1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright IBM Corporation 2001, 2005, 2006
4  * Copyright Dave Engebretsen & Todd Inglett 2001
5  * Copyright Linas Vepstas 2005, 2006
6  * Copyright 2001-2012 IBM Corporation.
7  *
8  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
23 #include <linux/of.h>
24 #include <linux/debugfs.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/eeh.h>
28 #include <asm/eeh_event.h>
29 #include <asm/io.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/rtas.h>
34 #include <asm/pte-walk.h>
35 
36 
37 /** Overview:
38  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39  *  dealing with PCI bus errors that can't be dealt with within the
40  *  usual PCI framework, except by check-stopping the CPU.  Systems
41  *  that are designed for high-availability/reliability cannot afford
42  *  to crash due to a "mere" PCI error, thus the need for EEH.
43  *  An EEH-capable bridge operates by converting a detected error
44  *  into a "slot freeze", taking the PCI adapter off-line, making
45  *  the slot behave, from the OS'es point of view, as if the slot
46  *  were "empty": all reads return 0xff's and all writes are silently
47  *  ignored.  EEH slot isolation events can be triggered by parity
48  *  errors on the address or data busses (e.g. during posted writes),
49  *  which in turn might be caused by low voltage on the bus, dust,
50  *  vibration, humidity, radioactivity or plain-old failed hardware.
51  *
52  *  Note, however, that one of the leading causes of EEH slot
53  *  freeze events are buggy device drivers, buggy device microcode,
54  *  or buggy device hardware.  This is because any attempt by the
55  *  device to bus-master data to a memory address that is not
56  *  assigned to the device will trigger a slot freeze.   (The idea
57  *  is to prevent devices-gone-wild from corrupting system memory).
58  *  Buggy hardware/drivers will have a miserable time co-existing
59  *  with EEH.
60  *
61  *  Ideally, a PCI device driver, when suspecting that an isolation
62  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
63  *  whether this is the case, and then take appropriate steps to
64  *  reset the PCI slot, the PCI device, and then resume operations.
65  *  However, until that day,  the checking is done here, with the
66  *  eeh_check_failure() routine embedded in the MMIO macros.  If
67  *  the slot is found to be isolated, an "EEH Event" is synthesized
68  *  and sent out for processing.
69  */
70 
71 /* If a device driver keeps reading an MMIO register in an interrupt
72  * handler after a slot isolation event, it might be broken.
73  * This sets the threshold for how many read attempts we allow
74  * before printing an error message.
75  */
76 #define EEH_MAX_FAILS	2100000
77 
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80 
81 /*
82  * EEH probe mode support, which is part of the flags,
83  * is to support multiple platforms for EEH. Some platforms
84  * like pSeries do PCI emunation based on device tree.
85  * However, other platforms like powernv probe PCI devices
86  * from hardware. The flag is used to distinguish that.
87  * In addition, struct eeh_ops::probe would be invoked for
88  * particular OF node or PCI device so that the corresponding
89  * PE would be created there.
90  */
91 int eeh_subsystem_flags;
92 EXPORT_SYMBOL(eeh_subsystem_flags);
93 
94 /*
95  * EEH allowed maximal frozen times. If one particular PE's
96  * frozen count in last hour exceeds this limit, the PE will
97  * be forced to be offline permanently.
98  */
99 u32 eeh_max_freezes = 5;
100 
101 /*
102  * Controls whether a recovery event should be scheduled when an
103  * isolated device is discovered. This is only really useful for
104  * debugging problems with the EEH core.
105  */
106 bool eeh_debugfs_no_recover;
107 
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
110 
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
114 
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
117 
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119  * not dynamically alloced, so that it ends up in RMO where RTAS
120  * can access it.
121  */
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124 
125 /*
126  * The struct is used to maintain the EEH global statistic
127  * information. Besides, the EEH global statistics will be
128  * exported to user space through procfs
129  */
130 struct eeh_stats {
131 	u64 no_device;		/* PCI device not found		*/
132 	u64 no_dn;		/* OF node not found		*/
133 	u64 no_cfg_addr;	/* Config address not found	*/
134 	u64 ignored_check;	/* EEH check skipped		*/
135 	u64 total_mmio_ffs;	/* Total EEH checks		*/
136 	u64 false_positives;	/* Unnecessary EEH checks	*/
137 	u64 slot_resets;	/* PE reset			*/
138 };
139 
140 static struct eeh_stats eeh_stats;
141 
eeh_setup(char * str)142 static int __init eeh_setup(char *str)
143 {
144 	if (!strcmp(str, "off"))
145 		eeh_add_flag(EEH_FORCE_DISABLED);
146 	else if (!strcmp(str, "early_log"))
147 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
148 
149 	return 1;
150 }
151 __setup("eeh=", eeh_setup);
152 
eeh_show_enabled(void)153 void eeh_show_enabled(void)
154 {
155 	if (eeh_has_flag(EEH_FORCE_DISABLED))
156 		pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 	else if (eeh_has_flag(EEH_ENABLED))
158 		pr_info("EEH: Capable adapter found: recovery enabled.\n");
159 	else
160 		pr_info("EEH: No capable adapters found: recovery disabled.\n");
161 }
162 
163 /*
164  * This routine captures assorted PCI configuration space data
165  * for the indicated PCI device, and puts them into a buffer
166  * for RTAS error logging.
167  */
eeh_dump_dev_log(struct eeh_dev * edev,char * buf,size_t len)168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169 {
170 	u32 cfg;
171 	int cap, i;
172 	int n = 0, l = 0;
173 	char buffer[128];
174 
175 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176 			edev->pe->phb->global_number, edev->bdfn >> 8,
177 			PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178 	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179 		edev->pe->phb->global_number, edev->bdfn >> 8,
180 		PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181 
182 	eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185 
186 	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189 
190 	/* Gather bridge-specific registers */
191 	if (edev->mode & EEH_DEV_BRIDGE) {
192 		eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195 
196 		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198 		pr_warn("EEH: Bridge control: %04x\n", cfg);
199 	}
200 
201 	/* Dump out the PCI-X command and status regs */
202 	cap = edev->pcix_cap;
203 	if (cap) {
204 		eeh_ops->read_config(edev, cap, 4, &cfg);
205 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207 
208 		eeh_ops->read_config(edev, cap+4, 4, &cfg);
209 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
211 	}
212 
213 	/* If PCI-E capable, dump PCI-E cap 10 */
214 	cap = edev->pcie_cap;
215 	if (cap) {
216 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
218 
219 		for (i=0; i<=8; i++) {
220 			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222 
223 			if ((i % 4) == 0) {
224 				if (i != 0)
225 					pr_warn("%s\n", buffer);
226 
227 				l = scnprintf(buffer, sizeof(buffer),
228 					      "EEH: PCI-E %02x: %08x ",
229 					      4*i, cfg);
230 			} else {
231 				l += scnprintf(buffer+l, sizeof(buffer)-l,
232 					       "%08x ", cfg);
233 			}
234 
235 		}
236 
237 		pr_warn("%s\n", buffer);
238 	}
239 
240 	/* If AER capable, dump it */
241 	cap = edev->aer_cap;
242 	if (cap) {
243 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
245 
246 		for (i=0; i<=13; i++) {
247 			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249 
250 			if ((i % 4) == 0) {
251 				if (i != 0)
252 					pr_warn("%s\n", buffer);
253 
254 				l = scnprintf(buffer, sizeof(buffer),
255 					      "EEH: PCI-E AER %02x: %08x ",
256 					      4*i, cfg);
257 			} else {
258 				l += scnprintf(buffer+l, sizeof(buffer)-l,
259 					       "%08x ", cfg);
260 			}
261 		}
262 
263 		pr_warn("%s\n", buffer);
264 	}
265 
266 	return n;
267 }
268 
eeh_dump_pe_log(struct eeh_pe * pe,void * flag)269 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270 {
271 	struct eeh_dev *edev, *tmp;
272 	size_t *plen = flag;
273 
274 	eeh_pe_for_each_dev(pe, edev, tmp)
275 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276 					  EEH_PCI_REGS_LOG_LEN - *plen);
277 
278 	return NULL;
279 }
280 
281 /**
282  * eeh_slot_error_detail - Generate combined log including driver log and error log
283  * @pe: EEH PE
284  * @severity: temporary or permanent error log
285  *
286  * This routine should be called to generate the combined log, which
287  * is comprised of driver log and error log. The driver log is figured
288  * out from the config space of the corresponding PCI device, while
289  * the error log is fetched through platform dependent function call.
290  */
eeh_slot_error_detail(struct eeh_pe * pe,int severity)291 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292 {
293 	size_t loglen = 0;
294 
295 	/*
296 	 * When the PHB is fenced or dead, it's pointless to collect
297 	 * the data from PCI config space because it should return
298 	 * 0xFF's. For ER, we still retrieve the data from the PCI
299 	 * config space.
300 	 *
301 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302 	 * 0xFF's is always returned from PCI config space.
303 	 *
304 	 * When the @severity is EEH_LOG_PERM, the PE is going to be
305 	 * removed. Prior to that, the drivers for devices included in
306 	 * the PE will be closed. The drivers rely on working IO path
307 	 * to bring the devices to quiet state. Otherwise, PCI traffic
308 	 * from those devices after they are removed is like to cause
309 	 * another unexpected EEH error.
310 	 */
311 	if (!(pe->type & EEH_PE_PHB)) {
312 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313 		    severity == EEH_LOG_PERM)
314 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315 
316 		/*
317 		 * The config space of some PCI devices can't be accessed
318 		 * when their PEs are in frozen state. Otherwise, fenced
319 		 * PHB might be seen. Those PEs are identified with flag
320 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321 		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
322 		 *
323 		 * Restoring BARs possibly triggers PCI config access in
324 		 * (OPAL) firmware and then causes fenced PHB. If the
325 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326 		 * pointless to restore BARs and dump config space.
327 		 */
328 		eeh_ops->configure_bridge(pe);
329 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330 			eeh_pe_restore_bars(pe);
331 
332 			pci_regs_buf[0] = 0;
333 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334 		}
335 	}
336 
337 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338 }
339 
340 /**
341  * eeh_token_to_phys - Convert EEH address token to phys address
342  * @token: I/O token, should be address in the form 0xA....
343  *
344  * This routine should be called to convert virtual I/O address
345  * to physical one.
346  */
eeh_token_to_phys(unsigned long token)347 static inline unsigned long eeh_token_to_phys(unsigned long token)
348 {
349 	return ppc_find_vmap_phys(token);
350 }
351 
352 /*
353  * On PowerNV platform, we might already have fenced PHB there.
354  * For that case, it's meaningless to recover frozen PE. Intead,
355  * We have to handle fenced PHB firstly.
356  */
eeh_phb_check_failure(struct eeh_pe * pe)357 static int eeh_phb_check_failure(struct eeh_pe *pe)
358 {
359 	struct eeh_pe *phb_pe;
360 	unsigned long flags;
361 	int ret;
362 
363 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
364 		return -EPERM;
365 
366 	/* Find the PHB PE */
367 	phb_pe = eeh_phb_pe_get(pe->phb);
368 	if (!phb_pe) {
369 		pr_warn("%s Can't find PE for PHB#%x\n",
370 			__func__, pe->phb->global_number);
371 		return -EEXIST;
372 	}
373 
374 	/* If the PHB has been in problematic state */
375 	eeh_serialize_lock(&flags);
376 	if (phb_pe->state & EEH_PE_ISOLATED) {
377 		ret = 0;
378 		goto out;
379 	}
380 
381 	/* Check PHB state */
382 	ret = eeh_ops->get_state(phb_pe, NULL);
383 	if ((ret < 0) ||
384 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
385 		ret = 0;
386 		goto out;
387 	}
388 
389 	/* Isolate the PHB and send event */
390 	eeh_pe_mark_isolated(phb_pe);
391 	eeh_serialize_unlock(flags);
392 
393 	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
394 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
395 	eeh_send_failure_event(phb_pe);
396 	return 1;
397 out:
398 	eeh_serialize_unlock(flags);
399 	return ret;
400 }
401 
eeh_driver_name(struct pci_dev * pdev)402 static inline const char *eeh_driver_name(struct pci_dev *pdev)
403 {
404 	if (pdev)
405 		return dev_driver_string(&pdev->dev);
406 
407 	return "<null>";
408 }
409 
410 /**
411  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
412  * @edev: eeh device
413  *
414  * Check for an EEH failure for the given device node.  Call this
415  * routine if the result of a read was all 0xff's and you want to
416  * find out if this is due to an EEH slot freeze.  This routine
417  * will query firmware for the EEH status.
418  *
419  * Returns 0 if there has not been an EEH error; otherwise returns
420  * a non-zero value and queues up a slot isolation event notification.
421  *
422  * It is safe to call this routine in an interrupt context.
423  */
eeh_dev_check_failure(struct eeh_dev * edev)424 int eeh_dev_check_failure(struct eeh_dev *edev)
425 {
426 	int ret;
427 	unsigned long flags;
428 	struct device_node *dn;
429 	struct pci_dev *dev;
430 	struct eeh_pe *pe, *parent_pe;
431 	int rc = 0;
432 	const char *location = NULL;
433 
434 	eeh_stats.total_mmio_ffs++;
435 
436 	if (!eeh_enabled())
437 		return 0;
438 
439 	if (!edev) {
440 		eeh_stats.no_dn++;
441 		return 0;
442 	}
443 	dev = eeh_dev_to_pci_dev(edev);
444 	pe = eeh_dev_to_pe(edev);
445 
446 	/* Access to IO BARs might get this far and still not want checking. */
447 	if (!pe) {
448 		eeh_stats.ignored_check++;
449 		eeh_edev_dbg(edev, "Ignored check\n");
450 		return 0;
451 	}
452 
453 	/*
454 	 * On PowerNV platform, we might already have fenced PHB
455 	 * there and we need take care of that firstly.
456 	 */
457 	ret = eeh_phb_check_failure(pe);
458 	if (ret > 0)
459 		return ret;
460 
461 	/*
462 	 * If the PE isn't owned by us, we shouldn't check the
463 	 * state. Instead, let the owner handle it if the PE has
464 	 * been frozen.
465 	 */
466 	if (eeh_pe_passed(pe))
467 		return 0;
468 
469 	/* If we already have a pending isolation event for this
470 	 * slot, we know it's bad already, we don't need to check.
471 	 * Do this checking under a lock; as multiple PCI devices
472 	 * in one slot might report errors simultaneously, and we
473 	 * only want one error recovery routine running.
474 	 */
475 	eeh_serialize_lock(&flags);
476 	rc = 1;
477 	if (pe->state & EEH_PE_ISOLATED) {
478 		pe->check_count++;
479 		if (pe->check_count == EEH_MAX_FAILS) {
480 			dn = pci_device_to_OF_node(dev);
481 			if (dn)
482 				location = of_get_property(dn, "ibm,loc-code",
483 						NULL);
484 			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
485 				pe->check_count,
486 				location ? location : "unknown",
487 				eeh_driver_name(dev));
488 			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
489 				eeh_driver_name(dev));
490 			dump_stack();
491 		}
492 		goto dn_unlock;
493 	}
494 
495 	/*
496 	 * Now test for an EEH failure.  This is VERY expensive.
497 	 * Note that the eeh_config_addr may be a parent device
498 	 * in the case of a device behind a bridge, or it may be
499 	 * function zero of a multi-function device.
500 	 * In any case they must share a common PHB.
501 	 */
502 	ret = eeh_ops->get_state(pe, NULL);
503 
504 	/* Note that config-io to empty slots may fail;
505 	 * they are empty when they don't have children.
506 	 * We will punt with the following conditions: Failure to get
507 	 * PE's state, EEH not support and Permanently unavailable
508 	 * state, PE is in good state.
509 	 *
510 	 * On the pSeries, after reaching the threshold, get_state might
511 	 * return EEH_STATE_NOT_SUPPORT. However, it's possible that the
512 	 * device state remains uncleared if the device is not marked
513 	 * pci_channel_io_perm_failure. Therefore, consider logging the
514 	 * event to let device removal happen.
515 	 *
516 	 */
517 	if ((ret < 0) ||
518 	    (ret == EEH_STATE_NOT_SUPPORT &&
519 	     dev->error_state == pci_channel_io_perm_failure) ||
520 	    eeh_state_active(ret)) {
521 		eeh_stats.false_positives++;
522 		pe->false_positives++;
523 		rc = 0;
524 		goto dn_unlock;
525 	}
526 
527 	/*
528 	 * It should be corner case that the parent PE has been
529 	 * put into frozen state as well. We should take care
530 	 * that at first.
531 	 */
532 	parent_pe = pe->parent;
533 	while (parent_pe) {
534 		/* Hit the ceiling ? */
535 		if (parent_pe->type & EEH_PE_PHB)
536 			break;
537 
538 		/* Frozen parent PE ? */
539 		ret = eeh_ops->get_state(parent_pe, NULL);
540 		if (ret > 0 && !eeh_state_active(ret)) {
541 			pe = parent_pe;
542 			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
543 			       pe->phb->global_number, pe->addr,
544 			       pe->phb->global_number, parent_pe->addr);
545 		}
546 
547 		/* Next parent level */
548 		parent_pe = parent_pe->parent;
549 	}
550 
551 	eeh_stats.slot_resets++;
552 
553 	/* Avoid repeated reports of this failure, including problems
554 	 * with other functions on this device, and functions under
555 	 * bridges.
556 	 */
557 	eeh_pe_mark_isolated(pe);
558 	eeh_serialize_unlock(flags);
559 
560 	/* Most EEH events are due to device driver bugs.  Having
561 	 * a stack trace will help the device-driver authors figure
562 	 * out what happened.  So print that out.
563 	 */
564 	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
565 		__func__, pe->phb->global_number, pe->addr);
566 	eeh_send_failure_event(pe);
567 
568 	return 1;
569 
570 dn_unlock:
571 	eeh_serialize_unlock(flags);
572 	return rc;
573 }
574 
575 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
576 
577 /**
578  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
579  * @token: I/O address
580  *
581  * Check for an EEH failure at the given I/O address. Call this
582  * routine if the result of a read was all 0xff's and you want to
583  * find out if this is due to an EEH slot freeze event. This routine
584  * will query firmware for the EEH status.
585  *
586  * Note this routine is safe to call in an interrupt context.
587  */
eeh_check_failure(const volatile void __iomem * token)588 int eeh_check_failure(const volatile void __iomem *token)
589 {
590 	unsigned long addr;
591 	struct eeh_dev *edev;
592 
593 	/* Finding the phys addr + pci device; this is pretty quick. */
594 	addr = eeh_token_to_phys((unsigned long __force) token);
595 	edev = eeh_addr_cache_get_dev(addr);
596 	if (!edev) {
597 		eeh_stats.no_device++;
598 		return 0;
599 	}
600 
601 	return eeh_dev_check_failure(edev);
602 }
603 EXPORT_SYMBOL(eeh_check_failure);
604 
605 
606 /**
607  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
608  * @pe: EEH PE
609  * @function: EEH option
610  *
611  * This routine should be called to reenable frozen MMIO or DMA
612  * so that it would work correctly again. It's useful while doing
613  * recovery or log collection on the indicated device.
614  */
eeh_pci_enable(struct eeh_pe * pe,int function)615 int eeh_pci_enable(struct eeh_pe *pe, int function)
616 {
617 	int active_flag, rc;
618 
619 	/*
620 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
621 	 * Also, it's pointless to enable them on unfrozen PE. So
622 	 * we have to check before enabling IO or DMA.
623 	 */
624 	switch (function) {
625 	case EEH_OPT_THAW_MMIO:
626 		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
627 		break;
628 	case EEH_OPT_THAW_DMA:
629 		active_flag = EEH_STATE_DMA_ACTIVE;
630 		break;
631 	case EEH_OPT_DISABLE:
632 	case EEH_OPT_ENABLE:
633 	case EEH_OPT_FREEZE_PE:
634 		active_flag = 0;
635 		break;
636 	default:
637 		pr_warn("%s: Invalid function %d\n",
638 			__func__, function);
639 		return -EINVAL;
640 	}
641 
642 	/*
643 	 * Check if IO or DMA has been enabled before
644 	 * enabling them.
645 	 */
646 	if (active_flag) {
647 		rc = eeh_ops->get_state(pe, NULL);
648 		if (rc < 0)
649 			return rc;
650 
651 		/* Needn't enable it at all */
652 		if (rc == EEH_STATE_NOT_SUPPORT)
653 			return 0;
654 
655 		/* It's already enabled */
656 		if (rc & active_flag)
657 			return 0;
658 	}
659 
660 
661 	/* Issue the request */
662 	rc = eeh_ops->set_option(pe, function);
663 	if (rc)
664 		pr_warn("%s: Unexpected state change %d on "
665 			"PHB#%x-PE#%x, err=%d\n",
666 			__func__, function, pe->phb->global_number,
667 			pe->addr, rc);
668 
669 	/* Check if the request is finished successfully */
670 	if (active_flag) {
671 		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
672 		if (rc < 0)
673 			return rc;
674 
675 		if (rc & active_flag)
676 			return 0;
677 
678 		return -EIO;
679 	}
680 
681 	return rc;
682 }
683 
eeh_disable_and_save_dev_state(struct eeh_dev * edev,void * userdata)684 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
685 					    void *userdata)
686 {
687 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
688 	struct pci_dev *dev = userdata;
689 
690 	/*
691 	 * The caller should have disabled and saved the
692 	 * state for the specified device
693 	 */
694 	if (!pdev || pdev == dev)
695 		return;
696 
697 	/* Ensure we have D0 power state */
698 	pci_set_power_state(pdev, PCI_D0);
699 
700 	/* Save device state */
701 	pci_save_state(pdev);
702 
703 	/*
704 	 * Disable device to avoid any DMA traffic and
705 	 * interrupt from the device
706 	 */
707 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
708 }
709 
eeh_restore_dev_state(struct eeh_dev * edev,void * userdata)710 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
711 {
712 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
713 	struct pci_dev *dev = userdata;
714 
715 	if (!pdev)
716 		return;
717 
718 	/* Apply customization from firmware */
719 	if (eeh_ops->restore_config)
720 		eeh_ops->restore_config(edev);
721 
722 	/* The caller should restore state for the specified device */
723 	if (pdev != dev)
724 		pci_restore_state(pdev);
725 }
726 
727 /**
728  * pcibios_set_pcie_reset_state - Set PCI-E reset state
729  * @dev: pci device struct
730  * @state: reset state to enter
731  *
732  * Return value:
733  * 	0 if success
734  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)735 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
736 {
737 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
738 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
739 
740 	if (!pe) {
741 		pr_err("%s: No PE found on PCI device %s\n",
742 			__func__, pci_name(dev));
743 		return -EINVAL;
744 	}
745 
746 	switch (state) {
747 	case pcie_deassert_reset:
748 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
749 		eeh_unfreeze_pe(pe);
750 		if (!(pe->type & EEH_PE_VF))
751 			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
752 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
753 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
754 		break;
755 	case pcie_hot_reset:
756 		eeh_pe_mark_isolated(pe);
757 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
758 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
759 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
760 		if (!(pe->type & EEH_PE_VF))
761 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
762 		eeh_ops->reset(pe, EEH_RESET_HOT);
763 		break;
764 	case pcie_warm_reset:
765 		eeh_pe_mark_isolated(pe);
766 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
767 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
768 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
769 		if (!(pe->type & EEH_PE_VF))
770 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
771 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
772 		break;
773 	default:
774 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
775 		return -EINVAL;
776 	}
777 
778 	return 0;
779 }
780 
781 /**
782  * eeh_set_dev_freset - Check the required reset for the indicated device
783  * @edev: EEH device
784  * @flag: return value
785  *
786  * Each device might have its preferred reset type: fundamental or
787  * hot reset. The routine is used to collected the information for
788  * the indicated device and its children so that the bunch of the
789  * devices could be reset properly.
790  */
eeh_set_dev_freset(struct eeh_dev * edev,void * flag)791 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
792 {
793 	struct pci_dev *dev;
794 	unsigned int *freset = (unsigned int *)flag;
795 
796 	dev = eeh_dev_to_pci_dev(edev);
797 	if (dev)
798 		*freset |= dev->needs_freset;
799 }
800 
eeh_pe_refreeze_passed(struct eeh_pe * root)801 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
802 {
803 	struct eeh_pe *pe;
804 	int state;
805 
806 	eeh_for_each_pe(root, pe) {
807 		if (eeh_pe_passed(pe)) {
808 			state = eeh_ops->get_state(pe, NULL);
809 			if (state &
810 			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
811 				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
812 					pe->phb->global_number, pe->addr);
813 				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
814 			}
815 		}
816 	}
817 }
818 
819 /**
820  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
821  * @pe: EEH PE
822  * @include_passed: include passed-through devices?
823  *
824  * This function executes a full reset procedure on a PE, including setting
825  * the appropriate flags, performing a fundamental or hot reset, and then
826  * deactivating the reset status.  It is designed to be used within the EEH
827  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
828  * only performs a single operation at a time.
829  *
830  * This function will attempt to reset a PE three times before failing.
831  */
eeh_pe_reset_full(struct eeh_pe * pe,bool include_passed)832 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
833 {
834 	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
835 	int type = EEH_RESET_HOT;
836 	unsigned int freset = 0;
837 	int i, state = 0, ret;
838 
839 	/*
840 	 * Determine the type of reset to perform - hot or fundamental.
841 	 * Hot reset is the default operation, unless any device under the
842 	 * PE requires a fundamental reset.
843 	 */
844 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
845 
846 	if (freset)
847 		type = EEH_RESET_FUNDAMENTAL;
848 
849 	/* Mark the PE as in reset state and block config space accesses */
850 	eeh_pe_state_mark(pe, reset_state);
851 
852 	/* Make three attempts at resetting the bus */
853 	for (i = 0; i < 3; i++) {
854 		ret = eeh_pe_reset(pe, type, include_passed);
855 		if (!ret)
856 			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
857 					   include_passed);
858 		if (ret) {
859 			ret = -EIO;
860 			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
861 				state, pe->phb->global_number, pe->addr, i + 1);
862 			continue;
863 		}
864 		if (i)
865 			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
866 				pe->phb->global_number, pe->addr, i + 1);
867 
868 		/* Wait until the PE is in a functioning state */
869 		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
870 		if (state < 0) {
871 			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
872 				pe->phb->global_number, pe->addr);
873 			ret = -ENOTRECOVERABLE;
874 			break;
875 		}
876 		if (eeh_state_active(state))
877 			break;
878 		else
879 			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
880 				pe->phb->global_number, pe->addr, state, i + 1);
881 	}
882 
883 	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
884 	 * (potentially) passed through to a guest, re-freeze them:
885 	 */
886 	if (!include_passed)
887 		eeh_pe_refreeze_passed(pe);
888 
889 	eeh_pe_state_clear(pe, reset_state, true);
890 	return ret;
891 }
892 
893 /**
894  * eeh_save_bars - Save device bars
895  * @edev: PCI device associated EEH device
896  *
897  * Save the values of the device bars. Unlike the restore
898  * routine, this routine is *not* recursive. This is because
899  * PCI devices are added individually; but, for the restore,
900  * an entire slot is reset at a time.
901  */
eeh_save_bars(struct eeh_dev * edev)902 void eeh_save_bars(struct eeh_dev *edev)
903 {
904 	int i;
905 
906 	if (!edev)
907 		return;
908 
909 	for (i = 0; i < 16; i++)
910 		eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
911 
912 	/*
913 	 * For PCI bridges including root port, we need enable bus
914 	 * master explicitly. Otherwise, it can't fetch IODA table
915 	 * entries correctly. So we cache the bit in advance so that
916 	 * we can restore it after reset, either PHB range or PE range.
917 	 */
918 	if (edev->mode & EEH_DEV_BRIDGE)
919 		edev->config_space[1] |= PCI_COMMAND_MASTER;
920 }
921 
eeh_reboot_notifier(struct notifier_block * nb,unsigned long action,void * unused)922 static int eeh_reboot_notifier(struct notifier_block *nb,
923 			       unsigned long action, void *unused)
924 {
925 	eeh_clear_flag(EEH_ENABLED);
926 	return NOTIFY_DONE;
927 }
928 
929 static struct notifier_block eeh_reboot_nb = {
930 	.notifier_call = eeh_reboot_notifier,
931 };
932 
eeh_device_notifier(struct notifier_block * nb,unsigned long action,void * data)933 static int eeh_device_notifier(struct notifier_block *nb,
934 			       unsigned long action, void *data)
935 {
936 	struct device *dev = data;
937 
938 	switch (action) {
939 	/*
940 	 * Note: It's not possible to perform EEH device addition (i.e.
941 	 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
942 	 * the device's resources, which have not yet been set up.
943 	 */
944 	case BUS_NOTIFY_DEL_DEVICE:
945 		eeh_remove_device(to_pci_dev(dev));
946 		break;
947 	default:
948 		break;
949 	}
950 	return NOTIFY_DONE;
951 }
952 
953 static struct notifier_block eeh_device_nb = {
954 	.notifier_call = eeh_device_notifier,
955 };
956 
957 /**
958  * eeh_init - System wide EEH initialization
959  * @ops: struct to trace EEH operation callback functions
960  *
961  * It's the platform's job to call this from an arch_initcall().
962  */
eeh_init(struct eeh_ops * ops)963 int eeh_init(struct eeh_ops *ops)
964 {
965 	struct pci_controller *hose, *tmp;
966 	int ret = 0;
967 
968 	/* the platform should only initialise EEH once */
969 	if (WARN_ON(eeh_ops))
970 		return -EEXIST;
971 	if (WARN_ON(!ops))
972 		return -ENOENT;
973 	eeh_ops = ops;
974 
975 	/* Register reboot notifier */
976 	ret = register_reboot_notifier(&eeh_reboot_nb);
977 	if (ret) {
978 		pr_warn("%s: Failed to register reboot notifier (%d)\n",
979 			__func__, ret);
980 		return ret;
981 	}
982 
983 	ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
984 	if (ret) {
985 		pr_warn("%s: Failed to register bus notifier (%d)\n",
986 			__func__, ret);
987 		return ret;
988 	}
989 
990 	/* Initialize PHB PEs */
991 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
992 		eeh_phb_pe_create(hose);
993 
994 	eeh_addr_cache_init();
995 
996 	/* Initialize EEH event */
997 	return eeh_event_init();
998 }
999 
1000 /**
1001  * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1002  * @dev: pci device for which to set up EEH
1003  *
1004  * This routine must be used to complete EEH initialization for PCI
1005  * devices that were added after system boot (e.g. hotplug, dlpar).
1006  */
eeh_probe_device(struct pci_dev * dev)1007 void eeh_probe_device(struct pci_dev *dev)
1008 {
1009 	struct eeh_dev *edev;
1010 
1011 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1012 
1013 	/*
1014 	 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1015 	 * already called for this device.
1016 	 */
1017 	if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1018 		pci_dbg(dev, "Already bound to an eeh_dev!\n");
1019 		return;
1020 	}
1021 
1022 	edev = eeh_ops->probe(dev);
1023 	if (!edev) {
1024 		pr_debug("EEH: Adding device failed\n");
1025 		return;
1026 	}
1027 
1028 	/*
1029 	 * FIXME: We rely on pcibios_release_device() to remove the
1030 	 * existing EEH state. The release function is only called if
1031 	 * the pci_dev's refcount drops to zero so if something is
1032 	 * keeping a ref to a device (e.g. a filesystem) we need to
1033 	 * remove the old EEH state.
1034 	 *
1035 	 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1036 	 */
1037 	if (edev->pdev && edev->pdev != dev) {
1038 		eeh_pe_tree_remove(edev);
1039 		eeh_addr_cache_rmv_dev(edev->pdev);
1040 		eeh_sysfs_remove_device(edev->pdev);
1041 
1042 		/*
1043 		 * We definitely should have the PCI device removed
1044 		 * though it wasn't correctly. So we needn't call
1045 		 * into error handler afterwards.
1046 		 */
1047 		edev->mode |= EEH_DEV_NO_HANDLER;
1048 	}
1049 
1050 	/* bind the pdev and the edev together */
1051 	edev->pdev = dev;
1052 	dev->dev.archdata.edev = edev;
1053 	eeh_addr_cache_insert_dev(dev);
1054 	eeh_sysfs_add_device(dev);
1055 }
1056 
1057 /**
1058  * eeh_remove_device - Undo EEH setup for the indicated pci device
1059  * @dev: pci device to be removed
1060  *
1061  * This routine should be called when a device is removed from
1062  * a running system (e.g. by hotplug or dlpar).  It unregisters
1063  * the PCI device from the EEH subsystem.  I/O errors affecting
1064  * this device will no longer be detected after this call; thus,
1065  * i/o errors affecting this slot may leave this device unusable.
1066  */
eeh_remove_device(struct pci_dev * dev)1067 void eeh_remove_device(struct pci_dev *dev)
1068 {
1069 	struct eeh_dev *edev;
1070 
1071 	if (!dev || !eeh_enabled())
1072 		return;
1073 	edev = pci_dev_to_eeh_dev(dev);
1074 
1075 	/* Unregister the device with the EEH/PCI address search system */
1076 	dev_dbg(&dev->dev, "EEH: Removing device\n");
1077 
1078 	if (!edev || !edev->pdev || !edev->pe) {
1079 		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1080 		return;
1081 	}
1082 
1083 	/*
1084 	 * During the hotplug for EEH error recovery, we need the EEH
1085 	 * device attached to the parent PE in order for BAR restore
1086 	 * a bit later. So we keep it for BAR restore and remove it
1087 	 * from the parent PE during the BAR resotre.
1088 	 */
1089 	edev->pdev = NULL;
1090 
1091 	/*
1092 	 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1093 	 * remove the sysfs files before clearing dev.archdata.edev
1094 	 */
1095 	if (edev->mode & EEH_DEV_SYSFS)
1096 		eeh_sysfs_remove_device(dev);
1097 
1098 	/*
1099 	 * We're removing from the PCI subsystem, that means
1100 	 * the PCI device driver can't support EEH or not
1101 	 * well. So we rely on hotplug completely to do recovery
1102 	 * for the specific PCI device.
1103 	 */
1104 	edev->mode |= EEH_DEV_NO_HANDLER;
1105 
1106 	eeh_addr_cache_rmv_dev(dev);
1107 
1108 	/*
1109 	 * The flag "in_error" is used to trace EEH devices for VFs
1110 	 * in error state or not. It's set in eeh_report_error(). If
1111 	 * it's not set, eeh_report_{reset,resume}() won't be called
1112 	 * for the VF EEH device.
1113 	 */
1114 	edev->in_error = false;
1115 	dev->dev.archdata.edev = NULL;
1116 	if (!(edev->pe->state & EEH_PE_KEEP))
1117 		eeh_pe_tree_remove(edev);
1118 	else
1119 		edev->mode |= EEH_DEV_DISCONNECTED;
1120 }
1121 
eeh_unfreeze_pe(struct eeh_pe * pe)1122 int eeh_unfreeze_pe(struct eeh_pe *pe)
1123 {
1124 	int ret;
1125 
1126 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1127 	if (ret) {
1128 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1129 			__func__, ret, pe->phb->global_number, pe->addr);
1130 		return ret;
1131 	}
1132 
1133 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1134 	if (ret) {
1135 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1136 			__func__, ret, pe->phb->global_number, pe->addr);
1137 		return ret;
1138 	}
1139 
1140 	return ret;
1141 }
1142 
1143 
1144 static struct pci_device_id eeh_reset_ids[] = {
1145 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1146 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1147 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1148 	{ 0 }
1149 };
1150 
eeh_pe_change_owner(struct eeh_pe * pe)1151 static int eeh_pe_change_owner(struct eeh_pe *pe)
1152 {
1153 	struct eeh_dev *edev, *tmp;
1154 	struct pci_dev *pdev;
1155 	struct pci_device_id *id;
1156 	int ret;
1157 
1158 	/* Check PE state */
1159 	ret = eeh_ops->get_state(pe, NULL);
1160 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1161 		return 0;
1162 
1163 	/* Unfrozen PE, nothing to do */
1164 	if (eeh_state_active(ret))
1165 		return 0;
1166 
1167 	/* Frozen PE, check if it needs PE level reset */
1168 	eeh_pe_for_each_dev(pe, edev, tmp) {
1169 		pdev = eeh_dev_to_pci_dev(edev);
1170 		if (!pdev)
1171 			continue;
1172 
1173 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1174 			if (id->vendor != PCI_ANY_ID &&
1175 			    id->vendor != pdev->vendor)
1176 				continue;
1177 			if (id->device != PCI_ANY_ID &&
1178 			    id->device != pdev->device)
1179 				continue;
1180 			if (id->subvendor != PCI_ANY_ID &&
1181 			    id->subvendor != pdev->subsystem_vendor)
1182 				continue;
1183 			if (id->subdevice != PCI_ANY_ID &&
1184 			    id->subdevice != pdev->subsystem_device)
1185 				continue;
1186 
1187 			return eeh_pe_reset_and_recover(pe);
1188 		}
1189 	}
1190 
1191 	ret = eeh_unfreeze_pe(pe);
1192 	if (!ret)
1193 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1194 	return ret;
1195 }
1196 
1197 /**
1198  * eeh_dev_open - Increase count of pass through devices for PE
1199  * @pdev: PCI device
1200  *
1201  * Increase count of passed through devices for the indicated
1202  * PE. In the result, the EEH errors detected on the PE won't be
1203  * reported. The PE owner will be responsible for detection
1204  * and recovery.
1205  */
eeh_dev_open(struct pci_dev * pdev)1206 int eeh_dev_open(struct pci_dev *pdev)
1207 {
1208 	struct eeh_dev *edev;
1209 	int ret = -ENODEV;
1210 
1211 	mutex_lock(&eeh_dev_mutex);
1212 
1213 	/* No PCI device ? */
1214 	if (!pdev)
1215 		goto out;
1216 
1217 	/* No EEH device or PE ? */
1218 	edev = pci_dev_to_eeh_dev(pdev);
1219 	if (!edev || !edev->pe)
1220 		goto out;
1221 
1222 	/*
1223 	 * The PE might have been put into frozen state, but we
1224 	 * didn't detect that yet. The passed through PCI devices
1225 	 * in frozen PE won't work properly. Clear the frozen state
1226 	 * in advance.
1227 	 */
1228 	ret = eeh_pe_change_owner(edev->pe);
1229 	if (ret)
1230 		goto out;
1231 
1232 	/* Increase PE's pass through count */
1233 	atomic_inc(&edev->pe->pass_dev_cnt);
1234 	mutex_unlock(&eeh_dev_mutex);
1235 
1236 	return 0;
1237 out:
1238 	mutex_unlock(&eeh_dev_mutex);
1239 	return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(eeh_dev_open);
1242 
1243 /**
1244  * eeh_dev_release - Decrease count of pass through devices for PE
1245  * @pdev: PCI device
1246  *
1247  * Decrease count of pass through devices for the indicated PE. If
1248  * there is no passed through device in PE, the EEH errors detected
1249  * on the PE will be reported and handled as usual.
1250  */
eeh_dev_release(struct pci_dev * pdev)1251 void eeh_dev_release(struct pci_dev *pdev)
1252 {
1253 	struct eeh_dev *edev;
1254 
1255 	mutex_lock(&eeh_dev_mutex);
1256 
1257 	/* No PCI device ? */
1258 	if (!pdev)
1259 		goto out;
1260 
1261 	/* No EEH device ? */
1262 	edev = pci_dev_to_eeh_dev(pdev);
1263 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1264 		goto out;
1265 
1266 	/* Decrease PE's pass through count */
1267 	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1268 	eeh_pe_change_owner(edev->pe);
1269 out:
1270 	mutex_unlock(&eeh_dev_mutex);
1271 }
1272 EXPORT_SYMBOL(eeh_dev_release);
1273 
1274 #ifdef CONFIG_IOMMU_API
1275 
1276 /**
1277  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1278  * @group: IOMMU group
1279  *
1280  * The routine is called to convert IOMMU group to EEH PE.
1281  */
eeh_iommu_group_to_pe(struct iommu_group * group)1282 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1283 {
1284 	struct pci_dev *pdev = NULL;
1285 	struct eeh_dev *edev;
1286 	int ret;
1287 
1288 	/* No IOMMU group ? */
1289 	if (!group)
1290 		return NULL;
1291 
1292 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1293 	if (!ret || !pdev)
1294 		return NULL;
1295 
1296 	/* No EEH device or PE ? */
1297 	edev = pci_dev_to_eeh_dev(pdev);
1298 	if (!edev || !edev->pe)
1299 		return NULL;
1300 
1301 	return edev->pe;
1302 }
1303 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1304 
1305 #endif /* CONFIG_IOMMU_API */
1306 
1307 /**
1308  * eeh_pe_set_option - Set options for the indicated PE
1309  * @pe: EEH PE
1310  * @option: requested option
1311  *
1312  * The routine is called to enable or disable EEH functionality
1313  * on the indicated PE, to enable IO or DMA for the frozen PE.
1314  */
eeh_pe_set_option(struct eeh_pe * pe,int option)1315 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1316 {
1317 	int ret = 0;
1318 
1319 	/* Invalid PE ? */
1320 	if (!pe)
1321 		return -ENODEV;
1322 
1323 	/*
1324 	 * EEH functionality could possibly be disabled, just
1325 	 * return error for the case. And the EEH functionality
1326 	 * isn't expected to be disabled on one specific PE.
1327 	 */
1328 	switch (option) {
1329 	case EEH_OPT_ENABLE:
1330 		if (eeh_enabled()) {
1331 			ret = eeh_pe_change_owner(pe);
1332 			break;
1333 		}
1334 		ret = -EIO;
1335 		break;
1336 	case EEH_OPT_DISABLE:
1337 		break;
1338 	case EEH_OPT_THAW_MMIO:
1339 	case EEH_OPT_THAW_DMA:
1340 	case EEH_OPT_FREEZE_PE:
1341 		if (!eeh_ops || !eeh_ops->set_option) {
1342 			ret = -ENOENT;
1343 			break;
1344 		}
1345 
1346 		ret = eeh_pci_enable(pe, option);
1347 		break;
1348 	default:
1349 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1350 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1351 		ret = -EINVAL;
1352 	}
1353 
1354 	return ret;
1355 }
1356 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1357 
1358 /**
1359  * eeh_pe_get_state - Retrieve PE's state
1360  * @pe: EEH PE
1361  *
1362  * Retrieve the PE's state, which includes 3 aspects: enabled
1363  * DMA, enabled IO and asserted reset.
1364  */
eeh_pe_get_state(struct eeh_pe * pe)1365 int eeh_pe_get_state(struct eeh_pe *pe)
1366 {
1367 	int result, ret = 0;
1368 	bool rst_active, dma_en, mmio_en;
1369 
1370 	/* Existing PE ? */
1371 	if (!pe)
1372 		return -ENODEV;
1373 
1374 	if (!eeh_ops || !eeh_ops->get_state)
1375 		return -ENOENT;
1376 
1377 	/*
1378 	 * If the parent PE is owned by the host kernel and is undergoing
1379 	 * error recovery, we should return the PE state as temporarily
1380 	 * unavailable so that the error recovery on the guest is suspended
1381 	 * until the recovery completes on the host.
1382 	 */
1383 	if (pe->parent &&
1384 	    !(pe->state & EEH_PE_REMOVED) &&
1385 	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1386 		return EEH_PE_STATE_UNAVAIL;
1387 
1388 	result = eeh_ops->get_state(pe, NULL);
1389 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1390 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1391 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1392 
1393 	if (rst_active)
1394 		ret = EEH_PE_STATE_RESET;
1395 	else if (dma_en && mmio_en)
1396 		ret = EEH_PE_STATE_NORMAL;
1397 	else if (!dma_en && !mmio_en)
1398 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1399 	else if (!dma_en && mmio_en)
1400 		ret = EEH_PE_STATE_STOPPED_DMA;
1401 	else
1402 		ret = EEH_PE_STATE_UNAVAIL;
1403 
1404 	return ret;
1405 }
1406 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1407 
eeh_pe_reenable_devices(struct eeh_pe * pe,bool include_passed)1408 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1409 {
1410 	struct eeh_dev *edev, *tmp;
1411 	struct pci_dev *pdev;
1412 	int ret = 0;
1413 
1414 	eeh_pe_restore_bars(pe);
1415 
1416 	/*
1417 	 * Reenable PCI devices as the devices passed
1418 	 * through are always enabled before the reset.
1419 	 */
1420 	eeh_pe_for_each_dev(pe, edev, tmp) {
1421 		pdev = eeh_dev_to_pci_dev(edev);
1422 		if (!pdev)
1423 			continue;
1424 
1425 		ret = pci_reenable_device(pdev);
1426 		if (ret) {
1427 			pr_warn("%s: Failure %d reenabling %s\n",
1428 				__func__, ret, pci_name(pdev));
1429 			return ret;
1430 		}
1431 	}
1432 
1433 	/* The PE is still in frozen state */
1434 	if (include_passed || !eeh_pe_passed(pe)) {
1435 		ret = eeh_unfreeze_pe(pe);
1436 	} else
1437 		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1438 			pe->phb->global_number, pe->addr);
1439 	if (!ret)
1440 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1441 	return ret;
1442 }
1443 
1444 
1445 /**
1446  * eeh_pe_reset - Issue PE reset according to specified type
1447  * @pe: EEH PE
1448  * @option: reset type
1449  * @include_passed: include passed-through devices?
1450  *
1451  * The routine is called to reset the specified PE with the
1452  * indicated type, either fundamental reset or hot reset.
1453  * PE reset is the most important part for error recovery.
1454  */
eeh_pe_reset(struct eeh_pe * pe,int option,bool include_passed)1455 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1456 {
1457 	int ret = 0;
1458 
1459 	/* Invalid PE ? */
1460 	if (!pe)
1461 		return -ENODEV;
1462 
1463 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1464 		return -ENOENT;
1465 
1466 	switch (option) {
1467 	case EEH_RESET_DEACTIVATE:
1468 		ret = eeh_ops->reset(pe, option);
1469 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1470 		if (ret)
1471 			break;
1472 
1473 		ret = eeh_pe_reenable_devices(pe, include_passed);
1474 		break;
1475 	case EEH_RESET_HOT:
1476 	case EEH_RESET_FUNDAMENTAL:
1477 		/*
1478 		 * Proactively freeze the PE to drop all MMIO access
1479 		 * during reset, which should be banned as it's always
1480 		 * cause recursive EEH error.
1481 		 */
1482 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1483 
1484 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1485 		ret = eeh_ops->reset(pe, option);
1486 		break;
1487 	default:
1488 		pr_debug("%s: Unsupported option %d\n",
1489 			__func__, option);
1490 		ret = -EINVAL;
1491 	}
1492 
1493 	return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1496 
1497 /**
1498  * eeh_pe_configure - Configure PCI bridges after PE reset
1499  * @pe: EEH PE
1500  *
1501  * The routine is called to restore the PCI config space for
1502  * those PCI devices, especially PCI bridges affected by PE
1503  * reset issued previously.
1504  */
eeh_pe_configure(struct eeh_pe * pe)1505 int eeh_pe_configure(struct eeh_pe *pe)
1506 {
1507 	int ret = 0;
1508 
1509 	/* Invalid PE ? */
1510 	if (!pe)
1511 		return -ENODEV;
1512 
1513 	return ret;
1514 }
1515 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1516 
1517 /**
1518  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1519  * @pe: the indicated PE
1520  * @type: error type
1521  * @func: error function
1522  * @addr: address
1523  * @mask: address mask
1524  *
1525  * The routine is called to inject the specified PCI error, which
1526  * is determined by @type and @func, to the indicated PE for
1527  * testing purpose.
1528  */
eeh_pe_inject_err(struct eeh_pe * pe,int type,int func,unsigned long addr,unsigned long mask)1529 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1530 		      unsigned long addr, unsigned long mask)
1531 {
1532 	/* Invalid PE ? */
1533 	if (!pe)
1534 		return -ENODEV;
1535 
1536 	/* Unsupported operation ? */
1537 	if (!eeh_ops || !eeh_ops->err_inject)
1538 		return -ENOENT;
1539 
1540 	/* Check on PCI error function */
1541 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1542 		return -EINVAL;
1543 
1544 	return eeh_ops->err_inject(pe, type, func, addr, mask);
1545 }
1546 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1547 
1548 #ifdef CONFIG_PROC_FS
proc_eeh_show(struct seq_file * m,void * v)1549 static int proc_eeh_show(struct seq_file *m, void *v)
1550 {
1551 	if (!eeh_enabled()) {
1552 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1553 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1554 	} else {
1555 		seq_printf(m, "EEH Subsystem is enabled\n");
1556 		seq_printf(m,
1557 				"no device=%llu\n"
1558 				"no device node=%llu\n"
1559 				"no config address=%llu\n"
1560 				"check not wanted=%llu\n"
1561 				"eeh_total_mmio_ffs=%llu\n"
1562 				"eeh_false_positives=%llu\n"
1563 				"eeh_slot_resets=%llu\n",
1564 				eeh_stats.no_device,
1565 				eeh_stats.no_dn,
1566 				eeh_stats.no_cfg_addr,
1567 				eeh_stats.ignored_check,
1568 				eeh_stats.total_mmio_ffs,
1569 				eeh_stats.false_positives,
1570 				eeh_stats.slot_resets);
1571 	}
1572 
1573 	return 0;
1574 }
1575 #endif /* CONFIG_PROC_FS */
1576 
eeh_break_device(struct pci_dev * pdev)1577 static int eeh_break_device(struct pci_dev *pdev)
1578 {
1579 	struct resource *bar = NULL;
1580 	void __iomem *mapped;
1581 	u16 old, bit;
1582 	int i, pos;
1583 
1584 	/* Do we have an MMIO BAR to disable? */
1585 	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1586 		struct resource *r = &pdev->resource[i];
1587 
1588 		if (!r->flags || !r->start)
1589 			continue;
1590 		if (r->flags & IORESOURCE_IO)
1591 			continue;
1592 		if (r->flags & IORESOURCE_UNSET)
1593 			continue;
1594 
1595 		bar = r;
1596 		break;
1597 	}
1598 
1599 	if (!bar) {
1600 		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1601 		return -ENXIO;
1602 	}
1603 
1604 	pci_err(pdev, "Going to break: %pR\n", bar);
1605 
1606 	if (pdev->is_virtfn) {
1607 #ifndef CONFIG_PCI_IOV
1608 		return -ENXIO;
1609 #else
1610 		/*
1611 		 * VFs don't have a per-function COMMAND register, so the best
1612 		 * we can do is clear the Memory Space Enable bit in the PF's
1613 		 * SRIOV control reg.
1614 		 *
1615 		 * Unfortunately, this requires that we have a PF (i.e doesn't
1616 		 * work for a passed-through VF) and it has the potential side
1617 		 * effect of also causing an EEH on every other VF under the
1618 		 * PF. Oh well.
1619 		 */
1620 		pdev = pdev->physfn;
1621 		if (!pdev)
1622 			return -ENXIO; /* passed through VFs have no PF */
1623 
1624 		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1625 		pos += PCI_SRIOV_CTRL;
1626 		bit  = PCI_SRIOV_CTRL_MSE;
1627 #endif /* !CONFIG_PCI_IOV */
1628 	} else {
1629 		bit = PCI_COMMAND_MEMORY;
1630 		pos = PCI_COMMAND;
1631 	}
1632 
1633 	/*
1634 	 * Process here is:
1635 	 *
1636 	 * 1. Disable Memory space.
1637 	 *
1638 	 * 2. Perform an MMIO to the device. This should result in an error
1639 	 *    (CA  / UR) being raised by the device which results in an EEH
1640 	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1641 	 *    so the freeze hook so the EEH Detection machinery won't be
1642 	 *    triggered here. This is to match the usual behaviour of EEH
1643 	 *    where the HW will asynchronously freeze a PE and it's up to
1644 	 *    the kernel to notice and deal with it.
1645 	 *
1646 	 * 3. Turn Memory space back on. This is more important for VFs
1647 	 *    since recovery will probably fail if we don't. For normal
1648 	 *    the COMMAND register is reset as a part of re-initialising
1649 	 *    the device.
1650 	 *
1651 	 * Breaking stuff is the point so who cares if it's racy ;)
1652 	 */
1653 	pci_read_config_word(pdev, pos, &old);
1654 
1655 	mapped = ioremap(bar->start, PAGE_SIZE);
1656 	if (!mapped) {
1657 		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1658 		return -ENXIO;
1659 	}
1660 
1661 	pci_write_config_word(pdev, pos, old & ~bit);
1662 	in_8(mapped);
1663 	pci_write_config_word(pdev, pos, old);
1664 
1665 	iounmap(mapped);
1666 
1667 	return 0;
1668 }
1669 
eeh_pe_inject_mmio_error(struct pci_dev * pdev)1670 int eeh_pe_inject_mmio_error(struct pci_dev *pdev)
1671 {
1672 	return eeh_break_device(pdev);
1673 }
1674 
1675 #ifdef CONFIG_DEBUG_FS
1676 
1677 
eeh_debug_lookup_pdev(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1678 static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1679 					     const char __user *user_buf,
1680 					     size_t count, loff_t *ppos)
1681 {
1682 	uint32_t domain, bus, dev, fn;
1683 	struct pci_dev *pdev;
1684 	char buf[20];
1685 	int ret;
1686 
1687 	memset(buf, 0, sizeof(buf));
1688 	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1689 	if (!ret)
1690 		return ERR_PTR(-EFAULT);
1691 
1692 	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1693 	if (ret != 4) {
1694 		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1695 		return ERR_PTR(-EINVAL);
1696 	}
1697 
1698 	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1699 	if (!pdev)
1700 		return ERR_PTR(-ENODEV);
1701 
1702 	return pdev;
1703 }
1704 
eeh_enable_dbgfs_set(void * data,u64 val)1705 static int eeh_enable_dbgfs_set(void *data, u64 val)
1706 {
1707 	if (val)
1708 		eeh_clear_flag(EEH_FORCE_DISABLED);
1709 	else
1710 		eeh_add_flag(EEH_FORCE_DISABLED);
1711 
1712 	return 0;
1713 }
1714 
eeh_enable_dbgfs_get(void * data,u64 * val)1715 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1716 {
1717 	if (eeh_enabled())
1718 		*val = 0x1ul;
1719 	else
1720 		*val = 0x0ul;
1721 	return 0;
1722 }
1723 
1724 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1725 			 eeh_enable_dbgfs_set, "0x%llx\n");
1726 
eeh_force_recover_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1727 static ssize_t eeh_force_recover_write(struct file *filp,
1728 				const char __user *user_buf,
1729 				size_t count, loff_t *ppos)
1730 {
1731 	struct pci_controller *hose;
1732 	uint32_t phbid, pe_no;
1733 	struct eeh_pe *pe;
1734 	char buf[20];
1735 	int ret;
1736 
1737 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1738 	if (!ret)
1739 		return -EFAULT;
1740 
1741 	/*
1742 	 * When PE is NULL the event is a "special" event. Rather than
1743 	 * recovering a specific PE it forces the EEH core to scan for failed
1744 	 * PHBs and recovers each. This needs to be done before any device
1745 	 * recoveries can occur.
1746 	 */
1747 	if (!strncmp(buf, "hwcheck", 7)) {
1748 		__eeh_send_failure_event(NULL);
1749 		return count;
1750 	}
1751 
1752 	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1753 	if (ret != 2)
1754 		return -EINVAL;
1755 
1756 	hose = pci_find_controller_for_domain(phbid);
1757 	if (!hose)
1758 		return -ENODEV;
1759 
1760 	/* Retrieve PE */
1761 	pe = eeh_pe_get(hose, pe_no);
1762 	if (!pe)
1763 		return -ENODEV;
1764 
1765 	/*
1766 	 * We don't do any state checking here since the detection
1767 	 * process is async to the recovery process. The recovery
1768 	 * thread *should* not break even if we schedule a recovery
1769 	 * from an odd state (e.g. PE removed, or recovery of a
1770 	 * non-isolated PE)
1771 	 */
1772 	__eeh_send_failure_event(pe);
1773 
1774 	return ret < 0 ? ret : count;
1775 }
1776 
1777 static const struct file_operations eeh_force_recover_fops = {
1778 	.open	= simple_open,
1779 	.write	= eeh_force_recover_write,
1780 };
1781 
eeh_debugfs_dev_usage(struct file * filp,char __user * user_buf,size_t count,loff_t * ppos)1782 static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1783 				char __user *user_buf,
1784 				size_t count, loff_t *ppos)
1785 {
1786 	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1787 
1788 	return simple_read_from_buffer(user_buf, count, ppos,
1789 				       usage, sizeof(usage) - 1);
1790 }
1791 
eeh_dev_check_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1792 static ssize_t eeh_dev_check_write(struct file *filp,
1793 				const char __user *user_buf,
1794 				size_t count, loff_t *ppos)
1795 {
1796 	struct pci_dev *pdev;
1797 	struct eeh_dev *edev;
1798 	int ret;
1799 
1800 	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1801 	if (IS_ERR(pdev))
1802 		return PTR_ERR(pdev);
1803 
1804 	edev = pci_dev_to_eeh_dev(pdev);
1805 	if (!edev) {
1806 		pci_err(pdev, "No eeh_dev for this device!\n");
1807 		pci_dev_put(pdev);
1808 		return -ENODEV;
1809 	}
1810 
1811 	ret = eeh_dev_check_failure(edev);
1812 	pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1813 			pci_name(pdev), ret);
1814 
1815 	pci_dev_put(pdev);
1816 
1817 	return count;
1818 }
1819 
1820 static const struct file_operations eeh_dev_check_fops = {
1821 	.open	= simple_open,
1822 	.write	= eeh_dev_check_write,
1823 	.read   = eeh_debugfs_dev_usage,
1824 };
1825 
eeh_dev_break_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1826 static ssize_t eeh_dev_break_write(struct file *filp,
1827 				const char __user *user_buf,
1828 				size_t count, loff_t *ppos)
1829 {
1830 	struct pci_dev *pdev;
1831 	int ret;
1832 
1833 	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1834 	if (IS_ERR(pdev))
1835 		return PTR_ERR(pdev);
1836 
1837 	ret = eeh_break_device(pdev);
1838 	pci_dev_put(pdev);
1839 
1840 	if (ret < 0)
1841 		return ret;
1842 
1843 	return count;
1844 }
1845 
1846 static const struct file_operations eeh_dev_break_fops = {
1847 	.open	= simple_open,
1848 	.write	= eeh_dev_break_write,
1849 	.read   = eeh_debugfs_dev_usage,
1850 };
1851 
eeh_dev_can_recover(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1852 static ssize_t eeh_dev_can_recover(struct file *filp,
1853 				   const char __user *user_buf,
1854 				   size_t count, loff_t *ppos)
1855 {
1856 	struct pci_driver *drv;
1857 	struct pci_dev *pdev;
1858 	size_t ret;
1859 
1860 	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1861 	if (IS_ERR(pdev))
1862 		return PTR_ERR(pdev);
1863 
1864 	/*
1865 	 * In order for error recovery to work the driver needs to implement
1866 	 * .error_detected(), so it can quiesce IO to the device, and
1867 	 * .slot_reset() so it can re-initialise the device after a reset.
1868 	 *
1869 	 * Ideally they'd implement .resume() too, but some drivers which
1870 	 * we need to support (notably IPR) don't so I guess we can tolerate
1871 	 * that.
1872 	 *
1873 	 * .mmio_enabled() is mostly there as a work-around for devices which
1874 	 * take forever to re-init after a hot reset. Implementing that is
1875 	 * strictly optional.
1876 	 */
1877 	drv = pci_dev_driver(pdev);
1878 	if (drv &&
1879 	    drv->err_handler &&
1880 	    drv->err_handler->error_detected &&
1881 	    drv->err_handler->slot_reset) {
1882 		ret = count;
1883 	} else {
1884 		ret = -EOPNOTSUPP;
1885 	}
1886 
1887 	pci_dev_put(pdev);
1888 
1889 	return ret;
1890 }
1891 
1892 static const struct file_operations eeh_dev_can_recover_fops = {
1893 	.open	= simple_open,
1894 	.write	= eeh_dev_can_recover,
1895 	.read   = eeh_debugfs_dev_usage,
1896 };
1897 
1898 #endif
1899 
eeh_init_proc(void)1900 static int __init eeh_init_proc(void)
1901 {
1902 	if (machine_is(pseries) || machine_is(powernv)) {
1903 		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1904 #ifdef CONFIG_DEBUG_FS
1905 		debugfs_create_file_unsafe("eeh_enable", 0600,
1906 					   arch_debugfs_dir, NULL,
1907 					   &eeh_enable_dbgfs_ops);
1908 		debugfs_create_u32("eeh_max_freezes", 0600,
1909 				arch_debugfs_dir, &eeh_max_freezes);
1910 		debugfs_create_bool("eeh_disable_recovery", 0600,
1911 				arch_debugfs_dir,
1912 				&eeh_debugfs_no_recover);
1913 		debugfs_create_file_unsafe("eeh_dev_check", 0600,
1914 				arch_debugfs_dir, NULL,
1915 				&eeh_dev_check_fops);
1916 		debugfs_create_file_unsafe("eeh_dev_break", 0600,
1917 				arch_debugfs_dir, NULL,
1918 				&eeh_dev_break_fops);
1919 		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1920 				arch_debugfs_dir, NULL,
1921 				&eeh_force_recover_fops);
1922 		debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1923 				arch_debugfs_dir, NULL,
1924 				&eeh_dev_can_recover_fops);
1925 		eeh_cache_debugfs_init();
1926 #endif
1927 	}
1928 
1929 	return 0;
1930 }
1931 __initcall(eeh_init_proc);
1932