2267  	 */
2268  	if (cur == env->p) {
2269  		stopsearch = true;
2270  		goto unlock;
2271  	}
2272  
2273  	if (!cur) {
2274  		if (maymove && moveimp >= env->best_imp)
2275  			goto assign;
2276  		else
2277  			goto unlock;
2278  	}
2279  
2280  	/* Skip this swap candidate if cannot move to the source cpu. */
2281  	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2282  		goto unlock;
2283  
2284  	/*
2285  	 * Skip this swap candidate if it is not moving to its preferred
2286  	 * node and the best task is.
2287  	 */
2288  	if (env->best_task &&
2289  	    env->best_task->numa_preferred_nid == env->src_nid &&
2290  	    cur->numa_preferred_nid != env->src_nid) {
2291  		goto unlock;
2292  	}
2293  
2294  	/*
2295  	 * "imp" is the fault differential for the source task between the
2296  	 * source and destination node. Calculate the total differential for
2297  	 * the source task and potential destination task. The more negative
2298  	 * the value is, the more remote accesses that would be expected to
2299  	 * be incurred if the tasks were swapped.
2300  	 *
2301  	 * If dst and source tasks are in the same NUMA group, or not
2302  	 * in any group then look only at task weights.
2303  	 */
2304  	cur_ng = rcu_dereference(cur->numa_group);
2305  	if (cur_ng == p_ng) {
2306  		/*
2307  		 * Do not swap within a group or between tasks that have
2308  		 * no group if there is spare capacity. Swapping does
2309  		 * not address the load imbalance and helps one task at
2310  		 * the cost of punishing another.
2311  		 */
2312  		if (env->dst_stats.node_type == node_has_spare)
2313  			goto unlock;
2314  
2315  		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2316  		      task_weight(cur, env->dst_nid, dist);
2317  		/*
2318  		 * Add some hysteresis to prevent swapping the
2319  		 * tasks within a group over tiny differences.
2320  		 */
2321  		if (cur_ng)
2322  			imp -= imp / 16;
2323  	} else {
2324  		/*
2325  		 * Compare the group weights. If a task is all by itself
2326  		 * (not part of a group), use the task weight instead.
2327  		 */
2328  		if (cur_ng && p_ng)
2329  			imp += group_weight(cur, env->src_nid, dist) -
2330  			       group_weight(cur, env->dst_nid, dist);
2331  		else
2332  			imp += task_weight(cur, env->src_nid, dist) -
2333  			       task_weight(cur, env->dst_nid, dist);
2334  	}
2335  
2336  	/* Discourage picking a task already on its preferred node */
2337  	if (cur->numa_preferred_nid == env->dst_nid)
2338  		imp -= imp / 16;
2339  
2340  	/*
2341  	 * Encourage picking a task that moves to its preferred node.
2342  	 * This potentially makes imp larger than it's maximum of
2343  	 * 1998 (see SMALLIMP and task_weight for why) but in this
2344  	 * case, it does not matter.
2345  	 */
2346  	if (cur->numa_preferred_nid == env->src_nid)
2347  		imp += imp / 8;
2348  
2349  	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2350  		imp = moveimp;
2351  		cur = NULL;
2352  		goto assign;
2353  	}
2354  
2355  	/*
2356  	 * Prefer swapping with a task moving to its preferred node over a
2357  	 * task that is not.
2358  	 */
2359  	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2360  	    env->best_task->numa_preferred_nid != env->src_nid) {
2361  		goto assign;
2362  	}
2363  
2364  	/*
2365  	 * If the NUMA importance is less than SMALLIMP,
2366  	 * task migration might only result in ping pong
2367  	 * of tasks and also hurt performance due to cache
2368  	 * misses.
2369  	 */
2370  	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2371  		goto unlock;
2372  
2373  	/*
2374  	 * In the overloaded case, try and keep the load balanced.
2375  	 */
2376  	load = task_h_load(env->p) - task_h_load(cur);
2377  	if (!load)
2378  		goto assign;
2379  
2380  	dst_load = env->dst_stats.load + load;
2381  	src_load = env->src_stats.load - load;
2382  
2383  	if (load_too_imbalanced(src_load, dst_load, env))
2384  		goto unlock;
2385  
2386  assign:
2387  	/* Evaluate an idle CPU for a task numa move. */
2388  	if (!cur) {
2389  		int cpu = env->dst_stats.idle_cpu;
2390  
2391  		/* Nothing cached so current CPU went idle since the search. */
2392  		if (cpu < 0)
2393  			cpu = env->dst_cpu;
2394  
2395  		/*
2396  		 * If the CPU is no longer truly idle and the previous best CPU
2397  		 * is, keep using it.
2398  		 */
2399  		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2400  		    idle_cpu(env->best_cpu)) {
2401  			cpu = env->best_cpu;
2402  		}
2403  
2404  		env->dst_cpu = cpu;
2405  	}
2406  
2407  	task_numa_assign(env, cur, imp);
2408  
2409  	/*
2410  	 * If a move to idle is allowed because there is capacity or load
2411  	 * balance improves then stop the search. While a better swap
2412  	 * candidate may exist, a search is not free.
2413  	 */
2414  	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2415  		stopsearch = true;
2416  
2417  	/*
2418  	 * If a swap candidate must be identified and the current best task
2419  	 * moves its preferred node then stop the search.
2420  	 */
2421  	if (!maymove && env->best_task &&
2422  	    env->best_task->numa_preferred_nid == env->src_nid) {
2423  		stopsearch = true;
2424  	}
2425  unlock:
2426  	rcu_read_unlock();
2427  
2428  	return stopsearch;
2429  }
2430  
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2431  static void task_numa_find_cpu(struct task_numa_env *env,
2432  				long taskimp, long groupimp)
2433  {
2434  	bool maymove = false;
2435  	int cpu;
2436  
2437  	/*
2438  	 * If dst node has spare capacity, then check if there is an
2439  	 * imbalance that would be overruled by the load balancer.
2440  	 */
2441  	if (env->dst_stats.node_type == node_has_spare) {
2442  		unsigned int imbalance;
2443  		int src_running, dst_running;
2444  
2445  		/*
2446  		 * Would movement cause an imbalance? Note that if src has
2447  		 * more running tasks that the imbalance is ignored as the
2448  		 * move improves the imbalance from the perspective of the
2449  		 * CPU load balancer.
2450  		 * */
2451  		src_running = env->src_stats.nr_running - 1;
2452  		dst_running = env->dst_stats.nr_running + 1;
2453  		imbalance = max(0, dst_running - src_running);
2454  		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2455  						  env->imb_numa_nr);
2456  
2457  		/* Use idle CPU if there is no imbalance */
2458  		if (!imbalance) {
2459  			maymove = true;
2460  			if (env->dst_stats.idle_cpu >= 0) {
2461  				env->dst_cpu = env->dst_stats.idle_cpu;
2462  				task_numa_assign(env, NULL, 0);
2463  				return;
2464  			}
2465  		}
2466  	} else {
2467  		long src_load, dst_load, load;
2468  		/*
2469  		 * If the improvement from just moving env->p direction is better
2470  		 * than swapping tasks around, check if a move is possible.
2471  		 */
2472  		load = task_h_load(env->p);
2473  		dst_load = env->dst_stats.load + load;
2474  		src_load = env->src_stats.load - load;
2475  		maymove = !load_too_imbalanced(src_load, dst_load, env);
2476  	}
2477  
2478  	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2479  		/* Skip this CPU if the source task cannot migrate */
2480  		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2481  			continue;
2482  
2483  		env->dst_cpu = cpu;
2484  		if (task_numa_compare(env, taskimp, groupimp, maymove))
2485  			break;
2486  	}
2487  }
2488  
task_numa_migrate(struct task_struct * p)2489  static int task_numa_migrate(struct task_struct *p)
2490  {
2491  	struct task_numa_env env = {
2492  		.p = p,
2493  
2494  		.src_cpu = task_cpu(p),
2495  		.src_nid = task_node(p),
2496  
2497  		.imbalance_pct = 112,
2498  
2499  		.best_task = NULL,
2500  		.best_imp = 0,
2501  		.best_cpu = -1,
2502  	};
2503  	unsigned long taskweight, groupweight;
2504  	struct sched_domain *sd;
2505  	long taskimp, groupimp;
2506  	struct numa_group *ng;
2507  	struct rq *best_rq;
2508  	int nid, ret, dist;
2509  
2510  	/*
2511  	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2512  	 * imbalance and would be the first to start moving tasks about.
2513  	 *
2514  	 * And we want to avoid any moving of tasks about, as that would create
2515  	 * random movement of tasks -- counter the numa conditions we're trying
2516  	 * to satisfy here.
2517  	 */
2518  	rcu_read_lock();
2519  	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2520  	if (sd) {
2521  		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2522  		env.imb_numa_nr = sd->imb_numa_nr;
2523  	}
2524  	rcu_read_unlock();
2525  
2526  	/*
2527  	 * Cpusets can break the scheduler domain tree into smaller
2528  	 * balance domains, some of which do not cross NUMA boundaries.
2529  	 * Tasks that are "trapped" in such domains cannot be migrated
2530  	 * elsewhere, so there is no point in (re)trying.
2531  	 */
2532  	if (unlikely(!sd)) {
2533  		sched_setnuma(p, task_node(p));
2534  		return -EINVAL;
2535  	}
2536  
2537  	env.dst_nid = p->numa_preferred_nid;
2538  	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2539  	taskweight = task_weight(p, env.src_nid, dist);
2540  	groupweight = group_weight(p, env.src_nid, dist);
2541  	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2542  	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2543  	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2544  	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2545  
2546  	/* Try to find a spot on the preferred nid. */
2547  	task_numa_find_cpu(&env, taskimp, groupimp);
2548  
2549  	/*
2550  	 * Look at other nodes in these cases:
2551  	 * - there is no space available on the preferred_nid
2552  	 * - the task is part of a numa_group that is interleaved across
2553  	 *   multiple NUMA nodes; in order to better consolidate the group,
2554  	 *   we need to check other locations.
2555  	 */
2556  	ng = deref_curr_numa_group(p);
2557  	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2558  		for_each_node_state(nid, N_CPU) {
2559  			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2560  				continue;
2561  
2562  			dist = node_distance(env.src_nid, env.dst_nid);
2563  			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2564  						dist != env.dist) {
2565  				taskweight = task_weight(p, env.src_nid, dist);
2566  				groupweight = group_weight(p, env.src_nid, dist);
2567  			}
2568  
2569  			/* Only consider nodes where both task and groups benefit */
2570  			taskimp = task_weight(p, nid, dist) - taskweight;
2571  			groupimp = group_weight(p, nid, dist) - groupweight;
2572  			if (taskimp < 0 && groupimp < 0)
2573  				continue;
2574  
2575  			env.dist = dist;
2576  			env.dst_nid = nid;
2577  			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2578  			task_numa_find_cpu(&env, taskimp, groupimp);
2579  		}
2580  	}
2581  
2582  	/*
2583  	 * If the task is part of a workload that spans multiple NUMA nodes,
2584  	 * and is migrating into one of the workload's active nodes, remember
2585  	 * this node as the task's preferred numa node, so the workload can
2586  	 * settle down.
2587  	 * A task that migrated to a second choice node will be better off
2588  	 * trying for a better one later. Do not set the preferred node here.
2589  	 */
2590  	if (ng) {
2591  		if (env.best_cpu == -1)
2592  			nid = env.src_nid;
2593  		else
2594  			nid = cpu_to_node(env.best_cpu);
2595  
2596  		if (nid != p->numa_preferred_nid)
2597  			sched_setnuma(p, nid);
2598  	}
2599  
2600  	/* No better CPU than the current one was found. */
2601  	if (env.best_cpu == -1) {
2602  		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2603  		return -EAGAIN;
2604  	}
2605  
2606  	best_rq = cpu_rq(env.best_cpu);
2607  	if (env.best_task == NULL) {
2608  		ret = migrate_task_to(p, env.best_cpu);
2609  		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2610  		if (ret != 0)
2611  			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2612  		return ret;
2613  	}
2614  
2615  	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2616  	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2617  
2618  	if (ret != 0)
2619  		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2620  	put_task_struct(env.best_task);
2621  	return ret;
2622  }
2623  
2624  /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2625  static void numa_migrate_preferred(struct task_struct *p)
2626  {
2627  	unsigned long interval = HZ;
2628  
2629  	/* This task has no NUMA fault statistics yet */
2630  	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2631  		return;
2632  
2633  	/* Periodically retry migrating the task to the preferred node */
2634  	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2635  	p->numa_migrate_retry = jiffies + interval;
2636  
2637  	/* Success if task is already running on preferred CPU */
2638  	if (task_node(p) == p->numa_preferred_nid)
2639  		return;
2640  
2641  	/* Otherwise, try migrate to a CPU on the preferred node */
2642  	task_numa_migrate(p);
2643  }
2644  
2645  /*
2646   * Find out how many nodes the workload is actively running on. Do this by
2647   * tracking the nodes from which NUMA hinting faults are triggered. This can
2648   * be different from the set of nodes where the workload's memory is currently
2649   * located.
2650   */
numa_group_count_active_nodes(struct numa_group * numa_group)2651  static void numa_group_count_active_nodes(struct numa_group *numa_group)
2652  {
2653  	unsigned long faults, max_faults = 0;
2654  	int nid, active_nodes = 0;
2655  
2656  	for_each_node_state(nid, N_CPU) {
2657  		faults = group_faults_cpu(numa_group, nid);
2658  		if (faults > max_faults)
2659  			max_faults = faults;
2660  	}
2661  
2662  	for_each_node_state(nid, N_CPU) {
2663  		faults = group_faults_cpu(numa_group, nid);
2664  		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2665  			active_nodes++;
2666  	}
2667  
2668  	numa_group->max_faults_cpu = max_faults;
2669  	numa_group->active_nodes = active_nodes;
2670  }
2671  
2672  /*
2673   * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2674   * increments. The more local the fault statistics are, the higher the scan
2675   * period will be for the next scan window. If local/(local+remote) ratio is
2676   * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2677   * the scan period will decrease. Aim for 70% local accesses.
2678   */
2679  #define NUMA_PERIOD_SLOTS 10
2680  #define NUMA_PERIOD_THRESHOLD 7
2681  
2682  /*
2683   * Increase the scan period (slow down scanning) if the majority of
2684   * our memory is already on our local node, or if the majority of
2685   * the page accesses are shared with other processes.
2686   * Otherwise, decrease the scan period.
2687   */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2688  static void update_task_scan_period(struct task_struct *p,
2689  			unsigned long shared, unsigned long private)
2690  {
2691  	unsigned int period_slot;
2692  	int lr_ratio, ps_ratio;
2693  	int diff;
2694  
2695  	unsigned long remote = p->numa_faults_locality[0];
2696  	unsigned long local = p->numa_faults_locality[1];
2697  
2698  	/*
2699  	 * If there were no record hinting faults then either the task is
2700  	 * completely idle or all activity is in areas that are not of interest
2701  	 * to automatic numa balancing. Related to that, if there were failed
2702  	 * migration then it implies we are migrating too quickly or the local
2703  	 * node is overloaded. In either case, scan slower
2704  	 */
2705  	if (local + shared == 0 || p->numa_faults_locality[2]) {
2706  		p->numa_scan_period = min(p->numa_scan_period_max,
2707  			p->numa_scan_period << 1);
2708  
2709  		p->mm->numa_next_scan = jiffies +
2710  			msecs_to_jiffies(p->numa_scan_period);
2711  
2712  		return;
2713  	}
2714  
2715  	/*
2716  	 * Prepare to scale scan period relative to the current period.
2717  	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2718  	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2719  	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2720  	 */
2721  	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2722  	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2723  	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2724  
2725  	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2726  		/*
2727  		 * Most memory accesses are local. There is no need to
2728  		 * do fast NUMA scanning, since memory is already local.
2729  		 */
2730  		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2731  		if (!slot)
2732  			slot = 1;
2733  		diff = slot * period_slot;
2734  	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2735  		/*
2736  		 * Most memory accesses are shared with other tasks.
2737  		 * There is no point in continuing fast NUMA scanning,
2738  		 * since other tasks may just move the memory elsewhere.
2739  		 */
2740  		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2741  		if (!slot)
2742  			slot = 1;
2743  		diff = slot * period_slot;
2744  	} else {
2745  		/*
2746  		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2747  		 * yet they are not on the local NUMA node. Speed up
2748  		 * NUMA scanning to get the memory moved over.
2749  		 */
2750  		int ratio = max(lr_ratio, ps_ratio);
2751  		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2752  	}
2753  
2754  	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2755  			task_scan_min(p), task_scan_max(p));
2756  	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2757  }
2758  
2759  /*
2760   * Get the fraction of time the task has been running since the last
2761   * NUMA placement cycle. The scheduler keeps similar statistics, but
2762   * decays those on a 32ms period, which is orders of magnitude off
2763   * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2764   * stats only if the task is so new there are no NUMA statistics yet.
2765   */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2766  static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2767  {
2768  	u64 runtime, delta, now;
2769  	/* Use the start of this time slice to avoid calculations. */
2770  	now = p->se.exec_start;
2771  	runtime = p->se.sum_exec_runtime;
2772  
2773  	if (p->last_task_numa_placement) {
2774  		delta = runtime - p->last_sum_exec_runtime;
2775  		*period = now - p->last_task_numa_placement;
2776  
2777  		/* Avoid time going backwards, prevent potential divide error: */
2778  		if (unlikely((s64)*period < 0))
2779  			*period = 0;
2780  	} else {
2781  		delta = p->se.avg.load_sum;
2782  		*period = LOAD_AVG_MAX;
2783  	}
2784  
2785  	p->last_sum_exec_runtime = runtime;
2786  	p->last_task_numa_placement = now;
2787  
2788  	return delta;
2789  }
2790  
2791  /*
2792   * Determine the preferred nid for a task in a numa_group. This needs to
2793   * be done in a way that produces consistent results with group_weight,
2794   * otherwise workloads might not converge.
2795   */
preferred_group_nid(struct task_struct * p,int nid)2796  static int preferred_group_nid(struct task_struct *p, int nid)
2797  {
2798  	nodemask_t nodes;
2799  	int dist;
2800  
2801  	/* Direct connections between all NUMA nodes. */
2802  	if (sched_numa_topology_type == NUMA_DIRECT)
2803  		return nid;
2804  
2805  	/*
2806  	 * On a system with glueless mesh NUMA topology, group_weight
2807  	 * scores nodes according to the number of NUMA hinting faults on
2808  	 * both the node itself, and on nearby nodes.
2809  	 */
2810  	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2811  		unsigned long score, max_score = 0;
2812  		int node, max_node = nid;
2813  
2814  		dist = sched_max_numa_distance;
2815  
2816  		for_each_node_state(node, N_CPU) {
2817  			score = group_weight(p, node, dist);
2818  			if (score > max_score) {
2819  				max_score = score;
2820  				max_node = node;
2821  			}
2822  		}
2823  		return max_node;
2824  	}
2825  
2826  	/*
2827  	 * Finding the preferred nid in a system with NUMA backplane
2828  	 * interconnect topology is more involved. The goal is to locate
2829  	 * tasks from numa_groups near each other in the system, and
2830  	 * untangle workloads from different sides of the system. This requires
2831  	 * searching down the hierarchy of node groups, recursively searching
2832  	 * inside the highest scoring group of nodes. The nodemask tricks
2833  	 * keep the complexity of the search down.
2834  	 */
2835  	nodes = node_states[N_CPU];
2836  	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2837  		unsigned long max_faults = 0;
2838  		nodemask_t max_group = NODE_MASK_NONE;
2839  		int a, b;
2840  
2841  		/* Are there nodes at this distance from each other? */
2842  		if (!find_numa_distance(dist))
2843  			continue;
2844  
2845  		for_each_node_mask(a, nodes) {
2846  			unsigned long faults = 0;
2847  			nodemask_t this_group;
2848  			nodes_clear(this_group);
2849  
2850  			/* Sum group's NUMA faults; includes a==b case. */
2851  			for_each_node_mask(b, nodes) {
2852  				if (node_distance(a, b) < dist) {
2853  					faults += group_faults(p, b);
2854  					node_set(b, this_group);
2855  					node_clear(b, nodes);
2856  				}
2857  			}
2858  
2859  			/* Remember the top group. */
2860  			if (faults > max_faults) {
2861  				max_faults = faults;
2862  				max_group = this_group;
2863  				/*
2864  				 * subtle: at the smallest distance there is
2865  				 * just one node left in each "group", the
2866  				 * winner is the preferred nid.
2867  				 */
2868  				nid = a;
2869  			}
2870  		}
2871  		/* Next round, evaluate the nodes within max_group. */
2872  		if (!max_faults)
2873  			break;
2874  		nodes = max_group;
2875  	}
2876  	return nid;
2877  }
2878  
task_numa_placement(struct task_struct * p)2879  static void task_numa_placement(struct task_struct *p)
2880  {
2881  	int seq, nid, max_nid = NUMA_NO_NODE;
2882  	unsigned long max_faults = 0;
2883  	unsigned long fault_types[2] = { 0, 0 };
2884  	unsigned long total_faults;
2885  	u64 runtime, period;
2886  	spinlock_t *group_lock = NULL;
2887  	struct numa_group *ng;
2888  
2889  	/*
2890  	 * The p->mm->numa_scan_seq field gets updated without
2891  	 * exclusive access. Use READ_ONCE() here to ensure
2892  	 * that the field is read in a single access:
2893  	 */
2894  	seq = READ_ONCE(p->mm->numa_scan_seq);
2895  	if (p->numa_scan_seq == seq)
2896  		return;
2897  	p->numa_scan_seq = seq;
2898  	p->numa_scan_period_max = task_scan_max(p);
2899  
2900  	total_faults = p->numa_faults_locality[0] +
2901  		       p->numa_faults_locality[1];
2902  	runtime = numa_get_avg_runtime(p, &period);
2903  
2904  	/* If the task is part of a group prevent parallel updates to group stats */
2905  	ng = deref_curr_numa_group(p);
2906  	if (ng) {
2907  		group_lock = &ng->lock;
2908  		spin_lock_irq(group_lock);
2909  	}
2910  
2911  	/* Find the node with the highest number of faults */
2912  	for_each_online_node(nid) {
2913  		/* Keep track of the offsets in numa_faults array */
2914  		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2915  		unsigned long faults = 0, group_faults = 0;
2916  		int priv;
2917  
2918  		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2919  			long diff, f_diff, f_weight;
2920  
2921  			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2922  			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2923  			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2924  			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2925  
2926  			/* Decay existing window, copy faults since last scan */
2927  			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2928  			fault_types[priv] += p->numa_faults[membuf_idx];
2929  			p->numa_faults[membuf_idx] = 0;
2930  
2931  			/*
2932  			 * Normalize the faults_from, so all tasks in a group
2933  			 * count according to CPU use, instead of by the raw
2934  			 * number of faults. Tasks with little runtime have
2935  			 * little over-all impact on throughput, and thus their
2936  			 * faults are less important.
2937  			 */
2938  			f_weight = div64_u64(runtime << 16, period + 1);
2939  			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2940  				   (total_faults + 1);
2941  			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2942  			p->numa_faults[cpubuf_idx] = 0;
2943  
2944  			p->numa_faults[mem_idx] += diff;
2945  			p->numa_faults[cpu_idx] += f_diff;
2946  			faults += p->numa_faults[mem_idx];
2947  			p->total_numa_faults += diff;
2948  			if (ng) {
2949  				/*
2950  				 * safe because we can only change our own group
2951  				 *
2952  				 * mem_idx represents the offset for a given
2953  				 * nid and priv in a specific region because it
2954  				 * is at the beginning of the numa_faults array.
2955  				 */
2956  				ng->faults[mem_idx] += diff;
2957  				ng->faults[cpu_idx] += f_diff;
2958  				ng->total_faults += diff;
2959  				group_faults += ng->faults[mem_idx];
2960  			}
2961  		}
2962  
2963  		if (!ng) {
2964  			if (faults > max_faults) {
2965  				max_faults = faults;
2966  				max_nid = nid;
2967  			}
2968  		} else if (group_faults > max_faults) {
2969  			max_faults = group_faults;
2970  			max_nid = nid;
2971  		}
2972  	}
2973  
2974  	/* Cannot migrate task to CPU-less node */
2975  	max_nid = numa_nearest_node(max_nid, N_CPU);
2976  
2977  	if (ng) {
2978  		numa_group_count_active_nodes(ng);
2979  		spin_unlock_irq(group_lock);
2980  		max_nid = preferred_group_nid(p, max_nid);
2981  	}
2982  
2983  	if (max_faults) {
2984  		/* Set the new preferred node */
2985  		if (max_nid != p->numa_preferred_nid)
2986  			sched_setnuma(p, max_nid);
2987  	}
2988  
2989  	update_task_scan_period(p, fault_types[0], fault_types[1]);
2990  }
2991  
get_numa_group(struct numa_group * grp)2992  static inline int get_numa_group(struct numa_group *grp)
2993  {
2994  	return refcount_inc_not_zero(&grp->refcount);
2995  }
2996  
put_numa_group(struct numa_group * grp)2997  static inline void put_numa_group(struct numa_group *grp)
2998  {
2999  	if (refcount_dec_and_test(&grp->refcount))
3000  		kfree_rcu(grp, rcu);
3001  }
3002  
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)3003  static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3004  			int *priv)
3005  {
3006  	struct numa_group *grp, *my_grp;
3007  	struct task_struct *tsk;
3008  	bool join = false;
3009  	int cpu = cpupid_to_cpu(cpupid);
3010  	int i;
3011  
3012  	if (unlikely(!deref_curr_numa_group(p))) {
3013  		unsigned int size = sizeof(struct numa_group) +
3014  				    NR_NUMA_HINT_FAULT_STATS *
3015  				    nr_node_ids * sizeof(unsigned long);
3016  
3017  		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3018  		if (!grp)
3019  			return;
3020  
3021  		refcount_set(&grp->refcount, 1);
3022  		grp->active_nodes = 1;
3023  		grp->max_faults_cpu = 0;
3024  		spin_lock_init(&grp->lock);
3025  		grp->gid = p->pid;
3026  
3027  		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3028  			grp->faults[i] = p->numa_faults[i];
3029  
3030  		grp->total_faults = p->total_numa_faults;
3031  
3032  		grp->nr_tasks++;
3033  		rcu_assign_pointer(p->numa_group, grp);
3034  	}
3035  
3036  	rcu_read_lock();
3037  	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3038  
3039  	if (!cpupid_match_pid(tsk, cpupid))
3040  		goto no_join;
3041  
3042  	grp = rcu_dereference(tsk->numa_group);
3043  	if (!grp)
3044  		goto no_join;
3045  
3046  	my_grp = deref_curr_numa_group(p);
3047  	if (grp == my_grp)
3048  		goto no_join;
3049  
3050  	/*
3051  	 * Only join the other group if its bigger; if we're the bigger group,
3052  	 * the other task will join us.
3053  	 */
3054  	if (my_grp->nr_tasks > grp->nr_tasks)
3055  		goto no_join;
3056  
3057  	/*
3058  	 * Tie-break on the grp address.
3059  	 */
3060  	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3061  		goto no_join;
3062  
3063  	/* Always join threads in the same process. */
3064  	if (tsk->mm == current->mm)
3065  		join = true;
3066  
3067  	/* Simple filter to avoid false positives due to PID collisions */
3068  	if (flags & TNF_SHARED)
3069  		join = true;
3070  
3071  	/* Update priv based on whether false sharing was detected */
3072  	*priv = !join;
3073  
3074  	if (join && !get_numa_group(grp))
3075  		goto no_join;
3076  
3077  	rcu_read_unlock();
3078  
3079  	if (!join)
3080  		return;
3081  
3082  	WARN_ON_ONCE(irqs_disabled());
3083  	double_lock_irq(&my_grp->lock, &grp->lock);
3084  
3085  	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3086  		my_grp->faults[i] -= p->numa_faults[i];
3087  		grp->faults[i] += p->numa_faults[i];
3088  	}
3089  	my_grp->total_faults -= p->total_numa_faults;
3090  	grp->total_faults += p->total_numa_faults;
3091  
3092  	my_grp->nr_tasks--;
3093  	grp->nr_tasks++;
3094  
3095  	spin_unlock(&my_grp->lock);
3096  	spin_unlock_irq(&grp->lock);
3097  
3098  	rcu_assign_pointer(p->numa_group, grp);
3099  
3100  	put_numa_group(my_grp);
3101  	return;
3102  
3103  no_join:
3104  	rcu_read_unlock();
3105  	return;
3106  }
3107  
3108  /*
3109   * Get rid of NUMA statistics associated with a task (either current or dead).
3110   * If @final is set, the task is dead and has reached refcount zero, so we can
3111   * safely free all relevant data structures. Otherwise, there might be
3112   * concurrent reads from places like load balancing and procfs, and we should
3113   * reset the data back to default state without freeing ->numa_faults.
3114   */
task_numa_free(struct task_struct * p,bool final)3115  void task_numa_free(struct task_struct *p, bool final)
3116  {
3117  	/* safe: p either is current or is being freed by current */
3118  	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3119  	unsigned long *numa_faults = p->numa_faults;
3120  	unsigned long flags;
3121  	int i;
3122  
3123  	if (!numa_faults)
3124  		return;
3125  
3126  	if (grp) {
3127  		spin_lock_irqsave(&grp->lock, flags);
3128  		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3129  			grp->faults[i] -= p->numa_faults[i];
3130  		grp->total_faults -= p->total_numa_faults;
3131  
3132  		grp->nr_tasks--;
3133  		spin_unlock_irqrestore(&grp->lock, flags);
3134  		RCU_INIT_POINTER(p->numa_group, NULL);
3135  		put_numa_group(grp);
3136  	}
3137  
3138  	if (final) {
3139  		p->numa_faults = NULL;
3140  		kfree(numa_faults);
3141  	} else {
3142  		p->total_numa_faults = 0;
3143  		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3144  			numa_faults[i] = 0;
3145  	}
3146  }
3147  
3148  /*
3149   * Got a PROT_NONE fault for a page on @node.
3150   */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3151  void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3152  {
3153  	struct task_struct *p = current;
3154  	bool migrated = flags & TNF_MIGRATED;
3155  	int cpu_node = task_node(current);
3156  	int local = !!(flags & TNF_FAULT_LOCAL);
3157  	struct numa_group *ng;
3158  	int priv;
3159  
3160  	if (!static_branch_likely(&sched_numa_balancing))
3161  		return;
3162  
3163  	/* for example, ksmd faulting in a user's mm */
3164  	if (!p->mm)
3165  		return;
3166  
3167  	/*
3168  	 * NUMA faults statistics are unnecessary for the slow memory
3169  	 * node for memory tiering mode.
3170  	 */
3171  	if (!node_is_toptier(mem_node) &&
3172  	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3173  	     !cpupid_valid(last_cpupid)))
3174  		return;
3175  
3176  	/* Allocate buffer to track faults on a per-node basis */
3177  	if (unlikely(!p->numa_faults)) {
3178  		int size = sizeof(*p->numa_faults) *
3179  			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3180  
3181  		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3182  		if (!p->numa_faults)
3183  			return;
3184  
3185  		p->total_numa_faults = 0;
3186  		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3187  	}
3188  
3189  	/*
3190  	 * First accesses are treated as private, otherwise consider accesses
3191  	 * to be private if the accessing pid has not changed
3192  	 */
3193  	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3194  		priv = 1;
3195  	} else {
3196  		priv = cpupid_match_pid(p, last_cpupid);
3197  		if (!priv && !(flags & TNF_NO_GROUP))
3198  			task_numa_group(p, last_cpupid, flags, &priv);
3199  	}
3200  
3201  	/*
3202  	 * If a workload spans multiple NUMA nodes, a shared fault that
3203  	 * occurs wholly within the set of nodes that the workload is
3204  	 * actively using should be counted as local. This allows the
3205  	 * scan rate to slow down when a workload has settled down.
3206  	 */
3207  	ng = deref_curr_numa_group(p);
3208  	if (!priv && !local && ng && ng->active_nodes > 1 &&
3209  				numa_is_active_node(cpu_node, ng) &&
3210  				numa_is_active_node(mem_node, ng))
3211  		local = 1;
3212  
3213  	/*
3214  	 * Retry to migrate task to preferred node periodically, in case it
3215  	 * previously failed, or the scheduler moved us.
3216  	 */
3217  	if (time_after(jiffies, p->numa_migrate_retry)) {
3218  		task_numa_placement(p);
3219  		numa_migrate_preferred(p);
3220  	}
3221  
3222  	if (migrated)
3223  		p->numa_pages_migrated += pages;
3224  	if (flags & TNF_MIGRATE_FAIL)
3225  		p->numa_faults_locality[2] += pages;
3226  
3227  	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3228  	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3229  	p->numa_faults_locality[local] += pages;
3230  }
3231  
reset_ptenuma_scan(struct task_struct * p)3232  static void reset_ptenuma_scan(struct task_struct *p)
3233  {
3234  	/*
3235  	 * We only did a read acquisition of the mmap sem, so
3236  	 * p->mm->numa_scan_seq is written to without exclusive access
3237  	 * and the update is not guaranteed to be atomic. That's not
3238  	 * much of an issue though, since this is just used for
3239  	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3240  	 * expensive, to avoid any form of compiler optimizations:
3241  	 */
3242  	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3243  	p->mm->numa_scan_offset = 0;
3244  }
3245  
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3246  static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3247  {
3248  	unsigned long pids;
3249  	/*
3250  	 * Allow unconditional access first two times, so that all the (pages)
3251  	 * of VMAs get prot_none fault introduced irrespective of accesses.
3252  	 * This is also done to avoid any side effect of task scanning
3253  	 * amplifying the unfairness of disjoint set of VMAs' access.
3254  	 */
3255  	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3256  		return true;
3257  
3258  	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3259  	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3260  		return true;
3261  
3262  	/*
3263  	 * Complete a scan that has already started regardless of PID access, or
3264  	 * some VMAs may never be scanned in multi-threaded applications:
3265  	 */
3266  	if (mm->numa_scan_offset > vma->vm_start) {
3267  		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3268  		return true;
3269  	}
3270  
3271  	/*
3272  	 * This vma has not been accessed for a while, and if the number
3273  	 * the threads in the same process is low, which means no other
3274  	 * threads can help scan this vma, force a vma scan.
3275  	 */
3276  	if (READ_ONCE(mm->numa_scan_seq) >
3277  	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3278  		return true;
3279  
3280  	return false;
3281  }
3282  
3283  #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3284  
3285  /*
3286   * The expensive part of numa migration is done from task_work context.
3287   * Triggered from task_tick_numa().
3288   */
task_numa_work(struct callback_head * work)3289  static void task_numa_work(struct callback_head *work)
3290  {
3291  	unsigned long migrate, next_scan, now = jiffies;
3292  	struct task_struct *p = current;
3293  	struct mm_struct *mm = p->mm;
3294  	u64 runtime = p->se.sum_exec_runtime;
3295  	struct vm_area_struct *vma;
3296  	unsigned long start, end;
3297  	unsigned long nr_pte_updates = 0;
3298  	long pages, virtpages;
3299  	struct vma_iterator vmi;
3300  	bool vma_pids_skipped;
3301  	bool vma_pids_forced = false;
3302  
3303  	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3304  
3305  	work->next = work;
3306  	/*
3307  	 * Who cares about NUMA placement when they're dying.
3308  	 *
3309  	 * NOTE: make sure not to dereference p->mm before this check,
3310  	 * exit_task_work() happens _after_ exit_mm() so we could be called
3311  	 * without p->mm even though we still had it when we enqueued this
3312  	 * work.
3313  	 */
3314  	if (p->flags & PF_EXITING)
3315  		return;
3316  
3317  	if (!mm->numa_next_scan) {
3318  		mm->numa_next_scan = now +
3319  			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3320  	}
3321  
3322  	/*
3323  	 * Enforce maximal scan/migration frequency..
3324  	 */
3325  	migrate = mm->numa_next_scan;
3326  	if (time_before(now, migrate))
3327  		return;
3328  
3329  	if (p->numa_scan_period == 0) {
3330  		p->numa_scan_period_max = task_scan_max(p);
3331  		p->numa_scan_period = task_scan_start(p);
3332  	}
3333  
3334  	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3335  	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3336  		return;
3337  
3338  	/*
3339  	 * Delay this task enough that another task of this mm will likely win
3340  	 * the next time around.
3341  	 */
3342  	p->node_stamp += 2 * TICK_NSEC;
3343  
3344  	pages = sysctl_numa_balancing_scan_size;
3345  	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3346  	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3347  	if (!pages)
3348  		return;
3349  
3350  
3351  	if (!mmap_read_trylock(mm))
3352  		return;
3353  
3354  	/*
3355  	 * VMAs are skipped if the current PID has not trapped a fault within
3356  	 * the VMA recently. Allow scanning to be forced if there is no
3357  	 * suitable VMA remaining.
3358  	 */
3359  	vma_pids_skipped = false;
3360  
3361  retry_pids:
3362  	start = mm->numa_scan_offset;
3363  	vma_iter_init(&vmi, mm, start);
3364  	vma = vma_next(&vmi);
3365  	if (!vma) {
3366  		reset_ptenuma_scan(p);
3367  		start = 0;
3368  		vma_iter_set(&vmi, start);
3369  		vma = vma_next(&vmi);
3370  	}
3371  
3372  	for (; vma; vma = vma_next(&vmi)) {
3373  		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3374  			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3375  			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3376  			continue;
3377  		}
3378  
3379  		/*
3380  		 * Shared library pages mapped by multiple processes are not
3381  		 * migrated as it is expected they are cache replicated. Avoid
3382  		 * hinting faults in read-only file-backed mappings or the vDSO
3383  		 * as migrating the pages will be of marginal benefit.
3384  		 */
3385  		if (!vma->vm_mm ||
3386  		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3387  			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3388  			continue;
3389  		}
3390  
3391  		/*
3392  		 * Skip inaccessible VMAs to avoid any confusion between
3393  		 * PROT_NONE and NUMA hinting PTEs
3394  		 */
3395  		if (!vma_is_accessible(vma)) {
3396  			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3397  			continue;
3398  		}
3399  
3400  		/* Initialise new per-VMA NUMAB state. */
3401  		if (!vma->numab_state) {
3402  			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3403  				GFP_KERNEL);
3404  			if (!vma->numab_state)
3405  				continue;
3406  
3407  			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3408  
3409  			vma->numab_state->next_scan = now +
3410  				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3411  
3412  			/* Reset happens after 4 times scan delay of scan start */
3413  			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3414  				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3415  
3416  			/*
3417  			 * Ensure prev_scan_seq does not match numa_scan_seq,
3418  			 * to prevent VMAs being skipped prematurely on the
3419  			 * first scan:
3420  			 */
3421  			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3422  		}
3423  
3424  		/*
3425  		 * Scanning the VMAs of short lived tasks add more overhead. So
3426  		 * delay the scan for new VMAs.
3427  		 */
3428  		if (mm->numa_scan_seq && time_before(jiffies,
3429  						vma->numab_state->next_scan)) {
3430  			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3431  			continue;
3432  		}
3433  
3434  		/* RESET access PIDs regularly for old VMAs. */
3435  		if (mm->numa_scan_seq &&
3436  				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3437  			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3438  				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3439  			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3440  			vma->numab_state->pids_active[1] = 0;
3441  		}
3442  
3443  		/* Do not rescan VMAs twice within the same sequence. */
3444  		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3445  			mm->numa_scan_offset = vma->vm_end;
3446  			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3447  			continue;
3448  		}
3449  
3450  		/*
3451  		 * Do not scan the VMA if task has not accessed it, unless no other
3452  		 * VMA candidate exists.
3453  		 */
3454  		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3455  			vma_pids_skipped = true;
3456  			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3457  			continue;
3458  		}
3459  
3460  		do {
3461  			start = max(start, vma->vm_start);
3462  			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3463  			end = min(end, vma->vm_end);
3464  			nr_pte_updates = change_prot_numa(vma, start, end);
3465  
3466  			/*
3467  			 * Try to scan sysctl_numa_balancing_size worth of
3468  			 * hpages that have at least one present PTE that
3469  			 * is not already PTE-numa. If the VMA contains
3470  			 * areas that are unused or already full of prot_numa
3471  			 * PTEs, scan up to virtpages, to skip through those
3472  			 * areas faster.
3473  			 */
3474  			if (nr_pte_updates)
3475  				pages -= (end - start) >> PAGE_SHIFT;
3476  			virtpages -= (end - start) >> PAGE_SHIFT;
3477  
3478  			start = end;
3479  			if (pages <= 0 || virtpages <= 0)
3480  				goto out;
3481  
3482  			cond_resched();
3483  		} while (end != vma->vm_end);
3484  
3485  		/* VMA scan is complete, do not scan until next sequence. */
3486  		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3487  
3488  		/*
3489  		 * Only force scan within one VMA at a time, to limit the
3490  		 * cost of scanning a potentially uninteresting VMA.
3491  		 */
3492  		if (vma_pids_forced)
3493  			break;
3494  	}
3495  
3496  	/*
3497  	 * If no VMAs are remaining and VMAs were skipped due to the PID
3498  	 * not accessing the VMA previously, then force a scan to ensure
3499  	 * forward progress:
3500  	 */
3501  	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3502  		vma_pids_forced = true;
3503  		goto retry_pids;
3504  	}
3505  
3506  out:
3507  	/*
3508  	 * It is possible to reach the end of the VMA list but the last few
3509  	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3510  	 * would find the !migratable VMA on the next scan but not reset the
3511  	 * scanner to the start so check it now.
3512  	 */
3513  	if (vma)
3514  		mm->numa_scan_offset = start;
3515  	else
3516  		reset_ptenuma_scan(p);
3517  	mmap_read_unlock(mm);
3518  
3519  	/*
3520  	 * Make sure tasks use at least 32x as much time to run other code
3521  	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3522  	 * Usually update_task_scan_period slows down scanning enough; on an
3523  	 * overloaded system we need to limit overhead on a per task basis.
3524  	 */
3525  	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3526  		u64 diff = p->se.sum_exec_runtime - runtime;
3527  		p->node_stamp += 32 * diff;
3528  	}
3529  }
3530  
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3531  void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3532  {
3533  	int mm_users = 0;
3534  	struct mm_struct *mm = p->mm;
3535  
3536  	if (mm) {
3537  		mm_users = atomic_read(&mm->mm_users);
3538  		if (mm_users == 1) {
3539  			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3540  			mm->numa_scan_seq = 0;
3541  		}
3542  	}
3543  	p->node_stamp			= 0;
3544  	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3545  	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3546  	p->numa_migrate_retry		= 0;
3547  	/* Protect against double add, see task_tick_numa and task_numa_work */
3548  	p->numa_work.next		= &p->numa_work;
3549  	p->numa_faults			= NULL;
3550  	p->numa_pages_migrated		= 0;
3551  	p->total_numa_faults		= 0;
3552  	RCU_INIT_POINTER(p->numa_group, NULL);
3553  	p->last_task_numa_placement	= 0;
3554  	p->last_sum_exec_runtime	= 0;
3555  
3556  	init_task_work(&p->numa_work, task_numa_work);
3557  
3558  	/* New address space, reset the preferred nid */
3559  	if (!(clone_flags & CLONE_VM)) {
3560  		p->numa_preferred_nid = NUMA_NO_NODE;
3561  		return;
3562  	}
3563  
3564  	/*
3565  	 * New thread, keep existing numa_preferred_nid which should be copied
3566  	 * already by arch_dup_task_struct but stagger when scans start.
3567  	 */
3568  	if (mm) {
3569  		unsigned int delay;
3570  
3571  		delay = min_t(unsigned int, task_scan_max(current),
3572  			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3573  		delay += 2 * TICK_NSEC;
3574  		p->node_stamp = delay;
3575  	}
3576  }
3577  
3578  /*
3579   * Drive the periodic memory faults..
3580   */
task_tick_numa(struct rq * rq,struct task_struct * curr)3581  static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3582  {
3583  	struct callback_head *work = &curr->numa_work;
3584  	u64 period, now;
3585  
3586  	/*
3587  	 * We don't care about NUMA placement if we don't have memory.
3588  	 */
3589  	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3590  		return;
3591  
3592  	/*
3593  	 * Using runtime rather than walltime has the dual advantage that
3594  	 * we (mostly) drive the selection from busy threads and that the
3595  	 * task needs to have done some actual work before we bother with
3596  	 * NUMA placement.
3597  	 */
3598  	now = curr->se.sum_exec_runtime;
3599  	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3600  
3601  	if (now > curr->node_stamp + period) {
3602  		if (!curr->node_stamp)
3603  			curr->numa_scan_period = task_scan_start(curr);
3604  		curr->node_stamp += period;
3605  
3606  		if (!time_before(jiffies, curr->mm->numa_next_scan))
3607  			task_work_add(curr, work, TWA_RESUME);
3608  	}
3609  }
3610  
update_scan_period(struct task_struct * p,int new_cpu)3611  static void update_scan_period(struct task_struct *p, int new_cpu)
3612  {
3613  	int src_nid = cpu_to_node(task_cpu(p));
3614  	int dst_nid = cpu_to_node(new_cpu);
3615  
3616  	if (!static_branch_likely(&sched_numa_balancing))
3617  		return;
3618  
3619  	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3620  		return;
3621  
3622  	if (src_nid == dst_nid)
3623  		return;
3624  
3625  	/*
3626  	 * Allow resets if faults have been trapped before one scan
3627  	 * has completed. This is most likely due to a new task that
3628  	 * is pulled cross-node due to wakeups or load balancing.
3629  	 */
3630  	if (p->numa_scan_seq) {
3631  		/*
3632  		 * Avoid scan adjustments if moving to the preferred
3633  		 * node or if the task was not previously running on
3634  		 * the preferred node.
3635  		 */
3636  		if (dst_nid == p->numa_preferred_nid ||
3637  		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3638  			src_nid != p->numa_preferred_nid))
3639  			return;
3640  	}
3641  
3642  	p->numa_scan_period = task_scan_start(p);
3643  }
3644  
3645  #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3646  static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3647  {
3648  }
3649  
account_numa_enqueue(struct rq * rq,struct task_struct * p)3650  static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3651  {
3652  }
3653  
account_numa_dequeue(struct rq * rq,struct task_struct * p)3654  static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3655  {
3656  }
3657  
update_scan_period(struct task_struct * p,int new_cpu)3658  static inline void update_scan_period(struct task_struct *p, int new_cpu)
3659  {
3660  }
3661  
3662  #endif /* CONFIG_NUMA_BALANCING */
3663  
3664  static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3665  account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3666  {
3667  	update_load_add(&cfs_rq->load, se->load.weight);
3668  #ifdef CONFIG_SMP
3669  	if (entity_is_task(se)) {
3670  		struct rq *rq = rq_of(cfs_rq);
3671  
3672  		account_numa_enqueue(rq, task_of(se));
3673  		list_add(&se->group_node, &rq->cfs_tasks);
3674  	}
3675  #endif
3676  	cfs_rq->nr_running++;
3677  	if (se_is_idle(se))
3678  		cfs_rq->idle_nr_running++;
3679  }
3680  
3681  static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3682  account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3683  {
3684  	update_load_sub(&cfs_rq->load, se->load.weight);
3685  #ifdef CONFIG_SMP
3686  	if (entity_is_task(se)) {
3687  		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3688  		list_del_init(&se->group_node);
3689  	}
3690  #endif
3691  	cfs_rq->nr_running--;
3692  	if (se_is_idle(se))
3693  		cfs_rq->idle_nr_running--;
3694  }
3695  
3696  /*
3697   * Signed add and clamp on underflow.
3698   *
3699   * Explicitly do a load-store to ensure the intermediate value never hits
3700   * memory. This allows lockless observations without ever seeing the negative
3701   * values.
3702   */
3703  #define add_positive(_ptr, _val) do {                           \
3704  	typeof(_ptr) ptr = (_ptr);                              \
3705  	typeof(_val) val = (_val);                              \
3706  	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3707  								\
3708  	res = var + val;                                        \
3709  								\
3710  	if (val < 0 && res > var)                               \
3711  		res = 0;                                        \
3712  								\
3713  	WRITE_ONCE(*ptr, res);                                  \
3714  } while (0)
3715  
3716  /*
3717   * Unsigned subtract and clamp on underflow.
3718   *
3719   * Explicitly do a load-store to ensure the intermediate value never hits
3720   * memory. This allows lockless observations without ever seeing the negative
3721   * values.
3722   */
3723  #define sub_positive(_ptr, _val) do {				\
3724  	typeof(_ptr) ptr = (_ptr);				\
3725  	typeof(*ptr) val = (_val);				\
3726  	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3727  	res = var - val;					\
3728  	if (res > var)						\
3729  		res = 0;					\
3730  	WRITE_ONCE(*ptr, res);					\
3731  } while (0)
3732  
3733  /*
3734   * Remove and clamp on negative, from a local variable.
3735   *
3736   * A variant of sub_positive(), which does not use explicit load-store
3737   * and is thus optimized for local variable updates.
3738   */
3739  #define lsub_positive(_ptr, _val) do {				\
3740  	typeof(_ptr) ptr = (_ptr);				\
3741  	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3742  } while (0)
3743  
3744  #ifdef CONFIG_SMP
3745  static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3746  enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3747  {
3748  	cfs_rq->avg.load_avg += se->avg.load_avg;
3749  	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3750  }
3751  
3752  static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3753  dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3754  {
3755  	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3756  	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3757  	/* See update_cfs_rq_load_avg() */
3758  	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3759  					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3760  }
3761  #else
3762  static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3763  enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3764  static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3765  dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3766  #endif
3767  
reweight_eevdf(struct sched_entity * se,u64 avruntime,unsigned long weight)3768  static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3769  			   unsigned long weight)
3770  {
3771  	unsigned long old_weight = se->load.weight;
3772  	s64 vlag, vslice;
3773  
3774  	/*
3775  	 * VRUNTIME
3776  	 * --------
3777  	 *
3778  	 * COROLLARY #1: The virtual runtime of the entity needs to be
3779  	 * adjusted if re-weight at !0-lag point.
3780  	 *
3781  	 * Proof: For contradiction assume this is not true, so we can
3782  	 * re-weight without changing vruntime at !0-lag point.
3783  	 *
3784  	 *             Weight	VRuntime   Avg-VRuntime
3785  	 *     before    w          v            V
3786  	 *      after    w'         v'           V'
3787  	 *
3788  	 * Since lag needs to be preserved through re-weight:
3789  	 *
3790  	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3791  	 *	==>	V' = (V - v)*w/w' + v		(1)
3792  	 *
3793  	 * Let W be the total weight of the entities before reweight,
3794  	 * since V' is the new weighted average of entities:
3795  	 *
3796  	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3797  	 *
3798  	 * by using (1) & (2) we obtain:
3799  	 *
3800  	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3801  	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3802  	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3803  	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3804  	 *
3805  	 * Since we are doing at !0-lag point which means V != v, we
3806  	 * can simplify (3):
3807  	 *
3808  	 *	==>	W / (W + w' - w) = w / w'
3809  	 *	==>	Ww' = Ww + ww' - ww
3810  	 *	==>	W * (w' - w) = w * (w' - w)
3811  	 *	==>	W = w	(re-weight indicates w' != w)
3812  	 *
3813  	 * So the cfs_rq contains only one entity, hence vruntime of
3814  	 * the entity @v should always equal to the cfs_rq's weighted
3815  	 * average vruntime @V, which means we will always re-weight
3816  	 * at 0-lag point, thus breach assumption. Proof completed.
3817  	 *
3818  	 *
3819  	 * COROLLARY #2: Re-weight does NOT affect weighted average
3820  	 * vruntime of all the entities.
3821  	 *
3822  	 * Proof: According to corollary #1, Eq. (1) should be:
3823  	 *
3824  	 *	(V - v)*w = (V' - v')*w'
3825  	 *	==>    v' = V' - (V - v)*w/w'		(4)
3826  	 *
3827  	 * According to the weighted average formula, we have:
3828  	 *
3829  	 *	V' = (WV - wv + w'v') / (W - w + w')
3830  	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3831  	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3832  	 *	   = (WV + w'V' - Vw) / (W - w + w')
3833  	 *
3834  	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3835  	 *	==>	V' * (W - w) = (W - w) * V	(5)
3836  	 *
3837  	 * If the entity is the only one in the cfs_rq, then reweight
3838  	 * always occurs at 0-lag point, so V won't change. Or else
3839  	 * there are other entities, hence W != w, then Eq. (5) turns
3840  	 * into V' = V. So V won't change in either case, proof done.
3841  	 *
3842  	 *
3843  	 * So according to corollary #1 & #2, the effect of re-weight
3844  	 * on vruntime should be:
3845  	 *
3846  	 *	v' = V' - (V - v) * w / w'		(4)
3847  	 *	   = V  - (V - v) * w / w'
3848  	 *	   = V  - vl * w / w'
3849  	 *	   = V  - vl'
3850  	 */
3851  	if (avruntime != se->vruntime) {
3852  		vlag = entity_lag(avruntime, se);
3853  		vlag = div_s64(vlag * old_weight, weight);
3854  		se->vruntime = avruntime - vlag;
3855  	}
3856  
3857  	/*
3858  	 * DEADLINE
3859  	 * --------
3860  	 *
3861  	 * When the weight changes, the virtual time slope changes and
3862  	 * we should adjust the relative virtual deadline accordingly.
3863  	 *
3864  	 *	d' = v' + (d - v)*w/w'
3865  	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3866  	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3867  	 *	   = V  + (d - V)*w/w'
3868  	 */
3869  	vslice = (s64)(se->deadline - avruntime);
3870  	vslice = div_s64(vslice * old_weight, weight);
3871  	se->deadline = avruntime + vslice;
3872  }
3873  
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3874  static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3875  			    unsigned long weight)
3876  {
3877  	bool curr = cfs_rq->curr == se;
3878  	u64 avruntime;
3879  
3880  	if (se->on_rq) {
3881  		/* commit outstanding execution time */
3882  		update_curr(cfs_rq);
3883  		avruntime = avg_vruntime(cfs_rq);
3884  		if (!curr)
3885  			__dequeue_entity(cfs_rq, se);
3886  		update_load_sub(&cfs_rq->load, se->load.weight);
3887  	}
3888  	dequeue_load_avg(cfs_rq, se);
3889  
3890  	if (se->on_rq) {
3891  		reweight_eevdf(se, avruntime, weight);
3892  	} else {
3893  		/*
3894  		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3895  		 * we need to scale se->vlag when w_i changes.
3896  		 */
3897  		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3898  	}
3899  
3900  	update_load_set(&se->load, weight);
3901  
3902  #ifdef CONFIG_SMP
3903  	do {
3904  		u32 divider = get_pelt_divider(&se->avg);
3905  
3906  		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3907  	} while (0);
3908  #endif
3909  
3910  	enqueue_load_avg(cfs_rq, se);
3911  	if (se->on_rq) {
3912  		update_load_add(&cfs_rq->load, se->load.weight);
3913  		if (!curr)
3914  			__enqueue_entity(cfs_rq, se);
3915  
3916  		/*
3917  		 * The entity's vruntime has been adjusted, so let's check
3918  		 * whether the rq-wide min_vruntime needs updated too. Since
3919  		 * the calculations above require stable min_vruntime rather
3920  		 * than up-to-date one, we do the update at the end of the
3921  		 * reweight process.
3922  		 */
3923  		update_min_vruntime(cfs_rq);
3924  	}
3925  }
3926  
reweight_task_fair(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3927  static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3928  			       const struct load_weight *lw)
3929  {
3930  	struct sched_entity *se = &p->se;
3931  	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3932  	struct load_weight *load = &se->load;
3933  
3934  	reweight_entity(cfs_rq, se, lw->weight);
3935  	load->inv_weight = lw->inv_weight;
3936  }
3937  
3938  static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3939  
3940  #ifdef CONFIG_FAIR_GROUP_SCHED
3941  #ifdef CONFIG_SMP
3942  /*
3943   * All this does is approximate the hierarchical proportion which includes that
3944   * global sum we all love to hate.
3945   *
3946   * That is, the weight of a group entity, is the proportional share of the
3947   * group weight based on the group runqueue weights. That is:
3948   *
3949   *                     tg->weight * grq->load.weight
3950   *   ge->load.weight = -----------------------------               (1)
3951   *                       \Sum grq->load.weight
3952   *
3953   * Now, because computing that sum is prohibitively expensive to compute (been
3954   * there, done that) we approximate it with this average stuff. The average
3955   * moves slower and therefore the approximation is cheaper and more stable.
3956   *
3957   * So instead of the above, we substitute:
3958   *
3959   *   grq->load.weight -> grq->avg.load_avg                         (2)
3960   *
3961   * which yields the following:
3962   *
3963   *                     tg->weight * grq->avg.load_avg
3964   *   ge->load.weight = ------------------------------              (3)
3965   *                             tg->load_avg
3966   *
3967   * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3968   *
3969   * That is shares_avg, and it is right (given the approximation (2)).
3970   *
3971   * The problem with it is that because the average is slow -- it was designed
3972   * to be exactly that of course -- this leads to transients in boundary
3973   * conditions. In specific, the case where the group was idle and we start the
3974   * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3975   * yielding bad latency etc..
3976   *
3977   * Now, in that special case (1) reduces to:
3978   *
3979   *                     tg->weight * grq->load.weight
3980   *   ge->load.weight = ----------------------------- = tg->weight   (4)
3981   *                         grp->load.weight
3982   *
3983   * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3984   *
3985   * So what we do is modify our approximation (3) to approach (4) in the (near)
3986   * UP case, like:
3987   *
3988   *   ge->load.weight =
3989   *
3990   *              tg->weight * grq->load.weight
3991   *     ---------------------------------------------------         (5)
3992   *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3993   *
3994   * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3995   * we need to use grq->avg.load_avg as its lower bound, which then gives:
3996   *
3997   *
3998   *                     tg->weight * grq->load.weight
3999   *   ge->load.weight = -----------------------------		   (6)
4000   *                             tg_load_avg'
4001   *
4002   * Where:
4003   *
4004   *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
4005   *                  max(grq->load.weight, grq->avg.load_avg)
4006   *
4007   * And that is shares_weight and is icky. In the (near) UP case it approaches
4008   * (4) while in the normal case it approaches (3). It consistently
4009   * overestimates the ge->load.weight and therefore:
4010   *
4011   *   \Sum ge->load.weight >= tg->weight
4012   *
4013   * hence icky!
4014   */
calc_group_shares(struct cfs_rq * cfs_rq)4015  static long calc_group_shares(struct cfs_rq *cfs_rq)
4016  {
4017  	long tg_weight, tg_shares, load, shares;
4018  	struct task_group *tg = cfs_rq->tg;
4019  
4020  	tg_shares = READ_ONCE(tg->shares);
4021  
4022  	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
4023  
4024  	tg_weight = atomic_long_read(&tg->load_avg);
4025  
4026  	/* Ensure tg_weight >= load */
4027  	tg_weight -= cfs_rq->tg_load_avg_contrib;
4028  	tg_weight += load;
4029  
4030  	shares = (tg_shares * load);
4031  	if (tg_weight)
4032  		shares /= tg_weight;
4033  
4034  	/*
4035  	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4036  	 * of a group with small tg->shares value. It is a floor value which is
4037  	 * assigned as a minimum load.weight to the sched_entity representing
4038  	 * the group on a CPU.
4039  	 *
4040  	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4041  	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4042  	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4043  	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4044  	 * instead of 0.
4045  	 */
4046  	return clamp_t(long, shares, MIN_SHARES, tg_shares);
4047  }
4048  #endif /* CONFIG_SMP */
4049  
4050  /*
4051   * Recomputes the group entity based on the current state of its group
4052   * runqueue.
4053   */
update_cfs_group(struct sched_entity * se)4054  static void update_cfs_group(struct sched_entity *se)
4055  {
4056  	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4057  	long shares;
4058  
4059  	if (!gcfs_rq)
4060  		return;
4061  
4062  	if (throttled_hierarchy(gcfs_rq))
4063  		return;
4064  
4065  #ifndef CONFIG_SMP
4066  	shares = READ_ONCE(gcfs_rq->tg->shares);
4067  #else
4068  	shares = calc_group_shares(gcfs_rq);
4069  #endif
4070  	if (unlikely(se->load.weight != shares))
4071  		reweight_entity(cfs_rq_of(se), se, shares);
4072  }
4073  
4074  #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)4075  static inline void update_cfs_group(struct sched_entity *se)
4076  {
4077  }
4078  #endif /* CONFIG_FAIR_GROUP_SCHED */
4079  
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)4080  static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4081  {
4082  	struct rq *rq = rq_of(cfs_rq);
4083  
4084  	if (&rq->cfs == cfs_rq) {
4085  		/*
4086  		 * There are a few boundary cases this might miss but it should
4087  		 * get called often enough that that should (hopefully) not be
4088  		 * a real problem.
4089  		 *
4090  		 * It will not get called when we go idle, because the idle
4091  		 * thread is a different class (!fair), nor will the utilization
4092  		 * number include things like RT tasks.
4093  		 *
4094  		 * As is, the util number is not freq-invariant (we'd have to
4095  		 * implement arch_scale_freq_capacity() for that).
4096  		 *
4097  		 * See cpu_util_cfs().
4098  		 */
4099  		cpufreq_update_util(rq, flags);
4100  	}
4101  }
4102  
4103  #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4104  static inline bool load_avg_is_decayed(struct sched_avg *sa)
4105  {
4106  	if (sa->load_sum)
4107  		return false;
4108  
4109  	if (sa->util_sum)
4110  		return false;
4111  
4112  	if (sa->runnable_sum)
4113  		return false;
4114  
4115  	/*
4116  	 * _avg must be null when _sum are null because _avg = _sum / divider
4117  	 * Make sure that rounding and/or propagation of PELT values never
4118  	 * break this.
4119  	 */
4120  	SCHED_WARN_ON(sa->load_avg ||
4121  		      sa->util_avg ||
4122  		      sa->runnable_avg);
4123  
4124  	return true;
4125  }
4126  
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4127  static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4128  {
4129  	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4130  				 cfs_rq->last_update_time_copy);
4131  }
4132  #ifdef CONFIG_FAIR_GROUP_SCHED
4133  /*
4134   * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4135   * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4136   * bottom-up, we only have to test whether the cfs_rq before us on the list
4137   * is our child.
4138   * If cfs_rq is not on the list, test whether a child needs its to be added to
4139   * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4140   */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4141  static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4142  {
4143  	struct cfs_rq *prev_cfs_rq;
4144  	struct list_head *prev;
4145  
4146  	if (cfs_rq->on_list) {
4147  		prev = cfs_rq->leaf_cfs_rq_list.prev;
4148  	} else {
4149  		struct rq *rq = rq_of(cfs_rq);
4150  
4151  		prev = rq->tmp_alone_branch;
4152  	}
4153  
4154  	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4155  
4156  	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4157  }
4158  
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4159  static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4160  {
4161  	if (cfs_rq->load.weight)
4162  		return false;
4163  
4164  	if (!load_avg_is_decayed(&cfs_rq->avg))
4165  		return false;
4166  
4167  	if (child_cfs_rq_on_list(cfs_rq))
4168  		return false;
4169  
4170  	return true;
4171  }
4172  
4173  /**
4174   * update_tg_load_avg - update the tg's load avg
4175   * @cfs_rq: the cfs_rq whose avg changed
4176   *
4177   * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4178   * However, because tg->load_avg is a global value there are performance
4179   * considerations.
4180   *
4181   * In order to avoid having to look at the other cfs_rq's, we use a
4182   * differential update where we store the last value we propagated. This in
4183   * turn allows skipping updates if the differential is 'small'.
4184   *
4185   * Updating tg's load_avg is necessary before update_cfs_share().
4186   */
update_tg_load_avg(struct cfs_rq * cfs_rq)4187  static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4188  {
4189  	long delta;
4190  	u64 now;
4191  
4192  	/*
4193  	 * No need to update load_avg for root_task_group as it is not used.
4194  	 */
4195  	if (cfs_rq->tg == &root_task_group)
4196  		return;
4197  
4198  	/* rq has been offline and doesn't contribute to the share anymore: */
4199  	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4200  		return;
4201  
4202  	/*
4203  	 * For migration heavy workloads, access to tg->load_avg can be
4204  	 * unbound. Limit the update rate to at most once per ms.
4205  	 */
4206  	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4207  	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4208  		return;
4209  
4210  	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4211  	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4212  		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4213  		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4214  		cfs_rq->last_update_tg_load_avg = now;
4215  	}
4216  }
4217  
clear_tg_load_avg(struct cfs_rq * cfs_rq)4218  static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4219  {
4220  	long delta;
4221  	u64 now;
4222  
4223  	/*
4224  	 * No need to update load_avg for root_task_group, as it is not used.
4225  	 */
4226  	if (cfs_rq->tg == &root_task_group)
4227  		return;
4228  
4229  	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4230  	delta = 0 - cfs_rq->tg_load_avg_contrib;
4231  	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4232  	cfs_rq->tg_load_avg_contrib = 0;
4233  	cfs_rq->last_update_tg_load_avg = now;
4234  }
4235  
4236  /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4237  static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4238  {
4239  	struct task_group *tg;
4240  
4241  	lockdep_assert_rq_held(rq);
4242  
4243  	/*
4244  	 * The rq clock has already been updated in
4245  	 * set_rq_offline(), so we should skip updating
4246  	 * the rq clock again in unthrottle_cfs_rq().
4247  	 */
4248  	rq_clock_start_loop_update(rq);
4249  
4250  	rcu_read_lock();
4251  	list_for_each_entry_rcu(tg, &task_groups, list) {
4252  		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4253  
4254  		clear_tg_load_avg(cfs_rq);
4255  	}
4256  	rcu_read_unlock();
4257  
4258  	rq_clock_stop_loop_update(rq);
4259  }
4260  
4261  /*
4262   * Called within set_task_rq() right before setting a task's CPU. The
4263   * caller only guarantees p->pi_lock is held; no other assumptions,
4264   * including the state of rq->lock, should be made.
4265   */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4266  void set_task_rq_fair(struct sched_entity *se,
4267  		      struct cfs_rq *prev, struct cfs_rq *next)
4268  {
4269  	u64 p_last_update_time;
4270  	u64 n_last_update_time;
4271  
4272  	if (!sched_feat(ATTACH_AGE_LOAD))
4273  		return;
4274  
4275  	/*
4276  	 * We are supposed to update the task to "current" time, then its up to
4277  	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4278  	 * getting what current time is, so simply throw away the out-of-date
4279  	 * time. This will result in the wakee task is less decayed, but giving
4280  	 * the wakee more load sounds not bad.
4281  	 */
4282  	if (!(se->avg.last_update_time && prev))
4283  		return;
4284  
4285  	p_last_update_time = cfs_rq_last_update_time(prev);
4286  	n_last_update_time = cfs_rq_last_update_time(next);
4287  
4288  	__update_load_avg_blocked_se(p_last_update_time, se);
4289  	se->avg.last_update_time = n_last_update_time;
4290  }
4291  
4292  /*
4293   * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4294   * propagate its contribution. The key to this propagation is the invariant
4295   * that for each group:
4296   *
4297   *   ge->avg == grq->avg						(1)
4298   *
4299   * _IFF_ we look at the pure running and runnable sums. Because they
4300   * represent the very same entity, just at different points in the hierarchy.
4301   *
4302   * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4303   * and simply copies the running/runnable sum over (but still wrong, because
4304   * the group entity and group rq do not have their PELT windows aligned).
4305   *
4306   * However, update_tg_cfs_load() is more complex. So we have:
4307   *
4308   *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4309   *
4310   * And since, like util, the runnable part should be directly transferable,
4311   * the following would _appear_ to be the straight forward approach:
4312   *
4313   *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4314   *
4315   * And per (1) we have:
4316   *
4317   *   ge->avg.runnable_avg == grq->avg.runnable_avg
4318   *
4319   * Which gives:
4320   *
4321   *                      ge->load.weight * grq->avg.load_avg
4322   *   ge->avg.load_avg = -----------------------------------		(4)
4323   *                               grq->load.weight
4324   *
4325   * Except that is wrong!
4326   *
4327   * Because while for entities historical weight is not important and we
4328   * really only care about our future and therefore can consider a pure
4329   * runnable sum, runqueues can NOT do this.
4330   *
4331   * We specifically want runqueues to have a load_avg that includes
4332   * historical weights. Those represent the blocked load, the load we expect
4333   * to (shortly) return to us. This only works by keeping the weights as
4334   * integral part of the sum. We therefore cannot decompose as per (3).
4335   *
4336   * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4337   * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4338   * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4339   * runnable section of these tasks overlap (or not). If they were to perfectly
4340   * align the rq as a whole would be runnable 2/3 of the time. If however we
4341   * always have at least 1 runnable task, the rq as a whole is always runnable.
4342   *
4343   * So we'll have to approximate.. :/
4344   *
4345   * Given the constraint:
4346   *
4347   *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4348   *
4349   * We can construct a rule that adds runnable to a rq by assuming minimal
4350   * overlap.
4351   *
4352   * On removal, we'll assume each task is equally runnable; which yields:
4353   *
4354   *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4355   *
4356   * XXX: only do this for the part of runnable > running ?
4357   *
4358   */
4359  static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4360  update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4361  {
4362  	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4363  	u32 new_sum, divider;
4364  
4365  	/* Nothing to update */
4366  	if (!delta_avg)
4367  		return;
4368  
4369  	/*
4370  	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4371  	 * See ___update_load_avg() for details.
4372  	 */
4373  	divider = get_pelt_divider(&cfs_rq->avg);
4374  
4375  
4376  	/* Set new sched_entity's utilization */
4377  	se->avg.util_avg = gcfs_rq->avg.util_avg;
4378  	new_sum = se->avg.util_avg * divider;
4379  	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4380  	se->avg.util_sum = new_sum;
4381  
4382  	/* Update parent cfs_rq utilization */
4383  	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4384  	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4385  
4386  	/* See update_cfs_rq_load_avg() */
4387  	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4388  					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4389  }
4390  
4391  static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4392  update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4393  {
4394  	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4395  	u32 new_sum, divider;
4396  
4397  	/* Nothing to update */
4398  	if (!delta_avg)
4399  		return;
4400  
4401  	/*
4402  	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4403  	 * See ___update_load_avg() for details.
4404  	 */
4405  	divider = get_pelt_divider(&cfs_rq->avg);
4406  
4407  	/* Set new sched_entity's runnable */
4408  	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4409  	new_sum = se->avg.runnable_avg * divider;
4410  	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4411  	se->avg.runnable_sum = new_sum;
4412  
4413  	/* Update parent cfs_rq runnable */
4414  	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4415  	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4416  	/* See update_cfs_rq_load_avg() */
4417  	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4418  					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4419  }
4420  
4421  static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4422  update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4423  {
4424  	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4425  	unsigned long load_avg;
4426  	u64 load_sum = 0;
4427  	s64 delta_sum;
4428  	u32 divider;
4429  
4430  	if (!runnable_sum)
4431  		return;
4432  
4433  	gcfs_rq->prop_runnable_sum = 0;
4434  
4435  	/*
4436  	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4437  	 * See ___update_load_avg() for details.
4438  	 */
4439  	divider = get_pelt_divider(&cfs_rq->avg);
4440  
4441  	if (runnable_sum >= 0) {
4442  		/*
4443  		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4444  		 * the CPU is saturated running == runnable.
4445  		 */
4446  		runnable_sum += se->avg.load_sum;
4447  		runnable_sum = min_t(long, runnable_sum, divider);
4448  	} else {
4449  		/*
4450  		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4451  		 * assuming all tasks are equally runnable.
4452  		 */
4453  		if (scale_load_down(gcfs_rq->load.weight)) {
4454  			load_sum = div_u64(gcfs_rq->avg.load_sum,
4455  				scale_load_down(gcfs_rq->load.weight));
4456  		}
4457  
4458  		/* But make sure to not inflate se's runnable */
4459  		runnable_sum = min(se->avg.load_sum, load_sum);
4460  	}
4461  
4462  	/*
4463  	 * runnable_sum can't be lower than running_sum
4464  	 * Rescale running sum to be in the same range as runnable sum
4465  	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4466  	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4467  	 */
4468  	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4469  	runnable_sum = max(runnable_sum, running_sum);
4470  
4471  	load_sum = se_weight(se) * runnable_sum;
4472  	load_avg = div_u64(load_sum, divider);
4473  
4474  	delta_avg = load_avg - se->avg.load_avg;
4475  	if (!delta_avg)
4476  		return;
4477  
4478  	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4479  
4480  	se->avg.load_sum = runnable_sum;
4481  	se->avg.load_avg = load_avg;
4482  	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4483  	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4484  	/* See update_cfs_rq_load_avg() */
4485  	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4486  					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4487  }
4488  
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4489  static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4490  {
4491  	cfs_rq->propagate = 1;
4492  	cfs_rq->prop_runnable_sum += runnable_sum;
4493  }
4494  
4495  /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4496  static inline int propagate_entity_load_avg(struct sched_entity *se)
4497  {
4498  	struct cfs_rq *cfs_rq, *gcfs_rq;
4499  
4500  	if (entity_is_task(se))
4501  		return 0;
4502  
4503  	gcfs_rq = group_cfs_rq(se);
4504  	if (!gcfs_rq->propagate)
4505  		return 0;
4506  
4507  	gcfs_rq->propagate = 0;
4508  
4509  	cfs_rq = cfs_rq_of(se);
4510  
4511  	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4512  
4513  	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4514  	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4515  	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4516  
4517  	trace_pelt_cfs_tp(cfs_rq);
4518  	trace_pelt_se_tp(se);
4519  
4520  	return 1;
4521  }
4522  
4523  /*
4524   * Check if we need to update the load and the utilization of a blocked
4525   * group_entity:
4526   */
skip_blocked_update(struct sched_entity * se)4527  static inline bool skip_blocked_update(struct sched_entity *se)
4528  {
4529  	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4530  
4531  	/*
4532  	 * If sched_entity still have not zero load or utilization, we have to
4533  	 * decay it:
4534  	 */
4535  	if (se->avg.load_avg || se->avg.util_avg)
4536  		return false;
4537  
4538  	/*
4539  	 * If there is a pending propagation, we have to update the load and
4540  	 * the utilization of the sched_entity:
4541  	 */
4542  	if (gcfs_rq->propagate)
4543  		return false;
4544  
4545  	/*
4546  	 * Otherwise, the load and the utilization of the sched_entity is
4547  	 * already zero and there is no pending propagation, so it will be a
4548  	 * waste of time to try to decay it:
4549  	 */
4550  	return true;
4551  }
4552  
4553  #else /* CONFIG_FAIR_GROUP_SCHED */
4554  
update_tg_load_avg(struct cfs_rq * cfs_rq)4555  static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4556  
clear_tg_offline_cfs_rqs(struct rq * rq)4557  static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4558  
propagate_entity_load_avg(struct sched_entity * se)4559  static inline int propagate_entity_load_avg(struct sched_entity *se)
4560  {
4561  	return 0;
4562  }
4563  
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4564  static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4565  
4566  #endif /* CONFIG_FAIR_GROUP_SCHED */
4567  
4568  #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4569  static inline void migrate_se_pelt_lag(struct sched_entity *se)
4570  {
4571  	u64 throttled = 0, now, lut;
4572  	struct cfs_rq *cfs_rq;
4573  	struct rq *rq;
4574  	bool is_idle;
4575  
4576  	if (load_avg_is_decayed(&se->avg))
4577  		return;
4578  
4579  	cfs_rq = cfs_rq_of(se);
4580  	rq = rq_of(cfs_rq);
4581  
4582  	rcu_read_lock();
4583  	is_idle = is_idle_task(rcu_dereference(rq->curr));
4584  	rcu_read_unlock();
4585  
4586  	/*
4587  	 * The lag estimation comes with a cost we don't want to pay all the
4588  	 * time. Hence, limiting to the case where the source CPU is idle and
4589  	 * we know we are at the greatest risk to have an outdated clock.
4590  	 */
4591  	if (!is_idle)
4592  		return;
4593  
4594  	/*
4595  	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4596  	 *
4597  	 *   last_update_time (the cfs_rq's last_update_time)
4598  	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4599  	 *      = rq_clock_pelt()@cfs_rq_idle
4600  	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4601  	 *
4602  	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4603  	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4604  	 *
4605  	 *   rq_idle_lag (delta between now and rq's update)
4606  	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4607  	 *
4608  	 * We can then write:
4609  	 *
4610  	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4611  	 *          sched_clock_cpu() - rq_clock()@rq_idle
4612  	 * Where:
4613  	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4614  	 *      rq_clock()@rq_idle      is rq->clock_idle
4615  	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4616  	 *                              is cfs_rq->throttled_pelt_idle
4617  	 */
4618  
4619  #ifdef CONFIG_CFS_BANDWIDTH
4620  	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4621  	/* The clock has been stopped for throttling */
4622  	if (throttled == U64_MAX)
4623  		return;
4624  #endif
4625  	now = u64_u32_load(rq->clock_pelt_idle);
4626  	/*
4627  	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4628  	 * is observed the old clock_pelt_idle value and the new clock_idle,
4629  	 * which lead to an underestimation. The opposite would lead to an
4630  	 * overestimation.
4631  	 */
4632  	smp_rmb();
4633  	lut = cfs_rq_last_update_time(cfs_rq);
4634  
4635  	now -= throttled;
4636  	if (now < lut)
4637  		/*
4638  		 * cfs_rq->avg.last_update_time is more recent than our
4639  		 * estimation, let's use it.
4640  		 */
4641  		now = lut;
4642  	else
4643  		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4644  
4645  	__update_load_avg_blocked_se(now, se);
4646  }
4647  #else
migrate_se_pelt_lag(struct sched_entity * se)4648  static void migrate_se_pelt_lag(struct sched_entity *se) {}
4649  #endif
4650  
4651  /**
4652   * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4653   * @now: current time, as per cfs_rq_clock_pelt()
4654   * @cfs_rq: cfs_rq to update
4655   *
4656   * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4657   * avg. The immediate corollary is that all (fair) tasks must be attached.
4658   *
4659   * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4660   *
4661   * Return: true if the load decayed or we removed load.
4662   *
4663   * Since both these conditions indicate a changed cfs_rq->avg.load we should
4664   * call update_tg_load_avg() when this function returns true.
4665   */
4666  static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4667  update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4668  {
4669  	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4670  	struct sched_avg *sa = &cfs_rq->avg;
4671  	int decayed = 0;
4672  
4673  	if (cfs_rq->removed.nr) {
4674  		unsigned long r;
4675  		u32 divider = get_pelt_divider(&cfs_rq->avg);
4676  
4677  		raw_spin_lock(&cfs_rq->removed.lock);
4678  		swap(cfs_rq->removed.util_avg, removed_util);
4679  		swap(cfs_rq->removed.load_avg, removed_load);
4680  		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4681  		cfs_rq->removed.nr = 0;
4682  		raw_spin_unlock(&cfs_rq->removed.lock);
4683  
4684  		r = removed_load;
4685  		sub_positive(&sa->load_avg, r);
4686  		sub_positive(&sa->load_sum, r * divider);
4687  		/* See sa->util_sum below */
4688  		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4689  
4690  		r = removed_util;
4691  		sub_positive(&sa->util_avg, r);
4692  		sub_positive(&sa->util_sum, r * divider);
4693  		/*
4694  		 * Because of rounding, se->util_sum might ends up being +1 more than
4695  		 * cfs->util_sum. Although this is not a problem by itself, detaching
4696  		 * a lot of tasks with the rounding problem between 2 updates of
4697  		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4698  		 * cfs_util_avg is not.
4699  		 * Check that util_sum is still above its lower bound for the new
4700  		 * util_avg. Given that period_contrib might have moved since the last
4701  		 * sync, we are only sure that util_sum must be above or equal to
4702  		 *    util_avg * minimum possible divider
4703  		 */
4704  		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4705  
4706  		r = removed_runnable;
4707  		sub_positive(&sa->runnable_avg, r);
4708  		sub_positive(&sa->runnable_sum, r * divider);
4709  		/* See sa->util_sum above */
4710  		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4711  					      sa->runnable_avg * PELT_MIN_DIVIDER);
4712  
4713  		/*
4714  		 * removed_runnable is the unweighted version of removed_load so we
4715  		 * can use it to estimate removed_load_sum.
4716  		 */
4717  		add_tg_cfs_propagate(cfs_rq,
4718  			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4719  
4720  		decayed = 1;
4721  	}
4722  
4723  	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4724  	u64_u32_store_copy(sa->last_update_time,
4725  			   cfs_rq->last_update_time_copy,
4726  			   sa->last_update_time);
4727  	return decayed;
4728  }
4729  
4730  /**
4731   * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4732   * @cfs_rq: cfs_rq to attach to
4733   * @se: sched_entity to attach
4734   *
4735   * Must call update_cfs_rq_load_avg() before this, since we rely on
4736   * cfs_rq->avg.last_update_time being current.
4737   */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4738  static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4739  {
4740  	/*
4741  	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4742  	 * See ___update_load_avg() for details.
4743  	 */
4744  	u32 divider = get_pelt_divider(&cfs_rq->avg);
4745  
4746  	/*
4747  	 * When we attach the @se to the @cfs_rq, we must align the decay
4748  	 * window because without that, really weird and wonderful things can
4749  	 * happen.
4750  	 *
4751  	 * XXX illustrate
4752  	 */
4753  	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4754  	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4755  
4756  	/*
4757  	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4758  	 * period_contrib. This isn't strictly correct, but since we're
4759  	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4760  	 * _sum a little.
4761  	 */
4762  	se->avg.util_sum = se->avg.util_avg * divider;
4763  
4764  	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4765  
4766  	se->avg.load_sum = se->avg.load_avg * divider;
4767  	if (se_weight(se) < se->avg.load_sum)
4768  		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4769  	else
4770  		se->avg.load_sum = 1;
4771  
4772  	enqueue_load_avg(cfs_rq, se);
4773  	cfs_rq->avg.util_avg += se->avg.util_avg;
4774  	cfs_rq->avg.util_sum += se->avg.util_sum;
4775  	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4776  	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4777  
4778  	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4779  
4780  	cfs_rq_util_change(cfs_rq, 0);
4781  
4782  	trace_pelt_cfs_tp(cfs_rq);
4783  }
4784  
4785  /**
4786   * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4787   * @cfs_rq: cfs_rq to detach from
4788   * @se: sched_entity to detach
4789   *
4790   * Must call update_cfs_rq_load_avg() before this, since we rely on
4791   * cfs_rq->avg.last_update_time being current.
4792   */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4793  static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4794  {
4795  	dequeue_load_avg(cfs_rq, se);
4796  	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4797  	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4798  	/* See update_cfs_rq_load_avg() */
4799  	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4800  					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4801  
4802  	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4803  	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4804  	/* See update_cfs_rq_load_avg() */
4805  	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4806  					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4807  
4808  	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4809  
4810  	cfs_rq_util_change(cfs_rq, 0);
4811  
4812  	trace_pelt_cfs_tp(cfs_rq);
4813  }
4814  
4815  /*
4816   * Optional action to be done while updating the load average
4817   */
4818  #define UPDATE_TG	0x1
4819  #define SKIP_AGE_LOAD	0x2
4820  #define DO_ATTACH	0x4
4821  #define DO_DETACH	0x8
4822  
4823  /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4824  static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4825  {
4826  	u64 now = cfs_rq_clock_pelt(cfs_rq);
4827  	int decayed;
4828  
4829  	/*
4830  	 * Track task load average for carrying it to new CPU after migrated, and
4831  	 * track group sched_entity load average for task_h_load calculation in migration
4832  	 */
4833  	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4834  		__update_load_avg_se(now, cfs_rq, se);
4835  
4836  	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4837  	decayed |= propagate_entity_load_avg(se);
4838  
4839  	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4840  
4841  		/*
4842  		 * DO_ATTACH means we're here from enqueue_entity().
4843  		 * !last_update_time means we've passed through
4844  		 * migrate_task_rq_fair() indicating we migrated.
4845  		 *
4846  		 * IOW we're enqueueing a task on a new CPU.
4847  		 */
4848  		attach_entity_load_avg(cfs_rq, se);
4849  		update_tg_load_avg(cfs_rq);
4850  
4851  	} else if (flags & DO_DETACH) {
4852  		/*
4853  		 * DO_DETACH means we're here from dequeue_entity()
4854  		 * and we are migrating task out of the CPU.
4855  		 */
4856  		detach_entity_load_avg(cfs_rq, se);
4857  		update_tg_load_avg(cfs_rq);
4858  	} else if (decayed) {
4859  		cfs_rq_util_change(cfs_rq, 0);
4860  
4861  		if (flags & UPDATE_TG)
4862  			update_tg_load_avg(cfs_rq);
4863  	}
4864  }
4865  
4866  /*
4867   * Synchronize entity load avg of dequeued entity without locking
4868   * the previous rq.
4869   */
sync_entity_load_avg(struct sched_entity * se)4870  static void sync_entity_load_avg(struct sched_entity *se)
4871  {
4872  	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4873  	u64 last_update_time;
4874  
4875  	last_update_time = cfs_rq_last_update_time(cfs_rq);
4876  	__update_load_avg_blocked_se(last_update_time, se);
4877  }
4878  
4879  /*
4880   * Task first catches up with cfs_rq, and then subtract
4881   * itself from the cfs_rq (task must be off the queue now).
4882   */
remove_entity_load_avg(struct sched_entity * se)4883  static void remove_entity_load_avg(struct sched_entity *se)
4884  {
4885  	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4886  	unsigned long flags;
4887  
4888  	/*
4889  	 * tasks cannot exit without having gone through wake_up_new_task() ->
4890  	 * enqueue_task_fair() which will have added things to the cfs_rq,
4891  	 * so we can remove unconditionally.
4892  	 */
4893  
4894  	sync_entity_load_avg(se);
4895  
4896  	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4897  	++cfs_rq->removed.nr;
4898  	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4899  	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4900  	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4901  	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4902  }
4903  
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4904  static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4905  {
4906  	return cfs_rq->avg.runnable_avg;
4907  }
4908  
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4909  static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4910  {
4911  	return cfs_rq->avg.load_avg;
4912  }
4913  
4914  static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4915  
task_util(struct task_struct * p)4916  static inline unsigned long task_util(struct task_struct *p)
4917  {
4918  	return READ_ONCE(p->se.avg.util_avg);
4919  }
4920  
task_runnable(struct task_struct * p)4921  static inline unsigned long task_runnable(struct task_struct *p)
4922  {
4923  	return READ_ONCE(p->se.avg.runnable_avg);
4924  }
4925  
_task_util_est(struct task_struct * p)4926  static inline unsigned long _task_util_est(struct task_struct *p)
4927  {
4928  	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4929  }
4930  
task_util_est(struct task_struct * p)4931  static inline unsigned long task_util_est(struct task_struct *p)
4932  {
4933  	return max(task_util(p), _task_util_est(p));
4934  }
4935  
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4936  static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4937  				    struct task_struct *p)
4938  {
4939  	unsigned int enqueued;
4940  
4941  	if (!sched_feat(UTIL_EST))
4942  		return;
4943  
4944  	/* Update root cfs_rq's estimated utilization */
4945  	enqueued  = cfs_rq->avg.util_est;
4946  	enqueued += _task_util_est(p);
4947  	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4948  
4949  	trace_sched_util_est_cfs_tp(cfs_rq);
4950  }
4951  
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4952  static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4953  				    struct task_struct *p)
4954  {
4955  	unsigned int enqueued;
4956  
4957  	if (!sched_feat(UTIL_EST))
4958  		return;
4959  
4960  	/* Update root cfs_rq's estimated utilization */
4961  	enqueued  = cfs_rq->avg.util_est;
4962  	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4963  	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4964  
4965  	trace_sched_util_est_cfs_tp(cfs_rq);
4966  }
4967  
4968  #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4969  
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4970  static inline void util_est_update(struct cfs_rq *cfs_rq,
4971  				   struct task_struct *p,
4972  				   bool task_sleep)
4973  {
4974  	unsigned int ewma, dequeued, last_ewma_diff;
4975  
4976  	if (!sched_feat(UTIL_EST))
4977  		return;
4978  
4979  	/*
4980  	 * Skip update of task's estimated utilization when the task has not
4981  	 * yet completed an activation, e.g. being migrated.
4982  	 */
4983  	if (!task_sleep)
4984  		return;
4985  
4986  	/* Get current estimate of utilization */
4987  	ewma = READ_ONCE(p->se.avg.util_est);
4988  
4989  	/*
4990  	 * If the PELT values haven't changed since enqueue time,
4991  	 * skip the util_est update.
4992  	 */
4993  	if (ewma & UTIL_AVG_UNCHANGED)
4994  		return;
4995  
4996  	/* Get utilization at dequeue */
4997  	dequeued = task_util(p);
4998  
4999  	/*
5000  	 * Reset EWMA on utilization increases, the moving average is used only
5001  	 * to smooth utilization decreases.
5002  	 */
5003  	if (ewma <= dequeued) {
5004  		ewma = dequeued;
5005  		goto done;
5006  	}
5007  
5008  	/*
5009  	 * Skip update of task's estimated utilization when its members are
5010  	 * already ~1% close to its last activation value.
5011  	 */
5012  	last_ewma_diff = ewma - dequeued;
5013  	if (last_ewma_diff < UTIL_EST_MARGIN)
5014  		goto done;
5015  
5016  	/*
5017  	 * To avoid overestimation of actual task utilization, skip updates if
5018  	 * we cannot grant there is idle time in this CPU.
5019  	 */
5020  	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
5021  		return;
5022  
5023  	/*
5024  	 * To avoid underestimate of task utilization, skip updates of EWMA if
5025  	 * we cannot grant that thread got all CPU time it wanted.
5026  	 */
5027  	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
5028  		goto done;
5029  
5030  
5031  	/*
5032  	 * Update Task's estimated utilization
5033  	 *
5034  	 * When *p completes an activation we can consolidate another sample
5035  	 * of the task size. This is done by using this value to update the
5036  	 * Exponential Weighted Moving Average (EWMA):
5037  	 *
5038  	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
5039  	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
5040  	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
5041  	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
5042  	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
5043  	 *
5044  	 * Where 'w' is the weight of new samples, which is configured to be
5045  	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5046  	 */
5047  	ewma <<= UTIL_EST_WEIGHT_SHIFT;
5048  	ewma  -= last_ewma_diff;
5049  	ewma >>= UTIL_EST_WEIGHT_SHIFT;
5050  done:
5051  	ewma |= UTIL_AVG_UNCHANGED;
5052  	WRITE_ONCE(p->se.avg.util_est, ewma);
5053  
5054  	trace_sched_util_est_se_tp(&p->se);
5055  }
5056  
get_actual_cpu_capacity(int cpu)5057  static inline unsigned long get_actual_cpu_capacity(int cpu)
5058  {
5059  	unsigned long capacity = arch_scale_cpu_capacity(cpu);
5060  
5061  	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
5062  
5063  	return capacity;
5064  }
5065  
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)5066  static inline int util_fits_cpu(unsigned long util,
5067  				unsigned long uclamp_min,
5068  				unsigned long uclamp_max,
5069  				int cpu)
5070  {
5071  	unsigned long capacity = capacity_of(cpu);
5072  	unsigned long capacity_orig;
5073  	bool fits, uclamp_max_fits;
5074  
5075  	/*
5076  	 * Check if the real util fits without any uclamp boost/cap applied.
5077  	 */
5078  	fits = fits_capacity(util, capacity);
5079  
5080  	if (!uclamp_is_used())
5081  		return fits;
5082  
5083  	/*
5084  	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5085  	 * uclamp_max. We only care about capacity pressure (by using
5086  	 * capacity_of()) for comparing against the real util.
5087  	 *
5088  	 * If a task is boosted to 1024 for example, we don't want a tiny
5089  	 * pressure to skew the check whether it fits a CPU or not.
5090  	 *
5091  	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5092  	 * should fit a little cpu even if there's some pressure.
5093  	 *
5094  	 * Only exception is for HW or cpufreq pressure since it has a direct impact
5095  	 * on available OPP of the system.
5096  	 *
5097  	 * We honour it for uclamp_min only as a drop in performance level
5098  	 * could result in not getting the requested minimum performance level.
5099  	 *
5100  	 * For uclamp_max, we can tolerate a drop in performance level as the
5101  	 * goal is to cap the task. So it's okay if it's getting less.
5102  	 */
5103  	capacity_orig = arch_scale_cpu_capacity(cpu);
5104  
5105  	/*
5106  	 * We want to force a task to fit a cpu as implied by uclamp_max.
5107  	 * But we do have some corner cases to cater for..
5108  	 *
5109  	 *
5110  	 *                                 C=z
5111  	 *   |                             ___
5112  	 *   |                  C=y       |   |
5113  	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5114  	 *   |      C=x        |   |      |   |
5115  	 *   |      ___        |   |      |   |
5116  	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5117  	 *   |     |   |       |   |      |   |
5118  	 *   |     |   |       |   |      |   |
5119  	 *   +----------------------------------------
5120  	 *         CPU0        CPU1       CPU2
5121  	 *
5122  	 *   In the above example if a task is capped to a specific performance
5123  	 *   point, y, then when:
5124  	 *
5125  	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5126  	 *     to CPU1
5127  	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5128  	 *     uclamp_max request.
5129  	 *
5130  	 *   which is what we're enforcing here. A task always fits if
5131  	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5132  	 *   the normal upmigration rules should withhold still.
5133  	 *
5134  	 *   Only exception is when we are on max capacity, then we need to be
5135  	 *   careful not to block overutilized state. This is so because:
5136  	 *
5137  	 *     1. There's no concept of capping at max_capacity! We can't go
5138  	 *        beyond this performance level anyway.
5139  	 *     2. The system is being saturated when we're operating near
5140  	 *        max capacity, it doesn't make sense to block overutilized.
5141  	 */
5142  	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5143  	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5144  	fits = fits || uclamp_max_fits;
5145  
5146  	/*
5147  	 *
5148  	 *                                 C=z
5149  	 *   |                             ___       (region a, capped, util >= uclamp_max)
5150  	 *   |                  C=y       |   |
5151  	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5152  	 *   |      C=x        |   |      |   |
5153  	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5154  	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5155  	 *   |     |   |       |   |      |   |
5156  	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5157  	 *   +----------------------------------------
5158  	 *         CPU0        CPU1       CPU2
5159  	 *
5160  	 * a) If util > uclamp_max, then we're capped, we don't care about
5161  	 *    actual fitness value here. We only care if uclamp_max fits
5162  	 *    capacity without taking margin/pressure into account.
5163  	 *    See comment above.
5164  	 *
5165  	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5166  	 *    fits_capacity() rules apply. Except we need to ensure that we
5167  	 *    enforce we remain within uclamp_max, see comment above.
5168  	 *
5169  	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5170  	 *    need to take into account the boosted value fits the CPU without
5171  	 *    taking margin/pressure into account.
5172  	 *
5173  	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5174  	 * just need to consider an extra check for case (c) after ensuring we
5175  	 * handle the case uclamp_min > uclamp_max.
5176  	 */
5177  	uclamp_min = min(uclamp_min, uclamp_max);
5178  	if (fits && (util < uclamp_min) &&
5179  	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5180  		return -1;
5181  
5182  	return fits;
5183  }
5184  
task_fits_cpu(struct task_struct * p,int cpu)5185  static inline int task_fits_cpu(struct task_struct *p, int cpu)
5186  {
5187  	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5188  	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5189  	unsigned long util = task_util_est(p);
5190  	/*
5191  	 * Return true only if the cpu fully fits the task requirements, which
5192  	 * include the utilization but also the performance hints.
5193  	 */
5194  	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5195  }
5196  
update_misfit_status(struct task_struct * p,struct rq * rq)5197  static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5198  {
5199  	int cpu = cpu_of(rq);
5200  
5201  	if (!sched_asym_cpucap_active())
5202  		return;
5203  
5204  	/*
5205  	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5206  	 * available CPU already? Or do we fit into this CPU ?
5207  	 */
5208  	if (!p || (p->nr_cpus_allowed == 1) ||
5209  	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5210  	    task_fits_cpu(p, cpu)) {
5211  
5212  		rq->misfit_task_load = 0;
5213  		return;
5214  	}
5215  
5216  	/*
5217  	 * Make sure that misfit_task_load will not be null even if
5218  	 * task_h_load() returns 0.
5219  	 */
5220  	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5221  }
5222  
5223  #else /* CONFIG_SMP */
5224  
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5225  static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5226  {
5227  	return !cfs_rq->nr_running;
5228  }
5229  
5230  #define UPDATE_TG	0x0
5231  #define SKIP_AGE_LOAD	0x0
5232  #define DO_ATTACH	0x0
5233  #define DO_DETACH	0x0
5234  
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5235  static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5236  {
5237  	cfs_rq_util_change(cfs_rq, 0);
5238  }
5239  
remove_entity_load_avg(struct sched_entity * se)5240  static inline void remove_entity_load_avg(struct sched_entity *se) {}
5241  
5242  static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5243  attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5244  static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5245  detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5246  
sched_balance_newidle(struct rq * rq,struct rq_flags * rf)5247  static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5248  {
5249  	return 0;
5250  }
5251  
5252  static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5253  util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5254  
5255  static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5256  util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5257  
5258  static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5259  util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5260  		bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5261  static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5262  
5263  #endif /* CONFIG_SMP */
5264  
5265  static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5266  place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5267  {
5268  	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5269  	s64 lag = 0;
5270  
5271  	if (!se->custom_slice)
5272  		se->slice = sysctl_sched_base_slice;
5273  	vslice = calc_delta_fair(se->slice, se);
5274  
5275  	/*
5276  	 * Due to how V is constructed as the weighted average of entities,
5277  	 * adding tasks with positive lag, or removing tasks with negative lag
5278  	 * will move 'time' backwards, this can screw around with the lag of
5279  	 * other tasks.
5280  	 *
5281  	 * EEVDF: placement strategy #1 / #2
5282  	 */
5283  	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5284  		struct sched_entity *curr = cfs_rq->curr;
5285  		unsigned long load;
5286  
5287  		lag = se->vlag;
5288  
5289  		/*
5290  		 * If we want to place a task and preserve lag, we have to
5291  		 * consider the effect of the new entity on the weighted
5292  		 * average and compensate for this, otherwise lag can quickly
5293  		 * evaporate.
5294  		 *
5295  		 * Lag is defined as:
5296  		 *
5297  		 *   lag_i = S - s_i = w_i * (V - v_i)
5298  		 *
5299  		 * To avoid the 'w_i' term all over the place, we only track
5300  		 * the virtual lag:
5301  		 *
5302  		 *   vl_i = V - v_i <=> v_i = V - vl_i
5303  		 *
5304  		 * And we take V to be the weighted average of all v:
5305  		 *
5306  		 *   V = (\Sum w_j*v_j) / W
5307  		 *
5308  		 * Where W is: \Sum w_j
5309  		 *
5310  		 * Then, the weighted average after adding an entity with lag
5311  		 * vl_i is given by:
5312  		 *
5313  		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5314  		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5315  		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5316  		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5317  		 *      = V - w_i*vl_i / (W + w_i)
5318  		 *
5319  		 * And the actual lag after adding an entity with vl_i is:
5320  		 *
5321  		 *   vl'_i = V' - v_i
5322  		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5323  		 *         = vl_i - w_i*vl_i / (W + w_i)
5324  		 *
5325  		 * Which is strictly less than vl_i. So in order to preserve lag
5326  		 * we should inflate the lag before placement such that the
5327  		 * effective lag after placement comes out right.
5328  		 *
5329  		 * As such, invert the above relation for vl'_i to get the vl_i
5330  		 * we need to use such that the lag after placement is the lag
5331  		 * we computed before dequeue.
5332  		 *
5333  		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5334  		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5335  		 *
5336  		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5337  		 *                   = W*vl_i
5338  		 *
5339  		 *   vl_i = (W + w_i)*vl'_i / W
5340  		 */
5341  		load = cfs_rq->avg_load;
5342  		if (curr && curr->on_rq)
5343  			load += scale_load_down(curr->load.weight);
5344  
5345  		lag *= load + scale_load_down(se->load.weight);
5346  		if (WARN_ON_ONCE(!load))
5347  			load = 1;
5348  		lag = div_s64(lag, load);
5349  	}
5350  
5351  	se->vruntime = vruntime - lag;
5352  
5353  	if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
5354  		se->deadline += se->vruntime;
5355  		se->rel_deadline = 0;
5356  		return;
5357  	}
5358  
5359  	/*
5360  	 * When joining the competition; the existing tasks will be,
5361  	 * on average, halfway through their slice, as such start tasks
5362  	 * off with half a slice to ease into the competition.
5363  	 */
5364  	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5365  		vslice /= 2;
5366  
5367  	/*
5368  	 * EEVDF: vd_i = ve_i + r_i/w_i
5369  	 */
5370  	se->deadline = se->vruntime + vslice;
5371  }
5372  
5373  static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5374  static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5375  
5376  static inline bool cfs_bandwidth_used(void);
5377  
5378  static void
5379  requeue_delayed_entity(struct sched_entity *se);
5380  
5381  static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5382  enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5383  {
5384  	bool curr = cfs_rq->curr == se;
5385  
5386  	/*
5387  	 * If we're the current task, we must renormalise before calling
5388  	 * update_curr().
5389  	 */
5390  	if (curr)
5391  		place_entity(cfs_rq, se, flags);
5392  
5393  	update_curr(cfs_rq);
5394  
5395  	/*
5396  	 * When enqueuing a sched_entity, we must:
5397  	 *   - Update loads to have both entity and cfs_rq synced with now.
5398  	 *   - For group_entity, update its runnable_weight to reflect the new
5399  	 *     h_nr_running of its group cfs_rq.
5400  	 *   - For group_entity, update its weight to reflect the new share of
5401  	 *     its group cfs_rq
5402  	 *   - Add its new weight to cfs_rq->load.weight
5403  	 */
5404  	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5405  	se_update_runnable(se);
5406  	/*
5407  	 * XXX update_load_avg() above will have attached us to the pelt sum;
5408  	 * but update_cfs_group() here will re-adjust the weight and have to
5409  	 * undo/redo all that. Seems wasteful.
5410  	 */
5411  	update_cfs_group(se);
5412  
5413  	/*
5414  	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5415  	 * we can place the entity.
5416  	 */
5417  	if (!curr)
5418  		place_entity(cfs_rq, se, flags);
5419  
5420  	account_entity_enqueue(cfs_rq, se);
5421  
5422  	/* Entity has migrated, no longer consider this task hot */
5423  	if (flags & ENQUEUE_MIGRATED)
5424  		se->exec_start = 0;
5425  
5426  	check_schedstat_required();
5427  	update_stats_enqueue_fair(cfs_rq, se, flags);
5428  	if (!curr)
5429  		__enqueue_entity(cfs_rq, se);
5430  	se->on_rq = 1;
5431  
5432  	if (cfs_rq->nr_running == 1) {
5433  		check_enqueue_throttle(cfs_rq);
5434  		if (!throttled_hierarchy(cfs_rq)) {
5435  			list_add_leaf_cfs_rq(cfs_rq);
5436  		} else {
5437  #ifdef CONFIG_CFS_BANDWIDTH
5438  			struct rq *rq = rq_of(cfs_rq);
5439  
5440  			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5441  				cfs_rq->throttled_clock = rq_clock(rq);
5442  			if (!cfs_rq->throttled_clock_self)
5443  				cfs_rq->throttled_clock_self = rq_clock(rq);
5444  #endif
5445  		}
5446  	}
5447  }
5448  
__clear_buddies_next(struct sched_entity * se)5449  static void __clear_buddies_next(struct sched_entity *se)
5450  {
5451  	for_each_sched_entity(se) {
5452  		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5453  		if (cfs_rq->next != se)
5454  			break;
5455  
5456  		cfs_rq->next = NULL;
5457  	}
5458  }
5459  
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5460  static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5461  {
5462  	if (cfs_rq->next == se)
5463  		__clear_buddies_next(se);
5464  }
5465  
5466  static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5467  
finish_delayed_dequeue_entity(struct sched_entity * se)5468  static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5469  {
5470  	se->sched_delayed = 0;
5471  	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5472  		se->vlag = 0;
5473  }
5474  
5475  static bool
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5476  dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5477  {
5478  	bool sleep = flags & DEQUEUE_SLEEP;
5479  
5480  	update_curr(cfs_rq);
5481  
5482  	if (flags & DEQUEUE_DELAYED) {
5483  		SCHED_WARN_ON(!se->sched_delayed);
5484  	} else {
5485  		bool delay = sleep;
5486  		/*
5487  		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5488  		 * states must not suffer spurious wakeups, excempt them.
5489  		 */
5490  		if (flags & DEQUEUE_SPECIAL)
5491  			delay = false;
5492  
5493  		SCHED_WARN_ON(delay && se->sched_delayed);
5494  
5495  		if (sched_feat(DELAY_DEQUEUE) && delay &&
5496  		    !entity_eligible(cfs_rq, se)) {
5497  			if (cfs_rq->next == se)
5498  				cfs_rq->next = NULL;
5499  			update_load_avg(cfs_rq, se, 0);
5500  			se->sched_delayed = 1;
5501  			return false;
5502  		}
5503  	}
5504  
5505  	int action = UPDATE_TG;
5506  	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5507  		action |= DO_DETACH;
5508  
5509  	/*
5510  	 * When dequeuing a sched_entity, we must:
5511  	 *   - Update loads to have both entity and cfs_rq synced with now.
5512  	 *   - For group_entity, update its runnable_weight to reflect the new
5513  	 *     h_nr_running of its group cfs_rq.
5514  	 *   - Subtract its previous weight from cfs_rq->load.weight.
5515  	 *   - For group entity, update its weight to reflect the new share
5516  	 *     of its group cfs_rq.
5517  	 */
5518  	update_load_avg(cfs_rq, se, action);
5519  	se_update_runnable(se);
5520  
5521  	update_stats_dequeue_fair(cfs_rq, se, flags);
5522  
5523  	clear_buddies(cfs_rq, se);
5524  
5525  	update_entity_lag(cfs_rq, se);
5526  	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5527  		se->deadline -= se->vruntime;
5528  		se->rel_deadline = 1;
5529  	}
5530  
5531  	if (se != cfs_rq->curr)
5532  		__dequeue_entity(cfs_rq, se);
5533  	se->on_rq = 0;
5534  	account_entity_dequeue(cfs_rq, se);
5535  
5536  	/* return excess runtime on last dequeue */
5537  	return_cfs_rq_runtime(cfs_rq);
5538  
5539  	update_cfs_group(se);
5540  
5541  	/*
5542  	 * Now advance min_vruntime if @se was the entity holding it back,
5543  	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5544  	 * put back on, and if we advance min_vruntime, we'll be placed back
5545  	 * further than we started -- i.e. we'll be penalized.
5546  	 */
5547  	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5548  		update_min_vruntime(cfs_rq);
5549  
5550  	if (flags & DEQUEUE_DELAYED)
5551  		finish_delayed_dequeue_entity(se);
5552  
5553  	if (cfs_rq->nr_running == 0)
5554  		update_idle_cfs_rq_clock_pelt(cfs_rq);
5555  
5556  	return true;
5557  }
5558  
5559  static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5560  set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5561  {
5562  	clear_buddies(cfs_rq, se);
5563  
5564  	/* 'current' is not kept within the tree. */
5565  	if (se->on_rq) {
5566  		/*
5567  		 * Any task has to be enqueued before it get to execute on
5568  		 * a CPU. So account for the time it spent waiting on the
5569  		 * runqueue.
5570  		 */
5571  		update_stats_wait_end_fair(cfs_rq, se);
5572  		__dequeue_entity(cfs_rq, se);
5573  		update_load_avg(cfs_rq, se, UPDATE_TG);
5574  		/*
5575  		 * HACK, stash a copy of deadline at the point of pick in vlag,
5576  		 * which isn't used until dequeue.
5577  		 */
5578  		se->vlag = se->deadline;
5579  	}
5580  
5581  	update_stats_curr_start(cfs_rq, se);
5582  	SCHED_WARN_ON(cfs_rq->curr);
5583  	cfs_rq->curr = se;
5584  
5585  	/*
5586  	 * Track our maximum slice length, if the CPU's load is at
5587  	 * least twice that of our own weight (i.e. don't track it
5588  	 * when there are only lesser-weight tasks around):
5589  	 */
5590  	if (schedstat_enabled() &&
5591  	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5592  		struct sched_statistics *stats;
5593  
5594  		stats = __schedstats_from_se(se);
5595  		__schedstat_set(stats->slice_max,
5596  				max((u64)stats->slice_max,
5597  				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5598  	}
5599  
5600  	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5601  }
5602  
5603  static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5604  
5605  /*
5606   * Pick the next process, keeping these things in mind, in this order:
5607   * 1) keep things fair between processes/task groups
5608   * 2) pick the "next" process, since someone really wants that to run
5609   * 3) pick the "last" process, for cache locality
5610   * 4) do not run the "skip" process, if something else is available
5611   */
5612  static struct sched_entity *
pick_next_entity(struct rq * rq,struct cfs_rq * cfs_rq)5613  pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5614  {
5615  	/*
5616  	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5617  	 */
5618  	if (sched_feat(NEXT_BUDDY) &&
5619  	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5620  		/* ->next will never be delayed */
5621  		SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5622  		return cfs_rq->next;
5623  	}
5624  
5625  	struct sched_entity *se = pick_eevdf(cfs_rq);
5626  	if (se->sched_delayed) {
5627  		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5628  		/*
5629  		 * Must not reference @se again, see __block_task().
5630  		 */
5631  		return NULL;
5632  	}
5633  	return se;
5634  }
5635  
5636  static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5637  
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5638  static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5639  {
5640  	/*
5641  	 * If still on the runqueue then deactivate_task()
5642  	 * was not called and update_curr() has to be done:
5643  	 */
5644  	if (prev->on_rq)
5645  		update_curr(cfs_rq);
5646  
5647  	/* throttle cfs_rqs exceeding runtime */
5648  	check_cfs_rq_runtime(cfs_rq);
5649  
5650  	if (prev->on_rq) {
5651  		update_stats_wait_start_fair(cfs_rq, prev);
5652  		/* Put 'current' back into the tree. */
5653  		__enqueue_entity(cfs_rq, prev);
5654  		/* in !on_rq case, update occurred at dequeue */
5655  		update_load_avg(cfs_rq, prev, 0);
5656  	}
5657  	SCHED_WARN_ON(cfs_rq->curr != prev);
5658  	cfs_rq->curr = NULL;
5659  }
5660  
5661  static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5662  entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5663  {
5664  	/*
5665  	 * Update run-time statistics of the 'current'.
5666  	 */
5667  	update_curr(cfs_rq);
5668  
5669  	/*
5670  	 * Ensure that runnable average is periodically updated.
5671  	 */
5672  	update_load_avg(cfs_rq, curr, UPDATE_TG);
5673  	update_cfs_group(curr);
5674  
5675  #ifdef CONFIG_SCHED_HRTICK
5676  	/*
5677  	 * queued ticks are scheduled to match the slice, so don't bother
5678  	 * validating it and just reschedule.
5679  	 */
5680  	if (queued) {
5681  		resched_curr(rq_of(cfs_rq));
5682  		return;
5683  	}
5684  	/*
5685  	 * don't let the period tick interfere with the hrtick preemption
5686  	 */
5687  	if (!sched_feat(DOUBLE_TICK) &&
5688  			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5689  		return;
5690  #endif
5691  }
5692  
5693  
5694  /**************************************************
5695   * CFS bandwidth control machinery
5696   */
5697  
5698  #ifdef CONFIG_CFS_BANDWIDTH
5699  
5700  #ifdef CONFIG_JUMP_LABEL
5701  static struct static_key __cfs_bandwidth_used;
5702  
cfs_bandwidth_used(void)5703  static inline bool cfs_bandwidth_used(void)
5704  {
5705  	return static_key_false(&__cfs_bandwidth_used);
5706  }
5707  
cfs_bandwidth_usage_inc(void)5708  void cfs_bandwidth_usage_inc(void)
5709  {
5710  	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5711  }
5712  
cfs_bandwidth_usage_dec(void)5713  void cfs_bandwidth_usage_dec(void)
5714  {
5715  	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5716  }
5717  #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5718  static bool cfs_bandwidth_used(void)
5719  {
5720  	return true;
5721  }
5722  
cfs_bandwidth_usage_inc(void)5723  void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5724  void cfs_bandwidth_usage_dec(void) {}
5725  #endif /* CONFIG_JUMP_LABEL */
5726  
5727  /*
5728   * default period for cfs group bandwidth.
5729   * default: 0.1s, units: nanoseconds
5730   */
default_cfs_period(void)5731  static inline u64 default_cfs_period(void)
5732  {
5733  	return 100000000ULL;
5734  }
5735  
sched_cfs_bandwidth_slice(void)5736  static inline u64 sched_cfs_bandwidth_slice(void)
5737  {
5738  	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5739  }
5740  
5741  /*
5742   * Replenish runtime according to assigned quota. We use sched_clock_cpu
5743   * directly instead of rq->clock to avoid adding additional synchronization
5744   * around rq->lock.
5745   *
5746   * requires cfs_b->lock
5747   */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5748  void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5749  {
5750  	s64 runtime;
5751  
5752  	if (unlikely(cfs_b->quota == RUNTIME_INF))
5753  		return;
5754  
5755  	cfs_b->runtime += cfs_b->quota;
5756  	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5757  	if (runtime > 0) {
5758  		cfs_b->burst_time += runtime;
5759  		cfs_b->nr_burst++;
5760  	}
5761  
5762  	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5763  	cfs_b->runtime_snap = cfs_b->runtime;
5764  }
5765  
tg_cfs_bandwidth(struct task_group * tg)5766  static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5767  {
5768  	return &tg->cfs_bandwidth;
5769  }
5770  
5771  /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5772  static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5773  				   struct cfs_rq *cfs_rq, u64 target_runtime)
5774  {
5775  	u64 min_amount, amount = 0;
5776  
5777  	lockdep_assert_held(&cfs_b->lock);
5778  
5779  	/* note: this is a positive sum as runtime_remaining <= 0 */
5780  	min_amount = target_runtime - cfs_rq->runtime_remaining;
5781  
5782  	if (cfs_b->quota == RUNTIME_INF)
5783  		amount = min_amount;
5784  	else {
5785  		start_cfs_bandwidth(cfs_b);
5786  
5787  		if (cfs_b->runtime > 0) {
5788  			amount = min(cfs_b->runtime, min_amount);
5789  			cfs_b->runtime -= amount;
5790  			cfs_b->idle = 0;
5791  		}
5792  	}
5793  
5794  	cfs_rq->runtime_remaining += amount;
5795  
5796  	return cfs_rq->runtime_remaining > 0;
5797  }
5798  
5799  /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5800  static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5801  {
5802  	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5803  	int ret;
5804  
5805  	raw_spin_lock(&cfs_b->lock);
5806  	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5807  	raw_spin_unlock(&cfs_b->lock);
5808  
5809  	return ret;
5810  }
5811  
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5812  static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5813  {
5814  	/* dock delta_exec before expiring quota (as it could span periods) */
5815  	cfs_rq->runtime_remaining -= delta_exec;
5816  
5817  	if (likely(cfs_rq->runtime_remaining > 0))
5818  		return;
5819  
5820  	if (cfs_rq->throttled)
5821  		return;
5822  	/*
5823  	 * if we're unable to extend our runtime we resched so that the active
5824  	 * hierarchy can be throttled
5825  	 */
5826  	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5827  		resched_curr(rq_of(cfs_rq));
5828  }
5829  
5830  static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5831  void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5832  {
5833  	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5834  		return;
5835  
5836  	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5837  }
5838  
cfs_rq_throttled(struct cfs_rq * cfs_rq)5839  static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5840  {
5841  	return cfs_bandwidth_used() && cfs_rq->throttled;
5842  }
5843  
5844  /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5845  static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5846  {
5847  	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5848  }
5849  
5850  /*
5851   * Ensure that neither of the group entities corresponding to src_cpu or
5852   * dest_cpu are members of a throttled hierarchy when performing group
5853   * load-balance operations.
5854   */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5855  static inline int throttled_lb_pair(struct task_group *tg,
5856  				    int src_cpu, int dest_cpu)
5857  {
5858  	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5859  
5860  	src_cfs_rq = tg->cfs_rq[src_cpu];
5861  	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5862  
5863  	return throttled_hierarchy(src_cfs_rq) ||
5864  	       throttled_hierarchy(dest_cfs_rq);
5865  }
5866  
tg_unthrottle_up(struct task_group * tg,void * data)5867  static int tg_unthrottle_up(struct task_group *tg, void *data)
5868  {
5869  	struct rq *rq = data;
5870  	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5871  
5872  	cfs_rq->throttle_count--;
5873  	if (!cfs_rq->throttle_count) {
5874  		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5875  					     cfs_rq->throttled_clock_pelt;
5876  
5877  		/* Add cfs_rq with load or one or more already running entities to the list */
5878  		if (!cfs_rq_is_decayed(cfs_rq))
5879  			list_add_leaf_cfs_rq(cfs_rq);
5880  
5881  		if (cfs_rq->throttled_clock_self) {
5882  			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5883  
5884  			cfs_rq->throttled_clock_self = 0;
5885  
5886  			if (SCHED_WARN_ON((s64)delta < 0))
5887  				delta = 0;
5888  
5889  			cfs_rq->throttled_clock_self_time += delta;
5890  		}
5891  	}
5892  
5893  	return 0;
5894  }
5895  
tg_throttle_down(struct task_group * tg,void * data)5896  static int tg_throttle_down(struct task_group *tg, void *data)
5897  {
5898  	struct rq *rq = data;
5899  	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5900  
5901  	/* group is entering throttled state, stop time */
5902  	if (!cfs_rq->throttle_count) {
5903  		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5904  		list_del_leaf_cfs_rq(cfs_rq);
5905  
5906  		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5907  		if (cfs_rq->nr_running)
5908  			cfs_rq->throttled_clock_self = rq_clock(rq);
5909  	}
5910  	cfs_rq->throttle_count++;
5911  
5912  	return 0;
5913  }
5914  
throttle_cfs_rq(struct cfs_rq * cfs_rq)5915  static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5916  {
5917  	struct rq *rq = rq_of(cfs_rq);
5918  	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5919  	struct sched_entity *se;
5920  	long task_delta, idle_task_delta, dequeue = 1;
5921  	long rq_h_nr_running = rq->cfs.h_nr_running;
5922  
5923  	raw_spin_lock(&cfs_b->lock);
5924  	/* This will start the period timer if necessary */
5925  	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5926  		/*
5927  		 * We have raced with bandwidth becoming available, and if we
5928  		 * actually throttled the timer might not unthrottle us for an
5929  		 * entire period. We additionally needed to make sure that any
5930  		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5931  		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5932  		 * for 1ns of runtime rather than just check cfs_b.
5933  		 */
5934  		dequeue = 0;
5935  	} else {
5936  		list_add_tail_rcu(&cfs_rq->throttled_list,
5937  				  &cfs_b->throttled_cfs_rq);
5938  	}
5939  	raw_spin_unlock(&cfs_b->lock);
5940  
5941  	if (!dequeue)
5942  		return false;  /* Throttle no longer required. */
5943  
5944  	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5945  
5946  	/* freeze hierarchy runnable averages while throttled */
5947  	rcu_read_lock();
5948  	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5949  	rcu_read_unlock();
5950  
5951  	task_delta = cfs_rq->h_nr_running;
5952  	idle_task_delta = cfs_rq->idle_h_nr_running;
5953  	for_each_sched_entity(se) {
5954  		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5955  		int flags;
5956  
5957  		/* throttled entity or throttle-on-deactivate */
5958  		if (!se->on_rq)
5959  			goto done;
5960  
5961  		/*
5962  		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5963  		 * This avoids teaching dequeue_entities() about throttled
5964  		 * entities and keeps things relatively simple.
5965  		 */
5966  		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5967  		if (se->sched_delayed)
5968  			flags |= DEQUEUE_DELAYED;
5969  		dequeue_entity(qcfs_rq, se, flags);
5970  
5971  		if (cfs_rq_is_idle(group_cfs_rq(se)))
5972  			idle_task_delta = cfs_rq->h_nr_running;
5973  
5974  		qcfs_rq->h_nr_running -= task_delta;
5975  		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5976  
5977  		if (qcfs_rq->load.weight) {
5978  			/* Avoid re-evaluating load for this entity: */
5979  			se = parent_entity(se);
5980  			break;
5981  		}
5982  	}
5983  
5984  	for_each_sched_entity(se) {
5985  		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5986  		/* throttled entity or throttle-on-deactivate */
5987  		if (!se->on_rq)
5988  			goto done;
5989  
5990  		update_load_avg(qcfs_rq, se, 0);
5991  		se_update_runnable(se);
5992  
5993  		if (cfs_rq_is_idle(group_cfs_rq(se)))
5994  			idle_task_delta = cfs_rq->h_nr_running;
5995  
5996  		qcfs_rq->h_nr_running -= task_delta;
5997  		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5998  	}
5999  
6000  	/* At this point se is NULL and we are at root level*/
6001  	sub_nr_running(rq, task_delta);
6002  
6003  	/* Stop the fair server if throttling resulted in no runnable tasks */
6004  	if (rq_h_nr_running && !rq->cfs.h_nr_running)
6005  		dl_server_stop(&rq->fair_server);
6006  done:
6007  	/*
6008  	 * Note: distribution will already see us throttled via the
6009  	 * throttled-list.  rq->lock protects completion.
6010  	 */
6011  	cfs_rq->throttled = 1;
6012  	SCHED_WARN_ON(cfs_rq->throttled_clock);
6013  	if (cfs_rq->nr_running)
6014  		cfs_rq->throttled_clock = rq_clock(rq);
6015  	return true;
6016  }
6017  
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)6018  void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6019  {
6020  	struct rq *rq = rq_of(cfs_rq);
6021  	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6022  	struct sched_entity *se;
6023  	long task_delta, idle_task_delta;
6024  	long rq_h_nr_running = rq->cfs.h_nr_running;
6025  
6026  	se = cfs_rq->tg->se[cpu_of(rq)];
6027  
6028  	cfs_rq->throttled = 0;
6029  
6030  	update_rq_clock(rq);
6031  
6032  	raw_spin_lock(&cfs_b->lock);
6033  	if (cfs_rq->throttled_clock) {
6034  		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6035  		cfs_rq->throttled_clock = 0;
6036  	}
6037  	list_del_rcu(&cfs_rq->throttled_list);
6038  	raw_spin_unlock(&cfs_b->lock);
6039  
6040  	/* update hierarchical throttle state */
6041  	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6042  
6043  	if (!cfs_rq->load.weight) {
6044  		if (!cfs_rq->on_list)
6045  			return;
6046  		/*
6047  		 * Nothing to run but something to decay (on_list)?
6048  		 * Complete the branch.
6049  		 */
6050  		for_each_sched_entity(se) {
6051  			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6052  				break;
6053  		}
6054  		goto unthrottle_throttle;
6055  	}
6056  
6057  	task_delta = cfs_rq->h_nr_running;
6058  	idle_task_delta = cfs_rq->idle_h_nr_running;
6059  	for_each_sched_entity(se) {
6060  		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6061  
6062  		/* Handle any unfinished DELAY_DEQUEUE business first. */
6063  		if (se->sched_delayed) {
6064  			int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6065  
6066  			dequeue_entity(qcfs_rq, se, flags);
6067  		} else if (se->on_rq)
6068  			break;
6069  		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6070  
6071  		if (cfs_rq_is_idle(group_cfs_rq(se)))
6072  			idle_task_delta = cfs_rq->h_nr_running;
6073  
6074  		qcfs_rq->h_nr_running += task_delta;
6075  		qcfs_rq->idle_h_nr_running += idle_task_delta;
6076  
6077  		/* end evaluation on encountering a throttled cfs_rq */
6078  		if (cfs_rq_throttled(qcfs_rq))
6079  			goto unthrottle_throttle;
6080  	}
6081  
6082  	for_each_sched_entity(se) {
6083  		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6084  
6085  		update_load_avg(qcfs_rq, se, UPDATE_TG);
6086  		se_update_runnable(se);
6087  
6088  		if (cfs_rq_is_idle(group_cfs_rq(se)))
6089  			idle_task_delta = cfs_rq->h_nr_running;
6090  
6091  		qcfs_rq->h_nr_running += task_delta;
6092  		qcfs_rq->idle_h_nr_running += idle_task_delta;
6093  
6094  		/* end evaluation on encountering a throttled cfs_rq */
6095  		if (cfs_rq_throttled(qcfs_rq))
6096  			goto unthrottle_throttle;
6097  	}
6098  
6099  	/* Start the fair server if un-throttling resulted in new runnable tasks */
6100  	if (!rq_h_nr_running && rq->cfs.h_nr_running)
6101  		dl_server_start(&rq->fair_server);
6102  
6103  	/* At this point se is NULL and we are at root level*/
6104  	add_nr_running(rq, task_delta);
6105  
6106  unthrottle_throttle:
6107  	assert_list_leaf_cfs_rq(rq);
6108  
6109  	/* Determine whether we need to wake up potentially idle CPU: */
6110  	if (rq->curr == rq->idle && rq->cfs.nr_running)
6111  		resched_curr(rq);
6112  }
6113  
6114  #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)6115  static void __cfsb_csd_unthrottle(void *arg)
6116  {
6117  	struct cfs_rq *cursor, *tmp;
6118  	struct rq *rq = arg;
6119  	struct rq_flags rf;
6120  
6121  	rq_lock(rq, &rf);
6122  
6123  	/*
6124  	 * Iterating over the list can trigger several call to
6125  	 * update_rq_clock() in unthrottle_cfs_rq().
6126  	 * Do it once and skip the potential next ones.
6127  	 */
6128  	update_rq_clock(rq);
6129  	rq_clock_start_loop_update(rq);
6130  
6131  	/*
6132  	 * Since we hold rq lock we're safe from concurrent manipulation of
6133  	 * the CSD list. However, this RCU critical section annotates the
6134  	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6135  	 * race with group being freed in the window between removing it
6136  	 * from the list and advancing to the next entry in the list.
6137  	 */
6138  	rcu_read_lock();
6139  
6140  	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6141  				 throttled_csd_list) {
6142  		list_del_init(&cursor->throttled_csd_list);
6143  
6144  		if (cfs_rq_throttled(cursor))
6145  			unthrottle_cfs_rq(cursor);
6146  	}
6147  
6148  	rcu_read_unlock();
6149  
6150  	rq_clock_stop_loop_update(rq);
6151  	rq_unlock(rq, &rf);
6152  }
6153  
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6154  static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6155  {
6156  	struct rq *rq = rq_of(cfs_rq);
6157  	bool first;
6158  
6159  	if (rq == this_rq()) {
6160  		unthrottle_cfs_rq(cfs_rq);
6161  		return;
6162  	}
6163  
6164  	/* Already enqueued */
6165  	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6166  		return;
6167  
6168  	first = list_empty(&rq->cfsb_csd_list);
6169  	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6170  	if (first)
6171  		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6172  }
6173  #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6174  static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6175  {
6176  	unthrottle_cfs_rq(cfs_rq);
6177  }
6178  #endif
6179  
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6180  static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6181  {
6182  	lockdep_assert_rq_held(rq_of(cfs_rq));
6183  
6184  	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6185  	    cfs_rq->runtime_remaining <= 0))
6186  		return;
6187  
6188  	__unthrottle_cfs_rq_async(cfs_rq);
6189  }
6190  
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6191  static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6192  {
6193  	int this_cpu = smp_processor_id();
6194  	u64 runtime, remaining = 1;
6195  	bool throttled = false;
6196  	struct cfs_rq *cfs_rq, *tmp;
6197  	struct rq_flags rf;
6198  	struct rq *rq;
6199  	LIST_HEAD(local_unthrottle);
6200  
6201  	rcu_read_lock();
6202  	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6203  				throttled_list) {
6204  		rq = rq_of(cfs_rq);
6205  
6206  		if (!remaining) {
6207  			throttled = true;
6208  			break;
6209  		}
6210  
6211  		rq_lock_irqsave(rq, &rf);
6212  		if (!cfs_rq_throttled(cfs_rq))
6213  			goto next;
6214  
6215  		/* Already queued for async unthrottle */
6216  		if (!list_empty(&cfs_rq->throttled_csd_list))
6217  			goto next;
6218  
6219  		/* By the above checks, this should never be true */
6220  		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6221  
6222  		raw_spin_lock(&cfs_b->lock);
6223  		runtime = -cfs_rq->runtime_remaining + 1;
6224  		if (runtime > cfs_b->runtime)
6225  			runtime = cfs_b->runtime;
6226  		cfs_b->runtime -= runtime;
6227  		remaining = cfs_b->runtime;
6228  		raw_spin_unlock(&cfs_b->lock);
6229  
6230  		cfs_rq->runtime_remaining += runtime;
6231  
6232  		/* we check whether we're throttled above */
6233  		if (cfs_rq->runtime_remaining > 0) {
6234  			if (cpu_of(rq) != this_cpu) {
6235  				unthrottle_cfs_rq_async(cfs_rq);
6236  			} else {
6237  				/*
6238  				 * We currently only expect to be unthrottling
6239  				 * a single cfs_rq locally.
6240  				 */
6241  				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6242  				list_add_tail(&cfs_rq->throttled_csd_list,
6243  					      &local_unthrottle);
6244  			}
6245  		} else {
6246  			throttled = true;
6247  		}
6248  
6249  next:
6250  		rq_unlock_irqrestore(rq, &rf);
6251  	}
6252  
6253  	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6254  				 throttled_csd_list) {
6255  		struct rq *rq = rq_of(cfs_rq);
6256  
6257  		rq_lock_irqsave(rq, &rf);
6258  
6259  		list_del_init(&cfs_rq->throttled_csd_list);
6260  
6261  		if (cfs_rq_throttled(cfs_rq))
6262  			unthrottle_cfs_rq(cfs_rq);
6263  
6264  		rq_unlock_irqrestore(rq, &rf);
6265  	}
6266  	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6267  
6268  	rcu_read_unlock();
6269  
6270  	return throttled;
6271  }
6272  
6273  /*
6274   * Responsible for refilling a task_group's bandwidth and unthrottling its
6275   * cfs_rqs as appropriate. If there has been no activity within the last
6276   * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6277   * used to track this state.
6278   */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6279  static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6280  {
6281  	int throttled;
6282  
6283  	/* no need to continue the timer with no bandwidth constraint */
6284  	if (cfs_b->quota == RUNTIME_INF)
6285  		goto out_deactivate;
6286  
6287  	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6288  	cfs_b->nr_periods += overrun;
6289  
6290  	/* Refill extra burst quota even if cfs_b->idle */
6291  	__refill_cfs_bandwidth_runtime(cfs_b);
6292  
6293  	/*
6294  	 * idle depends on !throttled (for the case of a large deficit), and if
6295  	 * we're going inactive then everything else can be deferred
6296  	 */
6297  	if (cfs_b->idle && !throttled)
6298  		goto out_deactivate;
6299  
6300  	if (!throttled) {
6301  		/* mark as potentially idle for the upcoming period */
6302  		cfs_b->idle = 1;
6303  		return 0;
6304  	}
6305  
6306  	/* account preceding periods in which throttling occurred */
6307  	cfs_b->nr_throttled += overrun;
6308  
6309  	/*
6310  	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6311  	 */
6312  	while (throttled && cfs_b->runtime > 0) {
6313  		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6314  		/* we can't nest cfs_b->lock while distributing bandwidth */
6315  		throttled = distribute_cfs_runtime(cfs_b);
6316  		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6317  	}
6318  
6319  	/*
6320  	 * While we are ensured activity in the period following an
6321  	 * unthrottle, this also covers the case in which the new bandwidth is
6322  	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6323  	 * timer to remain active while there are any throttled entities.)
6324  	 */
6325  	cfs_b->idle = 0;
6326  
6327  	return 0;
6328  
6329  out_deactivate:
6330  	return 1;
6331  }
6332  
6333  /* a cfs_rq won't donate quota below this amount */
6334  static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6335  /* minimum remaining period time to redistribute slack quota */
6336  static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6337  /* how long we wait to gather additional slack before distributing */
6338  static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6339  
6340  /*
6341   * Are we near the end of the current quota period?
6342   *
6343   * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6344   * hrtimer base being cleared by hrtimer_start. In the case of
6345   * migrate_hrtimers, base is never cleared, so we are fine.
6346   */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6347  static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6348  {
6349  	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6350  	s64 remaining;
6351  
6352  	/* if the call-back is running a quota refresh is already occurring */
6353  	if (hrtimer_callback_running(refresh_timer))
6354  		return 1;
6355  
6356  	/* is a quota refresh about to occur? */
6357  	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6358  	if (remaining < (s64)min_expire)
6359  		return 1;
6360  
6361  	return 0;
6362  }
6363  
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6364  static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6365  {
6366  	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6367  
6368  	/* if there's a quota refresh soon don't bother with slack */
6369  	if (runtime_refresh_within(cfs_b, min_left))
6370  		return;
6371  
6372  	/* don't push forwards an existing deferred unthrottle */
6373  	if (cfs_b->slack_started)
6374  		return;
6375  	cfs_b->slack_started = true;
6376  
6377  	hrtimer_start(&cfs_b->slack_timer,
6378  			ns_to_ktime(cfs_bandwidth_slack_period),
6379  			HRTIMER_MODE_REL);
6380  }
6381  
6382  /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6383  static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6384  {
6385  	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6386  	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6387  
6388  	if (slack_runtime <= 0)
6389  		return;
6390  
6391  	raw_spin_lock(&cfs_b->lock);
6392  	if (cfs_b->quota != RUNTIME_INF) {
6393  		cfs_b->runtime += slack_runtime;
6394  
6395  		/* we are under rq->lock, defer unthrottling using a timer */
6396  		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6397  		    !list_empty(&cfs_b->throttled_cfs_rq))
6398  			start_cfs_slack_bandwidth(cfs_b);
6399  	}
6400  	raw_spin_unlock(&cfs_b->lock);
6401  
6402  	/* even if it's not valid for return we don't want to try again */
6403  	cfs_rq->runtime_remaining -= slack_runtime;
6404  }
6405  
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6406  static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6407  {
6408  	if (!cfs_bandwidth_used())
6409  		return;
6410  
6411  	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6412  		return;
6413  
6414  	__return_cfs_rq_runtime(cfs_rq);
6415  }
6416  
6417  /*
6418   * This is done with a timer (instead of inline with bandwidth return) since
6419   * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6420   */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6421  static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6422  {
6423  	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6424  	unsigned long flags;
6425  
6426  	/* confirm we're still not at a refresh boundary */
6427  	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6428  	cfs_b->slack_started = false;
6429  
6430  	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6431  		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6432  		return;
6433  	}
6434  
6435  	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6436  		runtime = cfs_b->runtime;
6437  
6438  	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6439  
6440  	if (!runtime)
6441  		return;
6442  
6443  	distribute_cfs_runtime(cfs_b);
6444  }
6445  
6446  /*
6447   * When a group wakes up we want to make sure that its quota is not already
6448   * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6449   * runtime as update_curr() throttling can not trigger until it's on-rq.
6450   */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6451  static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6452  {
6453  	if (!cfs_bandwidth_used())
6454  		return;
6455  
6456  	/* an active group must be handled by the update_curr()->put() path */
6457  	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6458  		return;
6459  
6460  	/* ensure the group is not already throttled */
6461  	if (cfs_rq_throttled(cfs_rq))
6462  		return;
6463  
6464  	/* update runtime allocation */
6465  	account_cfs_rq_runtime(cfs_rq, 0);
6466  	if (cfs_rq->runtime_remaining <= 0)
6467  		throttle_cfs_rq(cfs_rq);
6468  }
6469  
sync_throttle(struct task_group * tg,int cpu)6470  static void sync_throttle(struct task_group *tg, int cpu)
6471  {
6472  	struct cfs_rq *pcfs_rq, *cfs_rq;
6473  
6474  	if (!cfs_bandwidth_used())
6475  		return;
6476  
6477  	if (!tg->parent)
6478  		return;
6479  
6480  	cfs_rq = tg->cfs_rq[cpu];
6481  	pcfs_rq = tg->parent->cfs_rq[cpu];
6482  
6483  	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6484  	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6485  }
6486  
6487  /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6488  static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6489  {
6490  	if (!cfs_bandwidth_used())
6491  		return false;
6492  
6493  	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6494  		return false;
6495  
6496  	/*
6497  	 * it's possible for a throttled entity to be forced into a running
6498  	 * state (e.g. set_curr_task), in this case we're finished.
6499  	 */
6500  	if (cfs_rq_throttled(cfs_rq))
6501  		return true;
6502  
6503  	return throttle_cfs_rq(cfs_rq);
6504  }
6505  
sched_cfs_slack_timer(struct hrtimer * timer)6506  static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6507  {
6508  	struct cfs_bandwidth *cfs_b =
6509  		container_of(timer, struct cfs_bandwidth, slack_timer);
6510  
6511  	do_sched_cfs_slack_timer(cfs_b);
6512  
6513  	return HRTIMER_NORESTART;
6514  }
6515  
6516  extern const u64 max_cfs_quota_period;
6517  
sched_cfs_period_timer(struct hrtimer * timer)6518  static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6519  {
6520  	struct cfs_bandwidth *cfs_b =
6521  		container_of(timer, struct cfs_bandwidth, period_timer);
6522  	unsigned long flags;
6523  	int overrun;
6524  	int idle = 0;
6525  	int count = 0;
6526  
6527  	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6528  	for (;;) {
6529  		overrun = hrtimer_forward_now(timer, cfs_b->period);
6530  		if (!overrun)
6531  			break;
6532  
6533  		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6534  
6535  		if (++count > 3) {
6536  			u64 new, old = ktime_to_ns(cfs_b->period);
6537  
6538  			/*
6539  			 * Grow period by a factor of 2 to avoid losing precision.
6540  			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6541  			 * to fail.
6542  			 */
6543  			new = old * 2;
6544  			if (new < max_cfs_quota_period) {
6545  				cfs_b->period = ns_to_ktime(new);
6546  				cfs_b->quota *= 2;
6547  				cfs_b->burst *= 2;
6548  
6549  				pr_warn_ratelimited(
6550  	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6551  					smp_processor_id(),
6552  					div_u64(new, NSEC_PER_USEC),
6553  					div_u64(cfs_b->quota, NSEC_PER_USEC));
6554  			} else {
6555  				pr_warn_ratelimited(
6556  	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6557  					smp_processor_id(),
6558  					div_u64(old, NSEC_PER_USEC),
6559  					div_u64(cfs_b->quota, NSEC_PER_USEC));
6560  			}
6561  
6562  			/* reset count so we don't come right back in here */
6563  			count = 0;
6564  		}
6565  	}
6566  	if (idle)
6567  		cfs_b->period_active = 0;
6568  	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6569  
6570  	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6571  }
6572  
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6573  void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6574  {
6575  	raw_spin_lock_init(&cfs_b->lock);
6576  	cfs_b->runtime = 0;
6577  	cfs_b->quota = RUNTIME_INF;
6578  	cfs_b->period = ns_to_ktime(default_cfs_period());
6579  	cfs_b->burst = 0;
6580  	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6581  
6582  	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6583  	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6584  	cfs_b->period_timer.function = sched_cfs_period_timer;
6585  
6586  	/* Add a random offset so that timers interleave */
6587  	hrtimer_set_expires(&cfs_b->period_timer,
6588  			    get_random_u32_below(cfs_b->period));
6589  	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6590  	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6591  	cfs_b->slack_started = false;
6592  }
6593  
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6594  static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6595  {
6596  	cfs_rq->runtime_enabled = 0;
6597  	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6598  	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6599  }
6600  
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6601  void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6602  {
6603  	lockdep_assert_held(&cfs_b->lock);
6604  
6605  	if (cfs_b->period_active)
6606  		return;
6607  
6608  	cfs_b->period_active = 1;
6609  	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6610  	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6611  }
6612  
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6613  static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6614  {
6615  	int __maybe_unused i;
6616  
6617  	/* init_cfs_bandwidth() was not called */
6618  	if (!cfs_b->throttled_cfs_rq.next)
6619  		return;
6620  
6621  	hrtimer_cancel(&cfs_b->period_timer);
6622  	hrtimer_cancel(&cfs_b->slack_timer);
6623  
6624  	/*
6625  	 * It is possible that we still have some cfs_rq's pending on a CSD
6626  	 * list, though this race is very rare. In order for this to occur, we
6627  	 * must have raced with the last task leaving the group while there
6628  	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6629  	 * CSD item but the remote cpu has not yet processed it. To handle this,
6630  	 * we can simply flush all pending CSD work inline here. We're
6631  	 * guaranteed at this point that no additional cfs_rq of this group can
6632  	 * join a CSD list.
6633  	 */
6634  #ifdef CONFIG_SMP
6635  	for_each_possible_cpu(i) {
6636  		struct rq *rq = cpu_rq(i);
6637  		unsigned long flags;
6638  
6639  		if (list_empty(&rq->cfsb_csd_list))
6640  			continue;
6641  
6642  		local_irq_save(flags);
6643  		__cfsb_csd_unthrottle(rq);
6644  		local_irq_restore(flags);
6645  	}
6646  #endif
6647  }
6648  
6649  /*
6650   * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6651   *
6652   * The race is harmless, since modifying bandwidth settings of unhooked group
6653   * bits doesn't do much.
6654   */
6655  
6656  /* cpu online callback */
update_runtime_enabled(struct rq * rq)6657  static void __maybe_unused update_runtime_enabled(struct rq *rq)
6658  {
6659  	struct task_group *tg;
6660  
6661  	lockdep_assert_rq_held(rq);
6662  
6663  	rcu_read_lock();
6664  	list_for_each_entry_rcu(tg, &task_groups, list) {
6665  		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6666  		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6667  
6668  		raw_spin_lock(&cfs_b->lock);
6669  		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6670  		raw_spin_unlock(&cfs_b->lock);
6671  	}
6672  	rcu_read_unlock();
6673  }
6674  
6675  /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6676  static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6677  {
6678  	struct task_group *tg;
6679  
6680  	lockdep_assert_rq_held(rq);
6681  
6682  	/*
6683  	 * The rq clock has already been updated in the
6684  	 * set_rq_offline(), so we should skip updating
6685  	 * the rq clock again in unthrottle_cfs_rq().
6686  	 */
6687  	rq_clock_start_loop_update(rq);
6688  
6689  	rcu_read_lock();
6690  	list_for_each_entry_rcu(tg, &task_groups, list) {
6691  		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6692  
6693  		if (!cfs_rq->runtime_enabled)
6694  			continue;
6695  
6696  		/*
6697  		 * clock_task is not advancing so we just need to make sure
6698  		 * there's some valid quota amount
6699  		 */
6700  		cfs_rq->runtime_remaining = 1;
6701  		/*
6702  		 * Offline rq is schedulable till CPU is completely disabled
6703  		 * in take_cpu_down(), so we prevent new cfs throttling here.
6704  		 */
6705  		cfs_rq->runtime_enabled = 0;
6706  
6707  		if (cfs_rq_throttled(cfs_rq))
6708  			unthrottle_cfs_rq(cfs_rq);
6709  	}
6710  	rcu_read_unlock();
6711  
6712  	rq_clock_stop_loop_update(rq);
6713  }
6714  
cfs_task_bw_constrained(struct task_struct * p)6715  bool cfs_task_bw_constrained(struct task_struct *p)
6716  {
6717  	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6718  
6719  	if (!cfs_bandwidth_used())
6720  		return false;
6721  
6722  	if (cfs_rq->runtime_enabled ||
6723  	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6724  		return true;
6725  
6726  	return false;
6727  }
6728  
6729  #ifdef CONFIG_NO_HZ_FULL
6730  /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6731  static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6732  {
6733  	int cpu = cpu_of(rq);
6734  
6735  	if (!cfs_bandwidth_used())
6736  		return;
6737  
6738  	if (!tick_nohz_full_cpu(cpu))
6739  		return;
6740  
6741  	if (rq->nr_running != 1)
6742  		return;
6743  
6744  	/*
6745  	 *  We know there is only one task runnable and we've just picked it. The
6746  	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6747  	 *  be otherwise able to stop the tick. Just need to check if we are using
6748  	 *  bandwidth control.
6749  	 */
6750  	if (cfs_task_bw_constrained(p))
6751  		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6752  }
6753  #endif
6754  
6755  #else /* CONFIG_CFS_BANDWIDTH */
6756  
cfs_bandwidth_used(void)6757  static inline bool cfs_bandwidth_used(void)
6758  {
6759  	return false;
6760  }
6761  
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6762  static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6763  static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6764  static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6765  static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6766  static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6767  
cfs_rq_throttled(struct cfs_rq * cfs_rq)6768  static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6769  {
6770  	return 0;
6771  }
6772  
throttled_hierarchy(struct cfs_rq * cfs_rq)6773  static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6774  {
6775  	return 0;
6776  }
6777  
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6778  static inline int throttled_lb_pair(struct task_group *tg,
6779  				    int src_cpu, int dest_cpu)
6780  {
6781  	return 0;
6782  }
6783  
6784  #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6785  void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6786  static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6787  #endif
6788  
tg_cfs_bandwidth(struct task_group * tg)6789  static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6790  {
6791  	return NULL;
6792  }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6793  static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6794  static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6795  static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6796  #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6797  bool cfs_task_bw_constrained(struct task_struct *p)
6798  {
6799  	return false;
6800  }
6801  #endif
6802  #endif /* CONFIG_CFS_BANDWIDTH */
6803  
6804  #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6805  static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6806  #endif
6807  
6808  /**************************************************
6809   * CFS operations on tasks:
6810   */
6811  
6812  #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6813  static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6814  {
6815  	struct sched_entity *se = &p->se;
6816  
6817  	SCHED_WARN_ON(task_rq(p) != rq);
6818  
6819  	if (rq->cfs.h_nr_running > 1) {
6820  		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6821  		u64 slice = se->slice;
6822  		s64 delta = slice - ran;
6823  
6824  		if (delta < 0) {
6825  			if (task_current(rq, p))
6826  				resched_curr(rq);
6827  			return;
6828  		}
6829  		hrtick_start(rq, delta);
6830  	}
6831  }
6832  
6833  /*
6834   * called from enqueue/dequeue and updates the hrtick when the
6835   * current task is from our class and nr_running is low enough
6836   * to matter.
6837   */
hrtick_update(struct rq * rq)6838  static void hrtick_update(struct rq *rq)
6839  {
6840  	struct task_struct *curr = rq->curr;
6841  
6842  	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6843  		return;
6844  
6845  	hrtick_start_fair(rq, curr);
6846  }
6847  #else /* !CONFIG_SCHED_HRTICK */
6848  static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6849  hrtick_start_fair(struct rq *rq, struct task_struct *p)
6850  {
6851  }
6852  
hrtick_update(struct rq * rq)6853  static inline void hrtick_update(struct rq *rq)
6854  {
6855  }
6856  #endif
6857  
6858  #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6859  static inline bool cpu_overutilized(int cpu)
6860  {
6861  	unsigned long  rq_util_min, rq_util_max;
6862  
6863  	if (!sched_energy_enabled())
6864  		return false;
6865  
6866  	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6867  	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6868  
6869  	/* Return true only if the utilization doesn't fit CPU's capacity */
6870  	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6871  }
6872  
6873  /*
6874   * overutilized value make sense only if EAS is enabled
6875   */
is_rd_overutilized(struct root_domain * rd)6876  static inline bool is_rd_overutilized(struct root_domain *rd)
6877  {
6878  	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6879  }
6880  
set_rd_overutilized(struct root_domain * rd,bool flag)6881  static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6882  {
6883  	if (!sched_energy_enabled())
6884  		return;
6885  
6886  	WRITE_ONCE(rd->overutilized, flag);
6887  	trace_sched_overutilized_tp(rd, flag);
6888  }
6889  
check_update_overutilized_status(struct rq * rq)6890  static inline void check_update_overutilized_status(struct rq *rq)
6891  {
6892  	/*
6893  	 * overutilized field is used for load balancing decisions only
6894  	 * if energy aware scheduler is being used
6895  	 */
6896  
6897  	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6898  		set_rd_overutilized(rq->rd, 1);
6899  }
6900  #else
check_update_overutilized_status(struct rq * rq)6901  static inline void check_update_overutilized_status(struct rq *rq) { }
6902  #endif
6903  
6904  /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6905  static int sched_idle_rq(struct rq *rq)
6906  {
6907  	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6908  			rq->nr_running);
6909  }
6910  
6911  #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6912  static int sched_idle_cpu(int cpu)
6913  {
6914  	return sched_idle_rq(cpu_rq(cpu));
6915  }
6916  #endif
6917  
6918  static void
requeue_delayed_entity(struct sched_entity * se)6919  requeue_delayed_entity(struct sched_entity *se)
6920  {
6921  	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6922  
6923  	/*
6924  	 * se->sched_delayed should imply: se->on_rq == 1.
6925  	 * Because a delayed entity is one that is still on
6926  	 * the runqueue competing until elegibility.
6927  	 */
6928  	SCHED_WARN_ON(!se->sched_delayed);
6929  	SCHED_WARN_ON(!se->on_rq);
6930  
6931  	if (sched_feat(DELAY_ZERO)) {
6932  		update_entity_lag(cfs_rq, se);
6933  		if (se->vlag > 0) {
6934  			cfs_rq->nr_running--;
6935  			if (se != cfs_rq->curr)
6936  				__dequeue_entity(cfs_rq, se);
6937  			se->vlag = 0;
6938  			place_entity(cfs_rq, se, 0);
6939  			if (se != cfs_rq->curr)
6940  				__enqueue_entity(cfs_rq, se);
6941  			cfs_rq->nr_running++;
6942  		}
6943  	}
6944  
6945  	update_load_avg(cfs_rq, se, 0);
6946  	se->sched_delayed = 0;
6947  }
6948  
6949  /*
6950   * The enqueue_task method is called before nr_running is
6951   * increased. Here we update the fair scheduling stats and
6952   * then put the task into the rbtree:
6953   */
6954  static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6955  enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6956  {
6957  	struct cfs_rq *cfs_rq;
6958  	struct sched_entity *se = &p->se;
6959  	int idle_h_nr_running = task_has_idle_policy(p);
6960  	int task_new = !(flags & ENQUEUE_WAKEUP);
6961  	int rq_h_nr_running = rq->cfs.h_nr_running;
6962  	u64 slice = 0;
6963  
6964  	/*
6965  	 * The code below (indirectly) updates schedutil which looks at
6966  	 * the cfs_rq utilization to select a frequency.
6967  	 * Let's add the task's estimated utilization to the cfs_rq's
6968  	 * estimated utilization, before we update schedutil.
6969  	 */
6970  	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
6971  		util_est_enqueue(&rq->cfs, p);
6972  
6973  	if (flags & ENQUEUE_DELAYED) {
6974  		requeue_delayed_entity(se);
6975  		return;
6976  	}
6977  
6978  	/*
6979  	 * If in_iowait is set, the code below may not trigger any cpufreq
6980  	 * utilization updates, so do it here explicitly with the IOWAIT flag
6981  	 * passed.
6982  	 */
6983  	if (p->in_iowait)
6984  		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6985  
6986  	for_each_sched_entity(se) {
6987  		if (se->on_rq) {
6988  			if (se->sched_delayed)
6989  				requeue_delayed_entity(se);
6990  			break;
6991  		}
6992  		cfs_rq = cfs_rq_of(se);
6993  
6994  		/*
6995  		 * Basically set the slice of group entries to the min_slice of
6996  		 * their respective cfs_rq. This ensures the group can service
6997  		 * its entities in the desired time-frame.
6998  		 */
6999  		if (slice) {
7000  			se->slice = slice;
7001  			se->custom_slice = 1;
7002  		}
7003  		enqueue_entity(cfs_rq, se, flags);
7004  		slice = cfs_rq_min_slice(cfs_rq);
7005  
7006  		cfs_rq->h_nr_running++;
7007  		cfs_rq->idle_h_nr_running += idle_h_nr_running;
7008  
7009  		if (cfs_rq_is_idle(cfs_rq))
7010  			idle_h_nr_running = 1;
7011  
7012  		/* end evaluation on encountering a throttled cfs_rq */
7013  		if (cfs_rq_throttled(cfs_rq))
7014  			goto enqueue_throttle;
7015  
7016  		flags = ENQUEUE_WAKEUP;
7017  	}
7018  
7019  	for_each_sched_entity(se) {
7020  		cfs_rq = cfs_rq_of(se);
7021  
7022  		update_load_avg(cfs_rq, se, UPDATE_TG);
7023  		se_update_runnable(se);
7024  		update_cfs_group(se);
7025  
7026  		se->slice = slice;
7027  		slice = cfs_rq_min_slice(cfs_rq);
7028  
7029  		cfs_rq->h_nr_running++;
7030  		cfs_rq->idle_h_nr_running += idle_h_nr_running;
7031  
7032  		if (cfs_rq_is_idle(cfs_rq))
7033  			idle_h_nr_running = 1;
7034  
7035  		/* end evaluation on encountering a throttled cfs_rq */
7036  		if (cfs_rq_throttled(cfs_rq))
7037  			goto enqueue_throttle;
7038  	}
7039  
7040  	if (!rq_h_nr_running && rq->cfs.h_nr_running) {
7041  		/* Account for idle runtime */
7042  		if (!rq->nr_running)
7043  			dl_server_update_idle_time(rq, rq->curr);
7044  		dl_server_start(&rq->fair_server);
7045  	}
7046  
7047  	/* At this point se is NULL and we are at root level*/
7048  	add_nr_running(rq, 1);
7049  
7050  	/*
7051  	 * Since new tasks are assigned an initial util_avg equal to
7052  	 * half of the spare capacity of their CPU, tiny tasks have the
7053  	 * ability to cross the overutilized threshold, which will
7054  	 * result in the load balancer ruining all the task placement
7055  	 * done by EAS. As a way to mitigate that effect, do not account
7056  	 * for the first enqueue operation of new tasks during the
7057  	 * overutilized flag detection.
7058  	 *
7059  	 * A better way of solving this problem would be to wait for
7060  	 * the PELT signals of tasks to converge before taking them
7061  	 * into account, but that is not straightforward to implement,
7062  	 * and the following generally works well enough in practice.
7063  	 */
7064  	if (!task_new)
7065  		check_update_overutilized_status(rq);
7066  
7067  enqueue_throttle:
7068  	assert_list_leaf_cfs_rq(rq);
7069  
7070  	hrtick_update(rq);
7071  }
7072  
7073  static void set_next_buddy(struct sched_entity *se);
7074  
7075  /*
7076   * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7077   * failing half-way through and resume the dequeue later.
7078   *
7079   * Returns:
7080   * -1 - dequeue delayed
7081   *  0 - dequeue throttled
7082   *  1 - dequeue complete
7083   */
dequeue_entities(struct rq * rq,struct sched_entity * se,int flags)7084  static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7085  {
7086  	bool was_sched_idle = sched_idle_rq(rq);
7087  	int rq_h_nr_running = rq->cfs.h_nr_running;
7088  	bool task_sleep = flags & DEQUEUE_SLEEP;
7089  	bool task_delayed = flags & DEQUEUE_DELAYED;
7090  	struct task_struct *p = NULL;
7091  	int idle_h_nr_running = 0;
7092  	int h_nr_running = 0;
7093  	struct cfs_rq *cfs_rq;
7094  	u64 slice = 0;
7095  
7096  	if (entity_is_task(se)) {
7097  		p = task_of(se);
7098  		h_nr_running = 1;
7099  		idle_h_nr_running = task_has_idle_policy(p);
7100  	} else {
7101  		cfs_rq = group_cfs_rq(se);
7102  		slice = cfs_rq_min_slice(cfs_rq);
7103  	}
7104  
7105  	for_each_sched_entity(se) {
7106  		cfs_rq = cfs_rq_of(se);
7107  
7108  		if (!dequeue_entity(cfs_rq, se, flags)) {
7109  			if (p && &p->se == se)
7110  				return -1;
7111  
7112  			break;
7113  		}
7114  
7115  		cfs_rq->h_nr_running -= h_nr_running;
7116  		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7117  
7118  		if (cfs_rq_is_idle(cfs_rq))
7119  			idle_h_nr_running = h_nr_running;
7120  
7121  		/* end evaluation on encountering a throttled cfs_rq */
7122  		if (cfs_rq_throttled(cfs_rq))
7123  			return 0;
7124  
7125  		/* Don't dequeue parent if it has other entities besides us */
7126  		if (cfs_rq->load.weight) {
7127  			slice = cfs_rq_min_slice(cfs_rq);
7128  
7129  			/* Avoid re-evaluating load for this entity: */
7130  			se = parent_entity(se);
7131  			/*
7132  			 * Bias pick_next to pick a task from this cfs_rq, as
7133  			 * p is sleeping when it is within its sched_slice.
7134  			 */
7135  			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7136  				set_next_buddy(se);
7137  			break;
7138  		}
7139  		flags |= DEQUEUE_SLEEP;
7140  		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7141  	}
7142  
7143  	for_each_sched_entity(se) {
7144  		cfs_rq = cfs_rq_of(se);
7145  
7146  		update_load_avg(cfs_rq, se, UPDATE_TG);
7147  		se_update_runnable(se);
7148  		update_cfs_group(se);
7149  
7150  		se->slice = slice;
7151  		slice = cfs_rq_min_slice(cfs_rq);
7152  
7153  		cfs_rq->h_nr_running -= h_nr_running;
7154  		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7155  
7156  		if (cfs_rq_is_idle(cfs_rq))
7157  			idle_h_nr_running = h_nr_running;
7158  
7159  		/* end evaluation on encountering a throttled cfs_rq */
7160  		if (cfs_rq_throttled(cfs_rq))
7161  			return 0;
7162  	}
7163  
7164  	sub_nr_running(rq, h_nr_running);
7165  
7166  	if (rq_h_nr_running && !rq->cfs.h_nr_running)
7167  		dl_server_stop(&rq->fair_server);
7168  
7169  	/* balance early to pull high priority tasks */
7170  	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7171  		rq->next_balance = jiffies;
7172  
7173  	if (p && task_delayed) {
7174  		SCHED_WARN_ON(!task_sleep);
7175  		SCHED_WARN_ON(p->on_rq != 1);
7176  
7177  		/* Fix-up what dequeue_task_fair() skipped */
7178  		hrtick_update(rq);
7179  
7180  		/*
7181  		 * Fix-up what block_task() skipped.
7182  		 *
7183  		 * Must be last, @p might not be valid after this.
7184  		 */
7185  		__block_task(rq, p);
7186  	}
7187  
7188  	return 1;
7189  }
7190  
7191  /*
7192   * The dequeue_task method is called before nr_running is
7193   * decreased. We remove the task from the rbtree and
7194   * update the fair scheduling stats:
7195   */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7196  static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7197  {
7198  	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7199  		util_est_dequeue(&rq->cfs, p);
7200  
7201  	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7202  	if (dequeue_entities(rq, &p->se, flags) < 0)
7203  		return false;
7204  
7205  	/*
7206  	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7207  	 */
7208  
7209  	hrtick_update(rq);
7210  	return true;
7211  }
7212  
7213  #ifdef CONFIG_SMP
7214  
7215  /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7216  static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7217  static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7218  static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7219  
7220  #ifdef CONFIG_NO_HZ_COMMON
7221  
7222  static struct {
7223  	cpumask_var_t idle_cpus_mask;
7224  	atomic_t nr_cpus;
7225  	int has_blocked;		/* Idle CPUS has blocked load */
7226  	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7227  	unsigned long next_balance;     /* in jiffy units */
7228  	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7229  } nohz ____cacheline_aligned;
7230  
7231  #endif /* CONFIG_NO_HZ_COMMON */
7232  
cpu_load(struct rq * rq)7233  static unsigned long cpu_load(struct rq *rq)
7234  {
7235  	return cfs_rq_load_avg(&rq->cfs);
7236  }
7237  
7238  /*
7239   * cpu_load_without - compute CPU load without any contributions from *p
7240   * @cpu: the CPU which load is requested
7241   * @p: the task which load should be discounted
7242   *
7243   * The load of a CPU is defined by the load of tasks currently enqueued on that
7244   * CPU as well as tasks which are currently sleeping after an execution on that
7245   * CPU.
7246   *
7247   * This method returns the load of the specified CPU by discounting the load of
7248   * the specified task, whenever the task is currently contributing to the CPU
7249   * load.
7250   */
cpu_load_without(struct rq * rq,struct task_struct * p)7251  static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7252  {
7253  	struct cfs_rq *cfs_rq;
7254  	unsigned int load;
7255  
7256  	/* Task has no contribution or is new */
7257  	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7258  		return cpu_load(rq);
7259  
7260  	cfs_rq = &rq->cfs;
7261  	load = READ_ONCE(cfs_rq->avg.load_avg);
7262  
7263  	/* Discount task's util from CPU's util */
7264  	lsub_positive(&load, task_h_load(p));
7265  
7266  	return load;
7267  }
7268  
cpu_runnable(struct rq * rq)7269  static unsigned long cpu_runnable(struct rq *rq)
7270  {
7271  	return cfs_rq_runnable_avg(&rq->cfs);
7272  }
7273  
cpu_runnable_without(struct rq * rq,struct task_struct * p)7274  static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7275  {
7276  	struct cfs_rq *cfs_rq;
7277  	unsigned int runnable;
7278  
7279  	/* Task has no contribution or is new */
7280  	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7281  		return cpu_runnable(rq);
7282  
7283  	cfs_rq = &rq->cfs;
7284  	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7285  
7286  	/* Discount task's runnable from CPU's runnable */
7287  	lsub_positive(&runnable, p->se.avg.runnable_avg);
7288  
7289  	return runnable;
7290  }
7291  
capacity_of(int cpu)7292  static unsigned long capacity_of(int cpu)
7293  {
7294  	return cpu_rq(cpu)->cpu_capacity;
7295  }
7296  
record_wakee(struct task_struct * p)7297  static void record_wakee(struct task_struct *p)
7298  {
7299  	/*
7300  	 * Only decay a single time; tasks that have less then 1 wakeup per
7301  	 * jiffy will not have built up many flips.
7302  	 */
7303  	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7304  		current->wakee_flips >>= 1;
7305  		current->wakee_flip_decay_ts = jiffies;
7306  	}
7307  
7308  	if (current->last_wakee != p) {
7309  		current->last_wakee = p;
7310  		current->wakee_flips++;
7311  	}
7312  }
7313  
7314  /*
7315   * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7316   *
7317   * A waker of many should wake a different task than the one last awakened
7318   * at a frequency roughly N times higher than one of its wakees.
7319   *
7320   * In order to determine whether we should let the load spread vs consolidating
7321   * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7322   * partner, and a factor of lls_size higher frequency in the other.
7323   *
7324   * With both conditions met, we can be relatively sure that the relationship is
7325   * non-monogamous, with partner count exceeding socket size.
7326   *
7327   * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7328   * whatever is irrelevant, spread criteria is apparent partner count exceeds
7329   * socket size.
7330   */
wake_wide(struct task_struct * p)7331  static int wake_wide(struct task_struct *p)
7332  {
7333  	unsigned int master = current->wakee_flips;
7334  	unsigned int slave = p->wakee_flips;
7335  	int factor = __this_cpu_read(sd_llc_size);
7336  
7337  	if (master < slave)
7338  		swap(master, slave);
7339  	if (slave < factor || master < slave * factor)
7340  		return 0;
7341  	return 1;
7342  }
7343  
7344  /*
7345   * The purpose of wake_affine() is to quickly determine on which CPU we can run
7346   * soonest. For the purpose of speed we only consider the waking and previous
7347   * CPU.
7348   *
7349   * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7350   *			cache-affine and is (or	will be) idle.
7351   *
7352   * wake_affine_weight() - considers the weight to reflect the average
7353   *			  scheduling latency of the CPUs. This seems to work
7354   *			  for the overloaded case.
7355   */
7356  static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7357  wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7358  {
7359  	/*
7360  	 * If this_cpu is idle, it implies the wakeup is from interrupt
7361  	 * context. Only allow the move if cache is shared. Otherwise an
7362  	 * interrupt intensive workload could force all tasks onto one
7363  	 * node depending on the IO topology or IRQ affinity settings.
7364  	 *
7365  	 * If the prev_cpu is idle and cache affine then avoid a migration.
7366  	 * There is no guarantee that the cache hot data from an interrupt
7367  	 * is more important than cache hot data on the prev_cpu and from
7368  	 * a cpufreq perspective, it's better to have higher utilisation
7369  	 * on one CPU.
7370  	 */
7371  	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7372  		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7373  
7374  	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7375  		return this_cpu;
7376  
7377  	if (available_idle_cpu(prev_cpu))
7378  		return prev_cpu;
7379  
7380  	return nr_cpumask_bits;
7381  }
7382  
7383  static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7384  wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7385  		   int this_cpu, int prev_cpu, int sync)
7386  {
7387  	s64 this_eff_load, prev_eff_load;
7388  	unsigned long task_load;
7389  
7390  	this_eff_load = cpu_load(cpu_rq(this_cpu));
7391  
7392  	if (sync) {
7393  		unsigned long current_load = task_h_load(current);
7394  
7395  		if (current_load > this_eff_load)
7396  			return this_cpu;
7397  
7398  		this_eff_load -= current_load;
7399  	}
7400  
7401  	task_load = task_h_load(p);
7402  
7403  	this_eff_load += task_load;
7404  	if (sched_feat(WA_BIAS))
7405  		this_eff_load *= 100;
7406  	this_eff_load *= capacity_of(prev_cpu);
7407  
7408  	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7409  	prev_eff_load -= task_load;
7410  	if (sched_feat(WA_BIAS))
7411  		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7412  	prev_eff_load *= capacity_of(this_cpu);
7413  
7414  	/*
7415  	 * If sync, adjust the weight of prev_eff_load such that if
7416  	 * prev_eff == this_eff that select_idle_sibling() will consider
7417  	 * stacking the wakee on top of the waker if no other CPU is
7418  	 * idle.
7419  	 */
7420  	if (sync)
7421  		prev_eff_load += 1;
7422  
7423  	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7424  }
7425  
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7426  static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7427  		       int this_cpu, int prev_cpu, int sync)
7428  {
7429  	int target = nr_cpumask_bits;
7430  
7431  	if (sched_feat(WA_IDLE))
7432  		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7433  
7434  	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7435  		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7436  
7437  	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7438  	if (target != this_cpu)
7439  		return prev_cpu;
7440  
7441  	schedstat_inc(sd->ttwu_move_affine);
7442  	schedstat_inc(p->stats.nr_wakeups_affine);
7443  	return target;
7444  }
7445  
7446  static struct sched_group *
7447  sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7448  
7449  /*
7450   * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7451   */
7452  static int
sched_balance_find_dst_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7453  sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7454  {
7455  	unsigned long load, min_load = ULONG_MAX;
7456  	unsigned int min_exit_latency = UINT_MAX;
7457  	u64 latest_idle_timestamp = 0;
7458  	int least_loaded_cpu = this_cpu;
7459  	int shallowest_idle_cpu = -1;
7460  	int i;
7461  
7462  	/* Check if we have any choice: */
7463  	if (group->group_weight == 1)
7464  		return cpumask_first(sched_group_span(group));
7465  
7466  	/* Traverse only the allowed CPUs */
7467  	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7468  		struct rq *rq = cpu_rq(i);
7469  
7470  		if (!sched_core_cookie_match(rq, p))
7471  			continue;
7472  
7473  		if (sched_idle_cpu(i))
7474  			return i;
7475  
7476  		if (available_idle_cpu(i)) {
7477  			struct cpuidle_state *idle = idle_get_state(rq);
7478  			if (idle && idle->exit_latency < min_exit_latency) {
7479  				/*
7480  				 * We give priority to a CPU whose idle state
7481  				 * has the smallest exit latency irrespective
7482  				 * of any idle timestamp.
7483  				 */
7484  				min_exit_latency = idle->exit_latency;
7485  				latest_idle_timestamp = rq->idle_stamp;
7486  				shallowest_idle_cpu = i;
7487  			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7488  				   rq->idle_stamp > latest_idle_timestamp) {
7489  				/*
7490  				 * If equal or no active idle state, then
7491  				 * the most recently idled CPU might have
7492  				 * a warmer cache.
7493  				 */
7494  				latest_idle_timestamp = rq->idle_stamp;
7495  				shallowest_idle_cpu = i;
7496  			}
7497  		} else if (shallowest_idle_cpu == -1) {
7498  			load = cpu_load(cpu_rq(i));
7499  			if (load < min_load) {
7500  				min_load = load;
7501  				least_loaded_cpu = i;
7502  			}
7503  		}
7504  	}
7505  
7506  	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7507  }
7508  
sched_balance_find_dst_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7509  static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7510  				  int cpu, int prev_cpu, int sd_flag)
7511  {
7512  	int new_cpu = cpu;
7513  
7514  	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7515  		return prev_cpu;
7516  
7517  	/*
7518  	 * We need task's util for cpu_util_without, sync it up to
7519  	 * prev_cpu's last_update_time.
7520  	 */
7521  	if (!(sd_flag & SD_BALANCE_FORK))
7522  		sync_entity_load_avg(&p->se);
7523  
7524  	while (sd) {
7525  		struct sched_group *group;
7526  		struct sched_domain *tmp;
7527  		int weight;
7528  
7529  		if (!(sd->flags & sd_flag)) {
7530  			sd = sd->child;
7531  			continue;
7532  		}
7533  
7534  		group = sched_balance_find_dst_group(sd, p, cpu);
7535  		if (!group) {
7536  			sd = sd->child;
7537  			continue;
7538  		}
7539  
7540  		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7541  		if (new_cpu == cpu) {
7542  			/* Now try balancing at a lower domain level of 'cpu': */
7543  			sd = sd->child;
7544  			continue;
7545  		}
7546  
7547  		/* Now try balancing at a lower domain level of 'new_cpu': */
7548  		cpu = new_cpu;
7549  		weight = sd->span_weight;
7550  		sd = NULL;
7551  		for_each_domain(cpu, tmp) {
7552  			if (weight <= tmp->span_weight)
7553  				break;
7554  			if (tmp->flags & sd_flag)
7555  				sd = tmp;
7556  		}
7557  	}
7558  
7559  	return new_cpu;
7560  }
7561  
__select_idle_cpu(int cpu,struct task_struct * p)7562  static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7563  {
7564  	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7565  	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7566  		return cpu;
7567  
7568  	return -1;
7569  }
7570  
7571  #ifdef CONFIG_SCHED_SMT
7572  DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7573  EXPORT_SYMBOL_GPL(sched_smt_present);
7574  
set_idle_cores(int cpu,int val)7575  static inline void set_idle_cores(int cpu, int val)
7576  {
7577  	struct sched_domain_shared *sds;
7578  
7579  	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7580  	if (sds)
7581  		WRITE_ONCE(sds->has_idle_cores, val);
7582  }
7583  
test_idle_cores(int cpu)7584  static inline bool test_idle_cores(int cpu)
7585  {
7586  	struct sched_domain_shared *sds;
7587  
7588  	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7589  	if (sds)
7590  		return READ_ONCE(sds->has_idle_cores);
7591  
7592  	return false;
7593  }
7594  
7595  /*
7596   * Scans the local SMT mask to see if the entire core is idle, and records this
7597   * information in sd_llc_shared->has_idle_cores.
7598   *
7599   * Since SMT siblings share all cache levels, inspecting this limited remote
7600   * state should be fairly cheap.
7601   */
__update_idle_core(struct rq * rq)7602  void __update_idle_core(struct rq *rq)
7603  {
7604  	int core = cpu_of(rq);
7605  	int cpu;
7606  
7607  	rcu_read_lock();
7608  	if (test_idle_cores(core))
7609  		goto unlock;
7610  
7611  	for_each_cpu(cpu, cpu_smt_mask(core)) {
7612  		if (cpu == core)
7613  			continue;
7614  
7615  		if (!available_idle_cpu(cpu))
7616  			goto unlock;
7617  	}
7618  
7619  	set_idle_cores(core, 1);
7620  unlock:
7621  	rcu_read_unlock();
7622  }
7623  
7624  /*
7625   * Scan the entire LLC domain for idle cores; this dynamically switches off if
7626   * there are no idle cores left in the system; tracked through
7627   * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7628   */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7629  static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7630  {
7631  	bool idle = true;
7632  	int cpu;
7633  
7634  	for_each_cpu(cpu, cpu_smt_mask(core)) {
7635  		if (!available_idle_cpu(cpu)) {
7636  			idle = false;
7637  			if (*idle_cpu == -1) {
7638  				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7639  					*idle_cpu = cpu;
7640  					break;
7641  				}
7642  				continue;
7643  			}
7644  			break;
7645  		}
7646  		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7647  			*idle_cpu = cpu;
7648  	}
7649  
7650  	if (idle)
7651  		return core;
7652  
7653  	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7654  	return -1;
7655  }
7656  
7657  /*
7658   * Scan the local SMT mask for idle CPUs.
7659   */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7660  static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7661  {
7662  	int cpu;
7663  
7664  	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7665  		if (cpu == target)
7666  			continue;
7667  		/*
7668  		 * Check if the CPU is in the LLC scheduling domain of @target.
7669  		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7670  		 */
7671  		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7672  			continue;
7673  		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7674  			return cpu;
7675  	}
7676  
7677  	return -1;
7678  }
7679  
7680  #else /* CONFIG_SCHED_SMT */
7681  
set_idle_cores(int cpu,int val)7682  static inline void set_idle_cores(int cpu, int val)
7683  {
7684  }
7685  
test_idle_cores(int cpu)7686  static inline bool test_idle_cores(int cpu)
7687  {
7688  	return false;
7689  }
7690  
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7691  static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7692  {
7693  	return __select_idle_cpu(core, p);
7694  }
7695  
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7696  static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7697  {
7698  	return -1;
7699  }
7700  
7701  #endif /* CONFIG_SCHED_SMT */
7702  
7703  /*
7704   * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7705   * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7706   * average idle time for this rq (as found in rq->avg_idle).
7707   */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7708  static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7709  {
7710  	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7711  	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7712  	struct sched_domain_shared *sd_share;
7713  
7714  	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7715  
7716  	if (sched_feat(SIS_UTIL)) {
7717  		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7718  		if (sd_share) {
7719  			/* because !--nr is the condition to stop scan */
7720  			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7721  			/* overloaded LLC is unlikely to have idle cpu/core */
7722  			if (nr == 1)
7723  				return -1;
7724  		}
7725  	}
7726  
7727  	if (static_branch_unlikely(&sched_cluster_active)) {
7728  		struct sched_group *sg = sd->groups;
7729  
7730  		if (sg->flags & SD_CLUSTER) {
7731  			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7732  				if (!cpumask_test_cpu(cpu, cpus))
7733  					continue;
7734  
7735  				if (has_idle_core) {
7736  					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7737  					if ((unsigned int)i < nr_cpumask_bits)
7738  						return i;
7739  				} else {
7740  					if (--nr <= 0)
7741  						return -1;
7742  					idle_cpu = __select_idle_cpu(cpu, p);
7743  					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7744  						return idle_cpu;
7745  				}
7746  			}
7747  			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7748  		}
7749  	}
7750  
7751  	for_each_cpu_wrap(cpu, cpus, target + 1) {
7752  		if (has_idle_core) {
7753  			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7754  			if ((unsigned int)i < nr_cpumask_bits)
7755  				return i;
7756  
7757  		} else {
7758  			if (--nr <= 0)
7759  				return -1;
7760  			idle_cpu = __select_idle_cpu(cpu, p);
7761  			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7762  				break;
7763  		}
7764  	}
7765  
7766  	if (has_idle_core)
7767  		set_idle_cores(target, false);
7768  
7769  	return idle_cpu;
7770  }
7771  
7772  /*
7773   * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7774   * the task fits. If no CPU is big enough, but there are idle ones, try to
7775   * maximize capacity.
7776   */
7777  static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7778  select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7779  {
7780  	unsigned long task_util, util_min, util_max, best_cap = 0;
7781  	int fits, best_fits = 0;
7782  	int cpu, best_cpu = -1;
7783  	struct cpumask *cpus;
7784  
7785  	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7786  	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7787  
7788  	task_util = task_util_est(p);
7789  	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7790  	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7791  
7792  	for_each_cpu_wrap(cpu, cpus, target) {
7793  		unsigned long cpu_cap = capacity_of(cpu);
7794  
7795  		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7796  			continue;
7797  
7798  		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7799  
7800  		/* This CPU fits with all requirements */
7801  		if (fits > 0)
7802  			return cpu;
7803  		/*
7804  		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7805  		 * Look for the CPU with best capacity.
7806  		 */
7807  		else if (fits < 0)
7808  			cpu_cap = get_actual_cpu_capacity(cpu);
7809  
7810  		/*
7811  		 * First, select CPU which fits better (-1 being better than 0).
7812  		 * Then, select the one with best capacity at same level.
7813  		 */
7814  		if ((fits < best_fits) ||
7815  		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7816  			best_cap = cpu_cap;
7817  			best_cpu = cpu;
7818  			best_fits = fits;
7819  		}
7820  	}
7821  
7822  	return best_cpu;
7823  }
7824  
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7825  static inline bool asym_fits_cpu(unsigned long util,
7826  				 unsigned long util_min,
7827  				 unsigned long util_max,
7828  				 int cpu)
7829  {
7830  	if (sched_asym_cpucap_active())
7831  		/*
7832  		 * Return true only if the cpu fully fits the task requirements
7833  		 * which include the utilization and the performance hints.
7834  		 */
7835  		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7836  
7837  	return true;
7838  }
7839  
7840  /*
7841   * Try and locate an idle core/thread in the LLC cache domain.
7842   */
select_idle_sibling(struct task_struct * p,int prev,int target)7843  static int select_idle_sibling(struct task_struct *p, int prev, int target)
7844  {
7845  	bool has_idle_core = false;
7846  	struct sched_domain *sd;
7847  	unsigned long task_util, util_min, util_max;
7848  	int i, recent_used_cpu, prev_aff = -1;
7849  
7850  	/*
7851  	 * On asymmetric system, update task utilization because we will check
7852  	 * that the task fits with CPU's capacity.
7853  	 */
7854  	if (sched_asym_cpucap_active()) {
7855  		sync_entity_load_avg(&p->se);
7856  		task_util = task_util_est(p);
7857  		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7858  		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7859  	}
7860  
7861  	/*
7862  	 * per-cpu select_rq_mask usage
7863  	 */
7864  	lockdep_assert_irqs_disabled();
7865  
7866  	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7867  	    asym_fits_cpu(task_util, util_min, util_max, target))
7868  		return target;
7869  
7870  	/*
7871  	 * If the previous CPU is cache affine and idle, don't be stupid:
7872  	 */
7873  	if (prev != target && cpus_share_cache(prev, target) &&
7874  	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7875  	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7876  
7877  		if (!static_branch_unlikely(&sched_cluster_active) ||
7878  		    cpus_share_resources(prev, target))
7879  			return prev;
7880  
7881  		prev_aff = prev;
7882  	}
7883  
7884  	/*
7885  	 * Allow a per-cpu kthread to stack with the wakee if the
7886  	 * kworker thread and the tasks previous CPUs are the same.
7887  	 * The assumption is that the wakee queued work for the
7888  	 * per-cpu kthread that is now complete and the wakeup is
7889  	 * essentially a sync wakeup. An obvious example of this
7890  	 * pattern is IO completions.
7891  	 */
7892  	if (is_per_cpu_kthread(current) &&
7893  	    in_task() &&
7894  	    prev == smp_processor_id() &&
7895  	    this_rq()->nr_running <= 1 &&
7896  	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7897  		return prev;
7898  	}
7899  
7900  	/* Check a recently used CPU as a potential idle candidate: */
7901  	recent_used_cpu = p->recent_used_cpu;
7902  	p->recent_used_cpu = prev;
7903  	if (recent_used_cpu != prev &&
7904  	    recent_used_cpu != target &&
7905  	    cpus_share_cache(recent_used_cpu, target) &&
7906  	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7907  	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7908  	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7909  
7910  		if (!static_branch_unlikely(&sched_cluster_active) ||
7911  		    cpus_share_resources(recent_used_cpu, target))
7912  			return recent_used_cpu;
7913  
7914  	} else {
7915  		recent_used_cpu = -1;
7916  	}
7917  
7918  	/*
7919  	 * For asymmetric CPU capacity systems, our domain of interest is
7920  	 * sd_asym_cpucapacity rather than sd_llc.
7921  	 */
7922  	if (sched_asym_cpucap_active()) {
7923  		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7924  		/*
7925  		 * On an asymmetric CPU capacity system where an exclusive
7926  		 * cpuset defines a symmetric island (i.e. one unique
7927  		 * capacity_orig value through the cpuset), the key will be set
7928  		 * but the CPUs within that cpuset will not have a domain with
7929  		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7930  		 * capacity path.
7931  		 */
7932  		if (sd) {
7933  			i = select_idle_capacity(p, sd, target);
7934  			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7935  		}
7936  	}
7937  
7938  	sd = rcu_dereference(per_cpu(sd_llc, target));
7939  	if (!sd)
7940  		return target;
7941  
7942  	if (sched_smt_active()) {
7943  		has_idle_core = test_idle_cores(target);
7944  
7945  		if (!has_idle_core && cpus_share_cache(prev, target)) {
7946  			i = select_idle_smt(p, sd, prev);
7947  			if ((unsigned int)i < nr_cpumask_bits)
7948  				return i;
7949  		}
7950  	}
7951  
7952  	i = select_idle_cpu(p, sd, has_idle_core, target);
7953  	if ((unsigned)i < nr_cpumask_bits)
7954  		return i;
7955  
7956  	/*
7957  	 * For cluster machines which have lower sharing cache like L2 or
7958  	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7959  	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7960  	 * use them if possible when no idle CPU found in select_idle_cpu().
7961  	 */
7962  	if ((unsigned int)prev_aff < nr_cpumask_bits)
7963  		return prev_aff;
7964  	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7965  		return recent_used_cpu;
7966  
7967  	return target;
7968  }
7969  
7970  /**
7971   * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7972   * @cpu: the CPU to get the utilization for
7973   * @p: task for which the CPU utilization should be predicted or NULL
7974   * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7975   * @boost: 1 to enable boosting, otherwise 0
7976   *
7977   * The unit of the return value must be the same as the one of CPU capacity
7978   * so that CPU utilization can be compared with CPU capacity.
7979   *
7980   * CPU utilization is the sum of running time of runnable tasks plus the
7981   * recent utilization of currently non-runnable tasks on that CPU.
7982   * It represents the amount of CPU capacity currently used by CFS tasks in
7983   * the range [0..max CPU capacity] with max CPU capacity being the CPU
7984   * capacity at f_max.
7985   *
7986   * The estimated CPU utilization is defined as the maximum between CPU
7987   * utilization and sum of the estimated utilization of the currently
7988   * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7989   * previously-executed tasks, which helps better deduce how busy a CPU will
7990   * be when a long-sleeping task wakes up. The contribution to CPU utilization
7991   * of such a task would be significantly decayed at this point of time.
7992   *
7993   * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7994   * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7995   * utilization. Boosting is implemented in cpu_util() so that internal
7996   * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7997   * latter via cpu_util_cfs_boost().
7998   *
7999   * CPU utilization can be higher than the current CPU capacity
8000   * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
8001   * of rounding errors as well as task migrations or wakeups of new tasks.
8002   * CPU utilization has to be capped to fit into the [0..max CPU capacity]
8003   * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
8004   * could be seen as over-utilized even though CPU1 has 20% of spare CPU
8005   * capacity. CPU utilization is allowed to overshoot current CPU capacity
8006   * though since this is useful for predicting the CPU capacity required
8007   * after task migrations (scheduler-driven DVFS).
8008   *
8009   * Return: (Boosted) (estimated) utilization for the specified CPU.
8010   */
8011  static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)8012  cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8013  {
8014  	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8015  	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8016  	unsigned long runnable;
8017  
8018  	if (boost) {
8019  		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8020  		util = max(util, runnable);
8021  	}
8022  
8023  	/*
8024  	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8025  	 * contribution. If @p migrates from another CPU to @cpu add its
8026  	 * contribution. In all the other cases @cpu is not impacted by the
8027  	 * migration so its util_avg is already correct.
8028  	 */
8029  	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8030  		lsub_positive(&util, task_util(p));
8031  	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8032  		util += task_util(p);
8033  
8034  	if (sched_feat(UTIL_EST)) {
8035  		unsigned long util_est;
8036  
8037  		util_est = READ_ONCE(cfs_rq->avg.util_est);
8038  
8039  		/*
8040  		 * During wake-up @p isn't enqueued yet and doesn't contribute
8041  		 * to any cpu_rq(cpu)->cfs.avg.util_est.
8042  		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8043  		 * has been enqueued.
8044  		 *
8045  		 * During exec (@dst_cpu = -1) @p is enqueued and does
8046  		 * contribute to cpu_rq(cpu)->cfs.util_est.
8047  		 * Remove it to "simulate" cpu_util without @p's contribution.
8048  		 *
8049  		 * Despite the task_on_rq_queued(@p) check there is still a
8050  		 * small window for a possible race when an exec
8051  		 * select_task_rq_fair() races with LB's detach_task().
8052  		 *
8053  		 *   detach_task()
8054  		 *     deactivate_task()
8055  		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
8056  		 *       -------------------------------- A
8057  		 *       dequeue_task()                    \
8058  		 *         dequeue_task_fair()              + Race Time
8059  		 *           util_est_dequeue()            /
8060  		 *       -------------------------------- B
8061  		 *
8062  		 * The additional check "current == p" is required to further
8063  		 * reduce the race window.
8064  		 */
8065  		if (dst_cpu == cpu)
8066  			util_est += _task_util_est(p);
8067  		else if (p && unlikely(task_on_rq_queued(p) || current == p))
8068  			lsub_positive(&util_est, _task_util_est(p));
8069  
8070  		util = max(util, util_est);
8071  	}
8072  
8073  	return min(util, arch_scale_cpu_capacity(cpu));
8074  }
8075  
cpu_util_cfs(int cpu)8076  unsigned long cpu_util_cfs(int cpu)
8077  {
8078  	return cpu_util(cpu, NULL, -1, 0);
8079  }
8080  
cpu_util_cfs_boost(int cpu)8081  unsigned long cpu_util_cfs_boost(int cpu)
8082  {
8083  	return cpu_util(cpu, NULL, -1, 1);
8084  }
8085  
8086  /*
8087   * cpu_util_without: compute cpu utilization without any contributions from *p
8088   * @cpu: the CPU which utilization is requested
8089   * @p: the task which utilization should be discounted
8090   *
8091   * The utilization of a CPU is defined by the utilization of tasks currently
8092   * enqueued on that CPU as well as tasks which are currently sleeping after an
8093   * execution on that CPU.
8094   *
8095   * This method returns the utilization of the specified CPU by discounting the
8096   * utilization of the specified task, whenever the task is currently
8097   * contributing to the CPU utilization.
8098   */
cpu_util_without(int cpu,struct task_struct * p)8099  static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8100  {
8101  	/* Task has no contribution or is new */
8102  	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8103  		p = NULL;
8104  
8105  	return cpu_util(cpu, p, -1, 0);
8106  }
8107  
8108  /*
8109   * This function computes an effective utilization for the given CPU, to be
8110   * used for frequency selection given the linear relation: f = u * f_max.
8111   *
8112   * The scheduler tracks the following metrics:
8113   *
8114   *   cpu_util_{cfs,rt,dl,irq}()
8115   *   cpu_bw_dl()
8116   *
8117   * Where the cfs,rt and dl util numbers are tracked with the same metric and
8118   * synchronized windows and are thus directly comparable.
8119   *
8120   * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8121   * which excludes things like IRQ and steal-time. These latter are then accrued
8122   * in the IRQ utilization.
8123   *
8124   * The DL bandwidth number OTOH is not a measured metric but a value computed
8125   * based on the task model parameters and gives the minimal utilization
8126   * required to meet deadlines.
8127   */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long * min,unsigned long * max)8128  unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8129  				 unsigned long *min,
8130  				 unsigned long *max)
8131  {
8132  	unsigned long util, irq, scale;
8133  	struct rq *rq = cpu_rq(cpu);
8134  
8135  	scale = arch_scale_cpu_capacity(cpu);
8136  
8137  	/*
8138  	 * Early check to see if IRQ/steal time saturates the CPU, can be
8139  	 * because of inaccuracies in how we track these -- see
8140  	 * update_irq_load_avg().
8141  	 */
8142  	irq = cpu_util_irq(rq);
8143  	if (unlikely(irq >= scale)) {
8144  		if (min)
8145  			*min = scale;
8146  		if (max)
8147  			*max = scale;
8148  		return scale;
8149  	}
8150  
8151  	if (min) {
8152  		/*
8153  		 * The minimum utilization returns the highest level between:
8154  		 * - the computed DL bandwidth needed with the IRQ pressure which
8155  		 *   steals time to the deadline task.
8156  		 * - The minimum performance requirement for CFS and/or RT.
8157  		 */
8158  		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8159  
8160  		/*
8161  		 * When an RT task is runnable and uclamp is not used, we must
8162  		 * ensure that the task will run at maximum compute capacity.
8163  		 */
8164  		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8165  			*min = max(*min, scale);
8166  	}
8167  
8168  	/*
8169  	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8170  	 * CFS tasks and we use the same metric to track the effective
8171  	 * utilization (PELT windows are synchronized) we can directly add them
8172  	 * to obtain the CPU's actual utilization.
8173  	 */
8174  	util = util_cfs + cpu_util_rt(rq);
8175  	util += cpu_util_dl(rq);
8176  
8177  	/*
8178  	 * The maximum hint is a soft bandwidth requirement, which can be lower
8179  	 * than the actual utilization because of uclamp_max requirements.
8180  	 */
8181  	if (max)
8182  		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8183  
8184  	if (util >= scale)
8185  		return scale;
8186  
8187  	/*
8188  	 * There is still idle time; further improve the number by using the
8189  	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8190  	 * need to scale the task numbers:
8191  	 *
8192  	 *              max - irq
8193  	 *   U' = irq + --------- * U
8194  	 *                 max
8195  	 */
8196  	util = scale_irq_capacity(util, irq, scale);
8197  	util += irq;
8198  
8199  	return min(scale, util);
8200  }
8201  
sched_cpu_util(int cpu)8202  unsigned long sched_cpu_util(int cpu)
8203  {
8204  	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8205  }
8206  
8207  /*
8208   * energy_env - Utilization landscape for energy estimation.
8209   * @task_busy_time: Utilization contribution by the task for which we test the
8210   *                  placement. Given by eenv_task_busy_time().
8211   * @pd_busy_time:   Utilization of the whole perf domain without the task
8212   *                  contribution. Given by eenv_pd_busy_time().
8213   * @cpu_cap:        Maximum CPU capacity for the perf domain.
8214   * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8215   */
8216  struct energy_env {
8217  	unsigned long task_busy_time;
8218  	unsigned long pd_busy_time;
8219  	unsigned long cpu_cap;
8220  	unsigned long pd_cap;
8221  };
8222  
8223  /*
8224   * Compute the task busy time for compute_energy(). This time cannot be
8225   * injected directly into effective_cpu_util() because of the IRQ scaling.
8226   * The latter only makes sense with the most recent CPUs where the task has
8227   * run.
8228   */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8229  static inline void eenv_task_busy_time(struct energy_env *eenv,
8230  				       struct task_struct *p, int prev_cpu)
8231  {
8232  	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8233  	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8234  
8235  	if (unlikely(irq >= max_cap))
8236  		busy_time = max_cap;
8237  	else
8238  		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8239  
8240  	eenv->task_busy_time = busy_time;
8241  }
8242  
8243  /*
8244   * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8245   * utilization for each @pd_cpus, it however doesn't take into account
8246   * clamping since the ratio (utilization / cpu_capacity) is already enough to
8247   * scale the EM reported power consumption at the (eventually clamped)
8248   * cpu_capacity.
8249   *
8250   * The contribution of the task @p for which we want to estimate the
8251   * energy cost is removed (by cpu_util()) and must be calculated
8252   * separately (see eenv_task_busy_time). This ensures:
8253   *
8254   *   - A stable PD utilization, no matter which CPU of that PD we want to place
8255   *     the task on.
8256   *
8257   *   - A fair comparison between CPUs as the task contribution (task_util())
8258   *     will always be the same no matter which CPU utilization we rely on
8259   *     (util_avg or util_est).
8260   *
8261   * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8262   * exceed @eenv->pd_cap.
8263   */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8264  static inline void eenv_pd_busy_time(struct energy_env *eenv,
8265  				     struct cpumask *pd_cpus,
8266  				     struct task_struct *p)
8267  {
8268  	unsigned long busy_time = 0;
8269  	int cpu;
8270  
8271  	for_each_cpu(cpu, pd_cpus) {
8272  		unsigned long util = cpu_util(cpu, p, -1, 0);
8273  
8274  		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8275  	}
8276  
8277  	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8278  }
8279  
8280  /*
8281   * Compute the maximum utilization for compute_energy() when the task @p
8282   * is placed on the cpu @dst_cpu.
8283   *
8284   * Returns the maximum utilization among @eenv->cpus. This utilization can't
8285   * exceed @eenv->cpu_cap.
8286   */
8287  static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8288  eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8289  		 struct task_struct *p, int dst_cpu)
8290  {
8291  	unsigned long max_util = 0;
8292  	int cpu;
8293  
8294  	for_each_cpu(cpu, pd_cpus) {
8295  		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8296  		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8297  		unsigned long eff_util, min, max;
8298  
8299  		/*
8300  		 * Performance domain frequency: utilization clamping
8301  		 * must be considered since it affects the selection
8302  		 * of the performance domain frequency.
8303  		 * NOTE: in case RT tasks are running, by default the min
8304  		 * utilization can be max OPP.
8305  		 */
8306  		eff_util = effective_cpu_util(cpu, util, &min, &max);
8307  
8308  		/* Task's uclamp can modify min and max value */
8309  		if (tsk && uclamp_is_used()) {
8310  			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8311  
8312  			/*
8313  			 * If there is no active max uclamp constraint,
8314  			 * directly use task's one, otherwise keep max.
8315  			 */
8316  			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8317  				max = uclamp_eff_value(p, UCLAMP_MAX);
8318  			else
8319  				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8320  		}
8321  
8322  		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8323  		max_util = max(max_util, eff_util);
8324  	}
8325  
8326  	return min(max_util, eenv->cpu_cap);
8327  }
8328  
8329  /*
8330   * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8331   * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8332   * contribution is ignored.
8333   */
8334  static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8335  compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8336  	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8337  {
8338  	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8339  	unsigned long busy_time = eenv->pd_busy_time;
8340  	unsigned long energy;
8341  
8342  	if (dst_cpu >= 0)
8343  		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8344  
8345  	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8346  
8347  	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8348  
8349  	return energy;
8350  }
8351  
8352  /*
8353   * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8354   * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8355   * spare capacity in each performance domain and uses it as a potential
8356   * candidate to execute the task. Then, it uses the Energy Model to figure
8357   * out which of the CPU candidates is the most energy-efficient.
8358   *
8359   * The rationale for this heuristic is as follows. In a performance domain,
8360   * all the most energy efficient CPU candidates (according to the Energy
8361   * Model) are those for which we'll request a low frequency. When there are
8362   * several CPUs for which the frequency request will be the same, we don't
8363   * have enough data to break the tie between them, because the Energy Model
8364   * only includes active power costs. With this model, if we assume that
8365   * frequency requests follow utilization (e.g. using schedutil), the CPU with
8366   * the maximum spare capacity in a performance domain is guaranteed to be among
8367   * the best candidates of the performance domain.
8368   *
8369   * In practice, it could be preferable from an energy standpoint to pack
8370   * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8371   * but that could also hurt our chances to go cluster idle, and we have no
8372   * ways to tell with the current Energy Model if this is actually a good
8373   * idea or not. So, find_energy_efficient_cpu() basically favors
8374   * cluster-packing, and spreading inside a cluster. That should at least be
8375   * a good thing for latency, and this is consistent with the idea that most
8376   * of the energy savings of EAS come from the asymmetry of the system, and
8377   * not so much from breaking the tie between identical CPUs. That's also the
8378   * reason why EAS is enabled in the topology code only for systems where
8379   * SD_ASYM_CPUCAPACITY is set.
8380   *
8381   * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8382   * they don't have any useful utilization data yet and it's not possible to
8383   * forecast their impact on energy consumption. Consequently, they will be
8384   * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8385   * to be energy-inefficient in some use-cases. The alternative would be to
8386   * bias new tasks towards specific types of CPUs first, or to try to infer
8387   * their util_avg from the parent task, but those heuristics could hurt
8388   * other use-cases too. So, until someone finds a better way to solve this,
8389   * let's keep things simple by re-using the existing slow path.
8390   */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)8391  static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8392  {
8393  	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8394  	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8395  	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8396  	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8397  	struct root_domain *rd = this_rq()->rd;
8398  	int cpu, best_energy_cpu, target = -1;
8399  	int prev_fits = -1, best_fits = -1;
8400  	unsigned long best_actual_cap = 0;
8401  	unsigned long prev_actual_cap = 0;
8402  	struct sched_domain *sd;
8403  	struct perf_domain *pd;
8404  	struct energy_env eenv;
8405  
8406  	rcu_read_lock();
8407  	pd = rcu_dereference(rd->pd);
8408  	if (!pd)
8409  		goto unlock;
8410  
8411  	/*
8412  	 * Energy-aware wake-up happens on the lowest sched_domain starting
8413  	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8414  	 */
8415  	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8416  	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8417  		sd = sd->parent;
8418  	if (!sd)
8419  		goto unlock;
8420  
8421  	target = prev_cpu;
8422  
8423  	sync_entity_load_avg(&p->se);
8424  	if (!task_util_est(p) && p_util_min == 0)
8425  		goto unlock;
8426  
8427  	eenv_task_busy_time(&eenv, p, prev_cpu);
8428  
8429  	for (; pd; pd = pd->next) {
8430  		unsigned long util_min = p_util_min, util_max = p_util_max;
8431  		unsigned long cpu_cap, cpu_actual_cap, util;
8432  		long prev_spare_cap = -1, max_spare_cap = -1;
8433  		unsigned long rq_util_min, rq_util_max;
8434  		unsigned long cur_delta, base_energy;
8435  		int max_spare_cap_cpu = -1;
8436  		int fits, max_fits = -1;
8437  
8438  		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8439  
8440  		if (cpumask_empty(cpus))
8441  			continue;
8442  
8443  		/* Account external pressure for the energy estimation */
8444  		cpu = cpumask_first(cpus);
8445  		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8446  
8447  		eenv.cpu_cap = cpu_actual_cap;
8448  		eenv.pd_cap = 0;
8449  
8450  		for_each_cpu(cpu, cpus) {
8451  			struct rq *rq = cpu_rq(cpu);
8452  
8453  			eenv.pd_cap += cpu_actual_cap;
8454  
8455  			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8456  				continue;
8457  
8458  			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8459  				continue;
8460  
8461  			util = cpu_util(cpu, p, cpu, 0);
8462  			cpu_cap = capacity_of(cpu);
8463  
8464  			/*
8465  			 * Skip CPUs that cannot satisfy the capacity request.
8466  			 * IOW, placing the task there would make the CPU
8467  			 * overutilized. Take uclamp into account to see how
8468  			 * much capacity we can get out of the CPU; this is
8469  			 * aligned with sched_cpu_util().
8470  			 */
8471  			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8472  				/*
8473  				 * Open code uclamp_rq_util_with() except for
8474  				 * the clamp() part. I.e.: apply max aggregation
8475  				 * only. util_fits_cpu() logic requires to
8476  				 * operate on non clamped util but must use the
8477  				 * max-aggregated uclamp_{min, max}.
8478  				 */
8479  				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8480  				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8481  
8482  				util_min = max(rq_util_min, p_util_min);
8483  				util_max = max(rq_util_max, p_util_max);
8484  			}
8485  
8486  			fits = util_fits_cpu(util, util_min, util_max, cpu);
8487  			if (!fits)
8488  				continue;
8489  
8490  			lsub_positive(&cpu_cap, util);
8491  
8492  			if (cpu == prev_cpu) {
8493  				/* Always use prev_cpu as a candidate. */
8494  				prev_spare_cap = cpu_cap;
8495  				prev_fits = fits;
8496  			} else if ((fits > max_fits) ||
8497  				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8498  				/*
8499  				 * Find the CPU with the maximum spare capacity
8500  				 * among the remaining CPUs in the performance
8501  				 * domain.
8502  				 */
8503  				max_spare_cap = cpu_cap;
8504  				max_spare_cap_cpu = cpu;
8505  				max_fits = fits;
8506  			}
8507  		}
8508  
8509  		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8510  			continue;
8511  
8512  		eenv_pd_busy_time(&eenv, cpus, p);
8513  		/* Compute the 'base' energy of the pd, without @p */
8514  		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8515  
8516  		/* Evaluate the energy impact of using prev_cpu. */
8517  		if (prev_spare_cap > -1) {
8518  			prev_delta = compute_energy(&eenv, pd, cpus, p,
8519  						    prev_cpu);
8520  			/* CPU utilization has changed */
8521  			if (prev_delta < base_energy)
8522  				goto unlock;
8523  			prev_delta -= base_energy;
8524  			prev_actual_cap = cpu_actual_cap;
8525  			best_delta = min(best_delta, prev_delta);
8526  		}
8527  
8528  		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8529  		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8530  			/* Current best energy cpu fits better */
8531  			if (max_fits < best_fits)
8532  				continue;
8533  
8534  			/*
8535  			 * Both don't fit performance hint (i.e. uclamp_min)
8536  			 * but best energy cpu has better capacity.
8537  			 */
8538  			if ((max_fits < 0) &&
8539  			    (cpu_actual_cap <= best_actual_cap))
8540  				continue;
8541  
8542  			cur_delta = compute_energy(&eenv, pd, cpus, p,
8543  						   max_spare_cap_cpu);
8544  			/* CPU utilization has changed */
8545  			if (cur_delta < base_energy)
8546  				goto unlock;
8547  			cur_delta -= base_energy;
8548  
8549  			/*
8550  			 * Both fit for the task but best energy cpu has lower
8551  			 * energy impact.
8552  			 */
8553  			if ((max_fits > 0) && (best_fits > 0) &&
8554  			    (cur_delta >= best_delta))
8555  				continue;
8556  
8557  			best_delta = cur_delta;
8558  			best_energy_cpu = max_spare_cap_cpu;
8559  			best_fits = max_fits;
8560  			best_actual_cap = cpu_actual_cap;
8561  		}
8562  	}
8563  	rcu_read_unlock();
8564  
8565  	if ((best_fits > prev_fits) ||
8566  	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8567  	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8568  		target = best_energy_cpu;
8569  
8570  	return target;
8571  
8572  unlock:
8573  	rcu_read_unlock();
8574  
8575  	return target;
8576  }
8577  
8578  /*
8579   * select_task_rq_fair: Select target runqueue for the waking task in domains
8580   * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8581   * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8582   *
8583   * Balances load by selecting the idlest CPU in the idlest group, or under
8584   * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8585   *
8586   * Returns the target CPU number.
8587   */
8588  static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8589  select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8590  {
8591  	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8592  	struct sched_domain *tmp, *sd = NULL;
8593  	int cpu = smp_processor_id();
8594  	int new_cpu = prev_cpu;
8595  	int want_affine = 0;
8596  	/* SD_flags and WF_flags share the first nibble */
8597  	int sd_flag = wake_flags & 0xF;
8598  
8599  	/*
8600  	 * required for stable ->cpus_allowed
8601  	 */
8602  	lockdep_assert_held(&p->pi_lock);
8603  	if (wake_flags & WF_TTWU) {
8604  		record_wakee(p);
8605  
8606  		if ((wake_flags & WF_CURRENT_CPU) &&
8607  		    cpumask_test_cpu(cpu, p->cpus_ptr))
8608  			return cpu;
8609  
8610  		if (!is_rd_overutilized(this_rq()->rd)) {
8611  			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8612  			if (new_cpu >= 0)
8613  				return new_cpu;
8614  			new_cpu = prev_cpu;
8615  		}
8616  
8617  		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8618  	}
8619  
8620  	rcu_read_lock();
8621  	for_each_domain(cpu, tmp) {
8622  		/*
8623  		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8624  		 * cpu is a valid SD_WAKE_AFFINE target.
8625  		 */
8626  		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8627  		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8628  			if (cpu != prev_cpu)
8629  				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8630  
8631  			sd = NULL; /* Prefer wake_affine over balance flags */
8632  			break;
8633  		}
8634  
8635  		/*
8636  		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8637  		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8638  		 * will usually go to the fast path.
8639  		 */
8640  		if (tmp->flags & sd_flag)
8641  			sd = tmp;
8642  		else if (!want_affine)
8643  			break;
8644  	}
8645  
8646  	if (unlikely(sd)) {
8647  		/* Slow path */
8648  		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8649  	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8650  		/* Fast path */
8651  		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8652  	}
8653  	rcu_read_unlock();
8654  
8655  	return new_cpu;
8656  }
8657  
8658  /*
8659   * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8660   * cfs_rq_of(p) references at time of call are still valid and identify the
8661   * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8662   */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8663  static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8664  {
8665  	struct sched_entity *se = &p->se;
8666  
8667  	if (!task_on_rq_migrating(p)) {
8668  		remove_entity_load_avg(se);
8669  
8670  		/*
8671  		 * Here, the task's PELT values have been updated according to
8672  		 * the current rq's clock. But if that clock hasn't been
8673  		 * updated in a while, a substantial idle time will be missed,
8674  		 * leading to an inflation after wake-up on the new rq.
8675  		 *
8676  		 * Estimate the missing time from the cfs_rq last_update_time
8677  		 * and update sched_avg to improve the PELT continuity after
8678  		 * migration.
8679  		 */
8680  		migrate_se_pelt_lag(se);
8681  	}
8682  
8683  	/* Tell new CPU we are migrated */
8684  	se->avg.last_update_time = 0;
8685  
8686  	update_scan_period(p, new_cpu);
8687  }
8688  
task_dead_fair(struct task_struct * p)8689  static void task_dead_fair(struct task_struct *p)
8690  {
8691  	struct sched_entity *se = &p->se;
8692  
8693  	if (se->sched_delayed) {
8694  		struct rq_flags rf;
8695  		struct rq *rq;
8696  
8697  		rq = task_rq_lock(p, &rf);
8698  		if (se->sched_delayed) {
8699  			update_rq_clock(rq);
8700  			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8701  		}
8702  		task_rq_unlock(rq, p, &rf);
8703  	}
8704  
8705  	remove_entity_load_avg(se);
8706  }
8707  
8708  /*
8709   * Set the max capacity the task is allowed to run at for misfit detection.
8710   */
set_task_max_allowed_capacity(struct task_struct * p)8711  static void set_task_max_allowed_capacity(struct task_struct *p)
8712  {
8713  	struct asym_cap_data *entry;
8714  
8715  	if (!sched_asym_cpucap_active())
8716  		return;
8717  
8718  	rcu_read_lock();
8719  	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8720  		cpumask_t *cpumask;
8721  
8722  		cpumask = cpu_capacity_span(entry);
8723  		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8724  			continue;
8725  
8726  		p->max_allowed_capacity = entry->capacity;
8727  		break;
8728  	}
8729  	rcu_read_unlock();
8730  }
8731  
set_cpus_allowed_fair(struct task_struct * p,struct affinity_context * ctx)8732  static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8733  {
8734  	set_cpus_allowed_common(p, ctx);
8735  	set_task_max_allowed_capacity(p);
8736  }
8737  
8738  static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8739  balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8740  {
8741  	if (sched_fair_runnable(rq))
8742  		return 1;
8743  
8744  	return sched_balance_newidle(rq, rf) != 0;
8745  }
8746  #else
set_task_max_allowed_capacity(struct task_struct * p)8747  static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8748  #endif /* CONFIG_SMP */
8749  
set_next_buddy(struct sched_entity * se)8750  static void set_next_buddy(struct sched_entity *se)
8751  {
8752  	for_each_sched_entity(se) {
8753  		if (SCHED_WARN_ON(!se->on_rq))
8754  			return;
8755  		if (se_is_idle(se))
8756  			return;
8757  		cfs_rq_of(se)->next = se;
8758  	}
8759  }
8760  
8761  /*
8762   * Preempt the current task with a newly woken task if needed:
8763   */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8764  static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8765  {
8766  	struct task_struct *curr = rq->curr;
8767  	struct sched_entity *se = &curr->se, *pse = &p->se;
8768  	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8769  	int cse_is_idle, pse_is_idle;
8770  
8771  	if (unlikely(se == pse))
8772  		return;
8773  
8774  	/*
8775  	 * This is possible from callers such as attach_tasks(), in which we
8776  	 * unconditionally wakeup_preempt() after an enqueue (which may have
8777  	 * lead to a throttle).  This both saves work and prevents false
8778  	 * next-buddy nomination below.
8779  	 */
8780  	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8781  		return;
8782  
8783  	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8784  		set_next_buddy(pse);
8785  	}
8786  
8787  	/*
8788  	 * We can come here with TIF_NEED_RESCHED already set from new task
8789  	 * wake up path.
8790  	 *
8791  	 * Note: this also catches the edge-case of curr being in a throttled
8792  	 * group (e.g. via set_curr_task), since update_curr() (in the
8793  	 * enqueue of curr) will have resulted in resched being set.  This
8794  	 * prevents us from potentially nominating it as a false LAST_BUDDY
8795  	 * below.
8796  	 */
8797  	if (test_tsk_need_resched(curr))
8798  		return;
8799  
8800  	if (!sched_feat(WAKEUP_PREEMPTION))
8801  		return;
8802  
8803  	find_matching_se(&se, &pse);
8804  	WARN_ON_ONCE(!pse);
8805  
8806  	cse_is_idle = se_is_idle(se);
8807  	pse_is_idle = se_is_idle(pse);
8808  
8809  	/*
8810  	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8811  	 * in the inverse case).
8812  	 */
8813  	if (cse_is_idle && !pse_is_idle)
8814  		goto preempt;
8815  	if (cse_is_idle != pse_is_idle)
8816  		return;
8817  
8818  	/*
8819  	 * BATCH and IDLE tasks do not preempt others.
8820  	 */
8821  	if (unlikely(!normal_policy(p->policy)))
8822  		return;
8823  
8824  	cfs_rq = cfs_rq_of(se);
8825  	update_curr(cfs_rq);
8826  	/*
8827  	 * If @p has a shorter slice than current and @p is eligible, override
8828  	 * current's slice protection in order to allow preemption.
8829  	 *
8830  	 * Note that even if @p does not turn out to be the most eligible
8831  	 * task at this moment, current's slice protection will be lost.
8832  	 */
8833  	if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
8834  		se->vlag = se->deadline + 1;
8835  
8836  	/*
8837  	 * If @p has become the most eligible task, force preemption.
8838  	 */
8839  	if (pick_eevdf(cfs_rq) == pse)
8840  		goto preempt;
8841  
8842  	return;
8843  
8844  preempt:
8845  	resched_curr(rq);
8846  }
8847  
pick_task_fair(struct rq * rq)8848  static struct task_struct *pick_task_fair(struct rq *rq)
8849  {
8850  	struct sched_entity *se;
8851  	struct cfs_rq *cfs_rq;
8852  
8853  again:
8854  	cfs_rq = &rq->cfs;
8855  	if (!cfs_rq->nr_running)
8856  		return NULL;
8857  
8858  	do {
8859  		/* Might not have done put_prev_entity() */
8860  		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8861  			update_curr(cfs_rq);
8862  
8863  		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8864  			goto again;
8865  
8866  		se = pick_next_entity(rq, cfs_rq);
8867  		if (!se)
8868  			goto again;
8869  		cfs_rq = group_cfs_rq(se);
8870  	} while (cfs_rq);
8871  
8872  	return task_of(se);
8873  }
8874  
8875  static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8876  static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8877  
8878  struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8879  pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8880  {
8881  	struct sched_entity *se;
8882  	struct task_struct *p;
8883  	int new_tasks;
8884  
8885  again:
8886  	p = pick_task_fair(rq);
8887  	if (!p)
8888  		goto idle;
8889  	se = &p->se;
8890  
8891  #ifdef CONFIG_FAIR_GROUP_SCHED
8892  	if (prev->sched_class != &fair_sched_class)
8893  		goto simple;
8894  
8895  	__put_prev_set_next_dl_server(rq, prev, p);
8896  
8897  	/*
8898  	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8899  	 * likely that a next task is from the same cgroup as the current.
8900  	 *
8901  	 * Therefore attempt to avoid putting and setting the entire cgroup
8902  	 * hierarchy, only change the part that actually changes.
8903  	 *
8904  	 * Since we haven't yet done put_prev_entity and if the selected task
8905  	 * is a different task than we started out with, try and touch the
8906  	 * least amount of cfs_rqs.
8907  	 */
8908  	if (prev != p) {
8909  		struct sched_entity *pse = &prev->se;
8910  		struct cfs_rq *cfs_rq;
8911  
8912  		while (!(cfs_rq = is_same_group(se, pse))) {
8913  			int se_depth = se->depth;
8914  			int pse_depth = pse->depth;
8915  
8916  			if (se_depth <= pse_depth) {
8917  				put_prev_entity(cfs_rq_of(pse), pse);
8918  				pse = parent_entity(pse);
8919  			}
8920  			if (se_depth >= pse_depth) {
8921  				set_next_entity(cfs_rq_of(se), se);
8922  				se = parent_entity(se);
8923  			}
8924  		}
8925  
8926  		put_prev_entity(cfs_rq, pse);
8927  		set_next_entity(cfs_rq, se);
8928  
8929  		__set_next_task_fair(rq, p, true);
8930  	}
8931  
8932  	return p;
8933  
8934  simple:
8935  #endif
8936  	put_prev_set_next_task(rq, prev, p);
8937  	return p;
8938  
8939  idle:
8940  	if (!rf)
8941  		return NULL;
8942  
8943  	new_tasks = sched_balance_newidle(rq, rf);
8944  
8945  	/*
8946  	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8947  	 * possible for any higher priority task to appear. In that case we
8948  	 * must re-start the pick_next_entity() loop.
8949  	 */
8950  	if (new_tasks < 0)
8951  		return RETRY_TASK;
8952  
8953  	if (new_tasks > 0)
8954  		goto again;
8955  
8956  	/*
8957  	 * rq is about to be idle, check if we need to update the
8958  	 * lost_idle_time of clock_pelt
8959  	 */
8960  	update_idle_rq_clock_pelt(rq);
8961  
8962  	return NULL;
8963  }
8964  
__pick_next_task_fair(struct rq * rq,struct task_struct * prev)8965  static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8966  {
8967  	return pick_next_task_fair(rq, prev, NULL);
8968  }
8969  
fair_server_has_tasks(struct sched_dl_entity * dl_se)8970  static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8971  {
8972  	return !!dl_se->rq->cfs.nr_running;
8973  }
8974  
fair_server_pick_task(struct sched_dl_entity * dl_se)8975  static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8976  {
8977  	return pick_task_fair(dl_se->rq);
8978  }
8979  
fair_server_init(struct rq * rq)8980  void fair_server_init(struct rq *rq)
8981  {
8982  	struct sched_dl_entity *dl_se = &rq->fair_server;
8983  
8984  	init_dl_entity(dl_se);
8985  
8986  	dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8987  }
8988  
8989  /*
8990   * Account for a descheduled task:
8991   */
put_prev_task_fair(struct rq * rq,struct task_struct * prev,struct task_struct * next)8992  static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8993  {
8994  	struct sched_entity *se = &prev->se;
8995  	struct cfs_rq *cfs_rq;
8996  
8997  	for_each_sched_entity(se) {
8998  		cfs_rq = cfs_rq_of(se);
8999  		put_prev_entity(cfs_rq, se);
9000  	}
9001  }
9002  
9003  /*
9004   * sched_yield() is very simple
9005   */
yield_task_fair(struct rq * rq)9006  static void yield_task_fair(struct rq *rq)
9007  {
9008  	struct task_struct *curr = rq->curr;
9009  	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9010  	struct sched_entity *se = &curr->se;
9011  
9012  	/*
9013  	 * Are we the only task in the tree?
9014  	 */
9015  	if (unlikely(rq->nr_running == 1))
9016  		return;
9017  
9018  	clear_buddies(cfs_rq, se);
9019  
9020  	update_rq_clock(rq);
9021  	/*
9022  	 * Update run-time statistics of the 'current'.
9023  	 */
9024  	update_curr(cfs_rq);
9025  	/*
9026  	 * Tell update_rq_clock() that we've just updated,
9027  	 * so we don't do microscopic update in schedule()
9028  	 * and double the fastpath cost.
9029  	 */
9030  	rq_clock_skip_update(rq);
9031  
9032  	se->deadline += calc_delta_fair(se->slice, se);
9033  }
9034  
yield_to_task_fair(struct rq * rq,struct task_struct * p)9035  static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9036  {
9037  	struct sched_entity *se = &p->se;
9038  
9039  	/* throttled hierarchies are not runnable */
9040  	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9041  		return false;
9042  
9043  	/* Tell the scheduler that we'd really like se to run next. */
9044  	set_next_buddy(se);
9045  
9046  	yield_task_fair(rq);
9047  
9048  	return true;
9049  }
9050  
9051  #ifdef CONFIG_SMP
9052  /**************************************************
9053   * Fair scheduling class load-balancing methods.
9054   *
9055   * BASICS
9056   *
9057   * The purpose of load-balancing is to achieve the same basic fairness the
9058   * per-CPU scheduler provides, namely provide a proportional amount of compute
9059   * time to each task. This is expressed in the following equation:
9060   *
9061   *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
9062   *
9063   * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9064   * W_i,0 is defined as:
9065   *
9066   *   W_i,0 = \Sum_j w_i,j                                             (2)
9067   *
9068   * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9069   * is derived from the nice value as per sched_prio_to_weight[].
9070   *
9071   * The weight average is an exponential decay average of the instantaneous
9072   * weight:
9073   *
9074   *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
9075   *
9076   * C_i is the compute capacity of CPU i, typically it is the
9077   * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9078   * can also include other factors [XXX].
9079   *
9080   * To achieve this balance we define a measure of imbalance which follows
9081   * directly from (1):
9082   *
9083   *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
9084   *
9085   * We them move tasks around to minimize the imbalance. In the continuous
9086   * function space it is obvious this converges, in the discrete case we get
9087   * a few fun cases generally called infeasible weight scenarios.
9088   *
9089   * [XXX expand on:
9090   *     - infeasible weights;
9091   *     - local vs global optima in the discrete case. ]
9092   *
9093   *
9094   * SCHED DOMAINS
9095   *
9096   * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9097   * for all i,j solution, we create a tree of CPUs that follows the hardware
9098   * topology where each level pairs two lower groups (or better). This results
9099   * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9100   * tree to only the first of the previous level and we decrease the frequency
9101   * of load-balance at each level inversely proportional to the number of CPUs in
9102   * the groups.
9103   *
9104   * This yields:
9105   *
9106   *     log_2 n     1     n
9107   *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
9108   *     i = 0      2^i   2^i
9109   *                               `- size of each group
9110   *         |         |     `- number of CPUs doing load-balance
9111   *         |         `- freq
9112   *         `- sum over all levels
9113   *
9114   * Coupled with a limit on how many tasks we can migrate every balance pass,
9115   * this makes (5) the runtime complexity of the balancer.
9116   *
9117   * An important property here is that each CPU is still (indirectly) connected
9118   * to every other CPU in at most O(log n) steps:
9119   *
9120   * The adjacency matrix of the resulting graph is given by:
9121   *
9122   *             log_2 n
9123   *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9124   *             k = 0
9125   *
9126   * And you'll find that:
9127   *
9128   *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9129   *
9130   * Showing there's indeed a path between every CPU in at most O(log n) steps.
9131   * The task movement gives a factor of O(m), giving a convergence complexity
9132   * of:
9133   *
9134   *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9135   *
9136   *
9137   * WORK CONSERVING
9138   *
9139   * In order to avoid CPUs going idle while there's still work to do, new idle
9140   * balancing is more aggressive and has the newly idle CPU iterate up the domain
9141   * tree itself instead of relying on other CPUs to bring it work.
9142   *
9143   * This adds some complexity to both (5) and (8) but it reduces the total idle
9144   * time.
9145   *
9146   * [XXX more?]
9147   *
9148   *
9149   * CGROUPS
9150   *
9151   * Cgroups make a horror show out of (2), instead of a simple sum we get:
9152   *
9153   *                                s_k,i
9154   *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9155   *                                 S_k
9156   *
9157   * Where
9158   *
9159   *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9160   *
9161   * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9162   *
9163   * The big problem is S_k, its a global sum needed to compute a local (W_i)
9164   * property.
9165   *
9166   * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9167   *      rewrite all of this once again.]
9168   */
9169  
9170  static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9171  
9172  enum fbq_type { regular, remote, all };
9173  
9174  /*
9175   * 'group_type' describes the group of CPUs at the moment of load balancing.
9176   *
9177   * The enum is ordered by pulling priority, with the group with lowest priority
9178   * first so the group_type can simply be compared when selecting the busiest
9179   * group. See update_sd_pick_busiest().
9180   */
9181  enum group_type {
9182  	/* The group has spare capacity that can be used to run more tasks.  */
9183  	group_has_spare = 0,
9184  	/*
9185  	 * The group is fully used and the tasks don't compete for more CPU
9186  	 * cycles. Nevertheless, some tasks might wait before running.
9187  	 */
9188  	group_fully_busy,
9189  	/*
9190  	 * One task doesn't fit with CPU's capacity and must be migrated to a
9191  	 * more powerful CPU.
9192  	 */
9193  	group_misfit_task,
9194  	/*
9195  	 * Balance SMT group that's fully busy. Can benefit from migration
9196  	 * a task on SMT with busy sibling to another CPU on idle core.
9197  	 */
9198  	group_smt_balance,
9199  	/*
9200  	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9201  	 * and the task should be migrated to it instead of running on the
9202  	 * current CPU.
9203  	 */
9204  	group_asym_packing,
9205  	/*
9206  	 * The tasks' affinity constraints previously prevented the scheduler
9207  	 * from balancing the load across the system.
9208  	 */
9209  	group_imbalanced,
9210  	/*
9211  	 * The CPU is overloaded and can't provide expected CPU cycles to all
9212  	 * tasks.
9213  	 */
9214  	group_overloaded
9215  };
9216  
9217  enum migration_type {
9218  	migrate_load = 0,
9219  	migrate_util,
9220  	migrate_task,
9221  	migrate_misfit
9222  };
9223  
9224  #define LBF_ALL_PINNED	0x01
9225  #define LBF_NEED_BREAK	0x02
9226  #define LBF_DST_PINNED  0x04
9227  #define LBF_SOME_PINNED	0x08
9228  #define LBF_ACTIVE_LB	0x10
9229  
9230  struct lb_env {
9231  	struct sched_domain	*sd;
9232  
9233  	struct rq		*src_rq;
9234  	int			src_cpu;
9235  
9236  	int			dst_cpu;
9237  	struct rq		*dst_rq;
9238  
9239  	struct cpumask		*dst_grpmask;
9240  	int			new_dst_cpu;
9241  	enum cpu_idle_type	idle;
9242  	long			imbalance;
9243  	/* The set of CPUs under consideration for load-balancing */
9244  	struct cpumask		*cpus;
9245  
9246  	unsigned int		flags;
9247  
9248  	unsigned int		loop;
9249  	unsigned int		loop_break;
9250  	unsigned int		loop_max;
9251  
9252  	enum fbq_type		fbq_type;
9253  	enum migration_type	migration_type;
9254  	struct list_head	tasks;
9255  };
9256  
9257  /*
9258   * Is this task likely cache-hot:
9259   */
task_hot(struct task_struct * p,struct lb_env * env)9260  static int task_hot(struct task_struct *p, struct lb_env *env)
9261  {
9262  	s64 delta;
9263  
9264  	lockdep_assert_rq_held(env->src_rq);
9265  
9266  	if (p->sched_class != &fair_sched_class)
9267  		return 0;
9268  
9269  	if (unlikely(task_has_idle_policy(p)))
9270  		return 0;
9271  
9272  	/* SMT siblings share cache */
9273  	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9274  		return 0;
9275  
9276  	/*
9277  	 * Buddy candidates are cache hot:
9278  	 */
9279  	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9280  	    (&p->se == cfs_rq_of(&p->se)->next))
9281  		return 1;
9282  
9283  	if (sysctl_sched_migration_cost == -1)
9284  		return 1;
9285  
9286  	/*
9287  	 * Don't migrate task if the task's cookie does not match
9288  	 * with the destination CPU's core cookie.
9289  	 */
9290  	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9291  		return 1;
9292  
9293  	if (sysctl_sched_migration_cost == 0)
9294  		return 0;
9295  
9296  	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9297  
9298  	return delta < (s64)sysctl_sched_migration_cost;
9299  }
9300  
9301  #ifdef CONFIG_NUMA_BALANCING
9302  /*
9303   * Returns 1, if task migration degrades locality
9304   * Returns 0, if task migration improves locality i.e migration preferred.
9305   * Returns -1, if task migration is not affected by locality.
9306   */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9307  static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9308  {
9309  	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9310  	unsigned long src_weight, dst_weight;
9311  	int src_nid, dst_nid, dist;
9312  
9313  	if (!static_branch_likely(&sched_numa_balancing))
9314  		return -1;
9315  
9316  	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9317  		return -1;
9318  
9319  	src_nid = cpu_to_node(env->src_cpu);
9320  	dst_nid = cpu_to_node(env->dst_cpu);
9321  
9322  	if (src_nid == dst_nid)
9323  		return -1;
9324  
9325  	/* Migrating away from the preferred node is always bad. */
9326  	if (src_nid == p->numa_preferred_nid) {
9327  		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9328  			return 1;
9329  		else
9330  			return -1;
9331  	}
9332  
9333  	/* Encourage migration to the preferred node. */
9334  	if (dst_nid == p->numa_preferred_nid)
9335  		return 0;
9336  
9337  	/* Leaving a core idle is often worse than degrading locality. */
9338  	if (env->idle == CPU_IDLE)
9339  		return -1;
9340  
9341  	dist = node_distance(src_nid, dst_nid);
9342  	if (numa_group) {
9343  		src_weight = group_weight(p, src_nid, dist);
9344  		dst_weight = group_weight(p, dst_nid, dist);
9345  	} else {
9346  		src_weight = task_weight(p, src_nid, dist);
9347  		dst_weight = task_weight(p, dst_nid, dist);
9348  	}
9349  
9350  	return dst_weight < src_weight;
9351  }
9352  
9353  #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9354  static inline int migrate_degrades_locality(struct task_struct *p,
9355  					     struct lb_env *env)
9356  {
9357  	return -1;
9358  }
9359  #endif
9360  
9361  /*
9362   * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9363   */
9364  static
can_migrate_task(struct task_struct * p,struct lb_env * env)9365  int can_migrate_task(struct task_struct *p, struct lb_env *env)
9366  {
9367  	int tsk_cache_hot;
9368  
9369  	lockdep_assert_rq_held(env->src_rq);
9370  
9371  	/*
9372  	 * We do not migrate tasks that are:
9373  	 * 1) throttled_lb_pair, or
9374  	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9375  	 * 3) running (obviously), or
9376  	 * 4) are cache-hot on their current CPU.
9377  	 */
9378  	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9379  		return 0;
9380  
9381  	/* Disregard percpu kthreads; they are where they need to be. */
9382  	if (kthread_is_per_cpu(p))
9383  		return 0;
9384  
9385  	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9386  		int cpu;
9387  
9388  		schedstat_inc(p->stats.nr_failed_migrations_affine);
9389  
9390  		env->flags |= LBF_SOME_PINNED;
9391  
9392  		/*
9393  		 * Remember if this task can be migrated to any other CPU in
9394  		 * our sched_group. We may want to revisit it if we couldn't
9395  		 * meet load balance goals by pulling other tasks on src_cpu.
9396  		 *
9397  		 * Avoid computing new_dst_cpu
9398  		 * - for NEWLY_IDLE
9399  		 * - if we have already computed one in current iteration
9400  		 * - if it's an active balance
9401  		 */
9402  		if (env->idle == CPU_NEWLY_IDLE ||
9403  		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9404  			return 0;
9405  
9406  		/* Prevent to re-select dst_cpu via env's CPUs: */
9407  		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9408  			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9409  				env->flags |= LBF_DST_PINNED;
9410  				env->new_dst_cpu = cpu;
9411  				break;
9412  			}
9413  		}
9414  
9415  		return 0;
9416  	}
9417  
9418  	/* Record that we found at least one task that could run on dst_cpu */
9419  	env->flags &= ~LBF_ALL_PINNED;
9420  
9421  	if (task_on_cpu(env->src_rq, p)) {
9422  		schedstat_inc(p->stats.nr_failed_migrations_running);
9423  		return 0;
9424  	}
9425  
9426  	/*
9427  	 * Aggressive migration if:
9428  	 * 1) active balance
9429  	 * 2) destination numa is preferred
9430  	 * 3) task is cache cold, or
9431  	 * 4) too many balance attempts have failed.
9432  	 */
9433  	if (env->flags & LBF_ACTIVE_LB)
9434  		return 1;
9435  
9436  	tsk_cache_hot = migrate_degrades_locality(p, env);
9437  	if (tsk_cache_hot == -1)
9438  		tsk_cache_hot = task_hot(p, env);
9439  
9440  	if (tsk_cache_hot <= 0 ||
9441  	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9442  		if (tsk_cache_hot == 1) {
9443  			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9444  			schedstat_inc(p->stats.nr_forced_migrations);
9445  		}
9446  		return 1;
9447  	}
9448  
9449  	schedstat_inc(p->stats.nr_failed_migrations_hot);
9450  	return 0;
9451  }
9452  
9453  /*
9454   * detach_task() -- detach the task for the migration specified in env
9455   */
detach_task(struct task_struct * p,struct lb_env * env)9456  static void detach_task(struct task_struct *p, struct lb_env *env)
9457  {
9458  	lockdep_assert_rq_held(env->src_rq);
9459  
9460  	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9461  	set_task_cpu(p, env->dst_cpu);
9462  }
9463  
9464  /*
9465   * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9466   * part of active balancing operations within "domain".
9467   *
9468   * Returns a task if successful and NULL otherwise.
9469   */
detach_one_task(struct lb_env * env)9470  static struct task_struct *detach_one_task(struct lb_env *env)
9471  {
9472  	struct task_struct *p;
9473  
9474  	lockdep_assert_rq_held(env->src_rq);
9475  
9476  	list_for_each_entry_reverse(p,
9477  			&env->src_rq->cfs_tasks, se.group_node) {
9478  		if (!can_migrate_task(p, env))
9479  			continue;
9480  
9481  		detach_task(p, env);
9482  
9483  		/*
9484  		 * Right now, this is only the second place where
9485  		 * lb_gained[env->idle] is updated (other is detach_tasks)
9486  		 * so we can safely collect stats here rather than
9487  		 * inside detach_tasks().
9488  		 */
9489  		schedstat_inc(env->sd->lb_gained[env->idle]);
9490  		return p;
9491  	}
9492  	return NULL;
9493  }
9494  
9495  /*
9496   * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9497   * busiest_rq, as part of a balancing operation within domain "sd".
9498   *
9499   * Returns number of detached tasks if successful and 0 otherwise.
9500   */
detach_tasks(struct lb_env * env)9501  static int detach_tasks(struct lb_env *env)
9502  {
9503  	struct list_head *tasks = &env->src_rq->cfs_tasks;
9504  	unsigned long util, load;
9505  	struct task_struct *p;
9506  	int detached = 0;
9507  
9508  	lockdep_assert_rq_held(env->src_rq);
9509  
9510  	/*
9511  	 * Source run queue has been emptied by another CPU, clear
9512  	 * LBF_ALL_PINNED flag as we will not test any task.
9513  	 */
9514  	if (env->src_rq->nr_running <= 1) {
9515  		env->flags &= ~LBF_ALL_PINNED;
9516  		return 0;
9517  	}
9518  
9519  	if (env->imbalance <= 0)
9520  		return 0;
9521  
9522  	while (!list_empty(tasks)) {
9523  		/*
9524  		 * We don't want to steal all, otherwise we may be treated likewise,
9525  		 * which could at worst lead to a livelock crash.
9526  		 */
9527  		if (env->idle && env->src_rq->nr_running <= 1)
9528  			break;
9529  
9530  		env->loop++;
9531  		/* We've more or less seen every task there is, call it quits */
9532  		if (env->loop > env->loop_max)
9533  			break;
9534  
9535  		/* take a breather every nr_migrate tasks */
9536  		if (env->loop > env->loop_break) {
9537  			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9538  			env->flags |= LBF_NEED_BREAK;
9539  			break;
9540  		}
9541  
9542  		p = list_last_entry(tasks, struct task_struct, se.group_node);
9543  
9544  		if (!can_migrate_task(p, env))
9545  			goto next;
9546  
9547  		switch (env->migration_type) {
9548  		case migrate_load:
9549  			/*
9550  			 * Depending of the number of CPUs and tasks and the
9551  			 * cgroup hierarchy, task_h_load() can return a null
9552  			 * value. Make sure that env->imbalance decreases
9553  			 * otherwise detach_tasks() will stop only after
9554  			 * detaching up to loop_max tasks.
9555  			 */
9556  			load = max_t(unsigned long, task_h_load(p), 1);
9557  
9558  			if (sched_feat(LB_MIN) &&
9559  			    load < 16 && !env->sd->nr_balance_failed)
9560  				goto next;
9561  
9562  			/*
9563  			 * Make sure that we don't migrate too much load.
9564  			 * Nevertheless, let relax the constraint if
9565  			 * scheduler fails to find a good waiting task to
9566  			 * migrate.
9567  			 */
9568  			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9569  				goto next;
9570  
9571  			env->imbalance -= load;
9572  			break;
9573  
9574  		case migrate_util:
9575  			util = task_util_est(p);
9576  
9577  			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9578  				goto next;
9579  
9580  			env->imbalance -= util;
9581  			break;
9582  
9583  		case migrate_task:
9584  			env->imbalance--;
9585  			break;
9586  
9587  		case migrate_misfit:
9588  			/* This is not a misfit task */
9589  			if (task_fits_cpu(p, env->src_cpu))
9590  				goto next;
9591  
9592  			env->imbalance = 0;
9593  			break;
9594  		}
9595  
9596  		detach_task(p, env);
9597  		list_add(&p->se.group_node, &env->tasks);
9598  
9599  		detached++;
9600  
9601  #ifdef CONFIG_PREEMPTION
9602  		/*
9603  		 * NEWIDLE balancing is a source of latency, so preemptible
9604  		 * kernels will stop after the first task is detached to minimize
9605  		 * the critical section.
9606  		 */
9607  		if (env->idle == CPU_NEWLY_IDLE)
9608  			break;
9609  #endif
9610  
9611  		/*
9612  		 * We only want to steal up to the prescribed amount of
9613  		 * load/util/tasks.
9614  		 */
9615  		if (env->imbalance <= 0)
9616  			break;
9617  
9618  		continue;
9619  next:
9620  		list_move(&p->se.group_node, tasks);
9621  	}
9622  
9623  	/*
9624  	 * Right now, this is one of only two places we collect this stat
9625  	 * so we can safely collect detach_one_task() stats here rather
9626  	 * than inside detach_one_task().
9627  	 */
9628  	schedstat_add(env->sd->lb_gained[env->idle], detached);
9629  
9630  	return detached;
9631  }
9632  
9633  /*
9634   * attach_task() -- attach the task detached by detach_task() to its new rq.
9635   */
attach_task(struct rq * rq,struct task_struct * p)9636  static void attach_task(struct rq *rq, struct task_struct *p)
9637  {
9638  	lockdep_assert_rq_held(rq);
9639  
9640  	WARN_ON_ONCE(task_rq(p) != rq);
9641  	activate_task(rq, p, ENQUEUE_NOCLOCK);
9642  	wakeup_preempt(rq, p, 0);
9643  }
9644  
9645  /*
9646   * attach_one_task() -- attaches the task returned from detach_one_task() to
9647   * its new rq.
9648   */
attach_one_task(struct rq * rq,struct task_struct * p)9649  static void attach_one_task(struct rq *rq, struct task_struct *p)
9650  {
9651  	struct rq_flags rf;
9652  
9653  	rq_lock(rq, &rf);
9654  	update_rq_clock(rq);
9655  	attach_task(rq, p);
9656  	rq_unlock(rq, &rf);
9657  }
9658  
9659  /*
9660   * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9661   * new rq.
9662   */
attach_tasks(struct lb_env * env)9663  static void attach_tasks(struct lb_env *env)
9664  {
9665  	struct list_head *tasks = &env->tasks;
9666  	struct task_struct *p;
9667  	struct rq_flags rf;
9668  
9669  	rq_lock(env->dst_rq, &rf);
9670  	update_rq_clock(env->dst_rq);
9671  
9672  	while (!list_empty(tasks)) {
9673  		p = list_first_entry(tasks, struct task_struct, se.group_node);
9674  		list_del_init(&p->se.group_node);
9675  
9676  		attach_task(env->dst_rq, p);
9677  	}
9678  
9679  	rq_unlock(env->dst_rq, &rf);
9680  }
9681  
9682  #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9683  static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9684  {
9685  	if (cfs_rq->avg.load_avg)
9686  		return true;
9687  
9688  	if (cfs_rq->avg.util_avg)
9689  		return true;
9690  
9691  	return false;
9692  }
9693  
others_have_blocked(struct rq * rq)9694  static inline bool others_have_blocked(struct rq *rq)
9695  {
9696  	if (cpu_util_rt(rq))
9697  		return true;
9698  
9699  	if (cpu_util_dl(rq))
9700  		return true;
9701  
9702  	if (hw_load_avg(rq))
9703  		return true;
9704  
9705  	if (cpu_util_irq(rq))
9706  		return true;
9707  
9708  	return false;
9709  }
9710  
update_blocked_load_tick(struct rq * rq)9711  static inline void update_blocked_load_tick(struct rq *rq)
9712  {
9713  	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9714  }
9715  
update_blocked_load_status(struct rq * rq,bool has_blocked)9716  static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9717  {
9718  	if (!has_blocked)
9719  		rq->has_blocked_load = 0;
9720  }
9721  #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9722  static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9723  static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9724  static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9725  static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9726  #endif
9727  
__update_blocked_others(struct rq * rq,bool * done)9728  static bool __update_blocked_others(struct rq *rq, bool *done)
9729  {
9730  	bool updated;
9731  
9732  	/*
9733  	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9734  	 * DL and IRQ signals have been updated before updating CFS.
9735  	 */
9736  	updated = update_other_load_avgs(rq);
9737  
9738  	if (others_have_blocked(rq))
9739  		*done = false;
9740  
9741  	return updated;
9742  }
9743  
9744  #ifdef CONFIG_FAIR_GROUP_SCHED
9745  
__update_blocked_fair(struct rq * rq,bool * done)9746  static bool __update_blocked_fair(struct rq *rq, bool *done)
9747  {
9748  	struct cfs_rq *cfs_rq, *pos;
9749  	bool decayed = false;
9750  	int cpu = cpu_of(rq);
9751  
9752  	/*
9753  	 * Iterates the task_group tree in a bottom up fashion, see
9754  	 * list_add_leaf_cfs_rq() for details.
9755  	 */
9756  	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9757  		struct sched_entity *se;
9758  
9759  		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9760  			update_tg_load_avg(cfs_rq);
9761  
9762  			if (cfs_rq->nr_running == 0)
9763  				update_idle_cfs_rq_clock_pelt(cfs_rq);
9764  
9765  			if (cfs_rq == &rq->cfs)
9766  				decayed = true;
9767  		}
9768  
9769  		/* Propagate pending load changes to the parent, if any: */
9770  		se = cfs_rq->tg->se[cpu];
9771  		if (se && !skip_blocked_update(se))
9772  			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9773  
9774  		/*
9775  		 * There can be a lot of idle CPU cgroups.  Don't let fully
9776  		 * decayed cfs_rqs linger on the list.
9777  		 */
9778  		if (cfs_rq_is_decayed(cfs_rq))
9779  			list_del_leaf_cfs_rq(cfs_rq);
9780  
9781  		/* Don't need periodic decay once load/util_avg are null */
9782  		if (cfs_rq_has_blocked(cfs_rq))
9783  			*done = false;
9784  	}
9785  
9786  	return decayed;
9787  }
9788  
9789  /*
9790   * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9791   * This needs to be done in a top-down fashion because the load of a child
9792   * group is a fraction of its parents load.
9793   */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9794  static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9795  {
9796  	struct rq *rq = rq_of(cfs_rq);
9797  	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9798  	unsigned long now = jiffies;
9799  	unsigned long load;
9800  
9801  	if (cfs_rq->last_h_load_update == now)
9802  		return;
9803  
9804  	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9805  	for_each_sched_entity(se) {
9806  		cfs_rq = cfs_rq_of(se);
9807  		WRITE_ONCE(cfs_rq->h_load_next, se);
9808  		if (cfs_rq->last_h_load_update == now)
9809  			break;
9810  	}
9811  
9812  	if (!se) {
9813  		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9814  		cfs_rq->last_h_load_update = now;
9815  	}
9816  
9817  	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9818  		load = cfs_rq->h_load;
9819  		load = div64_ul(load * se->avg.load_avg,
9820  			cfs_rq_load_avg(cfs_rq) + 1);
9821  		cfs_rq = group_cfs_rq(se);
9822  		cfs_rq->h_load = load;
9823  		cfs_rq->last_h_load_update = now;
9824  	}
9825  }
9826  
task_h_load(struct task_struct * p)9827  static unsigned long task_h_load(struct task_struct *p)
9828  {
9829  	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9830  
9831  	update_cfs_rq_h_load(cfs_rq);
9832  	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9833  			cfs_rq_load_avg(cfs_rq) + 1);
9834  }
9835  #else
__update_blocked_fair(struct rq * rq,bool * done)9836  static bool __update_blocked_fair(struct rq *rq, bool *done)
9837  {
9838  	struct cfs_rq *cfs_rq = &rq->cfs;
9839  	bool decayed;
9840  
9841  	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9842  	if (cfs_rq_has_blocked(cfs_rq))
9843  		*done = false;
9844  
9845  	return decayed;
9846  }
9847  
task_h_load(struct task_struct * p)9848  static unsigned long task_h_load(struct task_struct *p)
9849  {
9850  	return p->se.avg.load_avg;
9851  }
9852  #endif
9853  
sched_balance_update_blocked_averages(int cpu)9854  static void sched_balance_update_blocked_averages(int cpu)
9855  {
9856  	bool decayed = false, done = true;
9857  	struct rq *rq = cpu_rq(cpu);
9858  	struct rq_flags rf;
9859  
9860  	rq_lock_irqsave(rq, &rf);
9861  	update_blocked_load_tick(rq);
9862  	update_rq_clock(rq);
9863  
9864  	decayed |= __update_blocked_others(rq, &done);
9865  	decayed |= __update_blocked_fair(rq, &done);
9866  
9867  	update_blocked_load_status(rq, !done);
9868  	if (decayed)
9869  		cpufreq_update_util(rq, 0);
9870  	rq_unlock_irqrestore(rq, &rf);
9871  }
9872  
9873  /********** Helpers for sched_balance_find_src_group ************************/
9874  
9875  /*
9876   * sg_lb_stats - stats of a sched_group required for load-balancing:
9877   */
9878  struct sg_lb_stats {
9879  	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9880  	unsigned long group_load;		/* Total load          over the CPUs of the group */
9881  	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9882  	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9883  	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9884  	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9885  	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9886  	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9887  	unsigned int group_weight;
9888  	enum group_type group_type;
9889  	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9890  	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9891  	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9892  #ifdef CONFIG_NUMA_BALANCING
9893  	unsigned int nr_numa_running;
9894  	unsigned int nr_preferred_running;
9895  #endif
9896  };
9897  
9898  /*
9899   * sd_lb_stats - stats of a sched_domain required for load-balancing:
9900   */
9901  struct sd_lb_stats {
9902  	struct sched_group *busiest;		/* Busiest group in this sd */
9903  	struct sched_group *local;		/* Local group in this sd */
9904  	unsigned long total_load;		/* Total load of all groups in sd */
9905  	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9906  	unsigned long avg_load;			/* Average load across all groups in sd */
9907  	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9908  
9909  	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9910  	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9911  };
9912  
init_sd_lb_stats(struct sd_lb_stats * sds)9913  static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9914  {
9915  	/*
9916  	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9917  	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9918  	 * We must however set busiest_stat::group_type and
9919  	 * busiest_stat::idle_cpus to the worst busiest group because
9920  	 * update_sd_pick_busiest() reads these before assignment.
9921  	 */
9922  	*sds = (struct sd_lb_stats){
9923  		.busiest = NULL,
9924  		.local = NULL,
9925  		.total_load = 0UL,
9926  		.total_capacity = 0UL,
9927  		.busiest_stat = {
9928  			.idle_cpus = UINT_MAX,
9929  			.group_type = group_has_spare,
9930  		},
9931  	};
9932  }
9933  
scale_rt_capacity(int cpu)9934  static unsigned long scale_rt_capacity(int cpu)
9935  {
9936  	unsigned long max = get_actual_cpu_capacity(cpu);
9937  	struct rq *rq = cpu_rq(cpu);
9938  	unsigned long used, free;
9939  	unsigned long irq;
9940  
9941  	irq = cpu_util_irq(rq);
9942  
9943  	if (unlikely(irq >= max))
9944  		return 1;
9945  
9946  	/*
9947  	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9948  	 * (running and not running) with weights 0 and 1024 respectively.
9949  	 */
9950  	used = cpu_util_rt(rq);
9951  	used += cpu_util_dl(rq);
9952  
9953  	if (unlikely(used >= max))
9954  		return 1;
9955  
9956  	free = max - used;
9957  
9958  	return scale_irq_capacity(free, irq, max);
9959  }
9960  
update_cpu_capacity(struct sched_domain * sd,int cpu)9961  static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9962  {
9963  	unsigned long capacity = scale_rt_capacity(cpu);
9964  	struct sched_group *sdg = sd->groups;
9965  
9966  	if (!capacity)
9967  		capacity = 1;
9968  
9969  	cpu_rq(cpu)->cpu_capacity = capacity;
9970  	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9971  
9972  	sdg->sgc->capacity = capacity;
9973  	sdg->sgc->min_capacity = capacity;
9974  	sdg->sgc->max_capacity = capacity;
9975  }
9976  
update_group_capacity(struct sched_domain * sd,int cpu)9977  void update_group_capacity(struct sched_domain *sd, int cpu)
9978  {
9979  	struct sched_domain *child = sd->child;
9980  	struct sched_group *group, *sdg = sd->groups;
9981  	unsigned long capacity, min_capacity, max_capacity;
9982  	unsigned long interval;
9983  
9984  	interval = msecs_to_jiffies(sd->balance_interval);
9985  	interval = clamp(interval, 1UL, max_load_balance_interval);
9986  	sdg->sgc->next_update = jiffies + interval;
9987  
9988  	if (!child) {
9989  		update_cpu_capacity(sd, cpu);
9990  		return;
9991  	}
9992  
9993  	capacity = 0;
9994  	min_capacity = ULONG_MAX;
9995  	max_capacity = 0;
9996  
9997  	if (child->flags & SD_OVERLAP) {
9998  		/*
9999  		 * SD_OVERLAP domains cannot assume that child groups
10000  		 * span the current group.
10001  		 */
10002  
10003  		for_each_cpu(cpu, sched_group_span(sdg)) {
10004  			unsigned long cpu_cap = capacity_of(cpu);
10005  
10006  			capacity += cpu_cap;
10007  			min_capacity = min(cpu_cap, min_capacity);
10008  			max_capacity = max(cpu_cap, max_capacity);
10009  		}
10010  	} else  {
10011  		/*
10012  		 * !SD_OVERLAP domains can assume that child groups
10013  		 * span the current group.
10014  		 */
10015  
10016  		group = child->groups;
10017  		do {
10018  			struct sched_group_capacity *sgc = group->sgc;
10019  
10020  			capacity += sgc->capacity;
10021  			min_capacity = min(sgc->min_capacity, min_capacity);
10022  			max_capacity = max(sgc->max_capacity, max_capacity);
10023  			group = group->next;
10024  		} while (group != child->groups);
10025  	}
10026  
10027  	sdg->sgc->capacity = capacity;
10028  	sdg->sgc->min_capacity = min_capacity;
10029  	sdg->sgc->max_capacity = max_capacity;
10030  }
10031  
10032  /*
10033   * Check whether the capacity of the rq has been noticeably reduced by side
10034   * activity. The imbalance_pct is used for the threshold.
10035   * Return true is the capacity is reduced
10036   */
10037  static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)10038  check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10039  {
10040  	return ((rq->cpu_capacity * sd->imbalance_pct) <
10041  				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10042  }
10043  
10044  /* Check if the rq has a misfit task */
check_misfit_status(struct rq * rq)10045  static inline bool check_misfit_status(struct rq *rq)
10046  {
10047  	return rq->misfit_task_load;
10048  }
10049  
10050  /*
10051   * Group imbalance indicates (and tries to solve) the problem where balancing
10052   * groups is inadequate due to ->cpus_ptr constraints.
10053   *
10054   * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10055   * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10056   * Something like:
10057   *
10058   *	{ 0 1 2 3 } { 4 5 6 7 }
10059   *	        *     * * *
10060   *
10061   * If we were to balance group-wise we'd place two tasks in the first group and
10062   * two tasks in the second group. Clearly this is undesired as it will overload
10063   * cpu 3 and leave one of the CPUs in the second group unused.
10064   *
10065   * The current solution to this issue is detecting the skew in the first group
10066   * by noticing the lower domain failed to reach balance and had difficulty
10067   * moving tasks due to affinity constraints.
10068   *
10069   * When this is so detected; this group becomes a candidate for busiest; see
10070   * update_sd_pick_busiest(). And calculate_imbalance() and
10071   * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10072   * to create an effective group imbalance.
10073   *
10074   * This is a somewhat tricky proposition since the next run might not find the
10075   * group imbalance and decide the groups need to be balanced again. A most
10076   * subtle and fragile situation.
10077   */
10078  
sg_imbalanced(struct sched_group * group)10079  static inline int sg_imbalanced(struct sched_group *group)
10080  {
10081  	return group->sgc->imbalance;
10082  }
10083  
10084  /*
10085   * group_has_capacity returns true if the group has spare capacity that could
10086   * be used by some tasks.
10087   * We consider that a group has spare capacity if the number of task is
10088   * smaller than the number of CPUs or if the utilization is lower than the
10089   * available capacity for CFS tasks.
10090   * For the latter, we use a threshold to stabilize the state, to take into
10091   * account the variance of the tasks' load and to return true if the available
10092   * capacity in meaningful for the load balancer.
10093   * As an example, an available capacity of 1% can appear but it doesn't make
10094   * any benefit for the load balance.
10095   */
10096  static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10097  group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10098  {
10099  	if (sgs->sum_nr_running < sgs->group_weight)
10100  		return true;
10101  
10102  	if ((sgs->group_capacity * imbalance_pct) <
10103  			(sgs->group_runnable * 100))
10104  		return false;
10105  
10106  	if ((sgs->group_capacity * 100) >
10107  			(sgs->group_util * imbalance_pct))
10108  		return true;
10109  
10110  	return false;
10111  }
10112  
10113  /*
10114   *  group_is_overloaded returns true if the group has more tasks than it can
10115   *  handle.
10116   *  group_is_overloaded is not equals to !group_has_capacity because a group
10117   *  with the exact right number of tasks, has no more spare capacity but is not
10118   *  overloaded so both group_has_capacity and group_is_overloaded return
10119   *  false.
10120   */
10121  static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10122  group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10123  {
10124  	if (sgs->sum_nr_running <= sgs->group_weight)
10125  		return false;
10126  
10127  	if ((sgs->group_capacity * 100) <
10128  			(sgs->group_util * imbalance_pct))
10129  		return true;
10130  
10131  	if ((sgs->group_capacity * imbalance_pct) <
10132  			(sgs->group_runnable * 100))
10133  		return true;
10134  
10135  	return false;
10136  }
10137  
10138  static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10139  group_type group_classify(unsigned int imbalance_pct,
10140  			  struct sched_group *group,
10141  			  struct sg_lb_stats *sgs)
10142  {
10143  	if (group_is_overloaded(imbalance_pct, sgs))
10144  		return group_overloaded;
10145  
10146  	if (sg_imbalanced(group))
10147  		return group_imbalanced;
10148  
10149  	if (sgs->group_asym_packing)
10150  		return group_asym_packing;
10151  
10152  	if (sgs->group_smt_balance)
10153  		return group_smt_balance;
10154  
10155  	if (sgs->group_misfit_task_load)
10156  		return group_misfit_task;
10157  
10158  	if (!group_has_capacity(imbalance_pct, sgs))
10159  		return group_fully_busy;
10160  
10161  	return group_has_spare;
10162  }
10163  
10164  /**
10165   * sched_use_asym_prio - Check whether asym_packing priority must be used
10166   * @sd:		The scheduling domain of the load balancing
10167   * @cpu:	A CPU
10168   *
10169   * Always use CPU priority when balancing load between SMT siblings. When
10170   * balancing load between cores, it is not sufficient that @cpu is idle. Only
10171   * use CPU priority if the whole core is idle.
10172   *
10173   * Returns: True if the priority of @cpu must be followed. False otherwise.
10174   */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10175  static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10176  {
10177  	if (!(sd->flags & SD_ASYM_PACKING))
10178  		return false;
10179  
10180  	if (!sched_smt_active())
10181  		return true;
10182  
10183  	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10184  }
10185  
sched_asym(struct sched_domain * sd,int dst_cpu,int src_cpu)10186  static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10187  {
10188  	/*
10189  	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10190  	 * if it has higher priority than @src_cpu.
10191  	 */
10192  	return sched_use_asym_prio(sd, dst_cpu) &&
10193  		sched_asym_prefer(dst_cpu, src_cpu);
10194  }
10195  
10196  /**
10197   * sched_group_asym - Check if the destination CPU can do asym_packing balance
10198   * @env:	The load balancing environment
10199   * @sgs:	Load-balancing statistics of the candidate busiest group
10200   * @group:	The candidate busiest group
10201   *
10202   * @env::dst_cpu can do asym_packing if it has higher priority than the
10203   * preferred CPU of @group.
10204   *
10205   * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10206   * otherwise.
10207   */
10208  static inline bool
sched_group_asym(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10209  sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10210  {
10211  	/*
10212  	 * CPU priorities do not make sense for SMT cores with more than one
10213  	 * busy sibling.
10214  	 */
10215  	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10216  	    (sgs->group_weight - sgs->idle_cpus != 1))
10217  		return false;
10218  
10219  	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10220  }
10221  
10222  /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10223  static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10224  				    struct sched_group *sg2)
10225  {
10226  	if (!sg1 || !sg2)
10227  		return false;
10228  
10229  	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10230  		(sg2->flags & SD_SHARE_CPUCAPACITY);
10231  }
10232  
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10233  static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10234  			       struct sched_group *group)
10235  {
10236  	if (!env->idle)
10237  		return false;
10238  
10239  	/*
10240  	 * For SMT source group, it is better to move a task
10241  	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10242  	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10243  	 * will not be on.
10244  	 */
10245  	if (group->flags & SD_SHARE_CPUCAPACITY &&
10246  	    sgs->sum_h_nr_running > 1)
10247  		return true;
10248  
10249  	return false;
10250  }
10251  
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10252  static inline long sibling_imbalance(struct lb_env *env,
10253  				    struct sd_lb_stats *sds,
10254  				    struct sg_lb_stats *busiest,
10255  				    struct sg_lb_stats *local)
10256  {
10257  	int ncores_busiest, ncores_local;
10258  	long imbalance;
10259  
10260  	if (!env->idle || !busiest->sum_nr_running)
10261  		return 0;
10262  
10263  	ncores_busiest = sds->busiest->cores;
10264  	ncores_local = sds->local->cores;
10265  
10266  	if (ncores_busiest == ncores_local) {
10267  		imbalance = busiest->sum_nr_running;
10268  		lsub_positive(&imbalance, local->sum_nr_running);
10269  		return imbalance;
10270  	}
10271  
10272  	/* Balance such that nr_running/ncores ratio are same on both groups */
10273  	imbalance = ncores_local * busiest->sum_nr_running;
10274  	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10275  	/* Normalize imbalance and do rounding on normalization */
10276  	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10277  	imbalance /= ncores_local + ncores_busiest;
10278  
10279  	/* Take advantage of resource in an empty sched group */
10280  	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10281  	    busiest->sum_nr_running > 1)
10282  		imbalance = 2;
10283  
10284  	return imbalance;
10285  }
10286  
10287  static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10288  sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10289  {
10290  	/*
10291  	 * When there is more than 1 task, the group_overloaded case already
10292  	 * takes care of cpu with reduced capacity
10293  	 */
10294  	if (rq->cfs.h_nr_running != 1)
10295  		return false;
10296  
10297  	return check_cpu_capacity(rq, sd);
10298  }
10299  
10300  /**
10301   * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10302   * @env: The load balancing environment.
10303   * @sds: Load-balancing data with statistics of the local group.
10304   * @group: sched_group whose statistics are to be updated.
10305   * @sgs: variable to hold the statistics for this group.
10306   * @sg_overloaded: sched_group is overloaded
10307   * @sg_overutilized: sched_group is overutilized
10308   */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,bool * sg_overloaded,bool * sg_overutilized)10309  static inline void update_sg_lb_stats(struct lb_env *env,
10310  				      struct sd_lb_stats *sds,
10311  				      struct sched_group *group,
10312  				      struct sg_lb_stats *sgs,
10313  				      bool *sg_overloaded,
10314  				      bool *sg_overutilized)
10315  {
10316  	int i, nr_running, local_group;
10317  
10318  	memset(sgs, 0, sizeof(*sgs));
10319  
10320  	local_group = group == sds->local;
10321  
10322  	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10323  		struct rq *rq = cpu_rq(i);
10324  		unsigned long load = cpu_load(rq);
10325  
10326  		sgs->group_load += load;
10327  		sgs->group_util += cpu_util_cfs(i);
10328  		sgs->group_runnable += cpu_runnable(rq);
10329  		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10330  
10331  		nr_running = rq->nr_running;
10332  		sgs->sum_nr_running += nr_running;
10333  
10334  		if (nr_running > 1)
10335  			*sg_overloaded = 1;
10336  
10337  		if (cpu_overutilized(i))
10338  			*sg_overutilized = 1;
10339  
10340  #ifdef CONFIG_NUMA_BALANCING
10341  		sgs->nr_numa_running += rq->nr_numa_running;
10342  		sgs->nr_preferred_running += rq->nr_preferred_running;
10343  #endif
10344  		/*
10345  		 * No need to call idle_cpu() if nr_running is not 0
10346  		 */
10347  		if (!nr_running && idle_cpu(i)) {
10348  			sgs->idle_cpus++;
10349  			/* Idle cpu can't have misfit task */
10350  			continue;
10351  		}
10352  
10353  		if (local_group)
10354  			continue;
10355  
10356  		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10357  			/* Check for a misfit task on the cpu */
10358  			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10359  				sgs->group_misfit_task_load = rq->misfit_task_load;
10360  				*sg_overloaded = 1;
10361  			}
10362  		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10363  			/* Check for a task running on a CPU with reduced capacity */
10364  			if (sgs->group_misfit_task_load < load)
10365  				sgs->group_misfit_task_load = load;
10366  		}
10367  	}
10368  
10369  	sgs->group_capacity = group->sgc->capacity;
10370  
10371  	sgs->group_weight = group->group_weight;
10372  
10373  	/* Check if dst CPU is idle and preferred to this group */
10374  	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10375  	    sched_group_asym(env, sgs, group))
10376  		sgs->group_asym_packing = 1;
10377  
10378  	/* Check for loaded SMT group to be balanced to dst CPU */
10379  	if (!local_group && smt_balance(env, sgs, group))
10380  		sgs->group_smt_balance = 1;
10381  
10382  	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10383  
10384  	/* Computing avg_load makes sense only when group is overloaded */
10385  	if (sgs->group_type == group_overloaded)
10386  		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10387  				sgs->group_capacity;
10388  }
10389  
10390  /**
10391   * update_sd_pick_busiest - return 1 on busiest group
10392   * @env: The load balancing environment.
10393   * @sds: sched_domain statistics
10394   * @sg: sched_group candidate to be checked for being the busiest
10395   * @sgs: sched_group statistics
10396   *
10397   * Determine if @sg is a busier group than the previously selected
10398   * busiest group.
10399   *
10400   * Return: %true if @sg is a busier group than the previously selected
10401   * busiest group. %false otherwise.
10402   */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10403  static bool update_sd_pick_busiest(struct lb_env *env,
10404  				   struct sd_lb_stats *sds,
10405  				   struct sched_group *sg,
10406  				   struct sg_lb_stats *sgs)
10407  {
10408  	struct sg_lb_stats *busiest = &sds->busiest_stat;
10409  
10410  	/* Make sure that there is at least one task to pull */
10411  	if (!sgs->sum_h_nr_running)
10412  		return false;
10413  
10414  	/*
10415  	 * Don't try to pull misfit tasks we can't help.
10416  	 * We can use max_capacity here as reduction in capacity on some
10417  	 * CPUs in the group should either be possible to resolve
10418  	 * internally or be covered by avg_load imbalance (eventually).
10419  	 */
10420  	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10421  	    (sgs->group_type == group_misfit_task) &&
10422  	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10423  	     sds->local_stat.group_type != group_has_spare))
10424  		return false;
10425  
10426  	if (sgs->group_type > busiest->group_type)
10427  		return true;
10428  
10429  	if (sgs->group_type < busiest->group_type)
10430  		return false;
10431  
10432  	/*
10433  	 * The candidate and the current busiest group are the same type of
10434  	 * group. Let check which one is the busiest according to the type.
10435  	 */
10436  
10437  	switch (sgs->group_type) {
10438  	case group_overloaded:
10439  		/* Select the overloaded group with highest avg_load. */
10440  		return sgs->avg_load > busiest->avg_load;
10441  
10442  	case group_imbalanced:
10443  		/*
10444  		 * Select the 1st imbalanced group as we don't have any way to
10445  		 * choose one more than another.
10446  		 */
10447  		return false;
10448  
10449  	case group_asym_packing:
10450  		/* Prefer to move from lowest priority CPU's work */
10451  		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10452  
10453  	case group_misfit_task:
10454  		/*
10455  		 * If we have more than one misfit sg go with the biggest
10456  		 * misfit.
10457  		 */
10458  		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10459  
10460  	case group_smt_balance:
10461  		/*
10462  		 * Check if we have spare CPUs on either SMT group to
10463  		 * choose has spare or fully busy handling.
10464  		 */
10465  		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10466  			goto has_spare;
10467  
10468  		fallthrough;
10469  
10470  	case group_fully_busy:
10471  		/*
10472  		 * Select the fully busy group with highest avg_load. In
10473  		 * theory, there is no need to pull task from such kind of
10474  		 * group because tasks have all compute capacity that they need
10475  		 * but we can still improve the overall throughput by reducing
10476  		 * contention when accessing shared HW resources.
10477  		 *
10478  		 * XXX for now avg_load is not computed and always 0 so we
10479  		 * select the 1st one, except if @sg is composed of SMT
10480  		 * siblings.
10481  		 */
10482  
10483  		if (sgs->avg_load < busiest->avg_load)
10484  			return false;
10485  
10486  		if (sgs->avg_load == busiest->avg_load) {
10487  			/*
10488  			 * SMT sched groups need more help than non-SMT groups.
10489  			 * If @sg happens to also be SMT, either choice is good.
10490  			 */
10491  			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10492  				return false;
10493  		}
10494  
10495  		break;
10496  
10497  	case group_has_spare:
10498  		/*
10499  		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10500  		 * as we do not want to pull task off SMT core with one task
10501  		 * and make the core idle.
10502  		 */
10503  		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10504  			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10505  				return false;
10506  			else
10507  				return true;
10508  		}
10509  has_spare:
10510  
10511  		/*
10512  		 * Select not overloaded group with lowest number of idle CPUs
10513  		 * and highest number of running tasks. We could also compare
10514  		 * the spare capacity which is more stable but it can end up
10515  		 * that the group has less spare capacity but finally more idle
10516  		 * CPUs which means less opportunity to pull tasks.
10517  		 */
10518  		if (sgs->idle_cpus > busiest->idle_cpus)
10519  			return false;
10520  		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10521  			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10522  			return false;
10523  
10524  		break;
10525  	}
10526  
10527  	/*
10528  	 * Candidate sg has no more than one task per CPU and has higher
10529  	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10530  	 * throughput. Maximize throughput, power/energy consequences are not
10531  	 * considered.
10532  	 */
10533  	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10534  	    (sgs->group_type <= group_fully_busy) &&
10535  	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10536  		return false;
10537  
10538  	return true;
10539  }
10540  
10541  #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10542  static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10543  {
10544  	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10545  		return regular;
10546  	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10547  		return remote;
10548  	return all;
10549  }
10550  
fbq_classify_rq(struct rq * rq)10551  static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10552  {
10553  	if (rq->nr_running > rq->nr_numa_running)
10554  		return regular;
10555  	if (rq->nr_running > rq->nr_preferred_running)
10556  		return remote;
10557  	return all;
10558  }
10559  #else
fbq_classify_group(struct sg_lb_stats * sgs)10560  static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10561  {
10562  	return all;
10563  }
10564  
fbq_classify_rq(struct rq * rq)10565  static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10566  {
10567  	return regular;
10568  }
10569  #endif /* CONFIG_NUMA_BALANCING */
10570  
10571  
10572  struct sg_lb_stats;
10573  
10574  /*
10575   * task_running_on_cpu - return 1 if @p is running on @cpu.
10576   */
10577  
task_running_on_cpu(int cpu,struct task_struct * p)10578  static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10579  {
10580  	/* Task has no contribution or is new */
10581  	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10582  		return 0;
10583  
10584  	if (task_on_rq_queued(p))
10585  		return 1;
10586  
10587  	return 0;
10588  }
10589  
10590  /**
10591   * idle_cpu_without - would a given CPU be idle without p ?
10592   * @cpu: the processor on which idleness is tested.
10593   * @p: task which should be ignored.
10594   *
10595   * Return: 1 if the CPU would be idle. 0 otherwise.
10596   */
idle_cpu_without(int cpu,struct task_struct * p)10597  static int idle_cpu_without(int cpu, struct task_struct *p)
10598  {
10599  	struct rq *rq = cpu_rq(cpu);
10600  
10601  	if (rq->curr != rq->idle && rq->curr != p)
10602  		return 0;
10603  
10604  	/*
10605  	 * rq->nr_running can't be used but an updated version without the
10606  	 * impact of p on cpu must be used instead. The updated nr_running
10607  	 * be computed and tested before calling idle_cpu_without().
10608  	 */
10609  
10610  	if (rq->ttwu_pending)
10611  		return 0;
10612  
10613  	return 1;
10614  }
10615  
10616  /*
10617   * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10618   * @sd: The sched_domain level to look for idlest group.
10619   * @group: sched_group whose statistics are to be updated.
10620   * @sgs: variable to hold the statistics for this group.
10621   * @p: The task for which we look for the idlest group/CPU.
10622   */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10623  static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10624  					  struct sched_group *group,
10625  					  struct sg_lb_stats *sgs,
10626  					  struct task_struct *p)
10627  {
10628  	int i, nr_running;
10629  
10630  	memset(sgs, 0, sizeof(*sgs));
10631  
10632  	/* Assume that task can't fit any CPU of the group */
10633  	if (sd->flags & SD_ASYM_CPUCAPACITY)
10634  		sgs->group_misfit_task_load = 1;
10635  
10636  	for_each_cpu(i, sched_group_span(group)) {
10637  		struct rq *rq = cpu_rq(i);
10638  		unsigned int local;
10639  
10640  		sgs->group_load += cpu_load_without(rq, p);
10641  		sgs->group_util += cpu_util_without(i, p);
10642  		sgs->group_runnable += cpu_runnable_without(rq, p);
10643  		local = task_running_on_cpu(i, p);
10644  		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10645  
10646  		nr_running = rq->nr_running - local;
10647  		sgs->sum_nr_running += nr_running;
10648  
10649  		/*
10650  		 * No need to call idle_cpu_without() if nr_running is not 0
10651  		 */
10652  		if (!nr_running && idle_cpu_without(i, p))
10653  			sgs->idle_cpus++;
10654  
10655  		/* Check if task fits in the CPU */
10656  		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10657  		    sgs->group_misfit_task_load &&
10658  		    task_fits_cpu(p, i))
10659  			sgs->group_misfit_task_load = 0;
10660  
10661  	}
10662  
10663  	sgs->group_capacity = group->sgc->capacity;
10664  
10665  	sgs->group_weight = group->group_weight;
10666  
10667  	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10668  
10669  	/*
10670  	 * Computing avg_load makes sense only when group is fully busy or
10671  	 * overloaded
10672  	 */
10673  	if (sgs->group_type == group_fully_busy ||
10674  		sgs->group_type == group_overloaded)
10675  		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10676  				sgs->group_capacity;
10677  }
10678  
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10679  static bool update_pick_idlest(struct sched_group *idlest,
10680  			       struct sg_lb_stats *idlest_sgs,
10681  			       struct sched_group *group,
10682  			       struct sg_lb_stats *sgs)
10683  {
10684  	if (sgs->group_type < idlest_sgs->group_type)
10685  		return true;
10686  
10687  	if (sgs->group_type > idlest_sgs->group_type)
10688  		return false;
10689  
10690  	/*
10691  	 * The candidate and the current idlest group are the same type of
10692  	 * group. Let check which one is the idlest according to the type.
10693  	 */
10694  
10695  	switch (sgs->group_type) {
10696  	case group_overloaded:
10697  	case group_fully_busy:
10698  		/* Select the group with lowest avg_load. */
10699  		if (idlest_sgs->avg_load <= sgs->avg_load)
10700  			return false;
10701  		break;
10702  
10703  	case group_imbalanced:
10704  	case group_asym_packing:
10705  	case group_smt_balance:
10706  		/* Those types are not used in the slow wakeup path */
10707  		return false;
10708  
10709  	case group_misfit_task:
10710  		/* Select group with the highest max capacity */
10711  		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10712  			return false;
10713  		break;
10714  
10715  	case group_has_spare:
10716  		/* Select group with most idle CPUs */
10717  		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10718  			return false;
10719  
10720  		/* Select group with lowest group_util */
10721  		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10722  			idlest_sgs->group_util <= sgs->group_util)
10723  			return false;
10724  
10725  		break;
10726  	}
10727  
10728  	return true;
10729  }
10730  
10731  /*
10732   * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10733   * domain.
10734   *
10735   * Assumes p is allowed on at least one CPU in sd.
10736   */
10737  static struct sched_group *
sched_balance_find_dst_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10738  sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10739  {
10740  	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10741  	struct sg_lb_stats local_sgs, tmp_sgs;
10742  	struct sg_lb_stats *sgs;
10743  	unsigned long imbalance;
10744  	struct sg_lb_stats idlest_sgs = {
10745  			.avg_load = UINT_MAX,
10746  			.group_type = group_overloaded,
10747  	};
10748  
10749  	do {
10750  		int local_group;
10751  
10752  		/* Skip over this group if it has no CPUs allowed */
10753  		if (!cpumask_intersects(sched_group_span(group),
10754  					p->cpus_ptr))
10755  			continue;
10756  
10757  		/* Skip over this group if no cookie matched */
10758  		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10759  			continue;
10760  
10761  		local_group = cpumask_test_cpu(this_cpu,
10762  					       sched_group_span(group));
10763  
10764  		if (local_group) {
10765  			sgs = &local_sgs;
10766  			local = group;
10767  		} else {
10768  			sgs = &tmp_sgs;
10769  		}
10770  
10771  		update_sg_wakeup_stats(sd, group, sgs, p);
10772  
10773  		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10774  			idlest = group;
10775  			idlest_sgs = *sgs;
10776  		}
10777  
10778  	} while (group = group->next, group != sd->groups);
10779  
10780  
10781  	/* There is no idlest group to push tasks to */
10782  	if (!idlest)
10783  		return NULL;
10784  
10785  	/* The local group has been skipped because of CPU affinity */
10786  	if (!local)
10787  		return idlest;
10788  
10789  	/*
10790  	 * If the local group is idler than the selected idlest group
10791  	 * don't try and push the task.
10792  	 */
10793  	if (local_sgs.group_type < idlest_sgs.group_type)
10794  		return NULL;
10795  
10796  	/*
10797  	 * If the local group is busier than the selected idlest group
10798  	 * try and push the task.
10799  	 */
10800  	if (local_sgs.group_type > idlest_sgs.group_type)
10801  		return idlest;
10802  
10803  	switch (local_sgs.group_type) {
10804  	case group_overloaded:
10805  	case group_fully_busy:
10806  
10807  		/* Calculate allowed imbalance based on load */
10808  		imbalance = scale_load_down(NICE_0_LOAD) *
10809  				(sd->imbalance_pct-100) / 100;
10810  
10811  		/*
10812  		 * When comparing groups across NUMA domains, it's possible for
10813  		 * the local domain to be very lightly loaded relative to the
10814  		 * remote domains but "imbalance" skews the comparison making
10815  		 * remote CPUs look much more favourable. When considering
10816  		 * cross-domain, add imbalance to the load on the remote node
10817  		 * and consider staying local.
10818  		 */
10819  
10820  		if ((sd->flags & SD_NUMA) &&
10821  		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10822  			return NULL;
10823  
10824  		/*
10825  		 * If the local group is less loaded than the selected
10826  		 * idlest group don't try and push any tasks.
10827  		 */
10828  		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10829  			return NULL;
10830  
10831  		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10832  			return NULL;
10833  		break;
10834  
10835  	case group_imbalanced:
10836  	case group_asym_packing:
10837  	case group_smt_balance:
10838  		/* Those type are not used in the slow wakeup path */
10839  		return NULL;
10840  
10841  	case group_misfit_task:
10842  		/* Select group with the highest max capacity */
10843  		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10844  			return NULL;
10845  		break;
10846  
10847  	case group_has_spare:
10848  #ifdef CONFIG_NUMA
10849  		if (sd->flags & SD_NUMA) {
10850  			int imb_numa_nr = sd->imb_numa_nr;
10851  #ifdef CONFIG_NUMA_BALANCING
10852  			int idlest_cpu;
10853  			/*
10854  			 * If there is spare capacity at NUMA, try to select
10855  			 * the preferred node
10856  			 */
10857  			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10858  				return NULL;
10859  
10860  			idlest_cpu = cpumask_first(sched_group_span(idlest));
10861  			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10862  				return idlest;
10863  #endif /* CONFIG_NUMA_BALANCING */
10864  			/*
10865  			 * Otherwise, keep the task close to the wakeup source
10866  			 * and improve locality if the number of running tasks
10867  			 * would remain below threshold where an imbalance is
10868  			 * allowed while accounting for the possibility the
10869  			 * task is pinned to a subset of CPUs. If there is a
10870  			 * real need of migration, periodic load balance will
10871  			 * take care of it.
10872  			 */
10873  			if (p->nr_cpus_allowed != NR_CPUS) {
10874  				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10875  
10876  				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10877  				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10878  			}
10879  
10880  			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10881  			if (!adjust_numa_imbalance(imbalance,
10882  						   local_sgs.sum_nr_running + 1,
10883  						   imb_numa_nr)) {
10884  				return NULL;
10885  			}
10886  		}
10887  #endif /* CONFIG_NUMA */
10888  
10889  		/*
10890  		 * Select group with highest number of idle CPUs. We could also
10891  		 * compare the utilization which is more stable but it can end
10892  		 * up that the group has less spare capacity but finally more
10893  		 * idle CPUs which means more opportunity to run task.
10894  		 */
10895  		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10896  			return NULL;
10897  		break;
10898  	}
10899  
10900  	return idlest;
10901  }
10902  
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10903  static void update_idle_cpu_scan(struct lb_env *env,
10904  				 unsigned long sum_util)
10905  {
10906  	struct sched_domain_shared *sd_share;
10907  	int llc_weight, pct;
10908  	u64 x, y, tmp;
10909  	/*
10910  	 * Update the number of CPUs to scan in LLC domain, which could
10911  	 * be used as a hint in select_idle_cpu(). The update of sd_share
10912  	 * could be expensive because it is within a shared cache line.
10913  	 * So the write of this hint only occurs during periodic load
10914  	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10915  	 * can fire way more frequently than the former.
10916  	 */
10917  	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10918  		return;
10919  
10920  	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10921  	if (env->sd->span_weight != llc_weight)
10922  		return;
10923  
10924  	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10925  	if (!sd_share)
10926  		return;
10927  
10928  	/*
10929  	 * The number of CPUs to search drops as sum_util increases, when
10930  	 * sum_util hits 85% or above, the scan stops.
10931  	 * The reason to choose 85% as the threshold is because this is the
10932  	 * imbalance_pct(117) when a LLC sched group is overloaded.
10933  	 *
10934  	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10935  	 * and y'= y / SCHED_CAPACITY_SCALE
10936  	 *
10937  	 * x is the ratio of sum_util compared to the CPU capacity:
10938  	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10939  	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10940  	 * and the number of CPUs to scan is calculated by:
10941  	 *
10942  	 * nr_scan = llc_weight * y'                                    [2]
10943  	 *
10944  	 * When x hits the threshold of overloaded, AKA, when
10945  	 * x = 100 / pct, y drops to 0. According to [1],
10946  	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10947  	 *
10948  	 * Scale x by SCHED_CAPACITY_SCALE:
10949  	 * x' = sum_util / llc_weight;                                  [3]
10950  	 *
10951  	 * and finally [1] becomes:
10952  	 * y = SCHED_CAPACITY_SCALE -
10953  	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10954  	 *
10955  	 */
10956  	/* equation [3] */
10957  	x = sum_util;
10958  	do_div(x, llc_weight);
10959  
10960  	/* equation [4] */
10961  	pct = env->sd->imbalance_pct;
10962  	tmp = x * x * pct * pct;
10963  	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10964  	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10965  	y = SCHED_CAPACITY_SCALE - tmp;
10966  
10967  	/* equation [2] */
10968  	y *= llc_weight;
10969  	do_div(y, SCHED_CAPACITY_SCALE);
10970  	if ((int)y != sd_share->nr_idle_scan)
10971  		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10972  }
10973  
10974  /**
10975   * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10976   * @env: The load balancing environment.
10977   * @sds: variable to hold the statistics for this sched_domain.
10978   */
10979  
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)10980  static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10981  {
10982  	struct sched_group *sg = env->sd->groups;
10983  	struct sg_lb_stats *local = &sds->local_stat;
10984  	struct sg_lb_stats tmp_sgs;
10985  	unsigned long sum_util = 0;
10986  	bool sg_overloaded = 0, sg_overutilized = 0;
10987  
10988  	do {
10989  		struct sg_lb_stats *sgs = &tmp_sgs;
10990  		int local_group;
10991  
10992  		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10993  		if (local_group) {
10994  			sds->local = sg;
10995  			sgs = local;
10996  
10997  			if (env->idle != CPU_NEWLY_IDLE ||
10998  			    time_after_eq(jiffies, sg->sgc->next_update))
10999  				update_group_capacity(env->sd, env->dst_cpu);
11000  		}
11001  
11002  		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11003  
11004  		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11005  			sds->busiest = sg;
11006  			sds->busiest_stat = *sgs;
11007  		}
11008  
11009  		/* Now, start updating sd_lb_stats */
11010  		sds->total_load += sgs->group_load;
11011  		sds->total_capacity += sgs->group_capacity;
11012  
11013  		sum_util += sgs->group_util;
11014  		sg = sg->next;
11015  	} while (sg != env->sd->groups);
11016  
11017  	/*
11018  	 * Indicate that the child domain of the busiest group prefers tasks
11019  	 * go to a child's sibling domains first. NB the flags of a sched group
11020  	 * are those of the child domain.
11021  	 */
11022  	if (sds->busiest)
11023  		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11024  
11025  
11026  	if (env->sd->flags & SD_NUMA)
11027  		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11028  
11029  	if (!env->sd->parent) {
11030  		/* update overload indicator if we are at root domain */
11031  		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11032  
11033  		/* Update over-utilization (tipping point, U >= 0) indicator */
11034  		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11035  	} else if (sg_overutilized) {
11036  		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11037  	}
11038  
11039  	update_idle_cpu_scan(env, sum_util);
11040  }
11041  
11042  /**
11043   * calculate_imbalance - Calculate the amount of imbalance present within the
11044   *			 groups of a given sched_domain during load balance.
11045   * @env: load balance environment
11046   * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11047   */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11048  static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11049  {
11050  	struct sg_lb_stats *local, *busiest;
11051  
11052  	local = &sds->local_stat;
11053  	busiest = &sds->busiest_stat;
11054  
11055  	if (busiest->group_type == group_misfit_task) {
11056  		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11057  			/* Set imbalance to allow misfit tasks to be balanced. */
11058  			env->migration_type = migrate_misfit;
11059  			env->imbalance = 1;
11060  		} else {
11061  			/*
11062  			 * Set load imbalance to allow moving task from cpu
11063  			 * with reduced capacity.
11064  			 */
11065  			env->migration_type = migrate_load;
11066  			env->imbalance = busiest->group_misfit_task_load;
11067  		}
11068  		return;
11069  	}
11070  
11071  	if (busiest->group_type == group_asym_packing) {
11072  		/*
11073  		 * In case of asym capacity, we will try to migrate all load to
11074  		 * the preferred CPU.
11075  		 */
11076  		env->migration_type = migrate_task;
11077  		env->imbalance = busiest->sum_h_nr_running;
11078  		return;
11079  	}
11080  
11081  	if (busiest->group_type == group_smt_balance) {
11082  		/* Reduce number of tasks sharing CPU capacity */
11083  		env->migration_type = migrate_task;
11084  		env->imbalance = 1;
11085  		return;
11086  	}
11087  
11088  	if (busiest->group_type == group_imbalanced) {
11089  		/*
11090  		 * In the group_imb case we cannot rely on group-wide averages
11091  		 * to ensure CPU-load equilibrium, try to move any task to fix
11092  		 * the imbalance. The next load balance will take care of
11093  		 * balancing back the system.
11094  		 */
11095  		env->migration_type = migrate_task;
11096  		env->imbalance = 1;
11097  		return;
11098  	}
11099  
11100  	/*
11101  	 * Try to use spare capacity of local group without overloading it or
11102  	 * emptying busiest.
11103  	 */
11104  	if (local->group_type == group_has_spare) {
11105  		if ((busiest->group_type > group_fully_busy) &&
11106  		    !(env->sd->flags & SD_SHARE_LLC)) {
11107  			/*
11108  			 * If busiest is overloaded, try to fill spare
11109  			 * capacity. This might end up creating spare capacity
11110  			 * in busiest or busiest still being overloaded but
11111  			 * there is no simple way to directly compute the
11112  			 * amount of load to migrate in order to balance the
11113  			 * system.
11114  			 */
11115  			env->migration_type = migrate_util;
11116  			env->imbalance = max(local->group_capacity, local->group_util) -
11117  					 local->group_util;
11118  
11119  			/*
11120  			 * In some cases, the group's utilization is max or even
11121  			 * higher than capacity because of migrations but the
11122  			 * local CPU is (newly) idle. There is at least one
11123  			 * waiting task in this overloaded busiest group. Let's
11124  			 * try to pull it.
11125  			 */
11126  			if (env->idle && env->imbalance == 0) {
11127  				env->migration_type = migrate_task;
11128  				env->imbalance = 1;
11129  			}
11130  
11131  			return;
11132  		}
11133  
11134  		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11135  			/*
11136  			 * When prefer sibling, evenly spread running tasks on
11137  			 * groups.
11138  			 */
11139  			env->migration_type = migrate_task;
11140  			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11141  		} else {
11142  
11143  			/*
11144  			 * If there is no overload, we just want to even the number of
11145  			 * idle CPUs.
11146  			 */
11147  			env->migration_type = migrate_task;
11148  			env->imbalance = max_t(long, 0,
11149  					       (local->idle_cpus - busiest->idle_cpus));
11150  		}
11151  
11152  #ifdef CONFIG_NUMA
11153  		/* Consider allowing a small imbalance between NUMA groups */
11154  		if (env->sd->flags & SD_NUMA) {
11155  			env->imbalance = adjust_numa_imbalance(env->imbalance,
11156  							       local->sum_nr_running + 1,
11157  							       env->sd->imb_numa_nr);
11158  		}
11159  #endif
11160  
11161  		/* Number of tasks to move to restore balance */
11162  		env->imbalance >>= 1;
11163  
11164  		return;
11165  	}
11166  
11167  	/*
11168  	 * Local is fully busy but has to take more load to relieve the
11169  	 * busiest group
11170  	 */
11171  	if (local->group_type < group_overloaded) {
11172  		/*
11173  		 * Local will become overloaded so the avg_load metrics are
11174  		 * finally needed.
11175  		 */
11176  
11177  		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11178  				  local->group_capacity;
11179  
11180  		/*
11181  		 * If the local group is more loaded than the selected
11182  		 * busiest group don't try to pull any tasks.
11183  		 */
11184  		if (local->avg_load >= busiest->avg_load) {
11185  			env->imbalance = 0;
11186  			return;
11187  		}
11188  
11189  		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11190  				sds->total_capacity;
11191  
11192  		/*
11193  		 * If the local group is more loaded than the average system
11194  		 * load, don't try to pull any tasks.
11195  		 */
11196  		if (local->avg_load >= sds->avg_load) {
11197  			env->imbalance = 0;
11198  			return;
11199  		}
11200  
11201  	}
11202  
11203  	/*
11204  	 * Both group are or will become overloaded and we're trying to get all
11205  	 * the CPUs to the average_load, so we don't want to push ourselves
11206  	 * above the average load, nor do we wish to reduce the max loaded CPU
11207  	 * below the average load. At the same time, we also don't want to
11208  	 * reduce the group load below the group capacity. Thus we look for
11209  	 * the minimum possible imbalance.
11210  	 */
11211  	env->migration_type = migrate_load;
11212  	env->imbalance = min(
11213  		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11214  		(sds->avg_load - local->avg_load) * local->group_capacity
11215  	) / SCHED_CAPACITY_SCALE;
11216  }
11217  
11218  /******* sched_balance_find_src_group() helpers end here *********************/
11219  
11220  /*
11221   * Decision matrix according to the local and busiest group type:
11222   *
11223   * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11224   * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11225   * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11226   * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11227   * asym_packing     force     force      N/A    N/A  force      force
11228   * imbalanced       force     force      N/A    N/A  force      force
11229   * overloaded       force     force      N/A    N/A  force      avg_load
11230   *
11231   * N/A :      Not Applicable because already filtered while updating
11232   *            statistics.
11233   * balanced : The system is balanced for these 2 groups.
11234   * force :    Calculate the imbalance as load migration is probably needed.
11235   * avg_load : Only if imbalance is significant enough.
11236   * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11237   *            different in groups.
11238   */
11239  
11240  /**
11241   * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11242   * if there is an imbalance.
11243   * @env: The load balancing environment.
11244   *
11245   * Also calculates the amount of runnable load which should be moved
11246   * to restore balance.
11247   *
11248   * Return:	- The busiest group if imbalance exists.
11249   */
sched_balance_find_src_group(struct lb_env * env)11250  static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11251  {
11252  	struct sg_lb_stats *local, *busiest;
11253  	struct sd_lb_stats sds;
11254  
11255  	init_sd_lb_stats(&sds);
11256  
11257  	/*
11258  	 * Compute the various statistics relevant for load balancing at
11259  	 * this level.
11260  	 */
11261  	update_sd_lb_stats(env, &sds);
11262  
11263  	/* There is no busy sibling group to pull tasks from */
11264  	if (!sds.busiest)
11265  		goto out_balanced;
11266  
11267  	busiest = &sds.busiest_stat;
11268  
11269  	/* Misfit tasks should be dealt with regardless of the avg load */
11270  	if (busiest->group_type == group_misfit_task)
11271  		goto force_balance;
11272  
11273  	if (!is_rd_overutilized(env->dst_rq->rd) &&
11274  	    rcu_dereference(env->dst_rq->rd->pd))
11275  		goto out_balanced;
11276  
11277  	/* ASYM feature bypasses nice load balance check */
11278  	if (busiest->group_type == group_asym_packing)
11279  		goto force_balance;
11280  
11281  	/*
11282  	 * If the busiest group is imbalanced the below checks don't
11283  	 * work because they assume all things are equal, which typically
11284  	 * isn't true due to cpus_ptr constraints and the like.
11285  	 */
11286  	if (busiest->group_type == group_imbalanced)
11287  		goto force_balance;
11288  
11289  	local = &sds.local_stat;
11290  	/*
11291  	 * If the local group is busier than the selected busiest group
11292  	 * don't try and pull any tasks.
11293  	 */
11294  	if (local->group_type > busiest->group_type)
11295  		goto out_balanced;
11296  
11297  	/*
11298  	 * When groups are overloaded, use the avg_load to ensure fairness
11299  	 * between tasks.
11300  	 */
11301  	if (local->group_type == group_overloaded) {
11302  		/*
11303  		 * If the local group is more loaded than the selected
11304  		 * busiest group don't try to pull any tasks.
11305  		 */
11306  		if (local->avg_load >= busiest->avg_load)
11307  			goto out_balanced;
11308  
11309  		/* XXX broken for overlapping NUMA groups */
11310  		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11311  				sds.total_capacity;
11312  
11313  		/*
11314  		 * Don't pull any tasks if this group is already above the
11315  		 * domain average load.
11316  		 */
11317  		if (local->avg_load >= sds.avg_load)
11318  			goto out_balanced;
11319  
11320  		/*
11321  		 * If the busiest group is more loaded, use imbalance_pct to be
11322  		 * conservative.
11323  		 */
11324  		if (100 * busiest->avg_load <=
11325  				env->sd->imbalance_pct * local->avg_load)
11326  			goto out_balanced;
11327  	}
11328  
11329  	/*
11330  	 * Try to move all excess tasks to a sibling domain of the busiest
11331  	 * group's child domain.
11332  	 */
11333  	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11334  	    sibling_imbalance(env, &sds, busiest, local) > 1)
11335  		goto force_balance;
11336  
11337  	if (busiest->group_type != group_overloaded) {
11338  		if (!env->idle) {
11339  			/*
11340  			 * If the busiest group is not overloaded (and as a
11341  			 * result the local one too) but this CPU is already
11342  			 * busy, let another idle CPU try to pull task.
11343  			 */
11344  			goto out_balanced;
11345  		}
11346  
11347  		if (busiest->group_type == group_smt_balance &&
11348  		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11349  			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11350  			goto force_balance;
11351  		}
11352  
11353  		if (busiest->group_weight > 1 &&
11354  		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11355  			/*
11356  			 * If the busiest group is not overloaded
11357  			 * and there is no imbalance between this and busiest
11358  			 * group wrt idle CPUs, it is balanced. The imbalance
11359  			 * becomes significant if the diff is greater than 1
11360  			 * otherwise we might end up to just move the imbalance
11361  			 * on another group. Of course this applies only if
11362  			 * there is more than 1 CPU per group.
11363  			 */
11364  			goto out_balanced;
11365  		}
11366  
11367  		if (busiest->sum_h_nr_running == 1) {
11368  			/*
11369  			 * busiest doesn't have any tasks waiting to run
11370  			 */
11371  			goto out_balanced;
11372  		}
11373  	}
11374  
11375  force_balance:
11376  	/* Looks like there is an imbalance. Compute it */
11377  	calculate_imbalance(env, &sds);
11378  	return env->imbalance ? sds.busiest : NULL;
11379  
11380  out_balanced:
11381  	env->imbalance = 0;
11382  	return NULL;
11383  }
11384  
11385  /*
11386   * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11387   */
sched_balance_find_src_rq(struct lb_env * env,struct sched_group * group)11388  static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11389  				     struct sched_group *group)
11390  {
11391  	struct rq *busiest = NULL, *rq;
11392  	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11393  	unsigned int busiest_nr = 0;
11394  	int i;
11395  
11396  	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11397  		unsigned long capacity, load, util;
11398  		unsigned int nr_running;
11399  		enum fbq_type rt;
11400  
11401  		rq = cpu_rq(i);
11402  		rt = fbq_classify_rq(rq);
11403  
11404  		/*
11405  		 * We classify groups/runqueues into three groups:
11406  		 *  - regular: there are !numa tasks
11407  		 *  - remote:  there are numa tasks that run on the 'wrong' node
11408  		 *  - all:     there is no distinction
11409  		 *
11410  		 * In order to avoid migrating ideally placed numa tasks,
11411  		 * ignore those when there's better options.
11412  		 *
11413  		 * If we ignore the actual busiest queue to migrate another
11414  		 * task, the next balance pass can still reduce the busiest
11415  		 * queue by moving tasks around inside the node.
11416  		 *
11417  		 * If we cannot move enough load due to this classification
11418  		 * the next pass will adjust the group classification and
11419  		 * allow migration of more tasks.
11420  		 *
11421  		 * Both cases only affect the total convergence complexity.
11422  		 */
11423  		if (rt > env->fbq_type)
11424  			continue;
11425  
11426  		nr_running = rq->cfs.h_nr_running;
11427  		if (!nr_running)
11428  			continue;
11429  
11430  		capacity = capacity_of(i);
11431  
11432  		/*
11433  		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11434  		 * eventually lead to active_balancing high->low capacity.
11435  		 * Higher per-CPU capacity is considered better than balancing
11436  		 * average load.
11437  		 */
11438  		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11439  		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11440  		    nr_running == 1)
11441  			continue;
11442  
11443  		/*
11444  		 * Make sure we only pull tasks from a CPU of lower priority
11445  		 * when balancing between SMT siblings.
11446  		 *
11447  		 * If balancing between cores, let lower priority CPUs help
11448  		 * SMT cores with more than one busy sibling.
11449  		 */
11450  		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11451  			continue;
11452  
11453  		switch (env->migration_type) {
11454  		case migrate_load:
11455  			/*
11456  			 * When comparing with load imbalance, use cpu_load()
11457  			 * which is not scaled with the CPU capacity.
11458  			 */
11459  			load = cpu_load(rq);
11460  
11461  			if (nr_running == 1 && load > env->imbalance &&
11462  			    !check_cpu_capacity(rq, env->sd))
11463  				break;
11464  
11465  			/*
11466  			 * For the load comparisons with the other CPUs,
11467  			 * consider the cpu_load() scaled with the CPU
11468  			 * capacity, so that the load can be moved away
11469  			 * from the CPU that is potentially running at a
11470  			 * lower capacity.
11471  			 *
11472  			 * Thus we're looking for max(load_i / capacity_i),
11473  			 * crosswise multiplication to rid ourselves of the
11474  			 * division works out to:
11475  			 * load_i * capacity_j > load_j * capacity_i;
11476  			 * where j is our previous maximum.
11477  			 */
11478  			if (load * busiest_capacity > busiest_load * capacity) {
11479  				busiest_load = load;
11480  				busiest_capacity = capacity;
11481  				busiest = rq;
11482  			}
11483  			break;
11484  
11485  		case migrate_util:
11486  			util = cpu_util_cfs_boost(i);
11487  
11488  			/*
11489  			 * Don't try to pull utilization from a CPU with one
11490  			 * running task. Whatever its utilization, we will fail
11491  			 * detach the task.
11492  			 */
11493  			if (nr_running <= 1)
11494  				continue;
11495  
11496  			if (busiest_util < util) {
11497  				busiest_util = util;
11498  				busiest = rq;
11499  			}
11500  			break;
11501  
11502  		case migrate_task:
11503  			if (busiest_nr < nr_running) {
11504  				busiest_nr = nr_running;
11505  				busiest = rq;
11506  			}
11507  			break;
11508  
11509  		case migrate_misfit:
11510  			/*
11511  			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11512  			 * simply seek the "biggest" misfit task.
11513  			 */
11514  			if (rq->misfit_task_load > busiest_load) {
11515  				busiest_load = rq->misfit_task_load;
11516  				busiest = rq;
11517  			}
11518  
11519  			break;
11520  
11521  		}
11522  	}
11523  
11524  	return busiest;
11525  }
11526  
11527  /*
11528   * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11529   * so long as it is large enough.
11530   */
11531  #define MAX_PINNED_INTERVAL	512
11532  
11533  static inline bool
asym_active_balance(struct lb_env * env)11534  asym_active_balance(struct lb_env *env)
11535  {
11536  	/*
11537  	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11538  	 * priority CPUs in order to pack all tasks in the highest priority
11539  	 * CPUs. When done between cores, do it only if the whole core if the
11540  	 * whole core is idle.
11541  	 *
11542  	 * If @env::src_cpu is an SMT core with busy siblings, let
11543  	 * the lower priority @env::dst_cpu help it. Do not follow
11544  	 * CPU priority.
11545  	 */
11546  	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11547  	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11548  		!sched_use_asym_prio(env->sd, env->src_cpu));
11549  }
11550  
11551  static inline bool
imbalanced_active_balance(struct lb_env * env)11552  imbalanced_active_balance(struct lb_env *env)
11553  {
11554  	struct sched_domain *sd = env->sd;
11555  
11556  	/*
11557  	 * The imbalanced case includes the case of pinned tasks preventing a fair
11558  	 * distribution of the load on the system but also the even distribution of the
11559  	 * threads on a system with spare capacity
11560  	 */
11561  	if ((env->migration_type == migrate_task) &&
11562  	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11563  		return 1;
11564  
11565  	return 0;
11566  }
11567  
need_active_balance(struct lb_env * env)11568  static int need_active_balance(struct lb_env *env)
11569  {
11570  	struct sched_domain *sd = env->sd;
11571  
11572  	if (asym_active_balance(env))
11573  		return 1;
11574  
11575  	if (imbalanced_active_balance(env))
11576  		return 1;
11577  
11578  	/*
11579  	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11580  	 * It's worth migrating the task if the src_cpu's capacity is reduced
11581  	 * because of other sched_class or IRQs if more capacity stays
11582  	 * available on dst_cpu.
11583  	 */
11584  	if (env->idle &&
11585  	    (env->src_rq->cfs.h_nr_running == 1)) {
11586  		if ((check_cpu_capacity(env->src_rq, sd)) &&
11587  		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11588  			return 1;
11589  	}
11590  
11591  	if (env->migration_type == migrate_misfit)
11592  		return 1;
11593  
11594  	return 0;
11595  }
11596  
11597  static int active_load_balance_cpu_stop(void *data);
11598  
should_we_balance(struct lb_env * env)11599  static int should_we_balance(struct lb_env *env)
11600  {
11601  	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11602  	struct sched_group *sg = env->sd->groups;
11603  	int cpu, idle_smt = -1;
11604  
11605  	/*
11606  	 * Ensure the balancing environment is consistent; can happen
11607  	 * when the softirq triggers 'during' hotplug.
11608  	 */
11609  	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11610  		return 0;
11611  
11612  	/*
11613  	 * In the newly idle case, we will allow all the CPUs
11614  	 * to do the newly idle load balance.
11615  	 *
11616  	 * However, we bail out if we already have tasks or a wakeup pending,
11617  	 * to optimize wakeup latency.
11618  	 */
11619  	if (env->idle == CPU_NEWLY_IDLE) {
11620  		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11621  			return 0;
11622  		return 1;
11623  	}
11624  
11625  	cpumask_copy(swb_cpus, group_balance_mask(sg));
11626  	/* Try to find first idle CPU */
11627  	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11628  		if (!idle_cpu(cpu))
11629  			continue;
11630  
11631  		/*
11632  		 * Don't balance to idle SMT in busy core right away when
11633  		 * balancing cores, but remember the first idle SMT CPU for
11634  		 * later consideration.  Find CPU on an idle core first.
11635  		 */
11636  		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11637  			if (idle_smt == -1)
11638  				idle_smt = cpu;
11639  			/*
11640  			 * If the core is not idle, and first SMT sibling which is
11641  			 * idle has been found, then its not needed to check other
11642  			 * SMT siblings for idleness:
11643  			 */
11644  #ifdef CONFIG_SCHED_SMT
11645  			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11646  #endif
11647  			continue;
11648  		}
11649  
11650  		/*
11651  		 * Are we the first idle core in a non-SMT domain or higher,
11652  		 * or the first idle CPU in a SMT domain?
11653  		 */
11654  		return cpu == env->dst_cpu;
11655  	}
11656  
11657  	/* Are we the first idle CPU with busy siblings? */
11658  	if (idle_smt != -1)
11659  		return idle_smt == env->dst_cpu;
11660  
11661  	/* Are we the first CPU of this group ? */
11662  	return group_balance_cpu(sg) == env->dst_cpu;
11663  }
11664  
11665  /*
11666   * Check this_cpu to ensure it is balanced within domain. Attempt to move
11667   * tasks if there is an imbalance.
11668   */
sched_balance_rq(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11669  static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11670  			struct sched_domain *sd, enum cpu_idle_type idle,
11671  			int *continue_balancing)
11672  {
11673  	int ld_moved, cur_ld_moved, active_balance = 0;
11674  	struct sched_domain *sd_parent = sd->parent;
11675  	struct sched_group *group;
11676  	struct rq *busiest;
11677  	struct rq_flags rf;
11678  	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11679  	struct lb_env env = {
11680  		.sd		= sd,
11681  		.dst_cpu	= this_cpu,
11682  		.dst_rq		= this_rq,
11683  		.dst_grpmask    = group_balance_mask(sd->groups),
11684  		.idle		= idle,
11685  		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11686  		.cpus		= cpus,
11687  		.fbq_type	= all,
11688  		.tasks		= LIST_HEAD_INIT(env.tasks),
11689  	};
11690  
11691  	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11692  
11693  	schedstat_inc(sd->lb_count[idle]);
11694  
11695  redo:
11696  	if (!should_we_balance(&env)) {
11697  		*continue_balancing = 0;
11698  		goto out_balanced;
11699  	}
11700  
11701  	group = sched_balance_find_src_group(&env);
11702  	if (!group) {
11703  		schedstat_inc(sd->lb_nobusyg[idle]);
11704  		goto out_balanced;
11705  	}
11706  
11707  	busiest = sched_balance_find_src_rq(&env, group);
11708  	if (!busiest) {
11709  		schedstat_inc(sd->lb_nobusyq[idle]);
11710  		goto out_balanced;
11711  	}
11712  
11713  	WARN_ON_ONCE(busiest == env.dst_rq);
11714  
11715  	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11716  
11717  	env.src_cpu = busiest->cpu;
11718  	env.src_rq = busiest;
11719  
11720  	ld_moved = 0;
11721  	/* Clear this flag as soon as we find a pullable task */
11722  	env.flags |= LBF_ALL_PINNED;
11723  	if (busiest->nr_running > 1) {
11724  		/*
11725  		 * Attempt to move tasks. If sched_balance_find_src_group has found
11726  		 * an imbalance but busiest->nr_running <= 1, the group is
11727  		 * still unbalanced. ld_moved simply stays zero, so it is
11728  		 * correctly treated as an imbalance.
11729  		 */
11730  		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11731  
11732  more_balance:
11733  		rq_lock_irqsave(busiest, &rf);
11734  		update_rq_clock(busiest);
11735  
11736  		/*
11737  		 * cur_ld_moved - load moved in current iteration
11738  		 * ld_moved     - cumulative load moved across iterations
11739  		 */
11740  		cur_ld_moved = detach_tasks(&env);
11741  
11742  		/*
11743  		 * We've detached some tasks from busiest_rq. Every
11744  		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11745  		 * unlock busiest->lock, and we are able to be sure
11746  		 * that nobody can manipulate the tasks in parallel.
11747  		 * See task_rq_lock() family for the details.
11748  		 */
11749  
11750  		rq_unlock(busiest, &rf);
11751  
11752  		if (cur_ld_moved) {
11753  			attach_tasks(&env);
11754  			ld_moved += cur_ld_moved;
11755  		}
11756  
11757  		local_irq_restore(rf.flags);
11758  
11759  		if (env.flags & LBF_NEED_BREAK) {
11760  			env.flags &= ~LBF_NEED_BREAK;
11761  			goto more_balance;
11762  		}
11763  
11764  		/*
11765  		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11766  		 * us and move them to an alternate dst_cpu in our sched_group
11767  		 * where they can run. The upper limit on how many times we
11768  		 * iterate on same src_cpu is dependent on number of CPUs in our
11769  		 * sched_group.
11770  		 *
11771  		 * This changes load balance semantics a bit on who can move
11772  		 * load to a given_cpu. In addition to the given_cpu itself
11773  		 * (or a ilb_cpu acting on its behalf where given_cpu is
11774  		 * nohz-idle), we now have balance_cpu in a position to move
11775  		 * load to given_cpu. In rare situations, this may cause
11776  		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11777  		 * _independently_ and at _same_ time to move some load to
11778  		 * given_cpu) causing excess load to be moved to given_cpu.
11779  		 * This however should not happen so much in practice and
11780  		 * moreover subsequent load balance cycles should correct the
11781  		 * excess load moved.
11782  		 */
11783  		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11784  
11785  			/* Prevent to re-select dst_cpu via env's CPUs */
11786  			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11787  
11788  			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11789  			env.dst_cpu	 = env.new_dst_cpu;
11790  			env.flags	&= ~LBF_DST_PINNED;
11791  			env.loop	 = 0;
11792  			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11793  
11794  			/*
11795  			 * Go back to "more_balance" rather than "redo" since we
11796  			 * need to continue with same src_cpu.
11797  			 */
11798  			goto more_balance;
11799  		}
11800  
11801  		/*
11802  		 * We failed to reach balance because of affinity.
11803  		 */
11804  		if (sd_parent) {
11805  			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11806  
11807  			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11808  				*group_imbalance = 1;
11809  		}
11810  
11811  		/* All tasks on this runqueue were pinned by CPU affinity */
11812  		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11813  			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11814  			/*
11815  			 * Attempting to continue load balancing at the current
11816  			 * sched_domain level only makes sense if there are
11817  			 * active CPUs remaining as possible busiest CPUs to
11818  			 * pull load from which are not contained within the
11819  			 * destination group that is receiving any migrated
11820  			 * load.
11821  			 */
11822  			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11823  				env.loop = 0;
11824  				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11825  				goto redo;
11826  			}
11827  			goto out_all_pinned;
11828  		}
11829  	}
11830  
11831  	if (!ld_moved) {
11832  		schedstat_inc(sd->lb_failed[idle]);
11833  		/*
11834  		 * Increment the failure counter only on periodic balance.
11835  		 * We do not want newidle balance, which can be very
11836  		 * frequent, pollute the failure counter causing
11837  		 * excessive cache_hot migrations and active balances.
11838  		 *
11839  		 * Similarly for migration_misfit which is not related to
11840  		 * load/util migration, don't pollute nr_balance_failed.
11841  		 */
11842  		if (idle != CPU_NEWLY_IDLE &&
11843  		    env.migration_type != migrate_misfit)
11844  			sd->nr_balance_failed++;
11845  
11846  		if (need_active_balance(&env)) {
11847  			unsigned long flags;
11848  
11849  			raw_spin_rq_lock_irqsave(busiest, flags);
11850  
11851  			/*
11852  			 * Don't kick the active_load_balance_cpu_stop,
11853  			 * if the curr task on busiest CPU can't be
11854  			 * moved to this_cpu:
11855  			 */
11856  			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11857  				raw_spin_rq_unlock_irqrestore(busiest, flags);
11858  				goto out_one_pinned;
11859  			}
11860  
11861  			/* Record that we found at least one task that could run on this_cpu */
11862  			env.flags &= ~LBF_ALL_PINNED;
11863  
11864  			/*
11865  			 * ->active_balance synchronizes accesses to
11866  			 * ->active_balance_work.  Once set, it's cleared
11867  			 * only after active load balance is finished.
11868  			 */
11869  			if (!busiest->active_balance) {
11870  				busiest->active_balance = 1;
11871  				busiest->push_cpu = this_cpu;
11872  				active_balance = 1;
11873  			}
11874  
11875  			preempt_disable();
11876  			raw_spin_rq_unlock_irqrestore(busiest, flags);
11877  			if (active_balance) {
11878  				stop_one_cpu_nowait(cpu_of(busiest),
11879  					active_load_balance_cpu_stop, busiest,
11880  					&busiest->active_balance_work);
11881  			}
11882  			preempt_enable();
11883  		}
11884  	} else {
11885  		sd->nr_balance_failed = 0;
11886  	}
11887  
11888  	if (likely(!active_balance) || need_active_balance(&env)) {
11889  		/* We were unbalanced, so reset the balancing interval */
11890  		sd->balance_interval = sd->min_interval;
11891  	}
11892  
11893  	goto out;
11894  
11895  out_balanced:
11896  	/*
11897  	 * We reach balance although we may have faced some affinity
11898  	 * constraints. Clear the imbalance flag only if other tasks got
11899  	 * a chance to move and fix the imbalance.
11900  	 */
11901  	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11902  		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11903  
11904  		if (*group_imbalance)
11905  			*group_imbalance = 0;
11906  	}
11907  
11908  out_all_pinned:
11909  	/*
11910  	 * We reach balance because all tasks are pinned at this level so
11911  	 * we can't migrate them. Let the imbalance flag set so parent level
11912  	 * can try to migrate them.
11913  	 */
11914  	schedstat_inc(sd->lb_balanced[idle]);
11915  
11916  	sd->nr_balance_failed = 0;
11917  
11918  out_one_pinned:
11919  	ld_moved = 0;
11920  
11921  	/*
11922  	 * sched_balance_newidle() disregards balance intervals, so we could
11923  	 * repeatedly reach this code, which would lead to balance_interval
11924  	 * skyrocketing in a short amount of time. Skip the balance_interval
11925  	 * increase logic to avoid that.
11926  	 *
11927  	 * Similarly misfit migration which is not necessarily an indication of
11928  	 * the system being busy and requires lb to backoff to let it settle
11929  	 * down.
11930  	 */
11931  	if (env.idle == CPU_NEWLY_IDLE ||
11932  	    env.migration_type == migrate_misfit)
11933  		goto out;
11934  
11935  	/* tune up the balancing interval */
11936  	if ((env.flags & LBF_ALL_PINNED &&
11937  	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11938  	    sd->balance_interval < sd->max_interval)
11939  		sd->balance_interval *= 2;
11940  out:
11941  	return ld_moved;
11942  }
11943  
11944  static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)11945  get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11946  {
11947  	unsigned long interval = sd->balance_interval;
11948  
11949  	if (cpu_busy)
11950  		interval *= sd->busy_factor;
11951  
11952  	/* scale ms to jiffies */
11953  	interval = msecs_to_jiffies(interval);
11954  
11955  	/*
11956  	 * Reduce likelihood of busy balancing at higher domains racing with
11957  	 * balancing at lower domains by preventing their balancing periods
11958  	 * from being multiples of each other.
11959  	 */
11960  	if (cpu_busy)
11961  		interval -= 1;
11962  
11963  	interval = clamp(interval, 1UL, max_load_balance_interval);
11964  
11965  	return interval;
11966  }
11967  
11968  static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)11969  update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11970  {
11971  	unsigned long interval, next;
11972  
11973  	/* used by idle balance, so cpu_busy = 0 */
11974  	interval = get_sd_balance_interval(sd, 0);
11975  	next = sd->last_balance + interval;
11976  
11977  	if (time_after(*next_balance, next))
11978  		*next_balance = next;
11979  }
11980  
11981  /*
11982   * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11983   * running tasks off the busiest CPU onto idle CPUs. It requires at
11984   * least 1 task to be running on each physical CPU where possible, and
11985   * avoids physical / logical imbalances.
11986   */
active_load_balance_cpu_stop(void * data)11987  static int active_load_balance_cpu_stop(void *data)
11988  {
11989  	struct rq *busiest_rq = data;
11990  	int busiest_cpu = cpu_of(busiest_rq);
11991  	int target_cpu = busiest_rq->push_cpu;
11992  	struct rq *target_rq = cpu_rq(target_cpu);
11993  	struct sched_domain *sd;
11994  	struct task_struct *p = NULL;
11995  	struct rq_flags rf;
11996  
11997  	rq_lock_irq(busiest_rq, &rf);
11998  	/*
11999  	 * Between queueing the stop-work and running it is a hole in which
12000  	 * CPUs can become inactive. We should not move tasks from or to
12001  	 * inactive CPUs.
12002  	 */
12003  	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12004  		goto out_unlock;
12005  
12006  	/* Make sure the requested CPU hasn't gone down in the meantime: */
12007  	if (unlikely(busiest_cpu != smp_processor_id() ||
12008  		     !busiest_rq->active_balance))
12009  		goto out_unlock;
12010  
12011  	/* Is there any task to move? */
12012  	if (busiest_rq->nr_running <= 1)
12013  		goto out_unlock;
12014  
12015  	/*
12016  	 * This condition is "impossible", if it occurs
12017  	 * we need to fix it. Originally reported by
12018  	 * Bjorn Helgaas on a 128-CPU setup.
12019  	 */
12020  	WARN_ON_ONCE(busiest_rq == target_rq);
12021  
12022  	/* Search for an sd spanning us and the target CPU. */
12023  	rcu_read_lock();
12024  	for_each_domain(target_cpu, sd) {
12025  		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12026  			break;
12027  	}
12028  
12029  	if (likely(sd)) {
12030  		struct lb_env env = {
12031  			.sd		= sd,
12032  			.dst_cpu	= target_cpu,
12033  			.dst_rq		= target_rq,
12034  			.src_cpu	= busiest_rq->cpu,
12035  			.src_rq		= busiest_rq,
12036  			.idle		= CPU_IDLE,
12037  			.flags		= LBF_ACTIVE_LB,
12038  		};
12039  
12040  		schedstat_inc(sd->alb_count);
12041  		update_rq_clock(busiest_rq);
12042  
12043  		p = detach_one_task(&env);
12044  		if (p) {
12045  			schedstat_inc(sd->alb_pushed);
12046  			/* Active balancing done, reset the failure counter. */
12047  			sd->nr_balance_failed = 0;
12048  		} else {
12049  			schedstat_inc(sd->alb_failed);
12050  		}
12051  	}
12052  	rcu_read_unlock();
12053  out_unlock:
12054  	busiest_rq->active_balance = 0;
12055  	rq_unlock(busiest_rq, &rf);
12056  
12057  	if (p)
12058  		attach_one_task(target_rq, p);
12059  
12060  	local_irq_enable();
12061  
12062  	return 0;
12063  }
12064  
12065  /*
12066   * This flag serializes load-balancing passes over large domains
12067   * (above the NODE topology level) - only one load-balancing instance
12068   * may run at a time, to reduce overhead on very large systems with
12069   * lots of CPUs and large NUMA distances.
12070   *
12071   * - Note that load-balancing passes triggered while another one
12072   *   is executing are skipped and not re-tried.
12073   *
12074   * - Also note that this does not serialize rebalance_domains()
12075   *   execution, as non-SD_SERIALIZE domains will still be
12076   *   load-balanced in parallel.
12077   */
12078  static atomic_t sched_balance_running = ATOMIC_INIT(0);
12079  
12080  /*
12081   * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12082   * This trades load-balance latency on larger machines for less cross talk.
12083   */
update_max_interval(void)12084  void update_max_interval(void)
12085  {
12086  	max_load_balance_interval = HZ*num_online_cpus()/10;
12087  }
12088  
update_newidle_cost(struct sched_domain * sd,u64 cost)12089  static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12090  {
12091  	if (cost > sd->max_newidle_lb_cost) {
12092  		/*
12093  		 * Track max cost of a domain to make sure to not delay the
12094  		 * next wakeup on the CPU.
12095  		 */
12096  		sd->max_newidle_lb_cost = cost;
12097  		sd->last_decay_max_lb_cost = jiffies;
12098  	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12099  		/*
12100  		 * Decay the newidle max times by ~1% per second to ensure that
12101  		 * it is not outdated and the current max cost is actually
12102  		 * shorter.
12103  		 */
12104  		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12105  		sd->last_decay_max_lb_cost = jiffies;
12106  
12107  		return true;
12108  	}
12109  
12110  	return false;
12111  }
12112  
12113  /*
12114   * It checks each scheduling domain to see if it is due to be balanced,
12115   * and initiates a balancing operation if so.
12116   *
12117   * Balancing parameters are set up in init_sched_domains.
12118   */
sched_balance_domains(struct rq * rq,enum cpu_idle_type idle)12119  static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12120  {
12121  	int continue_balancing = 1;
12122  	int cpu = rq->cpu;
12123  	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12124  	unsigned long interval;
12125  	struct sched_domain *sd;
12126  	/* Earliest time when we have to do rebalance again */
12127  	unsigned long next_balance = jiffies + 60*HZ;
12128  	int update_next_balance = 0;
12129  	int need_serialize, need_decay = 0;
12130  	u64 max_cost = 0;
12131  
12132  	rcu_read_lock();
12133  	for_each_domain(cpu, sd) {
12134  		/*
12135  		 * Decay the newidle max times here because this is a regular
12136  		 * visit to all the domains.
12137  		 */
12138  		need_decay = update_newidle_cost(sd, 0);
12139  		max_cost += sd->max_newidle_lb_cost;
12140  
12141  		/*
12142  		 * Stop the load balance at this level. There is another
12143  		 * CPU in our sched group which is doing load balancing more
12144  		 * actively.
12145  		 */
12146  		if (!continue_balancing) {
12147  			if (need_decay)
12148  				continue;
12149  			break;
12150  		}
12151  
12152  		interval = get_sd_balance_interval(sd, busy);
12153  
12154  		need_serialize = sd->flags & SD_SERIALIZE;
12155  		if (need_serialize) {
12156  			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12157  				goto out;
12158  		}
12159  
12160  		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12161  			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12162  				/*
12163  				 * The LBF_DST_PINNED logic could have changed
12164  				 * env->dst_cpu, so we can't know our idle
12165  				 * state even if we migrated tasks. Update it.
12166  				 */
12167  				idle = idle_cpu(cpu);
12168  				busy = !idle && !sched_idle_cpu(cpu);
12169  			}
12170  			sd->last_balance = jiffies;
12171  			interval = get_sd_balance_interval(sd, busy);
12172  		}
12173  		if (need_serialize)
12174  			atomic_set_release(&sched_balance_running, 0);
12175  out:
12176  		if (time_after(next_balance, sd->last_balance + interval)) {
12177  			next_balance = sd->last_balance + interval;
12178  			update_next_balance = 1;
12179  		}
12180  	}
12181  	if (need_decay) {
12182  		/*
12183  		 * Ensure the rq-wide value also decays but keep it at a
12184  		 * reasonable floor to avoid funnies with rq->avg_idle.
12185  		 */
12186  		rq->max_idle_balance_cost =
12187  			max((u64)sysctl_sched_migration_cost, max_cost);
12188  	}
12189  	rcu_read_unlock();
12190  
12191  	/*
12192  	 * next_balance will be updated only when there is a need.
12193  	 * When the cpu is attached to null domain for ex, it will not be
12194  	 * updated.
12195  	 */
12196  	if (likely(update_next_balance))
12197  		rq->next_balance = next_balance;
12198  
12199  }
12200  
on_null_domain(struct rq * rq)12201  static inline int on_null_domain(struct rq *rq)
12202  {
12203  	return unlikely(!rcu_dereference_sched(rq->sd));
12204  }
12205  
12206  #ifdef CONFIG_NO_HZ_COMMON
12207  /*
12208   * NOHZ idle load balancing (ILB) details:
12209   *
12210   * - When one of the busy CPUs notices that there may be an idle rebalancing
12211   *   needed, they will kick the idle load balancer, which then does idle
12212   *   load balancing for all the idle CPUs.
12213   *
12214   * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12215   *   anywhere yet.
12216   */
find_new_ilb(void)12217  static inline int find_new_ilb(void)
12218  {
12219  	const struct cpumask *hk_mask;
12220  	int ilb_cpu;
12221  
12222  	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12223  
12224  	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12225  
12226  		if (ilb_cpu == smp_processor_id())
12227  			continue;
12228  
12229  		if (idle_cpu(ilb_cpu))
12230  			return ilb_cpu;
12231  	}
12232  
12233  	return -1;
12234  }
12235  
12236  /*
12237   * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12238   * SMP function call (IPI).
12239   *
12240   * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12241   */
kick_ilb(unsigned int flags)12242  static void kick_ilb(unsigned int flags)
12243  {
12244  	int ilb_cpu;
12245  
12246  	/*
12247  	 * Increase nohz.next_balance only when if full ilb is triggered but
12248  	 * not if we only update stats.
12249  	 */
12250  	if (flags & NOHZ_BALANCE_KICK)
12251  		nohz.next_balance = jiffies+1;
12252  
12253  	ilb_cpu = find_new_ilb();
12254  	if (ilb_cpu < 0)
12255  		return;
12256  
12257  	/*
12258  	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12259  	 * i.e. all bits in flags are already set in ilb_cpu.
12260  	 */
12261  	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12262  		return;
12263  
12264  	/*
12265  	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12266  	 * the first flag owns it; cleared by nohz_csd_func().
12267  	 */
12268  	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12269  	if (flags & NOHZ_KICK_MASK)
12270  		return;
12271  
12272  	/*
12273  	 * This way we generate an IPI on the target CPU which
12274  	 * is idle, and the softirq performing NOHZ idle load balancing
12275  	 * will be run before returning from the IPI.
12276  	 */
12277  	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12278  }
12279  
12280  /*
12281   * Current decision point for kicking the idle load balancer in the presence
12282   * of idle CPUs in the system.
12283   */
nohz_balancer_kick(struct rq * rq)12284  static void nohz_balancer_kick(struct rq *rq)
12285  {
12286  	unsigned long now = jiffies;
12287  	struct sched_domain_shared *sds;
12288  	struct sched_domain *sd;
12289  	int nr_busy, i, cpu = rq->cpu;
12290  	unsigned int flags = 0;
12291  
12292  	if (unlikely(rq->idle_balance))
12293  		return;
12294  
12295  	/*
12296  	 * We may be recently in ticked or tickless idle mode. At the first
12297  	 * busy tick after returning from idle, we will update the busy stats.
12298  	 */
12299  	nohz_balance_exit_idle(rq);
12300  
12301  	/*
12302  	 * None are in tickless mode and hence no need for NOHZ idle load
12303  	 * balancing:
12304  	 */
12305  	if (likely(!atomic_read(&nohz.nr_cpus)))
12306  		return;
12307  
12308  	if (READ_ONCE(nohz.has_blocked) &&
12309  	    time_after(now, READ_ONCE(nohz.next_blocked)))
12310  		flags = NOHZ_STATS_KICK;
12311  
12312  	if (time_before(now, nohz.next_balance))
12313  		goto out;
12314  
12315  	if (rq->nr_running >= 2) {
12316  		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12317  		goto out;
12318  	}
12319  
12320  	rcu_read_lock();
12321  
12322  	sd = rcu_dereference(rq->sd);
12323  	if (sd) {
12324  		/*
12325  		 * If there's a runnable CFS task and the current CPU has reduced
12326  		 * capacity, kick the ILB to see if there's a better CPU to run on:
12327  		 */
12328  		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12329  			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12330  			goto unlock;
12331  		}
12332  	}
12333  
12334  	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12335  	if (sd) {
12336  		/*
12337  		 * When ASYM_PACKING; see if there's a more preferred CPU
12338  		 * currently idle; in which case, kick the ILB to move tasks
12339  		 * around.
12340  		 *
12341  		 * When balancing between cores, all the SMT siblings of the
12342  		 * preferred CPU must be idle.
12343  		 */
12344  		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12345  			if (sched_asym(sd, i, cpu)) {
12346  				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12347  				goto unlock;
12348  			}
12349  		}
12350  	}
12351  
12352  	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12353  	if (sd) {
12354  		/*
12355  		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12356  		 * to run the misfit task on.
12357  		 */
12358  		if (check_misfit_status(rq)) {
12359  			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12360  			goto unlock;
12361  		}
12362  
12363  		/*
12364  		 * For asymmetric systems, we do not want to nicely balance
12365  		 * cache use, instead we want to embrace asymmetry and only
12366  		 * ensure tasks have enough CPU capacity.
12367  		 *
12368  		 * Skip the LLC logic because it's not relevant in that case.
12369  		 */
12370  		goto unlock;
12371  	}
12372  
12373  	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12374  	if (sds) {
12375  		/*
12376  		 * If there is an imbalance between LLC domains (IOW we could
12377  		 * increase the overall cache utilization), we need a less-loaded LLC
12378  		 * domain to pull some load from. Likewise, we may need to spread
12379  		 * load within the current LLC domain (e.g. packed SMT cores but
12380  		 * other CPUs are idle). We can't really know from here how busy
12381  		 * the others are - so just get a NOHZ balance going if it looks
12382  		 * like this LLC domain has tasks we could move.
12383  		 */
12384  		nr_busy = atomic_read(&sds->nr_busy_cpus);
12385  		if (nr_busy > 1) {
12386  			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12387  			goto unlock;
12388  		}
12389  	}
12390  unlock:
12391  	rcu_read_unlock();
12392  out:
12393  	if (READ_ONCE(nohz.needs_update))
12394  		flags |= NOHZ_NEXT_KICK;
12395  
12396  	if (flags)
12397  		kick_ilb(flags);
12398  }
12399  
set_cpu_sd_state_busy(int cpu)12400  static void set_cpu_sd_state_busy(int cpu)
12401  {
12402  	struct sched_domain *sd;
12403  
12404  	rcu_read_lock();
12405  	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12406  
12407  	if (!sd || !sd->nohz_idle)
12408  		goto unlock;
12409  	sd->nohz_idle = 0;
12410  
12411  	atomic_inc(&sd->shared->nr_busy_cpus);
12412  unlock:
12413  	rcu_read_unlock();
12414  }
12415  
nohz_balance_exit_idle(struct rq * rq)12416  void nohz_balance_exit_idle(struct rq *rq)
12417  {
12418  	SCHED_WARN_ON(rq != this_rq());
12419  
12420  	if (likely(!rq->nohz_tick_stopped))
12421  		return;
12422  
12423  	rq->nohz_tick_stopped = 0;
12424  	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12425  	atomic_dec(&nohz.nr_cpus);
12426  
12427  	set_cpu_sd_state_busy(rq->cpu);
12428  }
12429  
set_cpu_sd_state_idle(int cpu)12430  static void set_cpu_sd_state_idle(int cpu)
12431  {
12432  	struct sched_domain *sd;
12433  
12434  	rcu_read_lock();
12435  	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12436  
12437  	if (!sd || sd->nohz_idle)
12438  		goto unlock;
12439  	sd->nohz_idle = 1;
12440  
12441  	atomic_dec(&sd->shared->nr_busy_cpus);
12442  unlock:
12443  	rcu_read_unlock();
12444  }
12445  
12446  /*
12447   * This routine will record that the CPU is going idle with tick stopped.
12448   * This info will be used in performing idle load balancing in the future.
12449   */
nohz_balance_enter_idle(int cpu)12450  void nohz_balance_enter_idle(int cpu)
12451  {
12452  	struct rq *rq = cpu_rq(cpu);
12453  
12454  	SCHED_WARN_ON(cpu != smp_processor_id());
12455  
12456  	/* If this CPU is going down, then nothing needs to be done: */
12457  	if (!cpu_active(cpu))
12458  		return;
12459  
12460  	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12461  	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12462  		return;
12463  
12464  	/*
12465  	 * Can be set safely without rq->lock held
12466  	 * If a clear happens, it will have evaluated last additions because
12467  	 * rq->lock is held during the check and the clear
12468  	 */
12469  	rq->has_blocked_load = 1;
12470  
12471  	/*
12472  	 * The tick is still stopped but load could have been added in the
12473  	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12474  	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12475  	 * of nohz.has_blocked can only happen after checking the new load
12476  	 */
12477  	if (rq->nohz_tick_stopped)
12478  		goto out;
12479  
12480  	/* If we're a completely isolated CPU, we don't play: */
12481  	if (on_null_domain(rq))
12482  		return;
12483  
12484  	rq->nohz_tick_stopped = 1;
12485  
12486  	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12487  	atomic_inc(&nohz.nr_cpus);
12488  
12489  	/*
12490  	 * Ensures that if nohz_idle_balance() fails to observe our
12491  	 * @idle_cpus_mask store, it must observe the @has_blocked
12492  	 * and @needs_update stores.
12493  	 */
12494  	smp_mb__after_atomic();
12495  
12496  	set_cpu_sd_state_idle(cpu);
12497  
12498  	WRITE_ONCE(nohz.needs_update, 1);
12499  out:
12500  	/*
12501  	 * Each time a cpu enter idle, we assume that it has blocked load and
12502  	 * enable the periodic update of the load of idle CPUs
12503  	 */
12504  	WRITE_ONCE(nohz.has_blocked, 1);
12505  }
12506  
update_nohz_stats(struct rq * rq)12507  static bool update_nohz_stats(struct rq *rq)
12508  {
12509  	unsigned int cpu = rq->cpu;
12510  
12511  	if (!rq->has_blocked_load)
12512  		return false;
12513  
12514  	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12515  		return false;
12516  
12517  	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12518  		return true;
12519  
12520  	sched_balance_update_blocked_averages(cpu);
12521  
12522  	return rq->has_blocked_load;
12523  }
12524  
12525  /*
12526   * Internal function that runs load balance for all idle CPUs. The load balance
12527   * can be a simple update of blocked load or a complete load balance with
12528   * tasks movement depending of flags.
12529   */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12530  static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12531  {
12532  	/* Earliest time when we have to do rebalance again */
12533  	unsigned long now = jiffies;
12534  	unsigned long next_balance = now + 60*HZ;
12535  	bool has_blocked_load = false;
12536  	int update_next_balance = 0;
12537  	int this_cpu = this_rq->cpu;
12538  	int balance_cpu;
12539  	struct rq *rq;
12540  
12541  	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12542  
12543  	/*
12544  	 * We assume there will be no idle load after this update and clear
12545  	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12546  	 * set the has_blocked flag and trigger another update of idle load.
12547  	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12548  	 * setting the flag, we are sure to not clear the state and not
12549  	 * check the load of an idle cpu.
12550  	 *
12551  	 * Same applies to idle_cpus_mask vs needs_update.
12552  	 */
12553  	if (flags & NOHZ_STATS_KICK)
12554  		WRITE_ONCE(nohz.has_blocked, 0);
12555  	if (flags & NOHZ_NEXT_KICK)
12556  		WRITE_ONCE(nohz.needs_update, 0);
12557  
12558  	/*
12559  	 * Ensures that if we miss the CPU, we must see the has_blocked
12560  	 * store from nohz_balance_enter_idle().
12561  	 */
12562  	smp_mb();
12563  
12564  	/*
12565  	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12566  	 * chance for other idle cpu to pull load.
12567  	 */
12568  	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12569  		if (!idle_cpu(balance_cpu))
12570  			continue;
12571  
12572  		/*
12573  		 * If this CPU gets work to do, stop the load balancing
12574  		 * work being done for other CPUs. Next load
12575  		 * balancing owner will pick it up.
12576  		 */
12577  		if (need_resched()) {
12578  			if (flags & NOHZ_STATS_KICK)
12579  				has_blocked_load = true;
12580  			if (flags & NOHZ_NEXT_KICK)
12581  				WRITE_ONCE(nohz.needs_update, 1);
12582  			goto abort;
12583  		}
12584  
12585  		rq = cpu_rq(balance_cpu);
12586  
12587  		if (flags & NOHZ_STATS_KICK)
12588  			has_blocked_load |= update_nohz_stats(rq);
12589  
12590  		/*
12591  		 * If time for next balance is due,
12592  		 * do the balance.
12593  		 */
12594  		if (time_after_eq(jiffies, rq->next_balance)) {
12595  			struct rq_flags rf;
12596  
12597  			rq_lock_irqsave(rq, &rf);
12598  			update_rq_clock(rq);
12599  			rq_unlock_irqrestore(rq, &rf);
12600  
12601  			if (flags & NOHZ_BALANCE_KICK)
12602  				sched_balance_domains(rq, CPU_IDLE);
12603  		}
12604  
12605  		if (time_after(next_balance, rq->next_balance)) {
12606  			next_balance = rq->next_balance;
12607  			update_next_balance = 1;
12608  		}
12609  	}
12610  
12611  	/*
12612  	 * next_balance will be updated only when there is a need.
12613  	 * When the CPU is attached to null domain for ex, it will not be
12614  	 * updated.
12615  	 */
12616  	if (likely(update_next_balance))
12617  		nohz.next_balance = next_balance;
12618  
12619  	if (flags & NOHZ_STATS_KICK)
12620  		WRITE_ONCE(nohz.next_blocked,
12621  			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12622  
12623  abort:
12624  	/* There is still blocked load, enable periodic update */
12625  	if (has_blocked_load)
12626  		WRITE_ONCE(nohz.has_blocked, 1);
12627  }
12628  
12629  /*
12630   * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12631   * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12632   */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12633  static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12634  {
12635  	unsigned int flags = this_rq->nohz_idle_balance;
12636  
12637  	if (!flags)
12638  		return false;
12639  
12640  	this_rq->nohz_idle_balance = 0;
12641  
12642  	if (idle != CPU_IDLE)
12643  		return false;
12644  
12645  	_nohz_idle_balance(this_rq, flags);
12646  
12647  	return true;
12648  }
12649  
12650  /*
12651   * Check if we need to directly run the ILB for updating blocked load before
12652   * entering idle state. Here we run ILB directly without issuing IPIs.
12653   *
12654   * Note that when this function is called, the tick may not yet be stopped on
12655   * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12656   * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12657   * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12658   * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12659   * called from this function on (this) CPU that's not yet in the mask. That's
12660   * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12661   * updating the blocked load of already idle CPUs without waking up one of
12662   * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12663   * cpu about to enter idle, because it can take a long time.
12664   */
nohz_run_idle_balance(int cpu)12665  void nohz_run_idle_balance(int cpu)
12666  {
12667  	unsigned int flags;
12668  
12669  	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12670  
12671  	/*
12672  	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12673  	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12674  	 */
12675  	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12676  		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12677  }
12678  
nohz_newidle_balance(struct rq * this_rq)12679  static void nohz_newidle_balance(struct rq *this_rq)
12680  {
12681  	int this_cpu = this_rq->cpu;
12682  
12683  	/*
12684  	 * This CPU doesn't want to be disturbed by scheduler
12685  	 * housekeeping
12686  	 */
12687  	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12688  		return;
12689  
12690  	/* Will wake up very soon. No time for doing anything else*/
12691  	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12692  		return;
12693  
12694  	/* Don't need to update blocked load of idle CPUs*/
12695  	if (!READ_ONCE(nohz.has_blocked) ||
12696  	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12697  		return;
12698  
12699  	/*
12700  	 * Set the need to trigger ILB in order to update blocked load
12701  	 * before entering idle state.
12702  	 */
12703  	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12704  }
12705  
12706  #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12707  static inline void nohz_balancer_kick(struct rq *rq) { }
12708  
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12709  static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12710  {
12711  	return false;
12712  }
12713  
nohz_newidle_balance(struct rq * this_rq)12714  static inline void nohz_newidle_balance(struct rq *this_rq) { }
12715  #endif /* CONFIG_NO_HZ_COMMON */
12716  
12717  /*
12718   * sched_balance_newidle is called by schedule() if this_cpu is about to become
12719   * idle. Attempts to pull tasks from other CPUs.
12720   *
12721   * Returns:
12722   *   < 0 - we released the lock and there are !fair tasks present
12723   *     0 - failed, no new tasks
12724   *   > 0 - success, new (fair) tasks present
12725   */
sched_balance_newidle(struct rq * this_rq,struct rq_flags * rf)12726  static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12727  {
12728  	unsigned long next_balance = jiffies + HZ;
12729  	int this_cpu = this_rq->cpu;
12730  	int continue_balancing = 1;
12731  	u64 t0, t1, curr_cost = 0;
12732  	struct sched_domain *sd;
12733  	int pulled_task = 0;
12734  
12735  	update_misfit_status(NULL, this_rq);
12736  
12737  	/*
12738  	 * There is a task waiting to run. No need to search for one.
12739  	 * Return 0; the task will be enqueued when switching to idle.
12740  	 */
12741  	if (this_rq->ttwu_pending)
12742  		return 0;
12743  
12744  	/*
12745  	 * We must set idle_stamp _before_ calling sched_balance_rq()
12746  	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12747  	 * as idle time.
12748  	 */
12749  	this_rq->idle_stamp = rq_clock(this_rq);
12750  
12751  	/*
12752  	 * Do not pull tasks towards !active CPUs...
12753  	 */
12754  	if (!cpu_active(this_cpu))
12755  		return 0;
12756  
12757  	/*
12758  	 * This is OK, because current is on_cpu, which avoids it being picked
12759  	 * for load-balance and preemption/IRQs are still disabled avoiding
12760  	 * further scheduler activity on it and we're being very careful to
12761  	 * re-start the picking loop.
12762  	 */
12763  	rq_unpin_lock(this_rq, rf);
12764  
12765  	rcu_read_lock();
12766  	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12767  
12768  	if (!get_rd_overloaded(this_rq->rd) ||
12769  	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12770  
12771  		if (sd)
12772  			update_next_balance(sd, &next_balance);
12773  		rcu_read_unlock();
12774  
12775  		goto out;
12776  	}
12777  	rcu_read_unlock();
12778  
12779  	raw_spin_rq_unlock(this_rq);
12780  
12781  	t0 = sched_clock_cpu(this_cpu);
12782  	sched_balance_update_blocked_averages(this_cpu);
12783  
12784  	rcu_read_lock();
12785  	for_each_domain(this_cpu, sd) {
12786  		u64 domain_cost;
12787  
12788  		update_next_balance(sd, &next_balance);
12789  
12790  		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12791  			break;
12792  
12793  		if (sd->flags & SD_BALANCE_NEWIDLE) {
12794  
12795  			pulled_task = sched_balance_rq(this_cpu, this_rq,
12796  						   sd, CPU_NEWLY_IDLE,
12797  						   &continue_balancing);
12798  
12799  			t1 = sched_clock_cpu(this_cpu);
12800  			domain_cost = t1 - t0;
12801  			update_newidle_cost(sd, domain_cost);
12802  
12803  			curr_cost += domain_cost;
12804  			t0 = t1;
12805  		}
12806  
12807  		/*
12808  		 * Stop searching for tasks to pull if there are
12809  		 * now runnable tasks on this rq.
12810  		 */
12811  		if (pulled_task || !continue_balancing)
12812  			break;
12813  	}
12814  	rcu_read_unlock();
12815  
12816  	raw_spin_rq_lock(this_rq);
12817  
12818  	if (curr_cost > this_rq->max_idle_balance_cost)
12819  		this_rq->max_idle_balance_cost = curr_cost;
12820  
12821  	/*
12822  	 * While browsing the domains, we released the rq lock, a task could
12823  	 * have been enqueued in the meantime. Since we're not going idle,
12824  	 * pretend we pulled a task.
12825  	 */
12826  	if (this_rq->cfs.h_nr_running && !pulled_task)
12827  		pulled_task = 1;
12828  
12829  	/* Is there a task of a high priority class? */
12830  	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12831  		pulled_task = -1;
12832  
12833  out:
12834  	/* Move the next balance forward */
12835  	if (time_after(this_rq->next_balance, next_balance))
12836  		this_rq->next_balance = next_balance;
12837  
12838  	if (pulled_task)
12839  		this_rq->idle_stamp = 0;
12840  	else
12841  		nohz_newidle_balance(this_rq);
12842  
12843  	rq_repin_lock(this_rq, rf);
12844  
12845  	return pulled_task;
12846  }
12847  
12848  /*
12849   * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12850   *
12851   * - directly from the local scheduler_tick() for periodic load balancing
12852   *
12853   * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12854   *   through the SMP cross-call nohz_csd_func()
12855   */
sched_balance_softirq(void)12856  static __latent_entropy void sched_balance_softirq(void)
12857  {
12858  	struct rq *this_rq = this_rq();
12859  	enum cpu_idle_type idle = this_rq->idle_balance;
12860  	/*
12861  	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12862  	 * balancing on behalf of the other idle CPUs whose ticks are
12863  	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12864  	 * give the idle CPUs a chance to load balance. Else we may
12865  	 * load balance only within the local sched_domain hierarchy
12866  	 * and abort nohz_idle_balance altogether if we pull some load.
12867  	 */
12868  	if (nohz_idle_balance(this_rq, idle))
12869  		return;
12870  
12871  	/* normal load balance */
12872  	sched_balance_update_blocked_averages(this_rq->cpu);
12873  	sched_balance_domains(this_rq, idle);
12874  }
12875  
12876  /*
12877   * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12878   */
sched_balance_trigger(struct rq * rq)12879  void sched_balance_trigger(struct rq *rq)
12880  {
12881  	/*
12882  	 * Don't need to rebalance while attached to NULL domain or
12883  	 * runqueue CPU is not active
12884  	 */
12885  	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12886  		return;
12887  
12888  	if (time_after_eq(jiffies, rq->next_balance))
12889  		raise_softirq(SCHED_SOFTIRQ);
12890  
12891  	nohz_balancer_kick(rq);
12892  }
12893  
rq_online_fair(struct rq * rq)12894  static void rq_online_fair(struct rq *rq)
12895  {
12896  	update_sysctl();
12897  
12898  	update_runtime_enabled(rq);
12899  }
12900  
rq_offline_fair(struct rq * rq)12901  static void rq_offline_fair(struct rq *rq)
12902  {
12903  	update_sysctl();
12904  
12905  	/* Ensure any throttled groups are reachable by pick_next_task */
12906  	unthrottle_offline_cfs_rqs(rq);
12907  
12908  	/* Ensure that we remove rq contribution to group share: */
12909  	clear_tg_offline_cfs_rqs(rq);
12910  }
12911  
12912  #endif /* CONFIG_SMP */
12913  
12914  #ifdef CONFIG_SCHED_CORE
12915  static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12916  __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12917  {
12918  	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12919  	u64 slice = se->slice;
12920  
12921  	return (rtime * min_nr_tasks > slice);
12922  }
12923  
12924  #define MIN_NR_TASKS_DURING_FORCEIDLE	2
task_tick_core(struct rq * rq,struct task_struct * curr)12925  static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12926  {
12927  	if (!sched_core_enabled(rq))
12928  		return;
12929  
12930  	/*
12931  	 * If runqueue has only one task which used up its slice and
12932  	 * if the sibling is forced idle, then trigger schedule to
12933  	 * give forced idle task a chance.
12934  	 *
12935  	 * sched_slice() considers only this active rq and it gets the
12936  	 * whole slice. But during force idle, we have siblings acting
12937  	 * like a single runqueue and hence we need to consider runnable
12938  	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12939  	 * go through the forced idle rq, but that would be a perf hit.
12940  	 * We can assume that the forced idle CPU has at least
12941  	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12942  	 * if we need to give up the CPU.
12943  	 */
12944  	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12945  	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12946  		resched_curr(rq);
12947  }
12948  
12949  /*
12950   * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12951   */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)12952  static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12953  			 bool forceidle)
12954  {
12955  	for_each_sched_entity(se) {
12956  		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12957  
12958  		if (forceidle) {
12959  			if (cfs_rq->forceidle_seq == fi_seq)
12960  				break;
12961  			cfs_rq->forceidle_seq = fi_seq;
12962  		}
12963  
12964  		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12965  	}
12966  }
12967  
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)12968  void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12969  {
12970  	struct sched_entity *se = &p->se;
12971  
12972  	if (p->sched_class != &fair_sched_class)
12973  		return;
12974  
12975  	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12976  }
12977  
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)12978  bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12979  			bool in_fi)
12980  {
12981  	struct rq *rq = task_rq(a);
12982  	const struct sched_entity *sea = &a->se;
12983  	const struct sched_entity *seb = &b->se;
12984  	struct cfs_rq *cfs_rqa;
12985  	struct cfs_rq *cfs_rqb;
12986  	s64 delta;
12987  
12988  	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12989  
12990  #ifdef CONFIG_FAIR_GROUP_SCHED
12991  	/*
12992  	 * Find an se in the hierarchy for tasks a and b, such that the se's
12993  	 * are immediate siblings.
12994  	 */
12995  	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12996  		int sea_depth = sea->depth;
12997  		int seb_depth = seb->depth;
12998  
12999  		if (sea_depth >= seb_depth)
13000  			sea = parent_entity(sea);
13001  		if (sea_depth <= seb_depth)
13002  			seb = parent_entity(seb);
13003  	}
13004  
13005  	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13006  	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13007  
13008  	cfs_rqa = sea->cfs_rq;
13009  	cfs_rqb = seb->cfs_rq;
13010  #else
13011  	cfs_rqa = &task_rq(a)->cfs;
13012  	cfs_rqb = &task_rq(b)->cfs;
13013  #endif
13014  
13015  	/*
13016  	 * Find delta after normalizing se's vruntime with its cfs_rq's
13017  	 * min_vruntime_fi, which would have been updated in prior calls
13018  	 * to se_fi_update().
13019  	 */
13020  	delta = (s64)(sea->vruntime - seb->vruntime) +
13021  		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13022  
13023  	return delta > 0;
13024  }
13025  
task_is_throttled_fair(struct task_struct * p,int cpu)13026  static int task_is_throttled_fair(struct task_struct *p, int cpu)
13027  {
13028  	struct cfs_rq *cfs_rq;
13029  
13030  #ifdef CONFIG_FAIR_GROUP_SCHED
13031  	cfs_rq = task_group(p)->cfs_rq[cpu];
13032  #else
13033  	cfs_rq = &cpu_rq(cpu)->cfs;
13034  #endif
13035  	return throttled_hierarchy(cfs_rq);
13036  }
13037  #else
task_tick_core(struct rq * rq,struct task_struct * curr)13038  static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13039  #endif
13040  
13041  /*
13042   * scheduler tick hitting a task of our scheduling class.
13043   *
13044   * NOTE: This function can be called remotely by the tick offload that
13045   * goes along full dynticks. Therefore no local assumption can be made
13046   * and everything must be accessed through the @rq and @curr passed in
13047   * parameters.
13048   */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13049  static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13050  {
13051  	struct cfs_rq *cfs_rq;
13052  	struct sched_entity *se = &curr->se;
13053  
13054  	for_each_sched_entity(se) {
13055  		cfs_rq = cfs_rq_of(se);
13056  		entity_tick(cfs_rq, se, queued);
13057  	}
13058  
13059  	if (static_branch_unlikely(&sched_numa_balancing))
13060  		task_tick_numa(rq, curr);
13061  
13062  	update_misfit_status(curr, rq);
13063  	check_update_overutilized_status(task_rq(curr));
13064  
13065  	task_tick_core(rq, curr);
13066  }
13067  
13068  /*
13069   * called on fork with the child task as argument from the parent's context
13070   *  - child not yet on the tasklist
13071   *  - preemption disabled
13072   */
task_fork_fair(struct task_struct * p)13073  static void task_fork_fair(struct task_struct *p)
13074  {
13075  	set_task_max_allowed_capacity(p);
13076  }
13077  
13078  /*
13079   * Priority of the task has changed. Check to see if we preempt
13080   * the current task.
13081   */
13082  static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)13083  prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13084  {
13085  	if (!task_on_rq_queued(p))
13086  		return;
13087  
13088  	if (rq->cfs.nr_running == 1)
13089  		return;
13090  
13091  	/*
13092  	 * Reschedule if we are currently running on this runqueue and
13093  	 * our priority decreased, or if we are not currently running on
13094  	 * this runqueue and our priority is higher than the current's
13095  	 */
13096  	if (task_current(rq, p)) {
13097  		if (p->prio > oldprio)
13098  			resched_curr(rq);
13099  	} else
13100  		wakeup_preempt(rq, p, 0);
13101  }
13102  
13103  #ifdef CONFIG_FAIR_GROUP_SCHED
13104  /*
13105   * Propagate the changes of the sched_entity across the tg tree to make it
13106   * visible to the root
13107   */
propagate_entity_cfs_rq(struct sched_entity * se)13108  static void propagate_entity_cfs_rq(struct sched_entity *se)
13109  {
13110  	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13111  
13112  	if (cfs_rq_throttled(cfs_rq))
13113  		return;
13114  
13115  	if (!throttled_hierarchy(cfs_rq))
13116  		list_add_leaf_cfs_rq(cfs_rq);
13117  
13118  	/* Start to propagate at parent */
13119  	se = se->parent;
13120  
13121  	for_each_sched_entity(se) {
13122  		cfs_rq = cfs_rq_of(se);
13123  
13124  		update_load_avg(cfs_rq, se, UPDATE_TG);
13125  
13126  		if (cfs_rq_throttled(cfs_rq))
13127  			break;
13128  
13129  		if (!throttled_hierarchy(cfs_rq))
13130  			list_add_leaf_cfs_rq(cfs_rq);
13131  	}
13132  }
13133  #else
propagate_entity_cfs_rq(struct sched_entity * se)13134  static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13135  #endif
13136  
detach_entity_cfs_rq(struct sched_entity * se)13137  static void detach_entity_cfs_rq(struct sched_entity *se)
13138  {
13139  	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13140  
13141  #ifdef CONFIG_SMP
13142  	/*
13143  	 * In case the task sched_avg hasn't been attached:
13144  	 * - A forked task which hasn't been woken up by wake_up_new_task().
13145  	 * - A task which has been woken up by try_to_wake_up() but is
13146  	 *   waiting for actually being woken up by sched_ttwu_pending().
13147  	 */
13148  	if (!se->avg.last_update_time)
13149  		return;
13150  #endif
13151  
13152  	/* Catch up with the cfs_rq and remove our load when we leave */
13153  	update_load_avg(cfs_rq, se, 0);
13154  	detach_entity_load_avg(cfs_rq, se);
13155  	update_tg_load_avg(cfs_rq);
13156  	propagate_entity_cfs_rq(se);
13157  }
13158  
attach_entity_cfs_rq(struct sched_entity * se)13159  static void attach_entity_cfs_rq(struct sched_entity *se)
13160  {
13161  	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13162  
13163  	/* Synchronize entity with its cfs_rq */
13164  	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13165  	attach_entity_load_avg(cfs_rq, se);
13166  	update_tg_load_avg(cfs_rq);
13167  	propagate_entity_cfs_rq(se);
13168  }
13169  
detach_task_cfs_rq(struct task_struct * p)13170  static void detach_task_cfs_rq(struct task_struct *p)
13171  {
13172  	struct sched_entity *se = &p->se;
13173  
13174  	detach_entity_cfs_rq(se);
13175  }
13176  
attach_task_cfs_rq(struct task_struct * p)13177  static void attach_task_cfs_rq(struct task_struct *p)
13178  {
13179  	struct sched_entity *se = &p->se;
13180  
13181  	attach_entity_cfs_rq(se);
13182  }
13183  
switched_from_fair(struct rq * rq,struct task_struct * p)13184  static void switched_from_fair(struct rq *rq, struct task_struct *p)
13185  {
13186  	detach_task_cfs_rq(p);
13187  }
13188  
switched_to_fair(struct rq * rq,struct task_struct * p)13189  static void switched_to_fair(struct rq *rq, struct task_struct *p)
13190  {
13191  	SCHED_WARN_ON(p->se.sched_delayed);
13192  
13193  	attach_task_cfs_rq(p);
13194  
13195  	set_task_max_allowed_capacity(p);
13196  
13197  	if (task_on_rq_queued(p)) {
13198  		/*
13199  		 * We were most likely switched from sched_rt, so
13200  		 * kick off the schedule if running, otherwise just see
13201  		 * if we can still preempt the current task.
13202  		 */
13203  		if (task_current(rq, p))
13204  			resched_curr(rq);
13205  		else
13206  			wakeup_preempt(rq, p, 0);
13207  	}
13208  }
13209  
__set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13210  static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13211  {
13212  	struct sched_entity *se = &p->se;
13213  
13214  #ifdef CONFIG_SMP
13215  	if (task_on_rq_queued(p)) {
13216  		/*
13217  		 * Move the next running task to the front of the list, so our
13218  		 * cfs_tasks list becomes MRU one.
13219  		 */
13220  		list_move(&se->group_node, &rq->cfs_tasks);
13221  	}
13222  #endif
13223  	if (!first)
13224  		return;
13225  
13226  	SCHED_WARN_ON(se->sched_delayed);
13227  
13228  	if (hrtick_enabled_fair(rq))
13229  		hrtick_start_fair(rq, p);
13230  
13231  	update_misfit_status(p, rq);
13232  	sched_fair_update_stop_tick(rq, p);
13233  }
13234  
13235  /*
13236   * Account for a task changing its policy or group.
13237   *
13238   * This routine is mostly called to set cfs_rq->curr field when a task
13239   * migrates between groups/classes.
13240   */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13241  static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13242  {
13243  	struct sched_entity *se = &p->se;
13244  
13245  	for_each_sched_entity(se) {
13246  		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13247  
13248  		set_next_entity(cfs_rq, se);
13249  		/* ensure bandwidth has been allocated on our new cfs_rq */
13250  		account_cfs_rq_runtime(cfs_rq, 0);
13251  	}
13252  
13253  	__set_next_task_fair(rq, p, first);
13254  }
13255  
init_cfs_rq(struct cfs_rq * cfs_rq)13256  void init_cfs_rq(struct cfs_rq *cfs_rq)
13257  {
13258  	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13259  	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13260  #ifdef CONFIG_SMP
13261  	raw_spin_lock_init(&cfs_rq->removed.lock);
13262  #endif
13263  }
13264  
13265  #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13266  static void task_change_group_fair(struct task_struct *p)
13267  {
13268  	/*
13269  	 * We couldn't detach or attach a forked task which
13270  	 * hasn't been woken up by wake_up_new_task().
13271  	 */
13272  	if (READ_ONCE(p->__state) == TASK_NEW)
13273  		return;
13274  
13275  	detach_task_cfs_rq(p);
13276  
13277  #ifdef CONFIG_SMP
13278  	/* Tell se's cfs_rq has been changed -- migrated */
13279  	p->se.avg.last_update_time = 0;
13280  #endif
13281  	set_task_rq(p, task_cpu(p));
13282  	attach_task_cfs_rq(p);
13283  }
13284  
free_fair_sched_group(struct task_group * tg)13285  void free_fair_sched_group(struct task_group *tg)
13286  {
13287  	int i;
13288  
13289  	for_each_possible_cpu(i) {
13290  		if (tg->cfs_rq)
13291  			kfree(tg->cfs_rq[i]);
13292  		if (tg->se)
13293  			kfree(tg->se[i]);
13294  	}
13295  
13296  	kfree(tg->cfs_rq);
13297  	kfree(tg->se);
13298  }
13299  
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13300  int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13301  {
13302  	struct sched_entity *se;
13303  	struct cfs_rq *cfs_rq;
13304  	int i;
13305  
13306  	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13307  	if (!tg->cfs_rq)
13308  		goto err;
13309  	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13310  	if (!tg->se)
13311  		goto err;
13312  
13313  	tg->shares = NICE_0_LOAD;
13314  
13315  	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13316  
13317  	for_each_possible_cpu(i) {
13318  		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13319  				      GFP_KERNEL, cpu_to_node(i));
13320  		if (!cfs_rq)
13321  			goto err;
13322  
13323  		se = kzalloc_node(sizeof(struct sched_entity_stats),
13324  				  GFP_KERNEL, cpu_to_node(i));
13325  		if (!se)
13326  			goto err_free_rq;
13327  
13328  		init_cfs_rq(cfs_rq);
13329  		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13330  		init_entity_runnable_average(se);
13331  	}
13332  
13333  	return 1;
13334  
13335  err_free_rq:
13336  	kfree(cfs_rq);
13337  err:
13338  	return 0;
13339  }
13340  
online_fair_sched_group(struct task_group * tg)13341  void online_fair_sched_group(struct task_group *tg)
13342  {
13343  	struct sched_entity *se;
13344  	struct rq_flags rf;
13345  	struct rq *rq;
13346  	int i;
13347  
13348  	for_each_possible_cpu(i) {
13349  		rq = cpu_rq(i);
13350  		se = tg->se[i];
13351  		rq_lock_irq(rq, &rf);
13352  		update_rq_clock(rq);
13353  		attach_entity_cfs_rq(se);
13354  		sync_throttle(tg, i);
13355  		rq_unlock_irq(rq, &rf);
13356  	}
13357  }
13358  
unregister_fair_sched_group(struct task_group * tg)13359  void unregister_fair_sched_group(struct task_group *tg)
13360  {
13361  	int cpu;
13362  
13363  	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13364  
13365  	for_each_possible_cpu(cpu) {
13366  		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13367  		struct sched_entity *se = tg->se[cpu];
13368  		struct rq *rq = cpu_rq(cpu);
13369  
13370  		if (se) {
13371  			if (se->sched_delayed) {
13372  				guard(rq_lock_irqsave)(rq);
13373  				if (se->sched_delayed) {
13374  					update_rq_clock(rq);
13375  					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13376  				}
13377  				list_del_leaf_cfs_rq(cfs_rq);
13378  			}
13379  			remove_entity_load_avg(se);
13380  		}
13381  
13382  		/*
13383  		 * Only empty task groups can be destroyed; so we can speculatively
13384  		 * check on_list without danger of it being re-added.
13385  		 */
13386  		if (cfs_rq->on_list) {
13387  			guard(rq_lock_irqsave)(rq);
13388  			list_del_leaf_cfs_rq(cfs_rq);
13389  		}
13390  	}
13391  }
13392  
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13393  void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13394  			struct sched_entity *se, int cpu,
13395  			struct sched_entity *parent)
13396  {
13397  	struct rq *rq = cpu_rq(cpu);
13398  
13399  	cfs_rq->tg = tg;
13400  	cfs_rq->rq = rq;
13401  	init_cfs_rq_runtime(cfs_rq);
13402  
13403  	tg->cfs_rq[cpu] = cfs_rq;
13404  	tg->se[cpu] = se;
13405  
13406  	/* se could be NULL for root_task_group */
13407  	if (!se)
13408  		return;
13409  
13410  	if (!parent) {
13411  		se->cfs_rq = &rq->cfs;
13412  		se->depth = 0;
13413  	} else {
13414  		se->cfs_rq = parent->my_q;
13415  		se->depth = parent->depth + 1;
13416  	}
13417  
13418  	se->my_q = cfs_rq;
13419  	/* guarantee group entities always have weight */
13420  	update_load_set(&se->load, NICE_0_LOAD);
13421  	se->parent = parent;
13422  }
13423  
13424  static DEFINE_MUTEX(shares_mutex);
13425  
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13426  static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13427  {
13428  	int i;
13429  
13430  	lockdep_assert_held(&shares_mutex);
13431  
13432  	/*
13433  	 * We can't change the weight of the root cgroup.
13434  	 */
13435  	if (!tg->se[0])
13436  		return -EINVAL;
13437  
13438  	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13439  
13440  	if (tg->shares == shares)
13441  		return 0;
13442  
13443  	tg->shares = shares;
13444  	for_each_possible_cpu(i) {
13445  		struct rq *rq = cpu_rq(i);
13446  		struct sched_entity *se = tg->se[i];
13447  		struct rq_flags rf;
13448  
13449  		/* Propagate contribution to hierarchy */
13450  		rq_lock_irqsave(rq, &rf);
13451  		update_rq_clock(rq);
13452  		for_each_sched_entity(se) {
13453  			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13454  			update_cfs_group(se);
13455  		}
13456  		rq_unlock_irqrestore(rq, &rf);
13457  	}
13458  
13459  	return 0;
13460  }
13461  
sched_group_set_shares(struct task_group * tg,unsigned long shares)13462  int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13463  {
13464  	int ret;
13465  
13466  	mutex_lock(&shares_mutex);
13467  	if (tg_is_idle(tg))
13468  		ret = -EINVAL;
13469  	else
13470  		ret = __sched_group_set_shares(tg, shares);
13471  	mutex_unlock(&shares_mutex);
13472  
13473  	return ret;
13474  }
13475  
sched_group_set_idle(struct task_group * tg,long idle)13476  int sched_group_set_idle(struct task_group *tg, long idle)
13477  {
13478  	int i;
13479  
13480  	if (tg == &root_task_group)
13481  		return -EINVAL;
13482  
13483  	if (idle < 0 || idle > 1)
13484  		return -EINVAL;
13485  
13486  	mutex_lock(&shares_mutex);
13487  
13488  	if (tg->idle == idle) {
13489  		mutex_unlock(&shares_mutex);
13490  		return 0;
13491  	}
13492  
13493  	tg->idle = idle;
13494  
13495  	for_each_possible_cpu(i) {
13496  		struct rq *rq = cpu_rq(i);
13497  		struct sched_entity *se = tg->se[i];
13498  		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13499  		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13500  		long idle_task_delta;
13501  		struct rq_flags rf;
13502  
13503  		rq_lock_irqsave(rq, &rf);
13504  
13505  		grp_cfs_rq->idle = idle;
13506  		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13507  			goto next_cpu;
13508  
13509  		if (se->on_rq) {
13510  			parent_cfs_rq = cfs_rq_of(se);
13511  			if (cfs_rq_is_idle(grp_cfs_rq))
13512  				parent_cfs_rq->idle_nr_running++;
13513  			else
13514  				parent_cfs_rq->idle_nr_running--;
13515  		}
13516  
13517  		idle_task_delta = grp_cfs_rq->h_nr_running -
13518  				  grp_cfs_rq->idle_h_nr_running;
13519  		if (!cfs_rq_is_idle(grp_cfs_rq))
13520  			idle_task_delta *= -1;
13521  
13522  		for_each_sched_entity(se) {
13523  			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13524  
13525  			if (!se->on_rq)
13526  				break;
13527  
13528  			cfs_rq->idle_h_nr_running += idle_task_delta;
13529  
13530  			/* Already accounted at parent level and above. */
13531  			if (cfs_rq_is_idle(cfs_rq))
13532  				break;
13533  		}
13534  
13535  next_cpu:
13536  		rq_unlock_irqrestore(rq, &rf);
13537  	}
13538  
13539  	/* Idle groups have minimum weight. */
13540  	if (tg_is_idle(tg))
13541  		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13542  	else
13543  		__sched_group_set_shares(tg, NICE_0_LOAD);
13544  
13545  	mutex_unlock(&shares_mutex);
13546  	return 0;
13547  }
13548  
13549  #endif /* CONFIG_FAIR_GROUP_SCHED */
13550  
13551  
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13552  static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13553  {
13554  	struct sched_entity *se = &task->se;
13555  	unsigned int rr_interval = 0;
13556  
13557  	/*
13558  	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13559  	 * idle runqueue:
13560  	 */
13561  	if (rq->cfs.load.weight)
13562  		rr_interval = NS_TO_JIFFIES(se->slice);
13563  
13564  	return rr_interval;
13565  }
13566  
13567  /*
13568   * All the scheduling class methods:
13569   */
13570  DEFINE_SCHED_CLASS(fair) = {
13571  
13572  	.enqueue_task		= enqueue_task_fair,
13573  	.dequeue_task		= dequeue_task_fair,
13574  	.yield_task		= yield_task_fair,
13575  	.yield_to_task		= yield_to_task_fair,
13576  
13577  	.wakeup_preempt		= check_preempt_wakeup_fair,
13578  
13579  	.pick_task		= pick_task_fair,
13580  	.pick_next_task		= __pick_next_task_fair,
13581  	.put_prev_task		= put_prev_task_fair,
13582  	.set_next_task          = set_next_task_fair,
13583  
13584  #ifdef CONFIG_SMP
13585  	.balance		= balance_fair,
13586  	.select_task_rq		= select_task_rq_fair,
13587  	.migrate_task_rq	= migrate_task_rq_fair,
13588  
13589  	.rq_online		= rq_online_fair,
13590  	.rq_offline		= rq_offline_fair,
13591  
13592  	.task_dead		= task_dead_fair,
13593  	.set_cpus_allowed	= set_cpus_allowed_fair,
13594  #endif
13595  
13596  	.task_tick		= task_tick_fair,
13597  	.task_fork		= task_fork_fair,
13598  
13599  	.reweight_task		= reweight_task_fair,
13600  	.prio_changed		= prio_changed_fair,
13601  	.switched_from		= switched_from_fair,
13602  	.switched_to		= switched_to_fair,
13603  
13604  	.get_rr_interval	= get_rr_interval_fair,
13605  
13606  	.update_curr		= update_curr_fair,
13607  
13608  #ifdef CONFIG_FAIR_GROUP_SCHED
13609  	.task_change_group	= task_change_group_fair,
13610  #endif
13611  
13612  #ifdef CONFIG_SCHED_CORE
13613  	.task_is_throttled	= task_is_throttled_fair,
13614  #endif
13615  
13616  #ifdef CONFIG_UCLAMP_TASK
13617  	.uclamp_enabled		= 1,
13618  #endif
13619  };
13620  
13621  #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13622  void print_cfs_stats(struct seq_file *m, int cpu)
13623  {
13624  	struct cfs_rq *cfs_rq, *pos;
13625  
13626  	rcu_read_lock();
13627  	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13628  		print_cfs_rq(m, cpu, cfs_rq);
13629  	rcu_read_unlock();
13630  }
13631  
13632  #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13633  void show_numa_stats(struct task_struct *p, struct seq_file *m)
13634  {
13635  	int node;
13636  	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13637  	struct numa_group *ng;
13638  
13639  	rcu_read_lock();
13640  	ng = rcu_dereference(p->numa_group);
13641  	for_each_online_node(node) {
13642  		if (p->numa_faults) {
13643  			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13644  			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13645  		}
13646  		if (ng) {
13647  			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13648  			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13649  		}
13650  		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13651  	}
13652  	rcu_read_unlock();
13653  }
13654  #endif /* CONFIG_NUMA_BALANCING */
13655  #endif /* CONFIG_SCHED_DEBUG */
13656  
init_sched_fair_class(void)13657  __init void init_sched_fair_class(void)
13658  {
13659  #ifdef CONFIG_SMP
13660  	int i;
13661  
13662  	for_each_possible_cpu(i) {
13663  		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13664  		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13665  		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13666  					GFP_KERNEL, cpu_to_node(i));
13667  
13668  #ifdef CONFIG_CFS_BANDWIDTH
13669  		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13670  		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13671  #endif
13672  	}
13673  
13674  	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13675  
13676  #ifdef CONFIG_NO_HZ_COMMON
13677  	nohz.next_balance = jiffies;
13678  	nohz.next_blocked = jiffies;
13679  	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13680  #endif
13681  #endif /* SMP */
13682  
13683  }
13684