1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* ethtool support for e1000 */
5 
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14 
15 #include "e1000.h"
16 
17 enum { NETDEV_STATS, E1000_STATS };
18 
19 struct e1000_stats {
20 	char stat_string[ETH_GSTRING_LEN];
21 	int type;
22 	int sizeof_stat;
23 	int stat_offset;
24 };
25 
26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED	BIT(0)
28 	"s0ix-enabled",
29 };
30 
31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
32 
33 #define E1000_STAT(str, m) { \
34 		.stat_string = str, \
35 		.type = E1000_STATS, \
36 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
37 		.stat_offset = offsetof(struct e1000_adapter, m) }
38 #define E1000_NETDEV_STAT(str, m) { \
39 		.stat_string = str, \
40 		.type = NETDEV_STATS, \
41 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
42 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
43 
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45 	E1000_STAT("rx_packets", stats.gprc),
46 	E1000_STAT("tx_packets", stats.gptc),
47 	E1000_STAT("rx_bytes", stats.gorc),
48 	E1000_STAT("tx_bytes", stats.gotc),
49 	E1000_STAT("rx_broadcast", stats.bprc),
50 	E1000_STAT("tx_broadcast", stats.bptc),
51 	E1000_STAT("rx_multicast", stats.mprc),
52 	E1000_STAT("tx_multicast", stats.mptc),
53 	E1000_NETDEV_STAT("rx_errors", rx_errors),
54 	E1000_NETDEV_STAT("tx_errors", tx_errors),
55 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
56 	E1000_STAT("multicast", stats.mprc),
57 	E1000_STAT("collisions", stats.colc),
58 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
59 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
60 	E1000_STAT("rx_crc_errors", stats.crcerrs),
61 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
62 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
63 	E1000_STAT("rx_missed_errors", stats.mpc),
64 	E1000_STAT("tx_aborted_errors", stats.ecol),
65 	E1000_STAT("tx_carrier_errors", stats.tncrs),
66 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
67 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
68 	E1000_STAT("tx_window_errors", stats.latecol),
69 	E1000_STAT("tx_abort_late_coll", stats.latecol),
70 	E1000_STAT("tx_deferred_ok", stats.dc),
71 	E1000_STAT("tx_single_coll_ok", stats.scc),
72 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
73 	E1000_STAT("tx_timeout_count", tx_timeout_count),
74 	E1000_STAT("tx_restart_queue", restart_queue),
75 	E1000_STAT("rx_long_length_errors", stats.roc),
76 	E1000_STAT("rx_short_length_errors", stats.ruc),
77 	E1000_STAT("rx_align_errors", stats.algnerrc),
78 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
79 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
81 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
83 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
84 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
85 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
86 	E1000_STAT("rx_header_split", rx_hdr_split),
87 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
88 	E1000_STAT("tx_smbus", stats.mgptc),
89 	E1000_STAT("rx_smbus", stats.mgprc),
90 	E1000_STAT("dropped_smbus", stats.mgpdc),
91 	E1000_STAT("rx_dma_failed", rx_dma_failed),
92 	E1000_STAT("tx_dma_failed", tx_dma_failed),
93 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
95 	E1000_STAT("corr_ecc_errors", corr_errors),
96 	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
98 };
99 
100 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 	"Register test  (offline)", "Eeprom test    (offline)",
104 	"Interrupt test (offline)", "Loopback test  (offline)",
105 	"Link test   (on/offline)"
106 };
107 
108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 
e1000_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)110 static int e1000_get_link_ksettings(struct net_device *netdev,
111 				    struct ethtool_link_ksettings *cmd)
112 {
113 	u32 speed, supported, advertising, lp_advertising, lpa_t;
114 	struct e1000_adapter *adapter = netdev_priv(netdev);
115 	struct e1000_hw *hw = &adapter->hw;
116 
117 	if (hw->phy.media_type == e1000_media_type_copper) {
118 		supported = (SUPPORTED_10baseT_Half |
119 			     SUPPORTED_10baseT_Full |
120 			     SUPPORTED_100baseT_Half |
121 			     SUPPORTED_100baseT_Full |
122 			     SUPPORTED_1000baseT_Full |
123 			     SUPPORTED_Asym_Pause |
124 			     SUPPORTED_Autoneg |
125 			     SUPPORTED_Pause |
126 			     SUPPORTED_TP);
127 		if (hw->phy.type == e1000_phy_ife)
128 			supported &= ~SUPPORTED_1000baseT_Full;
129 		advertising = ADVERTISED_TP;
130 
131 		if (hw->mac.autoneg == 1) {
132 			advertising |= ADVERTISED_Autoneg;
133 			/* the e1000 autoneg seems to match ethtool nicely */
134 			advertising |= hw->phy.autoneg_advertised;
135 		}
136 
137 		cmd->base.port = PORT_TP;
138 		cmd->base.phy_address = hw->phy.addr;
139 	} else {
140 		supported   = (SUPPORTED_1000baseT_Full |
141 			       SUPPORTED_FIBRE |
142 			       SUPPORTED_Autoneg);
143 
144 		advertising = (ADVERTISED_1000baseT_Full |
145 			       ADVERTISED_FIBRE |
146 			       ADVERTISED_Autoneg);
147 
148 		cmd->base.port = PORT_FIBRE;
149 	}
150 
151 	speed = SPEED_UNKNOWN;
152 	cmd->base.duplex = DUPLEX_UNKNOWN;
153 
154 	if (netif_running(netdev)) {
155 		if (netif_carrier_ok(netdev)) {
156 			speed = adapter->link_speed;
157 			cmd->base.duplex = adapter->link_duplex - 1;
158 		}
159 	} else {
160 		u32 status = er32(STATUS);
161 
162 		if (status & E1000_STATUS_LU) {
163 			if (status & E1000_STATUS_SPEED_1000)
164 				speed = SPEED_1000;
165 			else if (status & E1000_STATUS_SPEED_100)
166 				speed = SPEED_100;
167 			else
168 				speed = SPEED_10;
169 
170 			if (status & E1000_STATUS_FD)
171 				cmd->base.duplex = DUPLEX_FULL;
172 			else
173 				cmd->base.duplex = DUPLEX_HALF;
174 		}
175 	}
176 
177 	cmd->base.speed = speed;
178 	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
179 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
180 
181 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
182 	if ((hw->phy.media_type == e1000_media_type_copper) &&
183 	    netif_carrier_ok(netdev))
184 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
185 			ETH_TP_MDI_X : ETH_TP_MDI;
186 	else
187 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
188 
189 	if (hw->phy.mdix == AUTO_ALL_MODES)
190 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
191 	else
192 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
193 
194 	if (hw->phy.media_type != e1000_media_type_copper)
195 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
196 
197 	lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000);
198 	lp_advertising = lpa_t |
199 	mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa);
200 
201 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
202 						supported);
203 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
204 						advertising);
205 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
206 						lp_advertising);
207 
208 	return 0;
209 }
210 
e1000_set_spd_dplx(struct e1000_adapter * adapter,u32 spd,u8 dplx)211 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
212 {
213 	struct e1000_mac_info *mac = &adapter->hw.mac;
214 
215 	mac->autoneg = 0;
216 
217 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
218 	 * for the switch() below to work
219 	 */
220 	if ((spd & 1) || (dplx & ~1))
221 		goto err_inval;
222 
223 	/* Fiber NICs only allow 1000 gbps Full duplex */
224 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
225 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
226 		goto err_inval;
227 	}
228 
229 	switch (spd + dplx) {
230 	case SPEED_10 + DUPLEX_HALF:
231 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
232 		break;
233 	case SPEED_10 + DUPLEX_FULL:
234 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
235 		break;
236 	case SPEED_100 + DUPLEX_HALF:
237 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
238 		break;
239 	case SPEED_100 + DUPLEX_FULL:
240 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
241 		break;
242 	case SPEED_1000 + DUPLEX_FULL:
243 		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
244 			mac->autoneg = 1;
245 			adapter->hw.phy.autoneg_advertised =
246 				ADVERTISE_1000_FULL;
247 		} else {
248 			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
249 		}
250 		break;
251 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
252 	default:
253 		goto err_inval;
254 	}
255 
256 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
257 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
258 
259 	return 0;
260 
261 err_inval:
262 	e_err("Unsupported Speed/Duplex configuration\n");
263 	return -EINVAL;
264 }
265 
e1000_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)266 static int e1000_set_link_ksettings(struct net_device *netdev,
267 				    const struct ethtool_link_ksettings *cmd)
268 {
269 	struct e1000_adapter *adapter = netdev_priv(netdev);
270 	struct e1000_hw *hw = &adapter->hw;
271 	int ret_val = 0;
272 	u32 advertising;
273 
274 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
275 						cmd->link_modes.advertising);
276 
277 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
278 	 * cannot be changed
279 	 */
280 	if (hw->phy.ops.check_reset_block &&
281 	    hw->phy.ops.check_reset_block(hw)) {
282 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
283 		return -EINVAL;
284 	}
285 
286 	/* MDI setting is only allowed when autoneg enabled because
287 	 * some hardware doesn't allow MDI setting when speed or
288 	 * duplex is forced.
289 	 */
290 	if (cmd->base.eth_tp_mdix_ctrl) {
291 		if (hw->phy.media_type != e1000_media_type_copper)
292 			return -EOPNOTSUPP;
293 
294 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
295 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
296 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
297 			return -EINVAL;
298 		}
299 	}
300 
301 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
302 		usleep_range(1000, 2000);
303 
304 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
305 		hw->mac.autoneg = 1;
306 		if (hw->phy.media_type == e1000_media_type_fiber)
307 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
308 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
309 		else
310 			hw->phy.autoneg_advertised = advertising |
311 			    ADVERTISED_TP | ADVERTISED_Autoneg;
312 		advertising = hw->phy.autoneg_advertised;
313 		if (adapter->fc_autoneg)
314 			hw->fc.requested_mode = e1000_fc_default;
315 	} else {
316 		u32 speed = cmd->base.speed;
317 		/* calling this overrides forced MDI setting */
318 		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
319 			ret_val = -EINVAL;
320 			goto out;
321 		}
322 	}
323 
324 	/* MDI-X => 2; MDI => 1; Auto => 3 */
325 	if (cmd->base.eth_tp_mdix_ctrl) {
326 		/* fix up the value for auto (3 => 0) as zero is mapped
327 		 * internally to auto
328 		 */
329 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
330 			hw->phy.mdix = AUTO_ALL_MODES;
331 		else
332 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
333 	}
334 
335 	/* reset the link */
336 	if (netif_running(adapter->netdev)) {
337 		e1000e_down(adapter, true);
338 		e1000e_up(adapter);
339 	} else {
340 		e1000e_reset(adapter);
341 	}
342 
343 out:
344 	clear_bit(__E1000_RESETTING, &adapter->state);
345 	return ret_val;
346 }
347 
e1000_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)348 static void e1000_get_pauseparam(struct net_device *netdev,
349 				 struct ethtool_pauseparam *pause)
350 {
351 	struct e1000_adapter *adapter = netdev_priv(netdev);
352 	struct e1000_hw *hw = &adapter->hw;
353 
354 	pause->autoneg =
355 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
356 
357 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
358 		pause->rx_pause = 1;
359 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
360 		pause->tx_pause = 1;
361 	} else if (hw->fc.current_mode == e1000_fc_full) {
362 		pause->rx_pause = 1;
363 		pause->tx_pause = 1;
364 	}
365 }
366 
e1000_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)367 static int e1000_set_pauseparam(struct net_device *netdev,
368 				struct ethtool_pauseparam *pause)
369 {
370 	struct e1000_adapter *adapter = netdev_priv(netdev);
371 	struct e1000_hw *hw = &adapter->hw;
372 	int retval = 0;
373 
374 	adapter->fc_autoneg = pause->autoneg;
375 
376 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
377 		usleep_range(1000, 2000);
378 
379 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
380 		hw->fc.requested_mode = e1000_fc_default;
381 		if (netif_running(adapter->netdev)) {
382 			e1000e_down(adapter, true);
383 			e1000e_up(adapter);
384 		} else {
385 			e1000e_reset(adapter);
386 		}
387 	} else {
388 		if (pause->rx_pause && pause->tx_pause)
389 			hw->fc.requested_mode = e1000_fc_full;
390 		else if (pause->rx_pause && !pause->tx_pause)
391 			hw->fc.requested_mode = e1000_fc_rx_pause;
392 		else if (!pause->rx_pause && pause->tx_pause)
393 			hw->fc.requested_mode = e1000_fc_tx_pause;
394 		else if (!pause->rx_pause && !pause->tx_pause)
395 			hw->fc.requested_mode = e1000_fc_none;
396 
397 		hw->fc.current_mode = hw->fc.requested_mode;
398 
399 		if (hw->phy.media_type == e1000_media_type_fiber) {
400 			retval = hw->mac.ops.setup_link(hw);
401 			/* implicit goto out */
402 		} else {
403 			retval = e1000e_force_mac_fc(hw);
404 			if (retval)
405 				goto out;
406 			e1000e_set_fc_watermarks(hw);
407 		}
408 	}
409 
410 out:
411 	clear_bit(__E1000_RESETTING, &adapter->state);
412 	return retval;
413 }
414 
e1000_get_msglevel(struct net_device * netdev)415 static u32 e1000_get_msglevel(struct net_device *netdev)
416 {
417 	struct e1000_adapter *adapter = netdev_priv(netdev);
418 	return adapter->msg_enable;
419 }
420 
e1000_set_msglevel(struct net_device * netdev,u32 data)421 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
422 {
423 	struct e1000_adapter *adapter = netdev_priv(netdev);
424 	adapter->msg_enable = data;
425 }
426 
e1000_get_regs_len(struct net_device __always_unused * netdev)427 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
428 {
429 #define E1000_REGS_LEN 32	/* overestimate */
430 	return E1000_REGS_LEN * sizeof(u32);
431 }
432 
e1000_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)433 static void e1000_get_regs(struct net_device *netdev,
434 			   struct ethtool_regs *regs, void *p)
435 {
436 	struct e1000_adapter *adapter = netdev_priv(netdev);
437 	struct e1000_hw *hw = &adapter->hw;
438 	u32 *regs_buff = p;
439 	u16 phy_data;
440 
441 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
442 
443 	regs->version = (1u << 24) |
444 			(adapter->pdev->revision << 16) |
445 			adapter->pdev->device;
446 
447 	regs_buff[0] = er32(CTRL);
448 	regs_buff[1] = er32(STATUS);
449 
450 	regs_buff[2] = er32(RCTL);
451 	regs_buff[3] = er32(RDLEN(0));
452 	regs_buff[4] = er32(RDH(0));
453 	regs_buff[5] = er32(RDT(0));
454 	regs_buff[6] = er32(RDTR);
455 
456 	regs_buff[7] = er32(TCTL);
457 	regs_buff[8] = er32(TDLEN(0));
458 	regs_buff[9] = er32(TDH(0));
459 	regs_buff[10] = er32(TDT(0));
460 	regs_buff[11] = er32(TIDV);
461 
462 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
463 
464 	/* ethtool doesn't use anything past this point, so all this
465 	 * code is likely legacy junk for apps that may or may not exist
466 	 */
467 	if (hw->phy.type == e1000_phy_m88) {
468 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
469 		regs_buff[13] = (u32)phy_data; /* cable length */
470 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
471 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
472 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
473 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
474 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
475 		regs_buff[18] = regs_buff[13]; /* cable polarity */
476 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
477 		regs_buff[20] = regs_buff[17]; /* polarity correction */
478 		/* phy receive errors */
479 		regs_buff[22] = adapter->phy_stats.receive_errors;
480 		regs_buff[23] = regs_buff[13]; /* mdix mode */
481 	}
482 	regs_buff[21] = 0;	/* was idle_errors */
483 	e1e_rphy(hw, MII_STAT1000, &phy_data);
484 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
485 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
486 }
487 
e1000_get_eeprom_len(struct net_device * netdev)488 static int e1000_get_eeprom_len(struct net_device *netdev)
489 {
490 	struct e1000_adapter *adapter = netdev_priv(netdev);
491 	return adapter->hw.nvm.word_size * 2;
492 }
493 
e1000_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)494 static int e1000_get_eeprom(struct net_device *netdev,
495 			    struct ethtool_eeprom *eeprom, u8 *bytes)
496 {
497 	struct e1000_adapter *adapter = netdev_priv(netdev);
498 	struct e1000_hw *hw = &adapter->hw;
499 	u16 *eeprom_buff;
500 	int first_word;
501 	int last_word;
502 	int ret_val = 0;
503 	u16 i;
504 
505 	if (eeprom->len == 0)
506 		return -EINVAL;
507 
508 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
509 
510 	first_word = eeprom->offset >> 1;
511 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
512 
513 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
514 				    GFP_KERNEL);
515 	if (!eeprom_buff)
516 		return -ENOMEM;
517 
518 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
519 		ret_val = e1000_read_nvm(hw, first_word,
520 					 last_word - first_word + 1,
521 					 eeprom_buff);
522 	} else {
523 		for (i = 0; i < last_word - first_word + 1; i++) {
524 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
525 						 &eeprom_buff[i]);
526 			if (ret_val)
527 				break;
528 		}
529 	}
530 
531 	if (ret_val) {
532 		/* a read error occurred, throw away the result */
533 		memset(eeprom_buff, 0xff, sizeof(u16) *
534 		       (last_word - first_word + 1));
535 	} else {
536 		/* Device's eeprom is always little-endian, word addressable */
537 		for (i = 0; i < last_word - first_word + 1; i++)
538 			le16_to_cpus(&eeprom_buff[i]);
539 	}
540 
541 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
542 	kfree(eeprom_buff);
543 
544 	return ret_val;
545 }
546 
e1000_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)547 static int e1000_set_eeprom(struct net_device *netdev,
548 			    struct ethtool_eeprom *eeprom, u8 *bytes)
549 {
550 	struct e1000_adapter *adapter = netdev_priv(netdev);
551 	struct e1000_hw *hw = &adapter->hw;
552 	u16 *eeprom_buff;
553 	void *ptr;
554 	int max_len;
555 	int first_word;
556 	int last_word;
557 	int ret_val = 0;
558 	u16 i;
559 
560 	if (eeprom->len == 0)
561 		return -EOPNOTSUPP;
562 
563 	if (eeprom->magic !=
564 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
565 		return -EFAULT;
566 
567 	if (adapter->flags & FLAG_READ_ONLY_NVM)
568 		return -EINVAL;
569 
570 	max_len = hw->nvm.word_size * 2;
571 
572 	first_word = eeprom->offset >> 1;
573 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
574 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
575 	if (!eeprom_buff)
576 		return -ENOMEM;
577 
578 	ptr = (void *)eeprom_buff;
579 
580 	if (eeprom->offset & 1) {
581 		/* need read/modify/write of first changed EEPROM word */
582 		/* only the second byte of the word is being modified */
583 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
584 		ptr++;
585 	}
586 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
587 		/* need read/modify/write of last changed EEPROM word */
588 		/* only the first byte of the word is being modified */
589 		ret_val = e1000_read_nvm(hw, last_word, 1,
590 					 &eeprom_buff[last_word - first_word]);
591 
592 	if (ret_val)
593 		goto out;
594 
595 	/* Device's eeprom is always little-endian, word addressable */
596 	for (i = 0; i < last_word - first_word + 1; i++)
597 		le16_to_cpus(&eeprom_buff[i]);
598 
599 	memcpy(ptr, bytes, eeprom->len);
600 
601 	for (i = 0; i < last_word - first_word + 1; i++)
602 		cpu_to_le16s(&eeprom_buff[i]);
603 
604 	ret_val = e1000_write_nvm(hw, first_word,
605 				  last_word - first_word + 1, eeprom_buff);
606 
607 	if (ret_val)
608 		goto out;
609 
610 	/* Update the checksum over the first part of the EEPROM if needed
611 	 * and flush shadow RAM for applicable controllers
612 	 */
613 	if ((first_word <= NVM_CHECKSUM_REG) ||
614 	    (hw->mac.type == e1000_82583) ||
615 	    (hw->mac.type == e1000_82574) ||
616 	    (hw->mac.type == e1000_82573))
617 		ret_val = e1000e_update_nvm_checksum(hw);
618 
619 out:
620 	kfree(eeprom_buff);
621 	return ret_val;
622 }
623 
e1000_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)624 static void e1000_get_drvinfo(struct net_device *netdev,
625 			      struct ethtool_drvinfo *drvinfo)
626 {
627 	struct e1000_adapter *adapter = netdev_priv(netdev);
628 
629 	strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
630 
631 	/* EEPROM image version # is reported as firmware version # for
632 	 * PCI-E controllers
633 	 */
634 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
635 		 "%d.%d-%d",
636 		 FIELD_GET(0xF000, adapter->eeprom_vers),
637 		 FIELD_GET(0x0FF0, adapter->eeprom_vers),
638 		 (adapter->eeprom_vers & 0x000F));
639 
640 	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
641 		sizeof(drvinfo->bus_info));
642 }
643 
e1000_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)644 static void e1000_get_ringparam(struct net_device *netdev,
645 				struct ethtool_ringparam *ring,
646 				struct kernel_ethtool_ringparam *kernel_ring,
647 				struct netlink_ext_ack *extack)
648 {
649 	struct e1000_adapter *adapter = netdev_priv(netdev);
650 
651 	ring->rx_max_pending = E1000_MAX_RXD;
652 	ring->tx_max_pending = E1000_MAX_TXD;
653 	ring->rx_pending = adapter->rx_ring_count;
654 	ring->tx_pending = adapter->tx_ring_count;
655 }
656 
e1000_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)657 static int e1000_set_ringparam(struct net_device *netdev,
658 			       struct ethtool_ringparam *ring,
659 			       struct kernel_ethtool_ringparam *kernel_ring,
660 			       struct netlink_ext_ack *extack)
661 {
662 	struct e1000_adapter *adapter = netdev_priv(netdev);
663 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
664 	int err = 0, size = sizeof(struct e1000_ring);
665 	bool set_tx = false, set_rx = false;
666 	u16 new_rx_count, new_tx_count;
667 
668 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
669 		return -EINVAL;
670 
671 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
672 			       E1000_MAX_RXD);
673 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
674 
675 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
676 			       E1000_MAX_TXD);
677 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
678 
679 	if ((new_tx_count == adapter->tx_ring_count) &&
680 	    (new_rx_count == adapter->rx_ring_count))
681 		/* nothing to do */
682 		return 0;
683 
684 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
685 		usleep_range(1000, 2000);
686 
687 	if (!netif_running(adapter->netdev)) {
688 		/* Set counts now and allocate resources during open() */
689 		adapter->tx_ring->count = new_tx_count;
690 		adapter->rx_ring->count = new_rx_count;
691 		adapter->tx_ring_count = new_tx_count;
692 		adapter->rx_ring_count = new_rx_count;
693 		goto clear_reset;
694 	}
695 
696 	set_tx = (new_tx_count != adapter->tx_ring_count);
697 	set_rx = (new_rx_count != adapter->rx_ring_count);
698 
699 	/* Allocate temporary storage for ring updates */
700 	if (set_tx) {
701 		temp_tx = vmalloc(size);
702 		if (!temp_tx) {
703 			err = -ENOMEM;
704 			goto free_temp;
705 		}
706 	}
707 	if (set_rx) {
708 		temp_rx = vmalloc(size);
709 		if (!temp_rx) {
710 			err = -ENOMEM;
711 			goto free_temp;
712 		}
713 	}
714 
715 	e1000e_down(adapter, true);
716 
717 	/* We can't just free everything and then setup again, because the
718 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
719 	 * structs.  First, attempt to allocate new resources...
720 	 */
721 	if (set_tx) {
722 		memcpy(temp_tx, adapter->tx_ring, size);
723 		temp_tx->count = new_tx_count;
724 		err = e1000e_setup_tx_resources(temp_tx);
725 		if (err)
726 			goto err_setup;
727 	}
728 	if (set_rx) {
729 		memcpy(temp_rx, adapter->rx_ring, size);
730 		temp_rx->count = new_rx_count;
731 		err = e1000e_setup_rx_resources(temp_rx);
732 		if (err)
733 			goto err_setup_rx;
734 	}
735 
736 	/* ...then free the old resources and copy back any new ring data */
737 	if (set_tx) {
738 		e1000e_free_tx_resources(adapter->tx_ring);
739 		memcpy(adapter->tx_ring, temp_tx, size);
740 		adapter->tx_ring_count = new_tx_count;
741 	}
742 	if (set_rx) {
743 		e1000e_free_rx_resources(adapter->rx_ring);
744 		memcpy(adapter->rx_ring, temp_rx, size);
745 		adapter->rx_ring_count = new_rx_count;
746 	}
747 
748 err_setup_rx:
749 	if (err && set_tx)
750 		e1000e_free_tx_resources(temp_tx);
751 err_setup:
752 	e1000e_up(adapter);
753 free_temp:
754 	vfree(temp_tx);
755 	vfree(temp_rx);
756 clear_reset:
757 	clear_bit(__E1000_RESETTING, &adapter->state);
758 	return err;
759 }
760 
reg_pattern_test(struct e1000_adapter * adapter,u64 * data,int reg,int offset,u32 mask,u32 write)761 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
762 			     int reg, int offset, u32 mask, u32 write)
763 {
764 	u32 pat, val;
765 	static const u32 test[] = {
766 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
767 	};
768 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
769 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
770 				      (test[pat] & write));
771 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
772 		if (val != (test[pat] & write & mask)) {
773 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
774 			      reg + (offset << 2), val,
775 			      (test[pat] & write & mask));
776 			*data = reg;
777 			return true;
778 		}
779 	}
780 	return false;
781 }
782 
reg_set_and_check(struct e1000_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)783 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
784 			      int reg, u32 mask, u32 write)
785 {
786 	u32 val;
787 
788 	__ew32(&adapter->hw, reg, write & mask);
789 	val = __er32(&adapter->hw, reg);
790 	if ((write & mask) != (val & mask)) {
791 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
792 		      reg, (val & mask), (write & mask));
793 		*data = reg;
794 		return true;
795 	}
796 	return false;
797 }
798 
799 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
800 	do {                                                                   \
801 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
802 			return 1;                                              \
803 	} while (0)
804 #define REG_PATTERN_TEST(reg, mask, write)                                     \
805 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
806 
807 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
808 	do {                                                                   \
809 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
810 			return 1;                                              \
811 	} while (0)
812 
e1000_reg_test(struct e1000_adapter * adapter,u64 * data)813 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
814 {
815 	struct e1000_hw *hw = &adapter->hw;
816 	struct e1000_mac_info *mac = &adapter->hw.mac;
817 	u32 value;
818 	u32 before;
819 	u32 after;
820 	u32 i;
821 	u32 toggle;
822 	u32 mask;
823 	u32 wlock_mac = 0;
824 
825 	/* The status register is Read Only, so a write should fail.
826 	 * Some bits that get toggled are ignored.  There are several bits
827 	 * on newer hardware that are r/w.
828 	 */
829 	switch (mac->type) {
830 	case e1000_82571:
831 	case e1000_82572:
832 	case e1000_80003es2lan:
833 		toggle = 0x7FFFF3FF;
834 		break;
835 	default:
836 		toggle = 0x7FFFF033;
837 		break;
838 	}
839 
840 	before = er32(STATUS);
841 	value = (er32(STATUS) & toggle);
842 	ew32(STATUS, toggle);
843 	after = er32(STATUS) & toggle;
844 	if (value != after) {
845 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
846 		      after, value);
847 		*data = 1;
848 		return 1;
849 	}
850 	/* restore previous status */
851 	ew32(STATUS, before);
852 
853 	if (!(adapter->flags & FLAG_IS_ICH)) {
854 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
855 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
856 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
857 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
858 	}
859 
860 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
861 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
862 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
863 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
864 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
865 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
866 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
867 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
868 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
869 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
870 
871 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
872 
873 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
874 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
875 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
876 
877 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
878 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
879 	if (!(adapter->flags & FLAG_IS_ICH))
880 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
881 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
882 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
883 	mask = 0x8003FFFF;
884 	switch (mac->type) {
885 	case e1000_ich10lan:
886 	case e1000_pchlan:
887 	case e1000_pch2lan:
888 	case e1000_pch_lpt:
889 	case e1000_pch_spt:
890 	case e1000_pch_cnp:
891 	case e1000_pch_tgp:
892 	case e1000_pch_adp:
893 	case e1000_pch_mtp:
894 	case e1000_pch_lnp:
895 	case e1000_pch_ptp:
896 	case e1000_pch_nvp:
897 		mask |= BIT(18);
898 		break;
899 	default:
900 		break;
901 	}
902 
903 	if (mac->type >= e1000_pch_lpt)
904 		wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM));
905 
906 	for (i = 0; i < mac->rar_entry_count; i++) {
907 		if (mac->type >= e1000_pch_lpt) {
908 			/* Cannot test write-protected SHRAL[n] registers */
909 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
910 				continue;
911 
912 			/* SHRAH[9] different than the others */
913 			if (i == 10)
914 				mask |= BIT(30);
915 			else
916 				mask &= ~BIT(30);
917 		}
918 		if (mac->type == e1000_pch2lan) {
919 			/* SHRAH[0,1,2] different than previous */
920 			if (i == 1)
921 				mask &= 0xFFF4FFFF;
922 			/* SHRAH[3] different than SHRAH[0,1,2] */
923 			if (i == 4)
924 				mask |= BIT(30);
925 			/* RAR[1-6] owned by management engine - skipping */
926 			if (i > 0)
927 				i += 6;
928 		}
929 
930 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
931 				       0xFFFFFFFF);
932 		/* reset index to actual value */
933 		if ((mac->type == e1000_pch2lan) && (i > 6))
934 			i -= 6;
935 	}
936 
937 	for (i = 0; i < mac->mta_reg_count; i++)
938 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
939 
940 	*data = 0;
941 
942 	return 0;
943 }
944 
e1000_eeprom_test(struct e1000_adapter * adapter,u64 * data)945 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
946 {
947 	u16 temp;
948 	u16 checksum = 0;
949 	u16 i;
950 
951 	*data = 0;
952 	/* Read and add up the contents of the EEPROM */
953 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
954 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
955 			*data = 1;
956 			return *data;
957 		}
958 		checksum += temp;
959 	}
960 
961 	/* If Checksum is not Correct return error else test passed */
962 	if ((checksum != (u16)NVM_SUM) && !(*data))
963 		*data = 2;
964 
965 	return *data;
966 }
967 
e1000_test_intr(int __always_unused irq,void * data)968 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
969 {
970 	struct net_device *netdev = (struct net_device *)data;
971 	struct e1000_adapter *adapter = netdev_priv(netdev);
972 	struct e1000_hw *hw = &adapter->hw;
973 
974 	adapter->test_icr |= er32(ICR);
975 
976 	return IRQ_HANDLED;
977 }
978 
e1000_intr_test(struct e1000_adapter * adapter,u64 * data)979 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
980 {
981 	struct net_device *netdev = adapter->netdev;
982 	struct e1000_hw *hw = &adapter->hw;
983 	u32 mask;
984 	u32 shared_int = 1;
985 	u32 irq = adapter->pdev->irq;
986 	int i;
987 	int ret_val = 0;
988 	int int_mode = E1000E_INT_MODE_LEGACY;
989 
990 	*data = 0;
991 
992 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
993 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
994 		int_mode = adapter->int_mode;
995 		e1000e_reset_interrupt_capability(adapter);
996 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
997 		e1000e_set_interrupt_capability(adapter);
998 	}
999 	/* Hook up test interrupt handler just for this test */
1000 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1001 			 netdev)) {
1002 		shared_int = 0;
1003 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1004 			       netdev)) {
1005 		*data = 1;
1006 		ret_val = -1;
1007 		goto out;
1008 	}
1009 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1010 
1011 	/* Disable all the interrupts */
1012 	ew32(IMC, 0xFFFFFFFF);
1013 	e1e_flush();
1014 	usleep_range(10000, 11000);
1015 
1016 	/* Test each interrupt */
1017 	for (i = 0; i < 10; i++) {
1018 		/* Interrupt to test */
1019 		mask = BIT(i);
1020 
1021 		if (adapter->flags & FLAG_IS_ICH) {
1022 			switch (mask) {
1023 			case E1000_ICR_RXSEQ:
1024 				continue;
1025 			case 0x00000100:
1026 				if (adapter->hw.mac.type == e1000_ich8lan ||
1027 				    adapter->hw.mac.type == e1000_ich9lan)
1028 					continue;
1029 				break;
1030 			default:
1031 				break;
1032 			}
1033 		}
1034 
1035 		if (!shared_int) {
1036 			/* Disable the interrupt to be reported in
1037 			 * the cause register and then force the same
1038 			 * interrupt and see if one gets posted.  If
1039 			 * an interrupt was posted to the bus, the
1040 			 * test failed.
1041 			 */
1042 			adapter->test_icr = 0;
1043 			ew32(IMC, mask);
1044 			ew32(ICS, mask);
1045 			e1e_flush();
1046 			usleep_range(10000, 11000);
1047 
1048 			if (adapter->test_icr & mask) {
1049 				*data = 3;
1050 				break;
1051 			}
1052 		}
1053 
1054 		/* Enable the interrupt to be reported in
1055 		 * the cause register and then force the same
1056 		 * interrupt and see if one gets posted.  If
1057 		 * an interrupt was not posted to the bus, the
1058 		 * test failed.
1059 		 */
1060 		adapter->test_icr = 0;
1061 		ew32(IMS, mask);
1062 		ew32(ICS, mask);
1063 		e1e_flush();
1064 		usleep_range(10000, 11000);
1065 
1066 		if (!(adapter->test_icr & mask)) {
1067 			*data = 4;
1068 			break;
1069 		}
1070 
1071 		if (!shared_int) {
1072 			/* Disable the other interrupts to be reported in
1073 			 * the cause register and then force the other
1074 			 * interrupts and see if any get posted.  If
1075 			 * an interrupt was posted to the bus, the
1076 			 * test failed.
1077 			 */
1078 			adapter->test_icr = 0;
1079 			ew32(IMC, ~mask & 0x00007FFF);
1080 			ew32(ICS, ~mask & 0x00007FFF);
1081 			e1e_flush();
1082 			usleep_range(10000, 11000);
1083 
1084 			if (adapter->test_icr) {
1085 				*data = 5;
1086 				break;
1087 			}
1088 		}
1089 	}
1090 
1091 	/* Disable all the interrupts */
1092 	ew32(IMC, 0xFFFFFFFF);
1093 	e1e_flush();
1094 	usleep_range(10000, 11000);
1095 
1096 	/* Unhook test interrupt handler */
1097 	free_irq(irq, netdev);
1098 
1099 out:
1100 	if (int_mode == E1000E_INT_MODE_MSIX) {
1101 		e1000e_reset_interrupt_capability(adapter);
1102 		adapter->int_mode = int_mode;
1103 		e1000e_set_interrupt_capability(adapter);
1104 	}
1105 
1106 	return ret_val;
1107 }
1108 
e1000_free_desc_rings(struct e1000_adapter * adapter)1109 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1110 {
1111 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1112 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1113 	struct pci_dev *pdev = adapter->pdev;
1114 	struct e1000_buffer *buffer_info;
1115 	int i;
1116 
1117 	if (tx_ring->desc && tx_ring->buffer_info) {
1118 		for (i = 0; i < tx_ring->count; i++) {
1119 			buffer_info = &tx_ring->buffer_info[i];
1120 
1121 			if (buffer_info->dma)
1122 				dma_unmap_single(&pdev->dev,
1123 						 buffer_info->dma,
1124 						 buffer_info->length,
1125 						 DMA_TO_DEVICE);
1126 			dev_kfree_skb(buffer_info->skb);
1127 		}
1128 	}
1129 
1130 	if (rx_ring->desc && rx_ring->buffer_info) {
1131 		for (i = 0; i < rx_ring->count; i++) {
1132 			buffer_info = &rx_ring->buffer_info[i];
1133 
1134 			if (buffer_info->dma)
1135 				dma_unmap_single(&pdev->dev,
1136 						 buffer_info->dma,
1137 						 2048, DMA_FROM_DEVICE);
1138 			dev_kfree_skb(buffer_info->skb);
1139 		}
1140 	}
1141 
1142 	if (tx_ring->desc) {
1143 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1144 				  tx_ring->dma);
1145 		tx_ring->desc = NULL;
1146 	}
1147 	if (rx_ring->desc) {
1148 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1149 				  rx_ring->dma);
1150 		rx_ring->desc = NULL;
1151 	}
1152 
1153 	kfree(tx_ring->buffer_info);
1154 	tx_ring->buffer_info = NULL;
1155 	kfree(rx_ring->buffer_info);
1156 	rx_ring->buffer_info = NULL;
1157 }
1158 
e1000_setup_desc_rings(struct e1000_adapter * adapter)1159 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1160 {
1161 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1162 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1163 	struct pci_dev *pdev = adapter->pdev;
1164 	struct e1000_hw *hw = &adapter->hw;
1165 	u32 rctl;
1166 	int i;
1167 	int ret_val;
1168 
1169 	/* Setup Tx descriptor ring and Tx buffers */
1170 
1171 	if (!tx_ring->count)
1172 		tx_ring->count = E1000_DEFAULT_TXD;
1173 
1174 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1175 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1176 	if (!tx_ring->buffer_info) {
1177 		ret_val = 1;
1178 		goto err_nomem;
1179 	}
1180 
1181 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1182 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1183 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1184 					   &tx_ring->dma, GFP_KERNEL);
1185 	if (!tx_ring->desc) {
1186 		ret_val = 2;
1187 		goto err_nomem;
1188 	}
1189 	tx_ring->next_to_use = 0;
1190 	tx_ring->next_to_clean = 0;
1191 
1192 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1193 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1194 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1195 	ew32(TDH(0), 0);
1196 	ew32(TDT(0), 0);
1197 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1198 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1199 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1200 
1201 	for (i = 0; i < tx_ring->count; i++) {
1202 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1203 		struct sk_buff *skb;
1204 		unsigned int skb_size = 1024;
1205 
1206 		skb = alloc_skb(skb_size, GFP_KERNEL);
1207 		if (!skb) {
1208 			ret_val = 3;
1209 			goto err_nomem;
1210 		}
1211 		skb_put(skb, skb_size);
1212 		tx_ring->buffer_info[i].skb = skb;
1213 		tx_ring->buffer_info[i].length = skb->len;
1214 		tx_ring->buffer_info[i].dma =
1215 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1216 				   DMA_TO_DEVICE);
1217 		if (dma_mapping_error(&pdev->dev,
1218 				      tx_ring->buffer_info[i].dma)) {
1219 			ret_val = 4;
1220 			goto err_nomem;
1221 		}
1222 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1223 		tx_desc->lower.data = cpu_to_le32(skb->len);
1224 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1225 						   E1000_TXD_CMD_IFCS |
1226 						   E1000_TXD_CMD_RS);
1227 		tx_desc->upper.data = 0;
1228 	}
1229 
1230 	/* Setup Rx descriptor ring and Rx buffers */
1231 
1232 	if (!rx_ring->count)
1233 		rx_ring->count = E1000_DEFAULT_RXD;
1234 
1235 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1236 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1237 	if (!rx_ring->buffer_info) {
1238 		ret_val = 5;
1239 		goto err_nomem;
1240 	}
1241 
1242 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1243 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1244 					   &rx_ring->dma, GFP_KERNEL);
1245 	if (!rx_ring->desc) {
1246 		ret_val = 6;
1247 		goto err_nomem;
1248 	}
1249 	rx_ring->next_to_use = 0;
1250 	rx_ring->next_to_clean = 0;
1251 
1252 	rctl = er32(RCTL);
1253 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1254 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1255 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1256 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1257 	ew32(RDLEN(0), rx_ring->size);
1258 	ew32(RDH(0), 0);
1259 	ew32(RDT(0), 0);
1260 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1261 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1262 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1263 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1264 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1265 	ew32(RCTL, rctl);
1266 
1267 	for (i = 0; i < rx_ring->count; i++) {
1268 		union e1000_rx_desc_extended *rx_desc;
1269 		struct sk_buff *skb;
1270 
1271 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1272 		if (!skb) {
1273 			ret_val = 7;
1274 			goto err_nomem;
1275 		}
1276 		skb_reserve(skb, NET_IP_ALIGN);
1277 		rx_ring->buffer_info[i].skb = skb;
1278 		rx_ring->buffer_info[i].dma =
1279 		    dma_map_single(&pdev->dev, skb->data, 2048,
1280 				   DMA_FROM_DEVICE);
1281 		if (dma_mapping_error(&pdev->dev,
1282 				      rx_ring->buffer_info[i].dma)) {
1283 			ret_val = 8;
1284 			goto err_nomem;
1285 		}
1286 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1287 		rx_desc->read.buffer_addr =
1288 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1289 		memset(skb->data, 0x00, skb->len);
1290 	}
1291 
1292 	return 0;
1293 
1294 err_nomem:
1295 	e1000_free_desc_rings(adapter);
1296 	return ret_val;
1297 }
1298 
e1000_phy_disable_receiver(struct e1000_adapter * adapter)1299 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1300 {
1301 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1302 	e1e_wphy(&adapter->hw, 29, 0x001F);
1303 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1304 	e1e_wphy(&adapter->hw, 29, 0x001A);
1305 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1306 }
1307 
e1000_integrated_phy_loopback(struct e1000_adapter * adapter)1308 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1309 {
1310 	struct e1000_hw *hw = &adapter->hw;
1311 	u32 ctrl_reg = 0;
1312 	u16 phy_reg = 0;
1313 	s32 ret_val = 0;
1314 
1315 	hw->mac.autoneg = 0;
1316 
1317 	if (hw->phy.type == e1000_phy_ife) {
1318 		/* force 100, set loopback */
1319 		e1e_wphy(hw, MII_BMCR, 0x6100);
1320 
1321 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1322 		ctrl_reg = er32(CTRL);
1323 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1324 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1325 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1326 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1327 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1328 
1329 		ew32(CTRL, ctrl_reg);
1330 		e1e_flush();
1331 		usleep_range(500, 1000);
1332 
1333 		return 0;
1334 	}
1335 
1336 	/* Specific PHY configuration for loopback */
1337 	switch (hw->phy.type) {
1338 	case e1000_phy_m88:
1339 		/* Auto-MDI/MDIX Off */
1340 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1341 		/* reset to update Auto-MDI/MDIX */
1342 		e1e_wphy(hw, MII_BMCR, 0x9140);
1343 		/* autoneg off */
1344 		e1e_wphy(hw, MII_BMCR, 0x8140);
1345 		break;
1346 	case e1000_phy_gg82563:
1347 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1348 		break;
1349 	case e1000_phy_bm:
1350 		/* Set Default MAC Interface speed to 1GB */
1351 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1352 		phy_reg &= ~0x0007;
1353 		phy_reg |= 0x006;
1354 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1355 		/* Assert SW reset for above settings to take effect */
1356 		hw->phy.ops.commit(hw);
1357 		usleep_range(1000, 2000);
1358 		/* Force Full Duplex */
1359 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1360 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1361 		/* Set Link Up (in force link) */
1362 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1363 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1364 		/* Force Link */
1365 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1366 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1367 		/* Set Early Link Enable */
1368 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1369 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1370 		break;
1371 	case e1000_phy_82577:
1372 	case e1000_phy_82578:
1373 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1374 		ret_val = hw->phy.ops.acquire(hw);
1375 		if (ret_val) {
1376 			e_err("Cannot setup 1Gbps loopback.\n");
1377 			return ret_val;
1378 		}
1379 		e1000_configure_k1_ich8lan(hw, false);
1380 		hw->phy.ops.release(hw);
1381 		break;
1382 	case e1000_phy_82579:
1383 		/* Disable PHY energy detect power down */
1384 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1385 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1386 		/* Disable full chip energy detect */
1387 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1388 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1389 		/* Enable loopback on the PHY */
1390 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1391 		break;
1392 	default:
1393 		break;
1394 	}
1395 
1396 	/* force 1000, set loopback */
1397 	e1e_wphy(hw, MII_BMCR, 0x4140);
1398 	msleep(250);
1399 
1400 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1401 	ctrl_reg = er32(CTRL);
1402 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1403 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1404 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1405 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1406 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1407 
1408 	if (adapter->flags & FLAG_IS_ICH)
1409 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1410 
1411 	if (hw->phy.media_type == e1000_media_type_copper &&
1412 	    hw->phy.type == e1000_phy_m88) {
1413 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1414 	} else {
1415 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1416 		 * detected.
1417 		 */
1418 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1419 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1420 	}
1421 
1422 	ew32(CTRL, ctrl_reg);
1423 
1424 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1425 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1426 	 */
1427 	if (hw->phy.type == e1000_phy_m88)
1428 		e1000_phy_disable_receiver(adapter);
1429 
1430 	usleep_range(500, 1000);
1431 
1432 	return 0;
1433 }
1434 
e1000_set_82571_fiber_loopback(struct e1000_adapter * adapter)1435 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1436 {
1437 	struct e1000_hw *hw = &adapter->hw;
1438 	u32 ctrl = er32(CTRL);
1439 	int link;
1440 
1441 	/* special requirements for 82571/82572 fiber adapters */
1442 
1443 	/* jump through hoops to make sure link is up because serdes
1444 	 * link is hardwired up
1445 	 */
1446 	ctrl |= E1000_CTRL_SLU;
1447 	ew32(CTRL, ctrl);
1448 
1449 	/* disable autoneg */
1450 	ctrl = er32(TXCW);
1451 	ctrl &= ~BIT(31);
1452 	ew32(TXCW, ctrl);
1453 
1454 	link = (er32(STATUS) & E1000_STATUS_LU);
1455 
1456 	if (!link) {
1457 		/* set invert loss of signal */
1458 		ctrl = er32(CTRL);
1459 		ctrl |= E1000_CTRL_ILOS;
1460 		ew32(CTRL, ctrl);
1461 	}
1462 
1463 	/* special write to serdes control register to enable SerDes analog
1464 	 * loopback
1465 	 */
1466 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1467 	e1e_flush();
1468 	usleep_range(10000, 11000);
1469 
1470 	return 0;
1471 }
1472 
1473 /* only call this for fiber/serdes connections to es2lan */
e1000_set_es2lan_mac_loopback(struct e1000_adapter * adapter)1474 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1475 {
1476 	struct e1000_hw *hw = &adapter->hw;
1477 	u32 ctrlext = er32(CTRL_EXT);
1478 	u32 ctrl = er32(CTRL);
1479 
1480 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1481 	 * on mac_type 80003es2lan)
1482 	 */
1483 	adapter->tx_fifo_head = ctrlext;
1484 
1485 	/* clear the serdes mode bits, putting the device into mac loopback */
1486 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1487 	ew32(CTRL_EXT, ctrlext);
1488 
1489 	/* force speed to 1000/FD, link up */
1490 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1491 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1492 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1493 	ew32(CTRL, ctrl);
1494 
1495 	/* set mac loopback */
1496 	ctrl = er32(RCTL);
1497 	ctrl |= E1000_RCTL_LBM_MAC;
1498 	ew32(RCTL, ctrl);
1499 
1500 	/* set testing mode parameters (no need to reset later) */
1501 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1502 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1503 	ew32(KMRNCTRLSTA,
1504 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1505 
1506 	return 0;
1507 }
1508 
e1000_setup_loopback_test(struct e1000_adapter * adapter)1509 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1510 {
1511 	struct e1000_hw *hw = &adapter->hw;
1512 	u32 rctl, fext_nvm11, tarc0;
1513 
1514 	if (hw->mac.type >= e1000_pch_spt) {
1515 		fext_nvm11 = er32(FEXTNVM11);
1516 		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1517 		ew32(FEXTNVM11, fext_nvm11);
1518 		tarc0 = er32(TARC(0));
1519 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1520 		tarc0 &= 0xcfffffff;
1521 		/* set bit 29 (value of MULR requests is now 2) */
1522 		tarc0 |= 0x20000000;
1523 		ew32(TARC(0), tarc0);
1524 	}
1525 	if (hw->phy.media_type == e1000_media_type_fiber ||
1526 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1527 		switch (hw->mac.type) {
1528 		case e1000_80003es2lan:
1529 			return e1000_set_es2lan_mac_loopback(adapter);
1530 		case e1000_82571:
1531 		case e1000_82572:
1532 			return e1000_set_82571_fiber_loopback(adapter);
1533 		default:
1534 			rctl = er32(RCTL);
1535 			rctl |= E1000_RCTL_LBM_TCVR;
1536 			ew32(RCTL, rctl);
1537 			return 0;
1538 		}
1539 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1540 		return e1000_integrated_phy_loopback(adapter);
1541 	}
1542 
1543 	return 7;
1544 }
1545 
e1000_loopback_cleanup(struct e1000_adapter * adapter)1546 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1547 {
1548 	struct e1000_hw *hw = &adapter->hw;
1549 	u32 rctl, fext_nvm11, tarc0;
1550 	u16 phy_reg;
1551 
1552 	rctl = er32(RCTL);
1553 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1554 	ew32(RCTL, rctl);
1555 
1556 	switch (hw->mac.type) {
1557 	case e1000_pch_spt:
1558 	case e1000_pch_cnp:
1559 	case e1000_pch_tgp:
1560 	case e1000_pch_adp:
1561 	case e1000_pch_mtp:
1562 	case e1000_pch_lnp:
1563 	case e1000_pch_ptp:
1564 	case e1000_pch_nvp:
1565 		fext_nvm11 = er32(FEXTNVM11);
1566 		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1567 		ew32(FEXTNVM11, fext_nvm11);
1568 		tarc0 = er32(TARC(0));
1569 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1570 		/* set bit 29 (value of MULR requests is now 0) */
1571 		tarc0 &= 0xcfffffff;
1572 		ew32(TARC(0), tarc0);
1573 		fallthrough;
1574 	case e1000_80003es2lan:
1575 		if (hw->phy.media_type == e1000_media_type_fiber ||
1576 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1577 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1578 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1579 			adapter->tx_fifo_head = 0;
1580 		}
1581 		fallthrough;
1582 	case e1000_82571:
1583 	case e1000_82572:
1584 		if (hw->phy.media_type == e1000_media_type_fiber ||
1585 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1586 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1587 			e1e_flush();
1588 			usleep_range(10000, 11000);
1589 			break;
1590 		}
1591 		fallthrough;
1592 	default:
1593 		hw->mac.autoneg = 1;
1594 		if (hw->phy.type == e1000_phy_gg82563)
1595 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1596 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1597 		if (phy_reg & BMCR_LOOPBACK) {
1598 			phy_reg &= ~BMCR_LOOPBACK;
1599 			e1e_wphy(hw, MII_BMCR, phy_reg);
1600 			if (hw->phy.ops.commit)
1601 				hw->phy.ops.commit(hw);
1602 		}
1603 		break;
1604 	}
1605 }
1606 
e1000_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1607 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1608 				      unsigned int frame_size)
1609 {
1610 	memset(skb->data, 0xFF, frame_size);
1611 	frame_size &= ~1;
1612 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1613 	skb->data[frame_size / 2 + 10] = 0xBE;
1614 	skb->data[frame_size / 2 + 12] = 0xAF;
1615 }
1616 
e1000_check_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1617 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1618 				    unsigned int frame_size)
1619 {
1620 	frame_size &= ~1;
1621 	if (*(skb->data + 3) == 0xFF)
1622 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1623 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1624 			return 0;
1625 	return 13;
1626 }
1627 
e1000_run_loopback_test(struct e1000_adapter * adapter)1628 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1629 {
1630 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1631 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1632 	struct pci_dev *pdev = adapter->pdev;
1633 	struct e1000_hw *hw = &adapter->hw;
1634 	struct e1000_buffer *buffer_info;
1635 	int i, j, k, l;
1636 	int lc;
1637 	int good_cnt;
1638 	int ret_val = 0;
1639 	unsigned long time;
1640 
1641 	ew32(RDT(0), rx_ring->count - 1);
1642 
1643 	/* Calculate the loop count based on the largest descriptor ring
1644 	 * The idea is to wrap the largest ring a number of times using 64
1645 	 * send/receive pairs during each loop
1646 	 */
1647 
1648 	if (rx_ring->count <= tx_ring->count)
1649 		lc = ((tx_ring->count / 64) * 2) + 1;
1650 	else
1651 		lc = ((rx_ring->count / 64) * 2) + 1;
1652 
1653 	k = 0;
1654 	l = 0;
1655 	/* loop count loop */
1656 	for (j = 0; j <= lc; j++) {
1657 		/* send the packets */
1658 		for (i = 0; i < 64; i++) {
1659 			buffer_info = &tx_ring->buffer_info[k];
1660 
1661 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1662 			dma_sync_single_for_device(&pdev->dev,
1663 						   buffer_info->dma,
1664 						   buffer_info->length,
1665 						   DMA_TO_DEVICE);
1666 			k++;
1667 			if (k == tx_ring->count)
1668 				k = 0;
1669 		}
1670 		ew32(TDT(0), k);
1671 		e1e_flush();
1672 		msleep(200);
1673 		time = jiffies;	/* set the start time for the receive */
1674 		good_cnt = 0;
1675 		/* receive the sent packets */
1676 		do {
1677 			buffer_info = &rx_ring->buffer_info[l];
1678 
1679 			dma_sync_single_for_cpu(&pdev->dev,
1680 						buffer_info->dma, 2048,
1681 						DMA_FROM_DEVICE);
1682 
1683 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1684 							   1024);
1685 			if (!ret_val)
1686 				good_cnt++;
1687 			l++;
1688 			if (l == rx_ring->count)
1689 				l = 0;
1690 			/* time + 20 msecs (200 msecs on 2.4) is more than
1691 			 * enough time to complete the receives, if it's
1692 			 * exceeded, break and error off
1693 			 */
1694 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1695 		if (good_cnt != 64) {
1696 			ret_val = 13;	/* ret_val is the same as mis-compare */
1697 			break;
1698 		}
1699 		if (time_after(jiffies, time + 20)) {
1700 			ret_val = 14;	/* error code for time out error */
1701 			break;
1702 		}
1703 	}
1704 	return ret_val;
1705 }
1706 
e1000_loopback_test(struct e1000_adapter * adapter,u64 * data)1707 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1708 {
1709 	struct e1000_hw *hw = &adapter->hw;
1710 
1711 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1712 	if (hw->phy.ops.check_reset_block &&
1713 	    hw->phy.ops.check_reset_block(hw)) {
1714 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1715 		*data = 0;
1716 		goto out;
1717 	}
1718 
1719 	*data = e1000_setup_desc_rings(adapter);
1720 	if (*data)
1721 		goto out;
1722 
1723 	*data = e1000_setup_loopback_test(adapter);
1724 	if (*data)
1725 		goto err_loopback;
1726 
1727 	*data = e1000_run_loopback_test(adapter);
1728 	e1000_loopback_cleanup(adapter);
1729 
1730 err_loopback:
1731 	e1000_free_desc_rings(adapter);
1732 out:
1733 	return *data;
1734 }
1735 
e1000_link_test(struct e1000_adapter * adapter,u64 * data)1736 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1737 {
1738 	struct e1000_hw *hw = &adapter->hw;
1739 
1740 	*data = 0;
1741 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1742 		int i = 0;
1743 
1744 		hw->mac.serdes_has_link = false;
1745 
1746 		/* On some blade server designs, link establishment
1747 		 * could take as long as 2-3 minutes
1748 		 */
1749 		do {
1750 			hw->mac.ops.check_for_link(hw);
1751 			if (hw->mac.serdes_has_link)
1752 				return *data;
1753 			msleep(20);
1754 		} while (i++ < 3750);
1755 
1756 		*data = 1;
1757 	} else {
1758 		hw->mac.ops.check_for_link(hw);
1759 		if (hw->mac.autoneg)
1760 			/* On some Phy/switch combinations, link establishment
1761 			 * can take a few seconds more than expected.
1762 			 */
1763 			msleep_interruptible(5000);
1764 
1765 		if (!(er32(STATUS) & E1000_STATUS_LU))
1766 			*data = 1;
1767 	}
1768 	return *data;
1769 }
1770 
e1000e_get_sset_count(struct net_device __always_unused * netdev,int sset)1771 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1772 				 int sset)
1773 {
1774 	switch (sset) {
1775 	case ETH_SS_TEST:
1776 		return E1000_TEST_LEN;
1777 	case ETH_SS_STATS:
1778 		return E1000_STATS_LEN;
1779 	case ETH_SS_PRIV_FLAGS:
1780 		return E1000E_PRIV_FLAGS_STR_LEN;
1781 	default:
1782 		return -EOPNOTSUPP;
1783 	}
1784 }
1785 
e1000_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1786 static void e1000_diag_test(struct net_device *netdev,
1787 			    struct ethtool_test *eth_test, u64 *data)
1788 {
1789 	struct e1000_adapter *adapter = netdev_priv(netdev);
1790 	u16 autoneg_advertised;
1791 	u8 forced_speed_duplex;
1792 	u8 autoneg;
1793 	bool if_running = netif_running(netdev);
1794 
1795 	set_bit(__E1000_TESTING, &adapter->state);
1796 
1797 	if (!if_running) {
1798 		/* Get control of and reset hardware */
1799 		if (adapter->flags & FLAG_HAS_AMT)
1800 			e1000e_get_hw_control(adapter);
1801 
1802 		e1000e_power_up_phy(adapter);
1803 
1804 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1805 		e1000e_reset(adapter);
1806 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1807 	}
1808 
1809 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1810 		/* Offline tests */
1811 
1812 		/* save speed, duplex, autoneg settings */
1813 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1814 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1815 		autoneg = adapter->hw.mac.autoneg;
1816 
1817 		e_info("offline testing starting\n");
1818 
1819 		if (if_running)
1820 			/* indicate we're in test mode */
1821 			e1000e_close(netdev);
1822 
1823 		if (e1000_reg_test(adapter, &data[0]))
1824 			eth_test->flags |= ETH_TEST_FL_FAILED;
1825 
1826 		e1000e_reset(adapter);
1827 		if (e1000_eeprom_test(adapter, &data[1]))
1828 			eth_test->flags |= ETH_TEST_FL_FAILED;
1829 
1830 		e1000e_reset(adapter);
1831 		if (e1000_intr_test(adapter, &data[2]))
1832 			eth_test->flags |= ETH_TEST_FL_FAILED;
1833 
1834 		e1000e_reset(adapter);
1835 		if (e1000_loopback_test(adapter, &data[3]))
1836 			eth_test->flags |= ETH_TEST_FL_FAILED;
1837 
1838 		/* force this routine to wait until autoneg complete/timeout */
1839 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1840 		e1000e_reset(adapter);
1841 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1842 
1843 		if (e1000_link_test(adapter, &data[4]))
1844 			eth_test->flags |= ETH_TEST_FL_FAILED;
1845 
1846 		/* restore speed, duplex, autoneg settings */
1847 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1848 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1849 		adapter->hw.mac.autoneg = autoneg;
1850 		e1000e_reset(adapter);
1851 
1852 		clear_bit(__E1000_TESTING, &adapter->state);
1853 		if (if_running)
1854 			e1000e_open(netdev);
1855 	} else {
1856 		/* Online tests */
1857 
1858 		e_info("online testing starting\n");
1859 
1860 		/* register, eeprom, intr and loopback tests not run online */
1861 		data[0] = 0;
1862 		data[1] = 0;
1863 		data[2] = 0;
1864 		data[3] = 0;
1865 
1866 		if (e1000_link_test(adapter, &data[4]))
1867 			eth_test->flags |= ETH_TEST_FL_FAILED;
1868 
1869 		clear_bit(__E1000_TESTING, &adapter->state);
1870 	}
1871 
1872 	if (!if_running) {
1873 		e1000e_reset(adapter);
1874 
1875 		if (adapter->flags & FLAG_HAS_AMT)
1876 			e1000e_release_hw_control(adapter);
1877 	}
1878 
1879 	msleep_interruptible(4 * 1000);
1880 }
1881 
e1000_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1882 static void e1000_get_wol(struct net_device *netdev,
1883 			  struct ethtool_wolinfo *wol)
1884 {
1885 	struct e1000_adapter *adapter = netdev_priv(netdev);
1886 
1887 	wol->supported = 0;
1888 	wol->wolopts = 0;
1889 
1890 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1891 	    !device_can_wakeup(&adapter->pdev->dev))
1892 		return;
1893 
1894 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1895 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1896 
1897 	/* apply any specific unsupported masks here */
1898 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1899 		wol->supported &= ~WAKE_UCAST;
1900 
1901 		if (adapter->wol & E1000_WUFC_EX)
1902 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1903 	}
1904 
1905 	if (adapter->wol & E1000_WUFC_EX)
1906 		wol->wolopts |= WAKE_UCAST;
1907 	if (adapter->wol & E1000_WUFC_MC)
1908 		wol->wolopts |= WAKE_MCAST;
1909 	if (adapter->wol & E1000_WUFC_BC)
1910 		wol->wolopts |= WAKE_BCAST;
1911 	if (adapter->wol & E1000_WUFC_MAG)
1912 		wol->wolopts |= WAKE_MAGIC;
1913 	if (adapter->wol & E1000_WUFC_LNKC)
1914 		wol->wolopts |= WAKE_PHY;
1915 }
1916 
e1000_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1917 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1918 {
1919 	struct e1000_adapter *adapter = netdev_priv(netdev);
1920 
1921 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1922 	    !device_can_wakeup(&adapter->pdev->dev) ||
1923 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1924 			      WAKE_MAGIC | WAKE_PHY)))
1925 		return -EOPNOTSUPP;
1926 
1927 	/* these settings will always override what we currently have */
1928 	adapter->wol = 0;
1929 
1930 	if (wol->wolopts & WAKE_UCAST)
1931 		adapter->wol |= E1000_WUFC_EX;
1932 	if (wol->wolopts & WAKE_MCAST)
1933 		adapter->wol |= E1000_WUFC_MC;
1934 	if (wol->wolopts & WAKE_BCAST)
1935 		adapter->wol |= E1000_WUFC_BC;
1936 	if (wol->wolopts & WAKE_MAGIC)
1937 		adapter->wol |= E1000_WUFC_MAG;
1938 	if (wol->wolopts & WAKE_PHY)
1939 		adapter->wol |= E1000_WUFC_LNKC;
1940 
1941 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1942 
1943 	return 0;
1944 }
1945 
e1000_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1946 static int e1000_set_phys_id(struct net_device *netdev,
1947 			     enum ethtool_phys_id_state state)
1948 {
1949 	struct e1000_adapter *adapter = netdev_priv(netdev);
1950 	struct e1000_hw *hw = &adapter->hw;
1951 
1952 	switch (state) {
1953 	case ETHTOOL_ID_ACTIVE:
1954 		pm_runtime_get_sync(netdev->dev.parent);
1955 
1956 		if (!hw->mac.ops.blink_led)
1957 			return 2;	/* cycle on/off twice per second */
1958 
1959 		hw->mac.ops.blink_led(hw);
1960 		break;
1961 
1962 	case ETHTOOL_ID_INACTIVE:
1963 		if (hw->phy.type == e1000_phy_ife)
1964 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1965 		hw->mac.ops.led_off(hw);
1966 		hw->mac.ops.cleanup_led(hw);
1967 		pm_runtime_put_sync(netdev->dev.parent);
1968 		break;
1969 
1970 	case ETHTOOL_ID_ON:
1971 		hw->mac.ops.led_on(hw);
1972 		break;
1973 
1974 	case ETHTOOL_ID_OFF:
1975 		hw->mac.ops.led_off(hw);
1976 		break;
1977 	}
1978 
1979 	return 0;
1980 }
1981 
e1000_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1982 static int e1000_get_coalesce(struct net_device *netdev,
1983 			      struct ethtool_coalesce *ec,
1984 			      struct kernel_ethtool_coalesce *kernel_coal,
1985 			      struct netlink_ext_ack *extack)
1986 {
1987 	struct e1000_adapter *adapter = netdev_priv(netdev);
1988 
1989 	if (adapter->itr_setting <= 4)
1990 		ec->rx_coalesce_usecs = adapter->itr_setting;
1991 	else
1992 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1993 
1994 	return 0;
1995 }
1996 
e1000_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1997 static int e1000_set_coalesce(struct net_device *netdev,
1998 			      struct ethtool_coalesce *ec,
1999 			      struct kernel_ethtool_coalesce *kernel_coal,
2000 			      struct netlink_ext_ack *extack)
2001 {
2002 	struct e1000_adapter *adapter = netdev_priv(netdev);
2003 
2004 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2005 	    ((ec->rx_coalesce_usecs > 4) &&
2006 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2007 	    (ec->rx_coalesce_usecs == 2))
2008 		return -EINVAL;
2009 
2010 	if (ec->rx_coalesce_usecs == 4) {
2011 		adapter->itr_setting = 4;
2012 		adapter->itr = adapter->itr_setting;
2013 	} else if (ec->rx_coalesce_usecs <= 3) {
2014 		adapter->itr = 20000;
2015 		adapter->itr_setting = ec->rx_coalesce_usecs;
2016 	} else {
2017 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2018 		adapter->itr_setting = adapter->itr & ~3;
2019 	}
2020 
2021 	if (adapter->itr_setting != 0)
2022 		e1000e_write_itr(adapter, adapter->itr);
2023 	else
2024 		e1000e_write_itr(adapter, 0);
2025 
2026 	return 0;
2027 }
2028 
e1000_nway_reset(struct net_device * netdev)2029 static int e1000_nway_reset(struct net_device *netdev)
2030 {
2031 	struct e1000_adapter *adapter = netdev_priv(netdev);
2032 
2033 	if (!netif_running(netdev))
2034 		return -EAGAIN;
2035 
2036 	if (!adapter->hw.mac.autoneg)
2037 		return -EINVAL;
2038 
2039 	e1000e_reinit_locked(adapter);
2040 
2041 	return 0;
2042 }
2043 
e1000_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data)2044 static void e1000_get_ethtool_stats(struct net_device *netdev,
2045 				    struct ethtool_stats __always_unused *stats,
2046 				    u64 *data)
2047 {
2048 	struct e1000_adapter *adapter = netdev_priv(netdev);
2049 	struct rtnl_link_stats64 net_stats;
2050 	int i;
2051 	char *p = NULL;
2052 
2053 	dev_get_stats(netdev, &net_stats);
2054 
2055 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2056 		switch (e1000_gstrings_stats[i].type) {
2057 		case NETDEV_STATS:
2058 			p = (char *)&net_stats +
2059 			    e1000_gstrings_stats[i].stat_offset;
2060 			break;
2061 		case E1000_STATS:
2062 			p = (char *)adapter +
2063 			    e1000_gstrings_stats[i].stat_offset;
2064 			break;
2065 		default:
2066 			data[i] = 0;
2067 			continue;
2068 		}
2069 
2070 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2071 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2072 	}
2073 }
2074 
e1000_get_strings(struct net_device __always_unused * netdev,u32 stringset,u8 * data)2075 static void e1000_get_strings(struct net_device __always_unused *netdev,
2076 			      u32 stringset, u8 *data)
2077 {
2078 	u8 *p = data;
2079 	int i;
2080 
2081 	switch (stringset) {
2082 	case ETH_SS_TEST:
2083 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2084 		break;
2085 	case ETH_SS_STATS:
2086 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2087 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2088 			       ETH_GSTRING_LEN);
2089 			p += ETH_GSTRING_LEN;
2090 		}
2091 		break;
2092 	case ETH_SS_PRIV_FLAGS:
2093 		memcpy(data, e1000e_priv_flags_strings,
2094 		       E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2095 		break;
2096 	}
2097 }
2098 
e1000_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * info,u32 __always_unused * rule_locs)2099 static int e1000_get_rxnfc(struct net_device *netdev,
2100 			   struct ethtool_rxnfc *info,
2101 			   u32 __always_unused *rule_locs)
2102 {
2103 	info->data = 0;
2104 
2105 	switch (info->cmd) {
2106 	case ETHTOOL_GRXFH: {
2107 		struct e1000_adapter *adapter = netdev_priv(netdev);
2108 		struct e1000_hw *hw = &adapter->hw;
2109 		u32 mrqc;
2110 
2111 		mrqc = er32(MRQC);
2112 
2113 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2114 			return 0;
2115 
2116 		switch (info->flow_type) {
2117 		case TCP_V4_FLOW:
2118 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2119 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2120 			fallthrough;
2121 		case UDP_V4_FLOW:
2122 		case SCTP_V4_FLOW:
2123 		case AH_ESP_V4_FLOW:
2124 		case IPV4_FLOW:
2125 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2126 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2127 			break;
2128 		case TCP_V6_FLOW:
2129 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2130 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2131 			fallthrough;
2132 		case UDP_V6_FLOW:
2133 		case SCTP_V6_FLOW:
2134 		case AH_ESP_V6_FLOW:
2135 		case IPV6_FLOW:
2136 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2137 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2138 			break;
2139 		default:
2140 			break;
2141 		}
2142 		return 0;
2143 	}
2144 	default:
2145 		return -EOPNOTSUPP;
2146 	}
2147 }
2148 
e1000e_get_eee(struct net_device * netdev,struct ethtool_keee * edata)2149 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_keee *edata)
2150 {
2151 	struct e1000_adapter *adapter = netdev_priv(netdev);
2152 	struct e1000_hw *hw = &adapter->hw;
2153 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2154 	u32 ret_val;
2155 
2156 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2157 		return -EOPNOTSUPP;
2158 
2159 	switch (hw->phy.type) {
2160 	case e1000_phy_82579:
2161 		cap_addr = I82579_EEE_CAPABILITY;
2162 		lpa_addr = I82579_EEE_LP_ABILITY;
2163 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2164 		break;
2165 	case e1000_phy_i217:
2166 		cap_addr = I217_EEE_CAPABILITY;
2167 		lpa_addr = I217_EEE_LP_ABILITY;
2168 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2169 		break;
2170 	default:
2171 		return -EOPNOTSUPP;
2172 	}
2173 
2174 	ret_val = hw->phy.ops.acquire(hw);
2175 	if (ret_val)
2176 		return -EBUSY;
2177 
2178 	/* EEE Capability */
2179 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2180 	if (ret_val)
2181 		goto release;
2182 	mii_eee_cap1_mod_linkmode_t(edata->supported, phy_data);
2183 
2184 	/* EEE Advertised */
2185 	mii_eee_cap1_mod_linkmode_t(edata->advertised, adapter->eee_advert);
2186 
2187 	/* EEE Link Partner Advertised */
2188 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2189 	if (ret_val)
2190 		goto release;
2191 	mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data);
2192 
2193 	/* EEE PCS Status */
2194 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2195 	if (ret_val)
2196 		goto release;
2197 	if (hw->phy.type == e1000_phy_82579)
2198 		phy_data <<= 8;
2199 
2200 	/* Result of the EEE auto negotiation - there is no register that
2201 	 * has the status of the EEE negotiation so do a best-guess based
2202 	 * on whether Tx or Rx LPI indications have been received.
2203 	 */
2204 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2205 		edata->eee_active = true;
2206 
2207 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2208 	edata->tx_lpi_enabled = true;
2209 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2210 
2211 release:
2212 	hw->phy.ops.release(hw);
2213 	if (ret_val)
2214 		ret_val = -ENODATA;
2215 
2216 	return ret_val;
2217 }
2218 
e1000e_set_eee(struct net_device * netdev,struct ethtool_keee * edata)2219 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_keee *edata)
2220 {
2221 	struct e1000_adapter *adapter = netdev_priv(netdev);
2222 	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {};
2223 	__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {};
2224 	struct e1000_hw *hw = &adapter->hw;
2225 	struct ethtool_keee eee_curr;
2226 	s32 ret_val;
2227 
2228 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2229 	if (ret_val)
2230 		return ret_val;
2231 
2232 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2233 		e_err("Setting EEE tx-lpi is not supported\n");
2234 		return -EINVAL;
2235 	}
2236 
2237 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2238 		e_err("Setting EEE Tx LPI timer is not supported\n");
2239 		return -EINVAL;
2240 	}
2241 
2242 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2243 			 supported);
2244 	linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
2245 			 supported);
2246 
2247 	if (linkmode_andnot(tmp, edata->advertised, supported)) {
2248 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2249 		return -EINVAL;
2250 	}
2251 
2252 	adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised);
2253 
2254 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2255 
2256 	/* reset the link */
2257 	if (netif_running(netdev))
2258 		e1000e_reinit_locked(adapter);
2259 	else
2260 		e1000e_reset(adapter);
2261 
2262 	return 0;
2263 }
2264 
e1000e_get_ts_info(struct net_device * netdev,struct kernel_ethtool_ts_info * info)2265 static int e1000e_get_ts_info(struct net_device *netdev,
2266 			      struct kernel_ethtool_ts_info *info)
2267 {
2268 	struct e1000_adapter *adapter = netdev_priv(netdev);
2269 
2270 	ethtool_op_get_ts_info(netdev, info);
2271 
2272 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2273 		return 0;
2274 
2275 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2276 				  SOF_TIMESTAMPING_RX_HARDWARE |
2277 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2278 
2279 	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2280 
2281 	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2282 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2283 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2284 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2285 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2286 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2287 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2288 			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2289 			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2290 			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2291 			    BIT(HWTSTAMP_FILTER_ALL));
2292 
2293 	if (adapter->ptp_clock)
2294 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2295 
2296 	return 0;
2297 }
2298 
e1000e_get_priv_flags(struct net_device * netdev)2299 static u32 e1000e_get_priv_flags(struct net_device *netdev)
2300 {
2301 	struct e1000_adapter *adapter = netdev_priv(netdev);
2302 	u32 priv_flags = 0;
2303 
2304 	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2305 		priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2306 
2307 	return priv_flags;
2308 }
2309 
e1000e_set_priv_flags(struct net_device * netdev,u32 priv_flags)2310 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2311 {
2312 	struct e1000_adapter *adapter = netdev_priv(netdev);
2313 	unsigned int flags2 = adapter->flags2;
2314 
2315 	flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2316 	if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2317 		struct e1000_hw *hw = &adapter->hw;
2318 
2319 		if (hw->mac.type < e1000_pch_cnp)
2320 			return -EINVAL;
2321 		flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2322 	}
2323 
2324 	if (flags2 != adapter->flags2)
2325 		adapter->flags2 = flags2;
2326 
2327 	return 0;
2328 }
2329 
2330 static const struct ethtool_ops e1000_ethtool_ops = {
2331 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2332 	.get_drvinfo		= e1000_get_drvinfo,
2333 	.get_regs_len		= e1000_get_regs_len,
2334 	.get_regs		= e1000_get_regs,
2335 	.get_wol		= e1000_get_wol,
2336 	.set_wol		= e1000_set_wol,
2337 	.get_msglevel		= e1000_get_msglevel,
2338 	.set_msglevel		= e1000_set_msglevel,
2339 	.nway_reset		= e1000_nway_reset,
2340 	.get_link		= ethtool_op_get_link,
2341 	.get_eeprom_len		= e1000_get_eeprom_len,
2342 	.get_eeprom		= e1000_get_eeprom,
2343 	.set_eeprom		= e1000_set_eeprom,
2344 	.get_ringparam		= e1000_get_ringparam,
2345 	.set_ringparam		= e1000_set_ringparam,
2346 	.get_pauseparam		= e1000_get_pauseparam,
2347 	.set_pauseparam		= e1000_set_pauseparam,
2348 	.self_test		= e1000_diag_test,
2349 	.get_strings		= e1000_get_strings,
2350 	.set_phys_id		= e1000_set_phys_id,
2351 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2352 	.get_sset_count		= e1000e_get_sset_count,
2353 	.get_coalesce		= e1000_get_coalesce,
2354 	.set_coalesce		= e1000_set_coalesce,
2355 	.get_rxnfc		= e1000_get_rxnfc,
2356 	.get_ts_info		= e1000e_get_ts_info,
2357 	.get_eee		= e1000e_get_eee,
2358 	.set_eee		= e1000e_set_eee,
2359 	.get_link_ksettings	= e1000_get_link_ksettings,
2360 	.set_link_ksettings	= e1000_set_link_ksettings,
2361 	.get_priv_flags		= e1000e_get_priv_flags,
2362 	.set_priv_flags		= e1000e_set_priv_flags,
2363 };
2364 
e1000e_set_ethtool_ops(struct net_device * netdev)2365 void e1000e_set_ethtool_ops(struct net_device *netdev)
2366 {
2367 	netdev->ethtool_ops = &e1000_ethtool_ops;
2368 }
2369