1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Copyright IBM Corporation 2001, 2005, 2006
4   * Copyright Dave Engebretsen & Todd Inglett 2001
5   * Copyright Linas Vepstas 2005, 2006
6   * Copyright 2001-2012 IBM Corporation.
7   *
8   * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9   */
10  
11  #include <linux/delay.h>
12  #include <linux/sched.h>
13  #include <linux/init.h>
14  #include <linux/list.h>
15  #include <linux/pci.h>
16  #include <linux/iommu.h>
17  #include <linux/proc_fs.h>
18  #include <linux/rbtree.h>
19  #include <linux/reboot.h>
20  #include <linux/seq_file.h>
21  #include <linux/spinlock.h>
22  #include <linux/export.h>
23  #include <linux/of.h>
24  #include <linux/debugfs.h>
25  
26  #include <linux/atomic.h>
27  #include <asm/eeh.h>
28  #include <asm/eeh_event.h>
29  #include <asm/io.h>
30  #include <asm/iommu.h>
31  #include <asm/machdep.h>
32  #include <asm/ppc-pci.h>
33  #include <asm/rtas.h>
34  #include <asm/pte-walk.h>
35  
36  
37  /** Overview:
38   *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39   *  dealing with PCI bus errors that can't be dealt with within the
40   *  usual PCI framework, except by check-stopping the CPU.  Systems
41   *  that are designed for high-availability/reliability cannot afford
42   *  to crash due to a "mere" PCI error, thus the need for EEH.
43   *  An EEH-capable bridge operates by converting a detected error
44   *  into a "slot freeze", taking the PCI adapter off-line, making
45   *  the slot behave, from the OS'es point of view, as if the slot
46   *  were "empty": all reads return 0xff's and all writes are silently
47   *  ignored.  EEH slot isolation events can be triggered by parity
48   *  errors on the address or data busses (e.g. during posted writes),
49   *  which in turn might be caused by low voltage on the bus, dust,
50   *  vibration, humidity, radioactivity or plain-old failed hardware.
51   *
52   *  Note, however, that one of the leading causes of EEH slot
53   *  freeze events are buggy device drivers, buggy device microcode,
54   *  or buggy device hardware.  This is because any attempt by the
55   *  device to bus-master data to a memory address that is not
56   *  assigned to the device will trigger a slot freeze.   (The idea
57   *  is to prevent devices-gone-wild from corrupting system memory).
58   *  Buggy hardware/drivers will have a miserable time co-existing
59   *  with EEH.
60   *
61   *  Ideally, a PCI device driver, when suspecting that an isolation
62   *  event has occurred (e.g. by reading 0xff's), will then ask EEH
63   *  whether this is the case, and then take appropriate steps to
64   *  reset the PCI slot, the PCI device, and then resume operations.
65   *  However, until that day,  the checking is done here, with the
66   *  eeh_check_failure() routine embedded in the MMIO macros.  If
67   *  the slot is found to be isolated, an "EEH Event" is synthesized
68   *  and sent out for processing.
69   */
70  
71  /* If a device driver keeps reading an MMIO register in an interrupt
72   * handler after a slot isolation event, it might be broken.
73   * This sets the threshold for how many read attempts we allow
74   * before printing an error message.
75   */
76  #define EEH_MAX_FAILS	2100000
77  
78  /* Time to wait for a PCI slot to report status, in milliseconds */
79  #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80  
81  /*
82   * EEH probe mode support, which is part of the flags,
83   * is to support multiple platforms for EEH. Some platforms
84   * like pSeries do PCI emunation based on device tree.
85   * However, other platforms like powernv probe PCI devices
86   * from hardware. The flag is used to distinguish that.
87   * In addition, struct eeh_ops::probe would be invoked for
88   * particular OF node or PCI device so that the corresponding
89   * PE would be created there.
90   */
91  int eeh_subsystem_flags;
92  EXPORT_SYMBOL(eeh_subsystem_flags);
93  
94  /*
95   * EEH allowed maximal frozen times. If one particular PE's
96   * frozen count in last hour exceeds this limit, the PE will
97   * be forced to be offline permanently.
98   */
99  u32 eeh_max_freezes = 5;
100  
101  /*
102   * Controls whether a recovery event should be scheduled when an
103   * isolated device is discovered. This is only really useful for
104   * debugging problems with the EEH core.
105   */
106  bool eeh_debugfs_no_recover;
107  
108  /* Platform dependent EEH operations */
109  struct eeh_ops *eeh_ops = NULL;
110  
111  /* Lock to avoid races due to multiple reports of an error */
112  DEFINE_RAW_SPINLOCK(confirm_error_lock);
113  EXPORT_SYMBOL_GPL(confirm_error_lock);
114  
115  /* Lock to protect passed flags */
116  static DEFINE_MUTEX(eeh_dev_mutex);
117  
118  /* Buffer for reporting pci register dumps. Its here in BSS, and
119   * not dynamically alloced, so that it ends up in RMO where RTAS
120   * can access it.
121   */
122  #define EEH_PCI_REGS_LOG_LEN 8192
123  static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124  
125  /*
126   * The struct is used to maintain the EEH global statistic
127   * information. Besides, the EEH global statistics will be
128   * exported to user space through procfs
129   */
130  struct eeh_stats {
131  	u64 no_device;		/* PCI device not found		*/
132  	u64 no_dn;		/* OF node not found		*/
133  	u64 no_cfg_addr;	/* Config address not found	*/
134  	u64 ignored_check;	/* EEH check skipped		*/
135  	u64 total_mmio_ffs;	/* Total EEH checks		*/
136  	u64 false_positives;	/* Unnecessary EEH checks	*/
137  	u64 slot_resets;	/* PE reset			*/
138  };
139  
140  static struct eeh_stats eeh_stats;
141  
eeh_setup(char * str)142  static int __init eeh_setup(char *str)
143  {
144  	if (!strcmp(str, "off"))
145  		eeh_add_flag(EEH_FORCE_DISABLED);
146  	else if (!strcmp(str, "early_log"))
147  		eeh_add_flag(EEH_EARLY_DUMP_LOG);
148  
149  	return 1;
150  }
151  __setup("eeh=", eeh_setup);
152  
eeh_show_enabled(void)153  void eeh_show_enabled(void)
154  {
155  	if (eeh_has_flag(EEH_FORCE_DISABLED))
156  		pr_info("EEH: Recovery disabled by kernel parameter.\n");
157  	else if (eeh_has_flag(EEH_ENABLED))
158  		pr_info("EEH: Capable adapter found: recovery enabled.\n");
159  	else
160  		pr_info("EEH: No capable adapters found: recovery disabled.\n");
161  }
162  
163  /*
164   * This routine captures assorted PCI configuration space data
165   * for the indicated PCI device, and puts them into a buffer
166   * for RTAS error logging.
167   */
eeh_dump_dev_log(struct eeh_dev * edev,char * buf,size_t len)168  static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169  {
170  	u32 cfg;
171  	int cap, i;
172  	int n = 0, l = 0;
173  	char buffer[128];
174  
175  	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176  			edev->pe->phb->global_number, edev->bdfn >> 8,
177  			PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178  	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179  		edev->pe->phb->global_number, edev->bdfn >> 8,
180  		PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181  
182  	eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183  	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184  	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185  
186  	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187  	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188  	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189  
190  	/* Gather bridge-specific registers */
191  	if (edev->mode & EEH_DEV_BRIDGE) {
192  		eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193  		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194  		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195  
196  		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197  		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198  		pr_warn("EEH: Bridge control: %04x\n", cfg);
199  	}
200  
201  	/* Dump out the PCI-X command and status regs */
202  	cap = edev->pcix_cap;
203  	if (cap) {
204  		eeh_ops->read_config(edev, cap, 4, &cfg);
205  		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206  		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207  
208  		eeh_ops->read_config(edev, cap+4, 4, &cfg);
209  		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210  		pr_warn("EEH: PCI-X status: %08x\n", cfg);
211  	}
212  
213  	/* If PCI-E capable, dump PCI-E cap 10 */
214  	cap = edev->pcie_cap;
215  	if (cap) {
216  		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217  		pr_warn("EEH: PCI-E capabilities and status follow:\n");
218  
219  		for (i=0; i<=8; i++) {
220  			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221  			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222  
223  			if ((i % 4) == 0) {
224  				if (i != 0)
225  					pr_warn("%s\n", buffer);
226  
227  				l = scnprintf(buffer, sizeof(buffer),
228  					      "EEH: PCI-E %02x: %08x ",
229  					      4*i, cfg);
230  			} else {
231  				l += scnprintf(buffer+l, sizeof(buffer)-l,
232  					       "%08x ", cfg);
233  			}
234  
235  		}
236  
237  		pr_warn("%s\n", buffer);
238  	}
239  
240  	/* If AER capable, dump it */
241  	cap = edev->aer_cap;
242  	if (cap) {
243  		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244  		pr_warn("EEH: PCI-E AER capability register set follows:\n");
245  
246  		for (i=0; i<=13; i++) {
247  			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248  			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249  
250  			if ((i % 4) == 0) {
251  				if (i != 0)
252  					pr_warn("%s\n", buffer);
253  
254  				l = scnprintf(buffer, sizeof(buffer),
255  					      "EEH: PCI-E AER %02x: %08x ",
256  					      4*i, cfg);
257  			} else {
258  				l += scnprintf(buffer+l, sizeof(buffer)-l,
259  					       "%08x ", cfg);
260  			}
261  		}
262  
263  		pr_warn("%s\n", buffer);
264  	}
265  
266  	return n;
267  }
268  
eeh_dump_pe_log(struct eeh_pe * pe,void * flag)269  static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270  {
271  	struct eeh_dev *edev, *tmp;
272  	size_t *plen = flag;
273  
274  	eeh_pe_for_each_dev(pe, edev, tmp)
275  		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276  					  EEH_PCI_REGS_LOG_LEN - *plen);
277  
278  	return NULL;
279  }
280  
281  /**
282   * eeh_slot_error_detail - Generate combined log including driver log and error log
283   * @pe: EEH PE
284   * @severity: temporary or permanent error log
285   *
286   * This routine should be called to generate the combined log, which
287   * is comprised of driver log and error log. The driver log is figured
288   * out from the config space of the corresponding PCI device, while
289   * the error log is fetched through platform dependent function call.
290   */
eeh_slot_error_detail(struct eeh_pe * pe,int severity)291  void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292  {
293  	size_t loglen = 0;
294  
295  	/*
296  	 * When the PHB is fenced or dead, it's pointless to collect
297  	 * the data from PCI config space because it should return
298  	 * 0xFF's. For ER, we still retrieve the data from the PCI
299  	 * config space.
300  	 *
301  	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302  	 * 0xFF's is always returned from PCI config space.
303  	 *
304  	 * When the @severity is EEH_LOG_PERM, the PE is going to be
305  	 * removed. Prior to that, the drivers for devices included in
306  	 * the PE will be closed. The drivers rely on working IO path
307  	 * to bring the devices to quiet state. Otherwise, PCI traffic
308  	 * from those devices after they are removed is like to cause
309  	 * another unexpected EEH error.
310  	 */
311  	if (!(pe->type & EEH_PE_PHB)) {
312  		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313  		    severity == EEH_LOG_PERM)
314  			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315  
316  		/*
317  		 * The config space of some PCI devices can't be accessed
318  		 * when their PEs are in frozen state. Otherwise, fenced
319  		 * PHB might be seen. Those PEs are identified with flag
320  		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321  		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
322  		 *
323  		 * Restoring BARs possibly triggers PCI config access in
324  		 * (OPAL) firmware and then causes fenced PHB. If the
325  		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326  		 * pointless to restore BARs and dump config space.
327  		 */
328  		eeh_ops->configure_bridge(pe);
329  		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330  			eeh_pe_restore_bars(pe);
331  
332  			pci_regs_buf[0] = 0;
333  			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334  		}
335  	}
336  
337  	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338  }
339  
340  /**
341   * eeh_token_to_phys - Convert EEH address token to phys address
342   * @token: I/O token, should be address in the form 0xA....
343   *
344   * This routine should be called to convert virtual I/O address
345   * to physical one.
346   */
eeh_token_to_phys(unsigned long token)347  static inline unsigned long eeh_token_to_phys(unsigned long token)
348  {
349  	return ppc_find_vmap_phys(token);
350  }
351  
352  /*
353   * On PowerNV platform, we might already have fenced PHB there.
354   * For that case, it's meaningless to recover frozen PE. Intead,
355   * We have to handle fenced PHB firstly.
356   */
eeh_phb_check_failure(struct eeh_pe * pe)357  static int eeh_phb_check_failure(struct eeh_pe *pe)
358  {
359  	struct eeh_pe *phb_pe;
360  	unsigned long flags;
361  	int ret;
362  
363  	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
364  		return -EPERM;
365  
366  	/* Find the PHB PE */
367  	phb_pe = eeh_phb_pe_get(pe->phb);
368  	if (!phb_pe) {
369  		pr_warn("%s Can't find PE for PHB#%x\n",
370  			__func__, pe->phb->global_number);
371  		return -EEXIST;
372  	}
373  
374  	/* If the PHB has been in problematic state */
375  	eeh_serialize_lock(&flags);
376  	if (phb_pe->state & EEH_PE_ISOLATED) {
377  		ret = 0;
378  		goto out;
379  	}
380  
381  	/* Check PHB state */
382  	ret = eeh_ops->get_state(phb_pe, NULL);
383  	if ((ret < 0) ||
384  	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
385  		ret = 0;
386  		goto out;
387  	}
388  
389  	/* Isolate the PHB and send event */
390  	eeh_pe_mark_isolated(phb_pe);
391  	eeh_serialize_unlock(flags);
392  
393  	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
394  		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
395  	eeh_send_failure_event(phb_pe);
396  	return 1;
397  out:
398  	eeh_serialize_unlock(flags);
399  	return ret;
400  }
401  
eeh_driver_name(struct pci_dev * pdev)402  static inline const char *eeh_driver_name(struct pci_dev *pdev)
403  {
404  	if (pdev)
405  		return dev_driver_string(&pdev->dev);
406  
407  	return "<null>";
408  }
409  
410  /**
411   * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
412   * @edev: eeh device
413   *
414   * Check for an EEH failure for the given device node.  Call this
415   * routine if the result of a read was all 0xff's and you want to
416   * find out if this is due to an EEH slot freeze.  This routine
417   * will query firmware for the EEH status.
418   *
419   * Returns 0 if there has not been an EEH error; otherwise returns
420   * a non-zero value and queues up a slot isolation event notification.
421   *
422   * It is safe to call this routine in an interrupt context.
423   */
eeh_dev_check_failure(struct eeh_dev * edev)424  int eeh_dev_check_failure(struct eeh_dev *edev)
425  {
426  	int ret;
427  	unsigned long flags;
428  	struct device_node *dn;
429  	struct pci_dev *dev;
430  	struct eeh_pe *pe, *parent_pe;
431  	int rc = 0;
432  	const char *location = NULL;
433  
434  	eeh_stats.total_mmio_ffs++;
435  
436  	if (!eeh_enabled())
437  		return 0;
438  
439  	if (!edev) {
440  		eeh_stats.no_dn++;
441  		return 0;
442  	}
443  	dev = eeh_dev_to_pci_dev(edev);
444  	pe = eeh_dev_to_pe(edev);
445  
446  	/* Access to IO BARs might get this far and still not want checking. */
447  	if (!pe) {
448  		eeh_stats.ignored_check++;
449  		eeh_edev_dbg(edev, "Ignored check\n");
450  		return 0;
451  	}
452  
453  	/*
454  	 * On PowerNV platform, we might already have fenced PHB
455  	 * there and we need take care of that firstly.
456  	 */
457  	ret = eeh_phb_check_failure(pe);
458  	if (ret > 0)
459  		return ret;
460  
461  	/*
462  	 * If the PE isn't owned by us, we shouldn't check the
463  	 * state. Instead, let the owner handle it if the PE has
464  	 * been frozen.
465  	 */
466  	if (eeh_pe_passed(pe))
467  		return 0;
468  
469  	/* If we already have a pending isolation event for this
470  	 * slot, we know it's bad already, we don't need to check.
471  	 * Do this checking under a lock; as multiple PCI devices
472  	 * in one slot might report errors simultaneously, and we
473  	 * only want one error recovery routine running.
474  	 */
475  	eeh_serialize_lock(&flags);
476  	rc = 1;
477  	if (pe->state & EEH_PE_ISOLATED) {
478  		pe->check_count++;
479  		if (pe->check_count == EEH_MAX_FAILS) {
480  			dn = pci_device_to_OF_node(dev);
481  			if (dn)
482  				location = of_get_property(dn, "ibm,loc-code",
483  						NULL);
484  			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
485  				pe->check_count,
486  				location ? location : "unknown",
487  				eeh_driver_name(dev));
488  			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
489  				eeh_driver_name(dev));
490  			dump_stack();
491  		}
492  		goto dn_unlock;
493  	}
494  
495  	/*
496  	 * Now test for an EEH failure.  This is VERY expensive.
497  	 * Note that the eeh_config_addr may be a parent device
498  	 * in the case of a device behind a bridge, or it may be
499  	 * function zero of a multi-function device.
500  	 * In any case they must share a common PHB.
501  	 */
502  	ret = eeh_ops->get_state(pe, NULL);
503  
504  	/* Note that config-io to empty slots may fail;
505  	 * they are empty when they don't have children.
506  	 * We will punt with the following conditions: Failure to get
507  	 * PE's state, EEH not support and Permanently unavailable
508  	 * state, PE is in good state.
509  	 *
510  	 * On the pSeries, after reaching the threshold, get_state might
511  	 * return EEH_STATE_NOT_SUPPORT. However, it's possible that the
512  	 * device state remains uncleared if the device is not marked
513  	 * pci_channel_io_perm_failure. Therefore, consider logging the
514  	 * event to let device removal happen.
515  	 *
516  	 */
517  	if ((ret < 0) ||
518  	    (ret == EEH_STATE_NOT_SUPPORT &&
519  	     dev->error_state == pci_channel_io_perm_failure) ||
520  	    eeh_state_active(ret)) {
521  		eeh_stats.false_positives++;
522  		pe->false_positives++;
523  		rc = 0;
524  		goto dn_unlock;
525  	}
526  
527  	/*
528  	 * It should be corner case that the parent PE has been
529  	 * put into frozen state as well. We should take care
530  	 * that at first.
531  	 */
532  	parent_pe = pe->parent;
533  	while (parent_pe) {
534  		/* Hit the ceiling ? */
535  		if (parent_pe->type & EEH_PE_PHB)
536  			break;
537  
538  		/* Frozen parent PE ? */
539  		ret = eeh_ops->get_state(parent_pe, NULL);
540  		if (ret > 0 && !eeh_state_active(ret)) {
541  			pe = parent_pe;
542  			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
543  			       pe->phb->global_number, pe->addr,
544  			       pe->phb->global_number, parent_pe->addr);
545  		}
546  
547  		/* Next parent level */
548  		parent_pe = parent_pe->parent;
549  	}
550  
551  	eeh_stats.slot_resets++;
552  
553  	/* Avoid repeated reports of this failure, including problems
554  	 * with other functions on this device, and functions under
555  	 * bridges.
556  	 */
557  	eeh_pe_mark_isolated(pe);
558  	eeh_serialize_unlock(flags);
559  
560  	/* Most EEH events are due to device driver bugs.  Having
561  	 * a stack trace will help the device-driver authors figure
562  	 * out what happened.  So print that out.
563  	 */
564  	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
565  		__func__, pe->phb->global_number, pe->addr);
566  	eeh_send_failure_event(pe);
567  
568  	return 1;
569  
570  dn_unlock:
571  	eeh_serialize_unlock(flags);
572  	return rc;
573  }
574  
575  EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
576  
577  /**
578   * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
579   * @token: I/O address
580   *
581   * Check for an EEH failure at the given I/O address. Call this
582   * routine if the result of a read was all 0xff's and you want to
583   * find out if this is due to an EEH slot freeze event. This routine
584   * will query firmware for the EEH status.
585   *
586   * Note this routine is safe to call in an interrupt context.
587   */
eeh_check_failure(const volatile void __iomem * token)588  int eeh_check_failure(const volatile void __iomem *token)
589  {
590  	unsigned long addr;
591  	struct eeh_dev *edev;
592  
593  	/* Finding the phys addr + pci device; this is pretty quick. */
594  	addr = eeh_token_to_phys((unsigned long __force) token);
595  	edev = eeh_addr_cache_get_dev(addr);
596  	if (!edev) {
597  		eeh_stats.no_device++;
598  		return 0;
599  	}
600  
601  	return eeh_dev_check_failure(edev);
602  }
603  EXPORT_SYMBOL(eeh_check_failure);
604  
605  
606  /**
607   * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
608   * @pe: EEH PE
609   * @function: EEH option
610   *
611   * This routine should be called to reenable frozen MMIO or DMA
612   * so that it would work correctly again. It's useful while doing
613   * recovery or log collection on the indicated device.
614   */
eeh_pci_enable(struct eeh_pe * pe,int function)615  int eeh_pci_enable(struct eeh_pe *pe, int function)
616  {
617  	int active_flag, rc;
618  
619  	/*
620  	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
621  	 * Also, it's pointless to enable them on unfrozen PE. So
622  	 * we have to check before enabling IO or DMA.
623  	 */
624  	switch (function) {
625  	case EEH_OPT_THAW_MMIO:
626  		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
627  		break;
628  	case EEH_OPT_THAW_DMA:
629  		active_flag = EEH_STATE_DMA_ACTIVE;
630  		break;
631  	case EEH_OPT_DISABLE:
632  	case EEH_OPT_ENABLE:
633  	case EEH_OPT_FREEZE_PE:
634  		active_flag = 0;
635  		break;
636  	default:
637  		pr_warn("%s: Invalid function %d\n",
638  			__func__, function);
639  		return -EINVAL;
640  	}
641  
642  	/*
643  	 * Check if IO or DMA has been enabled before
644  	 * enabling them.
645  	 */
646  	if (active_flag) {
647  		rc = eeh_ops->get_state(pe, NULL);
648  		if (rc < 0)
649  			return rc;
650  
651  		/* Needn't enable it at all */
652  		if (rc == EEH_STATE_NOT_SUPPORT)
653  			return 0;
654  
655  		/* It's already enabled */
656  		if (rc & active_flag)
657  			return 0;
658  	}
659  
660  
661  	/* Issue the request */
662  	rc = eeh_ops->set_option(pe, function);
663  	if (rc)
664  		pr_warn("%s: Unexpected state change %d on "
665  			"PHB#%x-PE#%x, err=%d\n",
666  			__func__, function, pe->phb->global_number,
667  			pe->addr, rc);
668  
669  	/* Check if the request is finished successfully */
670  	if (active_flag) {
671  		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
672  		if (rc < 0)
673  			return rc;
674  
675  		if (rc & active_flag)
676  			return 0;
677  
678  		return -EIO;
679  	}
680  
681  	return rc;
682  }
683  
eeh_disable_and_save_dev_state(struct eeh_dev * edev,void * userdata)684  static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
685  					    void *userdata)
686  {
687  	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
688  	struct pci_dev *dev = userdata;
689  
690  	/*
691  	 * The caller should have disabled and saved the
692  	 * state for the specified device
693  	 */
694  	if (!pdev || pdev == dev)
695  		return;
696  
697  	/* Ensure we have D0 power state */
698  	pci_set_power_state(pdev, PCI_D0);
699  
700  	/* Save device state */
701  	pci_save_state(pdev);
702  
703  	/*
704  	 * Disable device to avoid any DMA traffic and
705  	 * interrupt from the device
706  	 */
707  	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
708  }
709  
eeh_restore_dev_state(struct eeh_dev * edev,void * userdata)710  static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
711  {
712  	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
713  	struct pci_dev *dev = userdata;
714  
715  	if (!pdev)
716  		return;
717  
718  	/* Apply customization from firmware */
719  	if (eeh_ops->restore_config)
720  		eeh_ops->restore_config(edev);
721  
722  	/* The caller should restore state for the specified device */
723  	if (pdev != dev)
724  		pci_restore_state(pdev);
725  }
726  
727  /**
728   * pcibios_set_pcie_reset_state - Set PCI-E reset state
729   * @dev: pci device struct
730   * @state: reset state to enter
731   *
732   * Return value:
733   * 	0 if success
734   */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)735  int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
736  {
737  	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
738  	struct eeh_pe *pe = eeh_dev_to_pe(edev);
739  
740  	if (!pe) {
741  		pr_err("%s: No PE found on PCI device %s\n",
742  			__func__, pci_name(dev));
743  		return -EINVAL;
744  	}
745  
746  	switch (state) {
747  	case pcie_deassert_reset:
748  		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
749  		eeh_unfreeze_pe(pe);
750  		if (!(pe->type & EEH_PE_VF))
751  			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
752  		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
753  		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
754  		break;
755  	case pcie_hot_reset:
756  		eeh_pe_mark_isolated(pe);
757  		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
758  		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
759  		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
760  		if (!(pe->type & EEH_PE_VF))
761  			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
762  		eeh_ops->reset(pe, EEH_RESET_HOT);
763  		break;
764  	case pcie_warm_reset:
765  		eeh_pe_mark_isolated(pe);
766  		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
767  		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
768  		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
769  		if (!(pe->type & EEH_PE_VF))
770  			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
771  		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
772  		break;
773  	default:
774  		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
775  		return -EINVAL;
776  	}
777  
778  	return 0;
779  }
780  
781  /**
782   * eeh_set_dev_freset - Check the required reset for the indicated device
783   * @edev: EEH device
784   * @flag: return value
785   *
786   * Each device might have its preferred reset type: fundamental or
787   * hot reset. The routine is used to collected the information for
788   * the indicated device and its children so that the bunch of the
789   * devices could be reset properly.
790   */
eeh_set_dev_freset(struct eeh_dev * edev,void * flag)791  static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
792  {
793  	struct pci_dev *dev;
794  	unsigned int *freset = (unsigned int *)flag;
795  
796  	dev = eeh_dev_to_pci_dev(edev);
797  	if (dev)
798  		*freset |= dev->needs_freset;
799  }
800  
eeh_pe_refreeze_passed(struct eeh_pe * root)801  static void eeh_pe_refreeze_passed(struct eeh_pe *root)
802  {
803  	struct eeh_pe *pe;
804  	int state;
805  
806  	eeh_for_each_pe(root, pe) {
807  		if (eeh_pe_passed(pe)) {
808  			state = eeh_ops->get_state(pe, NULL);
809  			if (state &
810  			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
811  				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
812  					pe->phb->global_number, pe->addr);
813  				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
814  			}
815  		}
816  	}
817  }
818  
819  /**
820   * eeh_pe_reset_full - Complete a full reset process on the indicated PE
821   * @pe: EEH PE
822   * @include_passed: include passed-through devices?
823   *
824   * This function executes a full reset procedure on a PE, including setting
825   * the appropriate flags, performing a fundamental or hot reset, and then
826   * deactivating the reset status.  It is designed to be used within the EEH
827   * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
828   * only performs a single operation at a time.
829   *
830   * This function will attempt to reset a PE three times before failing.
831   */
eeh_pe_reset_full(struct eeh_pe * pe,bool include_passed)832  int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
833  {
834  	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
835  	int type = EEH_RESET_HOT;
836  	unsigned int freset = 0;
837  	int i, state = 0, ret;
838  
839  	/*
840  	 * Determine the type of reset to perform - hot or fundamental.
841  	 * Hot reset is the default operation, unless any device under the
842  	 * PE requires a fundamental reset.
843  	 */
844  	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
845  
846  	if (freset)
847  		type = EEH_RESET_FUNDAMENTAL;
848  
849  	/* Mark the PE as in reset state and block config space accesses */
850  	eeh_pe_state_mark(pe, reset_state);
851  
852  	/* Make three attempts at resetting the bus */
853  	for (i = 0; i < 3; i++) {
854  		ret = eeh_pe_reset(pe, type, include_passed);
855  		if (!ret)
856  			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
857  					   include_passed);
858  		if (ret) {
859  			ret = -EIO;
860  			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
861  				state, pe->phb->global_number, pe->addr, i + 1);
862  			continue;
863  		}
864  		if (i)
865  			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
866  				pe->phb->global_number, pe->addr, i + 1);
867  
868  		/* Wait until the PE is in a functioning state */
869  		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
870  		if (state < 0) {
871  			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
872  				pe->phb->global_number, pe->addr);
873  			ret = -ENOTRECOVERABLE;
874  			break;
875  		}
876  		if (eeh_state_active(state))
877  			break;
878  		else
879  			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
880  				pe->phb->global_number, pe->addr, state, i + 1);
881  	}
882  
883  	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
884  	 * (potentially) passed through to a guest, re-freeze them:
885  	 */
886  	if (!include_passed)
887  		eeh_pe_refreeze_passed(pe);
888  
889  	eeh_pe_state_clear(pe, reset_state, true);
890  	return ret;
891  }
892  
893  /**
894   * eeh_save_bars - Save device bars
895   * @edev: PCI device associated EEH device
896   *
897   * Save the values of the device bars. Unlike the restore
898   * routine, this routine is *not* recursive. This is because
899   * PCI devices are added individually; but, for the restore,
900   * an entire slot is reset at a time.
901   */
eeh_save_bars(struct eeh_dev * edev)902  void eeh_save_bars(struct eeh_dev *edev)
903  {
904  	int i;
905  
906  	if (!edev)
907  		return;
908  
909  	for (i = 0; i < 16; i++)
910  		eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
911  
912  	/*
913  	 * For PCI bridges including root port, we need enable bus
914  	 * master explicitly. Otherwise, it can't fetch IODA table
915  	 * entries correctly. So we cache the bit in advance so that
916  	 * we can restore it after reset, either PHB range or PE range.
917  	 */
918  	if (edev->mode & EEH_DEV_BRIDGE)
919  		edev->config_space[1] |= PCI_COMMAND_MASTER;
920  }
921  
eeh_reboot_notifier(struct notifier_block * nb,unsigned long action,void * unused)922  static int eeh_reboot_notifier(struct notifier_block *nb,
923  			       unsigned long action, void *unused)
924  {
925  	eeh_clear_flag(EEH_ENABLED);
926  	return NOTIFY_DONE;
927  }
928  
929  static struct notifier_block eeh_reboot_nb = {
930  	.notifier_call = eeh_reboot_notifier,
931  };
932  
eeh_device_notifier(struct notifier_block * nb,unsigned long action,void * data)933  static int eeh_device_notifier(struct notifier_block *nb,
934  			       unsigned long action, void *data)
935  {
936  	struct device *dev = data;
937  
938  	switch (action) {
939  	/*
940  	 * Note: It's not possible to perform EEH device addition (i.e.
941  	 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
942  	 * the device's resources, which have not yet been set up.
943  	 */
944  	case BUS_NOTIFY_DEL_DEVICE:
945  		eeh_remove_device(to_pci_dev(dev));
946  		break;
947  	default:
948  		break;
949  	}
950  	return NOTIFY_DONE;
951  }
952  
953  static struct notifier_block eeh_device_nb = {
954  	.notifier_call = eeh_device_notifier,
955  };
956  
957  /**
958   * eeh_init - System wide EEH initialization
959   * @ops: struct to trace EEH operation callback functions
960   *
961   * It's the platform's job to call this from an arch_initcall().
962   */
eeh_init(struct eeh_ops * ops)963  int eeh_init(struct eeh_ops *ops)
964  {
965  	struct pci_controller *hose, *tmp;
966  	int ret = 0;
967  
968  	/* the platform should only initialise EEH once */
969  	if (WARN_ON(eeh_ops))
970  		return -EEXIST;
971  	if (WARN_ON(!ops))
972  		return -ENOENT;
973  	eeh_ops = ops;
974  
975  	/* Register reboot notifier */
976  	ret = register_reboot_notifier(&eeh_reboot_nb);
977  	if (ret) {
978  		pr_warn("%s: Failed to register reboot notifier (%d)\n",
979  			__func__, ret);
980  		return ret;
981  	}
982  
983  	ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
984  	if (ret) {
985  		pr_warn("%s: Failed to register bus notifier (%d)\n",
986  			__func__, ret);
987  		return ret;
988  	}
989  
990  	/* Initialize PHB PEs */
991  	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
992  		eeh_phb_pe_create(hose);
993  
994  	eeh_addr_cache_init();
995  
996  	/* Initialize EEH event */
997  	return eeh_event_init();
998  }
999  
1000  /**
1001   * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1002   * @dev: pci device for which to set up EEH
1003   *
1004   * This routine must be used to complete EEH initialization for PCI
1005   * devices that were added after system boot (e.g. hotplug, dlpar).
1006   */
eeh_probe_device(struct pci_dev * dev)1007  void eeh_probe_device(struct pci_dev *dev)
1008  {
1009  	struct eeh_dev *edev;
1010  
1011  	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1012  
1013  	/*
1014  	 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1015  	 * already called for this device.
1016  	 */
1017  	if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1018  		pci_dbg(dev, "Already bound to an eeh_dev!\n");
1019  		return;
1020  	}
1021  
1022  	edev = eeh_ops->probe(dev);
1023  	if (!edev) {
1024  		pr_debug("EEH: Adding device failed\n");
1025  		return;
1026  	}
1027  
1028  	/*
1029  	 * FIXME: We rely on pcibios_release_device() to remove the
1030  	 * existing EEH state. The release function is only called if
1031  	 * the pci_dev's refcount drops to zero so if something is
1032  	 * keeping a ref to a device (e.g. a filesystem) we need to
1033  	 * remove the old EEH state.
1034  	 *
1035  	 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1036  	 */
1037  	if (edev->pdev && edev->pdev != dev) {
1038  		eeh_pe_tree_remove(edev);
1039  		eeh_addr_cache_rmv_dev(edev->pdev);
1040  		eeh_sysfs_remove_device(edev->pdev);
1041  
1042  		/*
1043  		 * We definitely should have the PCI device removed
1044  		 * though it wasn't correctly. So we needn't call
1045  		 * into error handler afterwards.
1046  		 */
1047  		edev->mode |= EEH_DEV_NO_HANDLER;
1048  	}
1049  
1050  	/* bind the pdev and the edev together */
1051  	edev->pdev = dev;
1052  	dev->dev.archdata.edev = edev;
1053  	eeh_addr_cache_insert_dev(dev);
1054  	eeh_sysfs_add_device(dev);
1055  }
1056  
1057  /**
1058   * eeh_remove_device - Undo EEH setup for the indicated pci device
1059   * @dev: pci device to be removed
1060   *
1061   * This routine should be called when a device is removed from
1062   * a running system (e.g. by hotplug or dlpar).  It unregisters
1063   * the PCI device from the EEH subsystem.  I/O errors affecting
1064   * this device will no longer be detected after this call; thus,
1065   * i/o errors affecting this slot may leave this device unusable.
1066   */
eeh_remove_device(struct pci_dev * dev)1067  void eeh_remove_device(struct pci_dev *dev)
1068  {
1069  	struct eeh_dev *edev;
1070  
1071  	if (!dev || !eeh_enabled())
1072  		return;
1073  	edev = pci_dev_to_eeh_dev(dev);
1074  
1075  	/* Unregister the device with the EEH/PCI address search system */
1076  	dev_dbg(&dev->dev, "EEH: Removing device\n");
1077  
1078  	if (!edev || !edev->pdev || !edev->pe) {
1079  		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1080  		return;
1081  	}
1082  
1083  	/*
1084  	 * During the hotplug for EEH error recovery, we need the EEH
1085  	 * device attached to the parent PE in order for BAR restore
1086  	 * a bit later. So we keep it for BAR restore and remove it
1087  	 * from the parent PE during the BAR resotre.
1088  	 */
1089  	edev->pdev = NULL;
1090  
1091  	/*
1092  	 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1093  	 * remove the sysfs files before clearing dev.archdata.edev
1094  	 */
1095  	if (edev->mode & EEH_DEV_SYSFS)
1096  		eeh_sysfs_remove_device(dev);
1097  
1098  	/*
1099  	 * We're removing from the PCI subsystem, that means
1100  	 * the PCI device driver can't support EEH or not
1101  	 * well. So we rely on hotplug completely to do recovery
1102  	 * for the specific PCI device.
1103  	 */
1104  	edev->mode |= EEH_DEV_NO_HANDLER;
1105  
1106  	eeh_addr_cache_rmv_dev(dev);
1107  
1108  	/*
1109  	 * The flag "in_error" is used to trace EEH devices for VFs
1110  	 * in error state or not. It's set in eeh_report_error(). If
1111  	 * it's not set, eeh_report_{reset,resume}() won't be called
1112  	 * for the VF EEH device.
1113  	 */
1114  	edev->in_error = false;
1115  	dev->dev.archdata.edev = NULL;
1116  	if (!(edev->pe->state & EEH_PE_KEEP))
1117  		eeh_pe_tree_remove(edev);
1118  	else
1119  		edev->mode |= EEH_DEV_DISCONNECTED;
1120  }
1121  
eeh_unfreeze_pe(struct eeh_pe * pe)1122  int eeh_unfreeze_pe(struct eeh_pe *pe)
1123  {
1124  	int ret;
1125  
1126  	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1127  	if (ret) {
1128  		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1129  			__func__, ret, pe->phb->global_number, pe->addr);
1130  		return ret;
1131  	}
1132  
1133  	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1134  	if (ret) {
1135  		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1136  			__func__, ret, pe->phb->global_number, pe->addr);
1137  		return ret;
1138  	}
1139  
1140  	return ret;
1141  }
1142  
1143  
1144  static struct pci_device_id eeh_reset_ids[] = {
1145  	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1146  	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1147  	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1148  	{ 0 }
1149  };
1150  
eeh_pe_change_owner(struct eeh_pe * pe)1151  static int eeh_pe_change_owner(struct eeh_pe *pe)
1152  {
1153  	struct eeh_dev *edev, *tmp;
1154  	struct pci_dev *pdev;
1155  	struct pci_device_id *id;
1156  	int ret;
1157  
1158  	/* Check PE state */
1159  	ret = eeh_ops->get_state(pe, NULL);
1160  	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1161  		return 0;
1162  
1163  	/* Unfrozen PE, nothing to do */
1164  	if (eeh_state_active(ret))
1165  		return 0;
1166  
1167  	/* Frozen PE, check if it needs PE level reset */
1168  	eeh_pe_for_each_dev(pe, edev, tmp) {
1169  		pdev = eeh_dev_to_pci_dev(edev);
1170  		if (!pdev)
1171  			continue;
1172  
1173  		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1174  			if (id->vendor != PCI_ANY_ID &&
1175  			    id->vendor != pdev->vendor)
1176  				continue;
1177  			if (id->device != PCI_ANY_ID &&
1178  			    id->device != pdev->device)
1179  				continue;
1180  			if (id->subvendor != PCI_ANY_ID &&
1181  			    id->subvendor != pdev->subsystem_vendor)
1182  				continue;
1183  			if (id->subdevice != PCI_ANY_ID &&
1184  			    id->subdevice != pdev->subsystem_device)
1185  				continue;
1186  
1187  			return eeh_pe_reset_and_recover(pe);
1188  		}
1189  	}
1190  
1191  	ret = eeh_unfreeze_pe(pe);
1192  	if (!ret)
1193  		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1194  	return ret;
1195  }
1196  
1197  /**
1198   * eeh_dev_open - Increase count of pass through devices for PE
1199   * @pdev: PCI device
1200   *
1201   * Increase count of passed through devices for the indicated
1202   * PE. In the result, the EEH errors detected on the PE won't be
1203   * reported. The PE owner will be responsible for detection
1204   * and recovery.
1205   */
eeh_dev_open(struct pci_dev * pdev)1206  int eeh_dev_open(struct pci_dev *pdev)
1207  {
1208  	struct eeh_dev *edev;
1209  	int ret = -ENODEV;
1210  
1211  	mutex_lock(&eeh_dev_mutex);
1212  
1213  	/* No PCI device ? */
1214  	if (!pdev)
1215  		goto out;
1216  
1217  	/* No EEH device or PE ? */
1218  	edev = pci_dev_to_eeh_dev(pdev);
1219  	if (!edev || !edev->pe)
1220  		goto out;
1221  
1222  	/*
1223  	 * The PE might have been put into frozen state, but we
1224  	 * didn't detect that yet. The passed through PCI devices
1225  	 * in frozen PE won't work properly. Clear the frozen state
1226  	 * in advance.
1227  	 */
1228  	ret = eeh_pe_change_owner(edev->pe);
1229  	if (ret)
1230  		goto out;
1231  
1232  	/* Increase PE's pass through count */
1233  	atomic_inc(&edev->pe->pass_dev_cnt);
1234  	mutex_unlock(&eeh_dev_mutex);
1235  
1236  	return 0;
1237  out:
1238  	mutex_unlock(&eeh_dev_mutex);
1239  	return ret;
1240  }
1241  EXPORT_SYMBOL_GPL(eeh_dev_open);
1242  
1243  /**
1244   * eeh_dev_release - Decrease count of pass through devices for PE
1245   * @pdev: PCI device
1246   *
1247   * Decrease count of pass through devices for the indicated PE. If
1248   * there is no passed through device in PE, the EEH errors detected
1249   * on the PE will be reported and handled as usual.
1250   */
eeh_dev_release(struct pci_dev * pdev)1251  void eeh_dev_release(struct pci_dev *pdev)
1252  {
1253  	struct eeh_dev *edev;
1254  
1255  	mutex_lock(&eeh_dev_mutex);
1256  
1257  	/* No PCI device ? */
1258  	if (!pdev)
1259  		goto out;
1260  
1261  	/* No EEH device ? */
1262  	edev = pci_dev_to_eeh_dev(pdev);
1263  	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1264  		goto out;
1265  
1266  	/* Decrease PE's pass through count */
1267  	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1268  	eeh_pe_change_owner(edev->pe);
1269  out:
1270  	mutex_unlock(&eeh_dev_mutex);
1271  }
1272  EXPORT_SYMBOL(eeh_dev_release);
1273  
1274  #ifdef CONFIG_IOMMU_API
1275  
1276  /**
1277   * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1278   * @group: IOMMU group
1279   *
1280   * The routine is called to convert IOMMU group to EEH PE.
1281   */
eeh_iommu_group_to_pe(struct iommu_group * group)1282  struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1283  {
1284  	struct pci_dev *pdev = NULL;
1285  	struct eeh_dev *edev;
1286  	int ret;
1287  
1288  	/* No IOMMU group ? */
1289  	if (!group)
1290  		return NULL;
1291  
1292  	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1293  	if (!ret || !pdev)
1294  		return NULL;
1295  
1296  	/* No EEH device or PE ? */
1297  	edev = pci_dev_to_eeh_dev(pdev);
1298  	if (!edev || !edev->pe)
1299  		return NULL;
1300  
1301  	return edev->pe;
1302  }
1303  EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1304  
1305  #endif /* CONFIG_IOMMU_API */
1306  
1307  /**
1308   * eeh_pe_set_option - Set options for the indicated PE
1309   * @pe: EEH PE
1310   * @option: requested option
1311   *
1312   * The routine is called to enable or disable EEH functionality
1313   * on the indicated PE, to enable IO or DMA for the frozen PE.
1314   */
eeh_pe_set_option(struct eeh_pe * pe,int option)1315  int eeh_pe_set_option(struct eeh_pe *pe, int option)
1316  {
1317  	int ret = 0;
1318  
1319  	/* Invalid PE ? */
1320  	if (!pe)
1321  		return -ENODEV;
1322  
1323  	/*
1324  	 * EEH functionality could possibly be disabled, just
1325  	 * return error for the case. And the EEH functionality
1326  	 * isn't expected to be disabled on one specific PE.
1327  	 */
1328  	switch (option) {
1329  	case EEH_OPT_ENABLE:
1330  		if (eeh_enabled()) {
1331  			ret = eeh_pe_change_owner(pe);
1332  			break;
1333  		}
1334  		ret = -EIO;
1335  		break;
1336  	case EEH_OPT_DISABLE:
1337  		break;
1338  	case EEH_OPT_THAW_MMIO:
1339  	case EEH_OPT_THAW_DMA:
1340  	case EEH_OPT_FREEZE_PE:
1341  		if (!eeh_ops || !eeh_ops->set_option) {
1342  			ret = -ENOENT;
1343  			break;
1344  		}
1345  
1346  		ret = eeh_pci_enable(pe, option);
1347  		break;
1348  	default:
1349  		pr_debug("%s: Option %d out of range (%d, %d)\n",
1350  			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1351  		ret = -EINVAL;
1352  	}
1353  
1354  	return ret;
1355  }
1356  EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1357  
1358  /**
1359   * eeh_pe_get_state - Retrieve PE's state
1360   * @pe: EEH PE
1361   *
1362   * Retrieve the PE's state, which includes 3 aspects: enabled
1363   * DMA, enabled IO and asserted reset.
1364   */
eeh_pe_get_state(struct eeh_pe * pe)1365  int eeh_pe_get_state(struct eeh_pe *pe)
1366  {
1367  	int result, ret = 0;
1368  	bool rst_active, dma_en, mmio_en;
1369  
1370  	/* Existing PE ? */
1371  	if (!pe)
1372  		return -ENODEV;
1373  
1374  	if (!eeh_ops || !eeh_ops->get_state)
1375  		return -ENOENT;
1376  
1377  	/*
1378  	 * If the parent PE is owned by the host kernel and is undergoing
1379  	 * error recovery, we should return the PE state as temporarily
1380  	 * unavailable so that the error recovery on the guest is suspended
1381  	 * until the recovery completes on the host.
1382  	 */
1383  	if (pe->parent &&
1384  	    !(pe->state & EEH_PE_REMOVED) &&
1385  	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1386  		return EEH_PE_STATE_UNAVAIL;
1387  
1388  	result = eeh_ops->get_state(pe, NULL);
1389  	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1390  	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1391  	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1392  
1393  	if (rst_active)
1394  		ret = EEH_PE_STATE_RESET;
1395  	else if (dma_en && mmio_en)
1396  		ret = EEH_PE_STATE_NORMAL;
1397  	else if (!dma_en && !mmio_en)
1398  		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1399  	else if (!dma_en && mmio_en)
1400  		ret = EEH_PE_STATE_STOPPED_DMA;
1401  	else
1402  		ret = EEH_PE_STATE_UNAVAIL;
1403  
1404  	return ret;
1405  }
1406  EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1407  
eeh_pe_reenable_devices(struct eeh_pe * pe,bool include_passed)1408  static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1409  {
1410  	struct eeh_dev *edev, *tmp;
1411  	struct pci_dev *pdev;
1412  	int ret = 0;
1413  
1414  	eeh_pe_restore_bars(pe);
1415  
1416  	/*
1417  	 * Reenable PCI devices as the devices passed
1418  	 * through are always enabled before the reset.
1419  	 */
1420  	eeh_pe_for_each_dev(pe, edev, tmp) {
1421  		pdev = eeh_dev_to_pci_dev(edev);
1422  		if (!pdev)
1423  			continue;
1424  
1425  		ret = pci_reenable_device(pdev);
1426  		if (ret) {
1427  			pr_warn("%s: Failure %d reenabling %s\n",
1428  				__func__, ret, pci_name(pdev));
1429  			return ret;
1430  		}
1431  	}
1432  
1433  	/* The PE is still in frozen state */
1434  	if (include_passed || !eeh_pe_passed(pe)) {
1435  		ret = eeh_unfreeze_pe(pe);
1436  	} else
1437  		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1438  			pe->phb->global_number, pe->addr);
1439  	if (!ret)
1440  		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1441  	return ret;
1442  }
1443  
1444  
1445  /**
1446   * eeh_pe_reset - Issue PE reset according to specified type
1447   * @pe: EEH PE
1448   * @option: reset type
1449   * @include_passed: include passed-through devices?
1450   *
1451   * The routine is called to reset the specified PE with the
1452   * indicated type, either fundamental reset or hot reset.
1453   * PE reset is the most important part for error recovery.
1454   */
eeh_pe_reset(struct eeh_pe * pe,int option,bool include_passed)1455  int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1456  {
1457  	int ret = 0;
1458  
1459  	/* Invalid PE ? */
1460  	if (!pe)
1461  		return -ENODEV;
1462  
1463  	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1464  		return -ENOENT;
1465  
1466  	switch (option) {
1467  	case EEH_RESET_DEACTIVATE:
1468  		ret = eeh_ops->reset(pe, option);
1469  		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1470  		if (ret)
1471  			break;
1472  
1473  		ret = eeh_pe_reenable_devices(pe, include_passed);
1474  		break;
1475  	case EEH_RESET_HOT:
1476  	case EEH_RESET_FUNDAMENTAL:
1477  		/*
1478  		 * Proactively freeze the PE to drop all MMIO access
1479  		 * during reset, which should be banned as it's always
1480  		 * cause recursive EEH error.
1481  		 */
1482  		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1483  
1484  		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1485  		ret = eeh_ops->reset(pe, option);
1486  		break;
1487  	default:
1488  		pr_debug("%s: Unsupported option %d\n",
1489  			__func__, option);
1490  		ret = -EINVAL;
1491  	}
1492  
1493  	return ret;
1494  }
1495  EXPORT_SYMBOL_GPL(eeh_pe_reset);
1496  
1497  /**
1498   * eeh_pe_configure - Configure PCI bridges after PE reset
1499   * @pe: EEH PE
1500   *
1501   * The routine is called to restore the PCI config space for
1502   * those PCI devices, especially PCI bridges affected by PE
1503   * reset issued previously.
1504   */
eeh_pe_configure(struct eeh_pe * pe)1505  int eeh_pe_configure(struct eeh_pe *pe)
1506  {
1507  	int ret = 0;
1508  
1509  	/* Invalid PE ? */
1510  	if (!pe)
1511  		return -ENODEV;
1512  
1513  	return ret;
1514  }
1515  EXPORT_SYMBOL_GPL(eeh_pe_configure);
1516  
1517  /**
1518   * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1519   * @pe: the indicated PE
1520   * @type: error type
1521   * @func: error function
1522   * @addr: address
1523   * @mask: address mask
1524   *
1525   * The routine is called to inject the specified PCI error, which
1526   * is determined by @type and @func, to the indicated PE for
1527   * testing purpose.
1528   */
eeh_pe_inject_err(struct eeh_pe * pe,int type,int func,unsigned long addr,unsigned long mask)1529  int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1530  		      unsigned long addr, unsigned long mask)
1531  {
1532  	/* Invalid PE ? */
1533  	if (!pe)
1534  		return -ENODEV;
1535  
1536  	/* Unsupported operation ? */
1537  	if (!eeh_ops || !eeh_ops->err_inject)
1538  		return -ENOENT;
1539  
1540  	/* Check on PCI error function */
1541  	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1542  		return -EINVAL;
1543  
1544  	return eeh_ops->err_inject(pe, type, func, addr, mask);
1545  }
1546  EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1547  
1548  #ifdef CONFIG_PROC_FS
proc_eeh_show(struct seq_file * m,void * v)1549  static int proc_eeh_show(struct seq_file *m, void *v)
1550  {
1551  	if (!eeh_enabled()) {
1552  		seq_printf(m, "EEH Subsystem is globally disabled\n");
1553  		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1554  	} else {
1555  		seq_printf(m, "EEH Subsystem is enabled\n");
1556  		seq_printf(m,
1557  				"no device=%llu\n"
1558  				"no device node=%llu\n"
1559  				"no config address=%llu\n"
1560  				"check not wanted=%llu\n"
1561  				"eeh_total_mmio_ffs=%llu\n"
1562  				"eeh_false_positives=%llu\n"
1563  				"eeh_slot_resets=%llu\n",
1564  				eeh_stats.no_device,
1565  				eeh_stats.no_dn,
1566  				eeh_stats.no_cfg_addr,
1567  				eeh_stats.ignored_check,
1568  				eeh_stats.total_mmio_ffs,
1569  				eeh_stats.false_positives,
1570  				eeh_stats.slot_resets);
1571  	}
1572  
1573  	return 0;
1574  }
1575  #endif /* CONFIG_PROC_FS */
1576  
eeh_break_device(struct pci_dev * pdev)1577  static int eeh_break_device(struct pci_dev *pdev)
1578  {
1579  	struct resource *bar = NULL;
1580  	void __iomem *mapped;
1581  	u16 old, bit;
1582  	int i, pos;
1583  
1584  	/* Do we have an MMIO BAR to disable? */
1585  	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1586  		struct resource *r = &pdev->resource[i];
1587  
1588  		if (!r->flags || !r->start)
1589  			continue;
1590  		if (r->flags & IORESOURCE_IO)
1591  			continue;
1592  		if (r->flags & IORESOURCE_UNSET)
1593  			continue;
1594  
1595  		bar = r;
1596  		break;
1597  	}
1598  
1599  	if (!bar) {
1600  		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1601  		return -ENXIO;
1602  	}
1603  
1604  	pci_err(pdev, "Going to break: %pR\n", bar);
1605  
1606  	if (pdev->is_virtfn) {
1607  #ifndef CONFIG_PCI_IOV
1608  		return -ENXIO;
1609  #else
1610  		/*
1611  		 * VFs don't have a per-function COMMAND register, so the best
1612  		 * we can do is clear the Memory Space Enable bit in the PF's
1613  		 * SRIOV control reg.
1614  		 *
1615  		 * Unfortunately, this requires that we have a PF (i.e doesn't
1616  		 * work for a passed-through VF) and it has the potential side
1617  		 * effect of also causing an EEH on every other VF under the
1618  		 * PF. Oh well.
1619  		 */
1620  		pdev = pdev->physfn;
1621  		if (!pdev)
1622  			return -ENXIO; /* passed through VFs have no PF */
1623  
1624  		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1625  		pos += PCI_SRIOV_CTRL;
1626  		bit  = PCI_SRIOV_CTRL_MSE;
1627  #endif /* !CONFIG_PCI_IOV */
1628  	} else {
1629  		bit = PCI_COMMAND_MEMORY;
1630  		pos = PCI_COMMAND;
1631  	}
1632  
1633  	/*
1634  	 * Process here is:
1635  	 *
1636  	 * 1. Disable Memory space.
1637  	 *
1638  	 * 2. Perform an MMIO to the device. This should result in an error
1639  	 *    (CA  / UR) being raised by the device which results in an EEH
1640  	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1641  	 *    so the freeze hook so the EEH Detection machinery won't be
1642  	 *    triggered here. This is to match the usual behaviour of EEH
1643  	 *    where the HW will asynchronously freeze a PE and it's up to
1644  	 *    the kernel to notice and deal with it.
1645  	 *
1646  	 * 3. Turn Memory space back on. This is more important for VFs
1647  	 *    since recovery will probably fail if we don't. For normal
1648  	 *    the COMMAND register is reset as a part of re-initialising
1649  	 *    the device.
1650  	 *
1651  	 * Breaking stuff is the point so who cares if it's racy ;)
1652  	 */
1653  	pci_read_config_word(pdev, pos, &old);
1654  
1655  	mapped = ioremap(bar->start, PAGE_SIZE);
1656  	if (!mapped) {
1657  		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1658  		return -ENXIO;
1659  	}
1660  
1661  	pci_write_config_word(pdev, pos, old & ~bit);
1662  	in_8(mapped);
1663  	pci_write_config_word(pdev, pos, old);
1664  
1665  	iounmap(mapped);
1666  
1667  	return 0;
1668  }
1669  
eeh_pe_inject_mmio_error(struct pci_dev * pdev)1670  int eeh_pe_inject_mmio_error(struct pci_dev *pdev)
1671  {
1672  	return eeh_break_device(pdev);
1673  }
1674  
1675  #ifdef CONFIG_DEBUG_FS
1676  
1677  
eeh_debug_lookup_pdev(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1678  static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1679  					     const char __user *user_buf,
1680  					     size_t count, loff_t *ppos)
1681  {
1682  	uint32_t domain, bus, dev, fn;
1683  	struct pci_dev *pdev;
1684  	char buf[20];
1685  	int ret;
1686  
1687  	memset(buf, 0, sizeof(buf));
1688  	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1689  	if (!ret)
1690  		return ERR_PTR(-EFAULT);
1691  
1692  	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1693  	if (ret != 4) {
1694  		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1695  		return ERR_PTR(-EINVAL);
1696  	}
1697  
1698  	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1699  	if (!pdev)
1700  		return ERR_PTR(-ENODEV);
1701  
1702  	return pdev;
1703  }
1704  
eeh_enable_dbgfs_set(void * data,u64 val)1705  static int eeh_enable_dbgfs_set(void *data, u64 val)
1706  {
1707  	if (val)
1708  		eeh_clear_flag(EEH_FORCE_DISABLED);
1709  	else
1710  		eeh_add_flag(EEH_FORCE_DISABLED);
1711  
1712  	return 0;
1713  }
1714  
eeh_enable_dbgfs_get(void * data,u64 * val)1715  static int eeh_enable_dbgfs_get(void *data, u64 *val)
1716  {
1717  	if (eeh_enabled())
1718  		*val = 0x1ul;
1719  	else
1720  		*val = 0x0ul;
1721  	return 0;
1722  }
1723  
1724  DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1725  			 eeh_enable_dbgfs_set, "0x%llx\n");
1726  
eeh_force_recover_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1727  static ssize_t eeh_force_recover_write(struct file *filp,
1728  				const char __user *user_buf,
1729  				size_t count, loff_t *ppos)
1730  {
1731  	struct pci_controller *hose;
1732  	uint32_t phbid, pe_no;
1733  	struct eeh_pe *pe;
1734  	char buf[20];
1735  	int ret;
1736  
1737  	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1738  	if (!ret)
1739  		return -EFAULT;
1740  
1741  	/*
1742  	 * When PE is NULL the event is a "special" event. Rather than
1743  	 * recovering a specific PE it forces the EEH core to scan for failed
1744  	 * PHBs and recovers each. This needs to be done before any device
1745  	 * recoveries can occur.
1746  	 */
1747  	if (!strncmp(buf, "hwcheck", 7)) {
1748  		__eeh_send_failure_event(NULL);
1749  		return count;
1750  	}
1751  
1752  	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1753  	if (ret != 2)
1754  		return -EINVAL;
1755  
1756  	hose = pci_find_controller_for_domain(phbid);
1757  	if (!hose)
1758  		return -ENODEV;
1759  
1760  	/* Retrieve PE */
1761  	pe = eeh_pe_get(hose, pe_no);
1762  	if (!pe)
1763  		return -ENODEV;
1764  
1765  	/*
1766  	 * We don't do any state checking here since the detection
1767  	 * process is async to the recovery process. The recovery
1768  	 * thread *should* not break even if we schedule a recovery
1769  	 * from an odd state (e.g. PE removed, or recovery of a
1770  	 * non-isolated PE)
1771  	 */
1772  	__eeh_send_failure_event(pe);
1773  
1774  	return ret < 0 ? ret : count;
1775  }
1776  
1777  static const struct file_operations eeh_force_recover_fops = {
1778  	.open	= simple_open,
1779  	.write	= eeh_force_recover_write,
1780  };
1781  
eeh_debugfs_dev_usage(struct file * filp,char __user * user_buf,size_t count,loff_t * ppos)1782  static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1783  				char __user *user_buf,
1784  				size_t count, loff_t *ppos)
1785  {
1786  	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1787  
1788  	return simple_read_from_buffer(user_buf, count, ppos,
1789  				       usage, sizeof(usage) - 1);
1790  }
1791  
eeh_dev_check_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1792  static ssize_t eeh_dev_check_write(struct file *filp,
1793  				const char __user *user_buf,
1794  				size_t count, loff_t *ppos)
1795  {
1796  	struct pci_dev *pdev;
1797  	struct eeh_dev *edev;
1798  	int ret;
1799  
1800  	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1801  	if (IS_ERR(pdev))
1802  		return PTR_ERR(pdev);
1803  
1804  	edev = pci_dev_to_eeh_dev(pdev);
1805  	if (!edev) {
1806  		pci_err(pdev, "No eeh_dev for this device!\n");
1807  		pci_dev_put(pdev);
1808  		return -ENODEV;
1809  	}
1810  
1811  	ret = eeh_dev_check_failure(edev);
1812  	pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1813  			pci_name(pdev), ret);
1814  
1815  	pci_dev_put(pdev);
1816  
1817  	return count;
1818  }
1819  
1820  static const struct file_operations eeh_dev_check_fops = {
1821  	.open	= simple_open,
1822  	.write	= eeh_dev_check_write,
1823  	.read   = eeh_debugfs_dev_usage,
1824  };
1825  
eeh_dev_break_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1826  static ssize_t eeh_dev_break_write(struct file *filp,
1827  				const char __user *user_buf,
1828  				size_t count, loff_t *ppos)
1829  {
1830  	struct pci_dev *pdev;
1831  	int ret;
1832  
1833  	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1834  	if (IS_ERR(pdev))
1835  		return PTR_ERR(pdev);
1836  
1837  	ret = eeh_break_device(pdev);
1838  	pci_dev_put(pdev);
1839  
1840  	if (ret < 0)
1841  		return ret;
1842  
1843  	return count;
1844  }
1845  
1846  static const struct file_operations eeh_dev_break_fops = {
1847  	.open	= simple_open,
1848  	.write	= eeh_dev_break_write,
1849  	.read   = eeh_debugfs_dev_usage,
1850  };
1851  
eeh_dev_can_recover(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1852  static ssize_t eeh_dev_can_recover(struct file *filp,
1853  				   const char __user *user_buf,
1854  				   size_t count, loff_t *ppos)
1855  {
1856  	struct pci_driver *drv;
1857  	struct pci_dev *pdev;
1858  	size_t ret;
1859  
1860  	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1861  	if (IS_ERR(pdev))
1862  		return PTR_ERR(pdev);
1863  
1864  	/*
1865  	 * In order for error recovery to work the driver needs to implement
1866  	 * .error_detected(), so it can quiesce IO to the device, and
1867  	 * .slot_reset() so it can re-initialise the device after a reset.
1868  	 *
1869  	 * Ideally they'd implement .resume() too, but some drivers which
1870  	 * we need to support (notably IPR) don't so I guess we can tolerate
1871  	 * that.
1872  	 *
1873  	 * .mmio_enabled() is mostly there as a work-around for devices which
1874  	 * take forever to re-init after a hot reset. Implementing that is
1875  	 * strictly optional.
1876  	 */
1877  	drv = pci_dev_driver(pdev);
1878  	if (drv &&
1879  	    drv->err_handler &&
1880  	    drv->err_handler->error_detected &&
1881  	    drv->err_handler->slot_reset) {
1882  		ret = count;
1883  	} else {
1884  		ret = -EOPNOTSUPP;
1885  	}
1886  
1887  	pci_dev_put(pdev);
1888  
1889  	return ret;
1890  }
1891  
1892  static const struct file_operations eeh_dev_can_recover_fops = {
1893  	.open	= simple_open,
1894  	.write	= eeh_dev_can_recover,
1895  	.read   = eeh_debugfs_dev_usage,
1896  };
1897  
1898  #endif
1899  
eeh_init_proc(void)1900  static int __init eeh_init_proc(void)
1901  {
1902  	if (machine_is(pseries) || machine_is(powernv)) {
1903  		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1904  #ifdef CONFIG_DEBUG_FS
1905  		debugfs_create_file_unsafe("eeh_enable", 0600,
1906  					   arch_debugfs_dir, NULL,
1907  					   &eeh_enable_dbgfs_ops);
1908  		debugfs_create_u32("eeh_max_freezes", 0600,
1909  				arch_debugfs_dir, &eeh_max_freezes);
1910  		debugfs_create_bool("eeh_disable_recovery", 0600,
1911  				arch_debugfs_dir,
1912  				&eeh_debugfs_no_recover);
1913  		debugfs_create_file_unsafe("eeh_dev_check", 0600,
1914  				arch_debugfs_dir, NULL,
1915  				&eeh_dev_check_fops);
1916  		debugfs_create_file_unsafe("eeh_dev_break", 0600,
1917  				arch_debugfs_dir, NULL,
1918  				&eeh_dev_break_fops);
1919  		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1920  				arch_debugfs_dir, NULL,
1921  				&eeh_force_recover_fops);
1922  		debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1923  				arch_debugfs_dir, NULL,
1924  				&eeh_dev_can_recover_fops);
1925  		eeh_cache_debugfs_init();
1926  #endif
1927  	}
1928  
1929  	return 0;
1930  }
1931  __initcall(eeh_init_proc);
1932