1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  */
7 
8 /*
9  * This file contains the functions to manage Queue Heads and Queue
10  * Transfer Descriptors for Host mode
11  */
12 #include <linux/gcd.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/io.h>
19 #include <linux/seq_buf.h>
20 #include <linux/slab.h>
21 #include <linux/usb.h>
22 
23 #include <linux/usb/hcd.h>
24 #include <linux/usb/ch11.h>
25 
26 #include "core.h"
27 #include "hcd.h"
28 
29 /* Wait this long before releasing periodic reservation */
30 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
31 
32 /* If we get a NAK, wait this long before retrying */
33 #define DWC2_RETRY_WAIT_DELAY (1 * NSEC_PER_MSEC)
34 
35 /**
36  * dwc2_periodic_channel_available() - Checks that a channel is available for a
37  * periodic transfer
38  *
39  * @hsotg: The HCD state structure for the DWC OTG controller
40  *
41  * Return: 0 if successful, negative error code otherwise
42  */
dwc2_periodic_channel_available(struct dwc2_hsotg * hsotg)43 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
44 {
45 	/*
46 	 * Currently assuming that there is a dedicated host channel for
47 	 * each periodic transaction plus at least one host channel for
48 	 * non-periodic transactions
49 	 */
50 	int status;
51 	int num_channels;
52 
53 	num_channels = hsotg->params.host_channels;
54 	if ((hsotg->periodic_channels + hsotg->non_periodic_channels <
55 	     num_channels) && (hsotg->periodic_channels < num_channels - 1)) {
56 		status = 0;
57 	} else {
58 		dev_dbg(hsotg->dev,
59 			"%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
60 			__func__, num_channels,
61 			hsotg->periodic_channels, hsotg->non_periodic_channels);
62 		status = -ENOSPC;
63 	}
64 
65 	return status;
66 }
67 
68 /**
69  * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
70  * for the specified QH in the periodic schedule
71  *
72  * @hsotg: The HCD state structure for the DWC OTG controller
73  * @qh:    QH containing periodic bandwidth required
74  *
75  * Return: 0 if successful, negative error code otherwise
76  *
77  * For simplicity, this calculation assumes that all the transfers in the
78  * periodic schedule may occur in the same (micro)frame
79  */
dwc2_check_periodic_bandwidth(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)80 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
81 					 struct dwc2_qh *qh)
82 {
83 	int status;
84 	s16 max_claimed_usecs;
85 
86 	status = 0;
87 
88 	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
89 		/*
90 		 * High speed mode
91 		 * Max periodic usecs is 80% x 125 usec = 100 usec
92 		 */
93 		max_claimed_usecs = 100 - qh->host_us;
94 	} else {
95 		/*
96 		 * Full speed mode
97 		 * Max periodic usecs is 90% x 1000 usec = 900 usec
98 		 */
99 		max_claimed_usecs = 900 - qh->host_us;
100 	}
101 
102 	if (hsotg->periodic_usecs > max_claimed_usecs) {
103 		dev_err(hsotg->dev,
104 			"%s: already claimed usecs %d, required usecs %d\n",
105 			__func__, hsotg->periodic_usecs, qh->host_us);
106 		status = -ENOSPC;
107 	}
108 
109 	return status;
110 }
111 
112 /**
113  * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
114  *
115  * @map:             The bitmap representing the schedule; will be updated
116  *                   upon success.
117  * @bits_per_period: The schedule represents several periods.  This is how many
118  *                   bits are in each period.  It's assumed that the beginning
119  *                   of the schedule will repeat after its end.
120  * @periods_in_map:  The number of periods in the schedule.
121  * @num_bits:        The number of bits we need per period we want to reserve
122  *                   in this function call.
123  * @interval:        How often we need to be scheduled for the reservation this
124  *                   time.  1 means every period.  2 means every other period.
125  *                   ...you get the picture?
126  * @start:           The bit number to start at.  Normally 0.  Must be within
127  *                   the interval or we return failure right away.
128  * @only_one_period: Normally we'll allow picking a start anywhere within the
129  *                   first interval, since we can still make all repetition
130  *                   requirements by doing that.  However, if you pass true
131  *                   here then we'll return failure if we can't fit within
132  *                   the period that "start" is in.
133  *
134  * The idea here is that we want to schedule time for repeating events that all
135  * want the same resource.  The resource is divided into fixed-sized periods
136  * and the events want to repeat every "interval" periods.  The schedule
137  * granularity is one bit.
138  *
139  * To keep things "simple", we'll represent our schedule with a bitmap that
140  * contains a fixed number of periods.  This gets rid of a lot of complexity
141  * but does mean that we need to handle things specially (and non-ideally) if
142  * the number of the periods in the schedule doesn't match well with the
143  * intervals that we're trying to schedule.
144  *
145  * Here's an explanation of the scheme we'll implement, assuming 8 periods.
146  * - If interval is 1, we need to take up space in each of the 8
147  *   periods we're scheduling.  Easy.
148  * - If interval is 2, we need to take up space in half of the
149  *   periods.  Again, easy.
150  * - If interval is 3, we actually need to fall back to interval 1.
151  *   Why?  Because we might need time in any period.  AKA for the
152  *   first 8 periods, we'll be in slot 0, 3, 6.  Then we'll be
153  *   in slot 1, 4, 7.  Then we'll be in 2, 5.  Then we'll be back to
154  *   0, 3, and 6.  Since we could be in any frame we need to reserve
155  *   for all of them.  Sucks, but that's what you gotta do.  Note that
156  *   if we were instead scheduling 8 * 3 = 24 we'd do much better, but
157  *   then we need more memory and time to do scheduling.
158  * - If interval is 4, easy.
159  * - If interval is 5, we again need interval 1.  The schedule will be
160  *   0, 5, 2, 7, 4, 1, 6, 3, 0
161  * - If interval is 6, we need interval 2.  0, 6, 4, 2.
162  * - If interval is 7, we need interval 1.
163  * - If interval is 8, we need interval 8.
164  *
165  * If you do the math, you'll see that we need to pretend that interval is
166  * equal to the greatest_common_divisor(interval, periods_in_map).
167  *
168  * Note that at the moment this function tends to front-pack the schedule.
169  * In some cases that's really non-ideal (it's hard to schedule things that
170  * need to repeat every period).  In other cases it's perfect (you can easily
171  * schedule bigger, less often repeating things).
172  *
173  * Here's the algorithm in action (8 periods, 5 bits per period):
174  *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
175  *  |*****|  ***|*****|  ***|*****|  ***|*****|  ***|   OK 3 bits, intv 3 at 2
176  *  |*****|* ***|*****|  ***|*****|* ***|*****|  ***|   OK 1 bits, intv 4 at 5
177  *  |**   |*    |**   |     |**   |*    |**   |     | Remv 3 bits, intv 3 at 2
178  *  |***  |*    |***  |     |***  |*    |***  |     |   OK 1 bits, intv 6 at 2
179  *  |**** |*  * |**** |   * |**** |*  * |**** |   * |   OK 1 bits, intv 1 at 3
180  *  |**** |**** |**** | *** |**** |**** |**** | *** |   OK 2 bits, intv 2 at 6
181  *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 1 at 4
182  *  |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
183  *  |  ***|*****|  ***| ****|  ***|*****|  ***| ****| Remv 2 bits, intv 2 at 0
184  *  |  ***| ****|  ***| ****|  ***| ****|  ***| ****| Remv 1 bits, intv 4 at 5
185  *  |   **| ****|   **| ****|   **| ****|   **| ****| Remv 1 bits, intv 6 at 2
186  *  |    *| ** *|    *| ** *|    *| ** *|    *| ** *| Remv 1 bits, intv 1 at 3
187  *  |    *|    *|    *|    *|    *|    *|    *|    *| Remv 2 bits, intv 2 at 6
188  *  |     |     |     |     |     |     |     |     | Remv 1 bits, intv 1 at 4
189  *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
190  *  |***  |     |**   |     |***  |     |**   |     |   OK 1 bits, intv 4 at 2
191  *  |*****|     |** **|     |*****|     |** **|     |   OK 2 bits, intv 2 at 3
192  *  |*****|*    |** **|     |*****|*    |** **|     |   OK 1 bits, intv 4 at 5
193  *  |*****|***  |** **| **  |*****|***  |** **| **  |   OK 2 bits, intv 2 at 6
194  *  |*****|*****|** **| ****|*****|*****|** **| ****|   OK 2 bits, intv 2 at 8
195  *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 4 at 12
196  *
197  * This function is pretty generic and could be easily abstracted if anything
198  * needed similar scheduling.
199  *
200  * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
201  * unschedule routine.  The map bitmap will be updated on a non-error result.
202  */
pmap_schedule(unsigned long * map,int bits_per_period,int periods_in_map,int num_bits,int interval,int start,bool only_one_period)203 static int pmap_schedule(unsigned long *map, int bits_per_period,
204 			 int periods_in_map, int num_bits,
205 			 int interval, int start, bool only_one_period)
206 {
207 	int interval_bits;
208 	int to_reserve;
209 	int first_end;
210 	int i;
211 
212 	if (num_bits > bits_per_period)
213 		return -ENOSPC;
214 
215 	/* Adjust interval as per description */
216 	interval = gcd(interval, periods_in_map);
217 
218 	interval_bits = bits_per_period * interval;
219 	to_reserve = periods_in_map / interval;
220 
221 	/* If start has gotten us past interval then we can't schedule */
222 	if (start >= interval_bits)
223 		return -ENOSPC;
224 
225 	if (only_one_period)
226 		/* Must fit within same period as start; end at begin of next */
227 		first_end = (start / bits_per_period + 1) * bits_per_period;
228 	else
229 		/* Can fit anywhere in the first interval */
230 		first_end = interval_bits;
231 
232 	/*
233 	 * We'll try to pick the first repetition, then see if that time
234 	 * is free for each of the subsequent repetitions.  If it's not
235 	 * we'll adjust the start time for the next search of the first
236 	 * repetition.
237 	 */
238 	while (start + num_bits <= first_end) {
239 		int end;
240 
241 		/* Need to stay within this period */
242 		end = (start / bits_per_period + 1) * bits_per_period;
243 
244 		/* Look for num_bits us in this microframe starting at start */
245 		start = bitmap_find_next_zero_area(map, end, start, num_bits,
246 						   0);
247 
248 		/*
249 		 * We should get start >= end if we fail.  We might be
250 		 * able to check the next microframe depending on the
251 		 * interval, so continue on (start already updated).
252 		 */
253 		if (start >= end) {
254 			start = end;
255 			continue;
256 		}
257 
258 		/* At this point we have a valid point for first one */
259 		for (i = 1; i < to_reserve; i++) {
260 			int ith_start = start + interval_bits * i;
261 			int ith_end = end + interval_bits * i;
262 			int ret;
263 
264 			/* Use this as a dumb "check if bits are 0" */
265 			ret = bitmap_find_next_zero_area(
266 				map, ith_start + num_bits, ith_start, num_bits,
267 				0);
268 
269 			/* We got the right place, continue checking */
270 			if (ret == ith_start)
271 				continue;
272 
273 			/* Move start up for next time and exit for loop */
274 			ith_start = bitmap_find_next_zero_area(
275 				map, ith_end, ith_start, num_bits, 0);
276 			if (ith_start >= ith_end)
277 				/* Need a while new period next time */
278 				start = end;
279 			else
280 				start = ith_start - interval_bits * i;
281 			break;
282 		}
283 
284 		/* If didn't exit the for loop with a break, we have success */
285 		if (i == to_reserve)
286 			break;
287 	}
288 
289 	if (start + num_bits > first_end)
290 		return -ENOSPC;
291 
292 	for (i = 0; i < to_reserve; i++) {
293 		int ith_start = start + interval_bits * i;
294 
295 		bitmap_set(map, ith_start, num_bits);
296 	}
297 
298 	return start;
299 }
300 
301 /**
302  * pmap_unschedule() - Undo work done by pmap_schedule()
303  *
304  * @map:             See pmap_schedule().
305  * @bits_per_period: See pmap_schedule().
306  * @periods_in_map:  See pmap_schedule().
307  * @num_bits:        The number of bits that was passed to schedule.
308  * @interval:        The interval that was passed to schedule.
309  * @start:           The return value from pmap_schedule().
310  */
pmap_unschedule(unsigned long * map,int bits_per_period,int periods_in_map,int num_bits,int interval,int start)311 static void pmap_unschedule(unsigned long *map, int bits_per_period,
312 			    int periods_in_map, int num_bits,
313 			    int interval, int start)
314 {
315 	int interval_bits;
316 	int to_release;
317 	int i;
318 
319 	/* Adjust interval as per description in pmap_schedule() */
320 	interval = gcd(interval, periods_in_map);
321 
322 	interval_bits = bits_per_period * interval;
323 	to_release = periods_in_map / interval;
324 
325 	for (i = 0; i < to_release; i++) {
326 		int ith_start = start + interval_bits * i;
327 
328 		bitmap_clear(map, ith_start, num_bits);
329 	}
330 }
331 
332 /**
333  * dwc2_get_ls_map() - Get the map used for the given qh
334  *
335  * @hsotg: The HCD state structure for the DWC OTG controller.
336  * @qh:    QH for the periodic transfer.
337  *
338  * We'll always get the periodic map out of our TT.  Note that even if we're
339  * running the host straight in low speed / full speed mode it appears as if
340  * a TT is allocated for us, so we'll use it.  If that ever changes we can
341  * add logic here to get a map out of "hsotg" if !qh->do_split.
342  *
343  * Returns: the map or NULL if a map couldn't be found.
344  */
dwc2_get_ls_map(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)345 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
346 				      struct dwc2_qh *qh)
347 {
348 	unsigned long *map;
349 
350 	/* Don't expect to be missing a TT and be doing low speed scheduling */
351 	if (WARN_ON(!qh->dwc_tt))
352 		return NULL;
353 
354 	/* Get the map and adjust if this is a multi_tt hub */
355 	map = qh->dwc_tt->periodic_bitmaps;
356 	if (qh->dwc_tt->usb_tt->multi)
357 		map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1);
358 
359 	return map;
360 }
361 
362 #ifdef DWC2_PRINT_SCHEDULE
363 /*
364  * pmap_print() - Print the given periodic map
365  *
366  * Will attempt to print out the periodic schedule.
367  *
368  * @map:             See pmap_schedule().
369  * @bits_per_period: See pmap_schedule().
370  * @periods_in_map:  See pmap_schedule().
371  * @period_name:     The name of 1 period, like "uFrame"
372  * @units:           The name of the units, like "us".
373  * @print_fn:        The function to call for printing.
374  * @print_data:      Opaque data to pass to the print function.
375  */
pmap_print(unsigned long * map,int bits_per_period,int periods_in_map,const char * period_name,const char * units,void (* print_fn)(const char * str,void * data),void * print_data)376 static void pmap_print(unsigned long *map, int bits_per_period,
377 		       int periods_in_map, const char *period_name,
378 		       const char *units,
379 		       void (*print_fn)(const char *str, void *data),
380 		       void *print_data)
381 {
382 	int period;
383 
384 	for (period = 0; period < periods_in_map; period++) {
385 		DECLARE_SEQ_BUF(buf, 64);
386 		int period_start = period * bits_per_period;
387 		int period_end = period_start + bits_per_period;
388 		int start = 0;
389 		int count = 0;
390 		bool printed = false;
391 		int i;
392 
393 		for (i = period_start; i < period_end + 1; i++) {
394 			/* Handle case when ith bit is set */
395 			if (i < period_end &&
396 			    bitmap_find_next_zero_area(map, i + 1,
397 						       i, 1, 0) != i) {
398 				if (count == 0)
399 					start = i - period_start;
400 				count++;
401 				continue;
402 			}
403 
404 			/* ith bit isn't set; don't care if count == 0 */
405 			if (count == 0)
406 				continue;
407 
408 			if (!printed)
409 				seq_buf_printf(&buf, "%s %d: ",
410 					       period_name, period);
411 			else
412 				seq_buf_puts(&buf, ", ");
413 			printed = true;
414 
415 			seq_buf_printf(&buf, "%d %s -%3d %s", start,
416 				       units, start + count - 1, units);
417 			count = 0;
418 		}
419 
420 		if (printed)
421 			print_fn(seq_buf_str(&buf), print_data);
422 	}
423 }
424 
425 struct dwc2_qh_print_data {
426 	struct dwc2_hsotg *hsotg;
427 	struct dwc2_qh *qh;
428 };
429 
430 /**
431  * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
432  *
433  * @str:  The string to print
434  * @data: A pointer to a struct dwc2_qh_print_data
435  */
dwc2_qh_print(const char * str,void * data)436 static void dwc2_qh_print(const char *str, void *data)
437 {
438 	struct dwc2_qh_print_data *print_data = data;
439 
440 	dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
441 }
442 
443 /**
444  * dwc2_qh_schedule_print() - Print the periodic schedule
445  *
446  * @hsotg: The HCD state structure for the DWC OTG controller.
447  * @qh:    QH to print.
448  */
dwc2_qh_schedule_print(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)449 static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
450 				   struct dwc2_qh *qh)
451 {
452 	struct dwc2_qh_print_data print_data = { hsotg, qh };
453 	int i;
454 
455 	/*
456 	 * The printing functions are quite slow and inefficient.
457 	 * If we don't have tracing turned on, don't run unless the special
458 	 * define is turned on.
459 	 */
460 
461 	if (qh->schedule_low_speed) {
462 		unsigned long *map = dwc2_get_ls_map(hsotg, qh);
463 
464 		dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
465 			     qh, qh->device_us,
466 			     DWC2_ROUND_US_TO_SLICE(qh->device_us),
467 			     DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
468 
469 		if (map) {
470 			dwc2_sch_dbg(hsotg,
471 				     "QH=%p Whole low/full speed map %p now:\n",
472 				     qh, map);
473 			pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
474 				   DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
475 				   dwc2_qh_print, &print_data);
476 		}
477 	}
478 
479 	for (i = 0; i < qh->num_hs_transfers; i++) {
480 		struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
481 		int uframe = trans_time->start_schedule_us /
482 			     DWC2_HS_PERIODIC_US_PER_UFRAME;
483 		int rel_us = trans_time->start_schedule_us %
484 			     DWC2_HS_PERIODIC_US_PER_UFRAME;
485 
486 		dwc2_sch_dbg(hsotg,
487 			     "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
488 			     qh, i, trans_time->duration_us, uframe, rel_us);
489 	}
490 	if (qh->num_hs_transfers) {
491 		dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
492 		pmap_print(hsotg->hs_periodic_bitmap,
493 			   DWC2_HS_PERIODIC_US_PER_UFRAME,
494 			   DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
495 			   dwc2_qh_print, &print_data);
496 	}
497 }
498 #else
dwc2_qh_schedule_print(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)499 static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
500 					  struct dwc2_qh *qh) {};
501 #endif
502 
503 /**
504  * dwc2_ls_pmap_schedule() - Schedule a low speed QH
505  *
506  * @hsotg:        The HCD state structure for the DWC OTG controller.
507  * @qh:           QH for the periodic transfer.
508  * @search_slice: We'll start trying to schedule at the passed slice.
509  *                Remember that slices are the units of the low speed
510  *                schedule (think 25us or so).
511  *
512  * Wraps pmap_schedule() with the right parameters for low speed scheduling.
513  *
514  * Normally we schedule low speed devices on the map associated with the TT.
515  *
516  * Returns: 0 for success or an error code.
517  */
dwc2_ls_pmap_schedule(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,int search_slice)518 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
519 				 int search_slice)
520 {
521 	int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
522 	unsigned long *map = dwc2_get_ls_map(hsotg, qh);
523 	int slice;
524 
525 	if (!map)
526 		return -EINVAL;
527 
528 	/*
529 	 * Schedule on the proper low speed map with our low speed scheduling
530 	 * parameters.  Note that we use the "device_interval" here since
531 	 * we want the low speed interval and the only way we'd be in this
532 	 * function is if the device is low speed.
533 	 *
534 	 * If we happen to be doing low speed and high speed scheduling for the
535 	 * same transaction (AKA we have a split) we always do low speed first.
536 	 * That means we can always pass "false" for only_one_period (that
537 	 * parameters is only useful when we're trying to get one schedule to
538 	 * match what we already planned in the other schedule).
539 	 */
540 	slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
541 			      DWC2_LS_SCHEDULE_FRAMES, slices,
542 			      qh->device_interval, search_slice, false);
543 
544 	if (slice < 0)
545 		return slice;
546 
547 	qh->ls_start_schedule_slice = slice;
548 	return 0;
549 }
550 
551 /**
552  * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
553  *
554  * @hsotg:       The HCD state structure for the DWC OTG controller.
555  * @qh:          QH for the periodic transfer.
556  */
dwc2_ls_pmap_unschedule(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)557 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
558 				    struct dwc2_qh *qh)
559 {
560 	int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
561 	unsigned long *map = dwc2_get_ls_map(hsotg, qh);
562 
563 	/* Schedule should have failed, so no worries about no error code */
564 	if (!map)
565 		return;
566 
567 	pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
568 			DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
569 			qh->ls_start_schedule_slice);
570 }
571 
572 /**
573  * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
574  *
575  * This will schedule something on the main dwc2 schedule.
576  *
577  * We'll start looking in qh->hs_transfers[index].start_schedule_us.  We'll
578  * update this with the result upon success.  We also use the duration from
579  * the same structure.
580  *
581  * @hsotg:           The HCD state structure for the DWC OTG controller.
582  * @qh:              QH for the periodic transfer.
583  * @only_one_period: If true we will limit ourselves to just looking at
584  *                   one period (aka one 100us chunk).  This is used if we have
585  *                   already scheduled something on the low speed schedule and
586  *                   need to find something that matches on the high speed one.
587  * @index:           The index into qh->hs_transfers that we're working with.
588  *
589  * Returns: 0 for success or an error code.  Upon success the
590  *          dwc2_hs_transfer_time specified by "index" will be updated.
591  */
dwc2_hs_pmap_schedule(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,bool only_one_period,int index)592 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
593 				 bool only_one_period, int index)
594 {
595 	struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
596 	int us;
597 
598 	us = pmap_schedule(hsotg->hs_periodic_bitmap,
599 			   DWC2_HS_PERIODIC_US_PER_UFRAME,
600 			   DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
601 			   qh->host_interval, trans_time->start_schedule_us,
602 			   only_one_period);
603 
604 	if (us < 0)
605 		return us;
606 
607 	trans_time->start_schedule_us = us;
608 	return 0;
609 }
610 
611 /**
612  * dwc2_hs_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
613  *
614  * @hsotg:       The HCD state structure for the DWC OTG controller.
615  * @qh:          QH for the periodic transfer.
616  * @index:       Transfer index
617  */
dwc2_hs_pmap_unschedule(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,int index)618 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
619 				    struct dwc2_qh *qh, int index)
620 {
621 	struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
622 
623 	pmap_unschedule(hsotg->hs_periodic_bitmap,
624 			DWC2_HS_PERIODIC_US_PER_UFRAME,
625 			DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
626 			qh->host_interval, trans_time->start_schedule_us);
627 }
628 
629 /**
630  * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
631  *
632  * This is the most complicated thing in USB.  We have to find matching time
633  * in both the global high speed schedule for the port and the low speed
634  * schedule for the TT associated with the given device.
635  *
636  * Being here means that the host must be running in high speed mode and the
637  * device is in low or full speed mode (and behind a hub).
638  *
639  * @hsotg:       The HCD state structure for the DWC OTG controller.
640  * @qh:          QH for the periodic transfer.
641  */
dwc2_uframe_schedule_split(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)642 static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
643 				      struct dwc2_qh *qh)
644 {
645 	int bytecount = qh->maxp_mult * qh->maxp;
646 	int ls_search_slice;
647 	int err = 0;
648 	int host_interval_in_sched;
649 
650 	/*
651 	 * The interval (how often to repeat) in the actual host schedule.
652 	 * See pmap_schedule() for gcd() explanation.
653 	 */
654 	host_interval_in_sched = gcd(qh->host_interval,
655 				     DWC2_HS_SCHEDULE_UFRAMES);
656 
657 	/*
658 	 * We always try to find space in the low speed schedule first, then
659 	 * try to find high speed time that matches.  If we don't, we'll bump
660 	 * up the place we start searching in the low speed schedule and try
661 	 * again.  To start we'll look right at the beginning of the low speed
662 	 * schedule.
663 	 *
664 	 * Note that this will tend to front-load the high speed schedule.
665 	 * We may eventually want to try to avoid this by either considering
666 	 * both schedules together or doing some sort of round robin.
667 	 */
668 	ls_search_slice = 0;
669 
670 	while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
671 		int start_s_uframe;
672 		int ssplit_s_uframe;
673 		int second_s_uframe;
674 		int rel_uframe;
675 		int first_count;
676 		int middle_count;
677 		int end_count;
678 		int first_data_bytes;
679 		int other_data_bytes;
680 		int i;
681 
682 		if (qh->schedule_low_speed) {
683 			err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
684 
685 			/*
686 			 * If we got an error here there's no other magic we
687 			 * can do, so bail.  All the looping above is only
688 			 * helpful to redo things if we got a low speed slot
689 			 * and then couldn't find a matching high speed slot.
690 			 */
691 			if (err)
692 				return err;
693 		} else {
694 			/* Must be missing the tt structure?  Why? */
695 			WARN_ON_ONCE(1);
696 		}
697 
698 		/*
699 		 * This will give us a number 0 - 7 if
700 		 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
701 		 */
702 		start_s_uframe = qh->ls_start_schedule_slice /
703 				 DWC2_SLICES_PER_UFRAME;
704 
705 		/* Get a number that's always 0 - 7 */
706 		rel_uframe = (start_s_uframe % 8);
707 
708 		/*
709 		 * If we were going to start in uframe 7 then we would need to
710 		 * issue a start split in uframe 6, which spec says is not OK.
711 		 * Move on to the next full frame (assuming there is one).
712 		 *
713 		 * See 11.18.4 Host Split Transaction Scheduling Requirements
714 		 * bullet 1.
715 		 */
716 		if (rel_uframe == 7) {
717 			if (qh->schedule_low_speed)
718 				dwc2_ls_pmap_unschedule(hsotg, qh);
719 			ls_search_slice =
720 				(qh->ls_start_schedule_slice /
721 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
722 				DWC2_LS_PERIODIC_SLICES_PER_FRAME;
723 			continue;
724 		}
725 
726 		/*
727 		 * For ISOC in:
728 		 * - start split            (frame -1)
729 		 * - complete split w/ data (frame +1)
730 		 * - complete split w/ data (frame +2)
731 		 * - ...
732 		 * - complete split w/ data (frame +num_data_packets)
733 		 * - complete split w/ data (frame +num_data_packets+1)
734 		 * - complete split w/ data (frame +num_data_packets+2, max 8)
735 		 *   ...though if frame was "0" then max is 7...
736 		 *
737 		 * For ISOC out we might need to do:
738 		 * - start split w/ data    (frame -1)
739 		 * - start split w/ data    (frame +0)
740 		 * - ...
741 		 * - start split w/ data    (frame +num_data_packets-2)
742 		 *
743 		 * For INTERRUPT in we might need to do:
744 		 * - start split            (frame -1)
745 		 * - complete split w/ data (frame +1)
746 		 * - complete split w/ data (frame +2)
747 		 * - complete split w/ data (frame +3, max 8)
748 		 *
749 		 * For INTERRUPT out we might need to do:
750 		 * - start split w/ data    (frame -1)
751 		 * - complete split         (frame +1)
752 		 * - complete split         (frame +2)
753 		 * - complete split         (frame +3, max 8)
754 		 *
755 		 * Start adjusting!
756 		 */
757 		ssplit_s_uframe = (start_s_uframe +
758 				   host_interval_in_sched - 1) %
759 				  host_interval_in_sched;
760 		if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
761 			second_s_uframe = start_s_uframe;
762 		else
763 			second_s_uframe = start_s_uframe + 1;
764 
765 		/* First data transfer might not be all 188 bytes. */
766 		first_data_bytes = 188 -
767 			DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
768 					    DWC2_SLICES_PER_UFRAME),
769 				     DWC2_SLICES_PER_UFRAME);
770 		if (first_data_bytes > bytecount)
771 			first_data_bytes = bytecount;
772 		other_data_bytes = bytecount - first_data_bytes;
773 
774 		/*
775 		 * For now, skip OUT xfers where first xfer is partial
776 		 *
777 		 * Main dwc2 code assumes:
778 		 * - INT transfers never get split in two.
779 		 * - ISOC transfers can always transfer 188 bytes the first
780 		 *   time.
781 		 *
782 		 * Until that code is fixed, try again if the first transfer
783 		 * couldn't transfer everything.
784 		 *
785 		 * This code can be removed if/when the rest of dwc2 handles
786 		 * the above cases.  Until it's fixed we just won't be able
787 		 * to schedule quite as tightly.
788 		 */
789 		if (!qh->ep_is_in &&
790 		    (first_data_bytes != min_t(int, 188, bytecount))) {
791 			dwc2_sch_dbg(hsotg,
792 				     "QH=%p avoiding broken 1st xfer (%d, %d)\n",
793 				     qh, first_data_bytes, bytecount);
794 			if (qh->schedule_low_speed)
795 				dwc2_ls_pmap_unschedule(hsotg, qh);
796 			ls_search_slice = (start_s_uframe + 1) *
797 				DWC2_SLICES_PER_UFRAME;
798 			continue;
799 		}
800 
801 		/* Start by assuming transfers for the bytes */
802 		qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
803 
804 		/*
805 		 * Everything except ISOC OUT has extra transfers.  Rules are
806 		 * complicated.  See 11.18.4 Host Split Transaction Scheduling
807 		 * Requirements bullet 3.
808 		 */
809 		if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
810 			if (rel_uframe == 6)
811 				qh->num_hs_transfers += 2;
812 			else
813 				qh->num_hs_transfers += 3;
814 
815 			if (qh->ep_is_in) {
816 				/*
817 				 * First is start split, middle/end is data.
818 				 * Allocate full data bytes for all data.
819 				 */
820 				first_count = 4;
821 				middle_count = bytecount;
822 				end_count = bytecount;
823 			} else {
824 				/*
825 				 * First is data, middle/end is complete.
826 				 * First transfer and second can have data.
827 				 * Rest should just have complete split.
828 				 */
829 				first_count = first_data_bytes;
830 				middle_count = max_t(int, 4, other_data_bytes);
831 				end_count = 4;
832 			}
833 		} else {
834 			if (qh->ep_is_in) {
835 				int last;
836 
837 				/* Account for the start split */
838 				qh->num_hs_transfers++;
839 
840 				/* Calculate "L" value from spec */
841 				last = rel_uframe + qh->num_hs_transfers + 1;
842 
843 				/* Start with basic case */
844 				if (last <= 6)
845 					qh->num_hs_transfers += 2;
846 				else
847 					qh->num_hs_transfers += 1;
848 
849 				/* Adjust downwards */
850 				if (last >= 6 && rel_uframe == 0)
851 					qh->num_hs_transfers--;
852 
853 				/* 1st = start; rest can contain data */
854 				first_count = 4;
855 				middle_count = min_t(int, 188, bytecount);
856 				end_count = middle_count;
857 			} else {
858 				/* All contain data, last might be smaller */
859 				first_count = first_data_bytes;
860 				middle_count = min_t(int, 188,
861 						     other_data_bytes);
862 				end_count = other_data_bytes % 188;
863 			}
864 		}
865 
866 		/* Assign durations per uFrame */
867 		qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
868 		for (i = 1; i < qh->num_hs_transfers - 1; i++)
869 			qh->hs_transfers[i].duration_us =
870 				HS_USECS_ISO(middle_count);
871 		if (qh->num_hs_transfers > 1)
872 			qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
873 				HS_USECS_ISO(end_count);
874 
875 		/*
876 		 * Assign start us.  The call below to dwc2_hs_pmap_schedule()
877 		 * will start with these numbers but may adjust within the same
878 		 * microframe.
879 		 */
880 		qh->hs_transfers[0].start_schedule_us =
881 			ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
882 		for (i = 1; i < qh->num_hs_transfers; i++)
883 			qh->hs_transfers[i].start_schedule_us =
884 				((second_s_uframe + i - 1) %
885 				 DWC2_HS_SCHEDULE_UFRAMES) *
886 				DWC2_HS_PERIODIC_US_PER_UFRAME;
887 
888 		/* Try to schedule with filled in hs_transfers above */
889 		for (i = 0; i < qh->num_hs_transfers; i++) {
890 			err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
891 			if (err)
892 				break;
893 		}
894 
895 		/* If we scheduled all w/out breaking out then we're all good */
896 		if (i == qh->num_hs_transfers)
897 			break;
898 
899 		for (; i >= 0; i--)
900 			dwc2_hs_pmap_unschedule(hsotg, qh, i);
901 
902 		if (qh->schedule_low_speed)
903 			dwc2_ls_pmap_unschedule(hsotg, qh);
904 
905 		/* Try again starting in the next microframe */
906 		ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
907 	}
908 
909 	if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
910 		return -ENOSPC;
911 
912 	return 0;
913 }
914 
915 /**
916  * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
917  *
918  * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
919  * interface.
920  *
921  * @hsotg:       The HCD state structure for the DWC OTG controller.
922  * @qh:          QH for the periodic transfer.
923  */
dwc2_uframe_schedule_hs(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)924 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
925 {
926 	/* In non-split host and device time are the same */
927 	WARN_ON(qh->host_us != qh->device_us);
928 	WARN_ON(qh->host_interval != qh->device_interval);
929 	WARN_ON(qh->num_hs_transfers != 1);
930 
931 	/* We'll have one transfer; init start to 0 before calling scheduler */
932 	qh->hs_transfers[0].start_schedule_us = 0;
933 	qh->hs_transfers[0].duration_us = qh->host_us;
934 
935 	return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
936 }
937 
938 /**
939  * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
940  *
941  * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
942  * interface.
943  *
944  * @hsotg:       The HCD state structure for the DWC OTG controller.
945  * @qh:          QH for the periodic transfer.
946  */
dwc2_uframe_schedule_ls(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)947 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
948 {
949 	/* In non-split host and device time are the same */
950 	WARN_ON(qh->host_us != qh->device_us);
951 	WARN_ON(qh->host_interval != qh->device_interval);
952 	WARN_ON(!qh->schedule_low_speed);
953 
954 	/* Run on the main low speed schedule (no split = no hub = no TT) */
955 	return dwc2_ls_pmap_schedule(hsotg, qh, 0);
956 }
957 
958 /**
959  * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
960  *
961  * Calls one of the 3 sub-function depending on what type of transfer this QH
962  * is for.  Also adds some printing.
963  *
964  * @hsotg:       The HCD state structure for the DWC OTG controller.
965  * @qh:          QH for the periodic transfer.
966  */
dwc2_uframe_schedule(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)967 static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
968 {
969 	int ret;
970 
971 	if (qh->dev_speed == USB_SPEED_HIGH)
972 		ret = dwc2_uframe_schedule_hs(hsotg, qh);
973 	else if (!qh->do_split)
974 		ret = dwc2_uframe_schedule_ls(hsotg, qh);
975 	else
976 		ret = dwc2_uframe_schedule_split(hsotg, qh);
977 
978 	if (ret)
979 		dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
980 	else
981 		dwc2_qh_schedule_print(hsotg, qh);
982 
983 	return ret;
984 }
985 
986 /**
987  * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
988  *
989  * @hsotg:       The HCD state structure for the DWC OTG controller.
990  * @qh:          QH for the periodic transfer.
991  */
dwc2_uframe_unschedule(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)992 static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
993 {
994 	int i;
995 
996 	for (i = 0; i < qh->num_hs_transfers; i++)
997 		dwc2_hs_pmap_unschedule(hsotg, qh, i);
998 
999 	if (qh->schedule_low_speed)
1000 		dwc2_ls_pmap_unschedule(hsotg, qh);
1001 
1002 	dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
1003 }
1004 
1005 /**
1006  * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1007  *
1008  * Takes a qh that has already been scheduled (which means we know we have the
1009  * bandwdith reserved for us) and set the next_active_frame and the
1010  * start_active_frame.
1011  *
1012  * This is expected to be called on qh's that weren't previously actively
1013  * running.  It just picks the next frame that we can fit into without any
1014  * thought about the past.
1015  *
1016  * @hsotg: The HCD state structure for the DWC OTG controller
1017  * @qh:    QH for a periodic endpoint
1018  *
1019  */
dwc2_pick_first_frame(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1020 static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1021 {
1022 	u16 frame_number;
1023 	u16 earliest_frame;
1024 	u16 next_active_frame;
1025 	u16 relative_frame;
1026 	u16 interval;
1027 
1028 	/*
1029 	 * Use the real frame number rather than the cached value as of the
1030 	 * last SOF to give us a little extra slop.
1031 	 */
1032 	frame_number = dwc2_hcd_get_frame_number(hsotg);
1033 
1034 	/*
1035 	 * We wouldn't want to start any earlier than the next frame just in
1036 	 * case the frame number ticks as we're doing this calculation.
1037 	 *
1038 	 * NOTE: if we could quantify how long till we actually get scheduled
1039 	 * we might be able to avoid the "+ 1" by looking at the upper part of
1040 	 * HFNUM (the FRREM field).  For now we'll just use the + 1 though.
1041 	 */
1042 	earliest_frame = dwc2_frame_num_inc(frame_number, 1);
1043 	next_active_frame = earliest_frame;
1044 
1045 	/* Get the "no microframe scheduler" out of the way... */
1046 	if (!hsotg->params.uframe_sched) {
1047 		if (qh->do_split)
1048 			/* Splits are active at microframe 0 minus 1 */
1049 			next_active_frame |= 0x7;
1050 		goto exit;
1051 	}
1052 
1053 	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
1054 		/*
1055 		 * We're either at high speed or we're doing a split (which
1056 		 * means we're talking high speed to a hub).  In any case
1057 		 * the first frame should be based on when the first scheduled
1058 		 * event is.
1059 		 */
1060 		WARN_ON(qh->num_hs_transfers < 1);
1061 
1062 		relative_frame = qh->hs_transfers[0].start_schedule_us /
1063 				 DWC2_HS_PERIODIC_US_PER_UFRAME;
1064 
1065 		/* Adjust interval as per high speed schedule */
1066 		interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
1067 
1068 	} else {
1069 		/*
1070 		 * Low or full speed directly on dwc2.  Just about the same
1071 		 * as high speed but on a different schedule and with slightly
1072 		 * different adjustments.  Note that this works because when
1073 		 * the host and device are both low speed then frames in the
1074 		 * controller tick at low speed.
1075 		 */
1076 		relative_frame = qh->ls_start_schedule_slice /
1077 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
1078 		interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
1079 	}
1080 
1081 	/* Scheduler messed up if frame is past interval */
1082 	WARN_ON(relative_frame >= interval);
1083 
1084 	/*
1085 	 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1086 	 * done the gcd(), so it's safe to move to the beginning of the current
1087 	 * interval like this.
1088 	 *
1089 	 * After this we might be before earliest_frame, but don't worry,
1090 	 * we'll fix it...
1091 	 */
1092 	next_active_frame = (next_active_frame / interval) * interval;
1093 
1094 	/*
1095 	 * Actually choose to start at the frame number we've been
1096 	 * scheduled for.
1097 	 */
1098 	next_active_frame = dwc2_frame_num_inc(next_active_frame,
1099 					       relative_frame);
1100 
1101 	/*
1102 	 * We actually need 1 frame before since the next_active_frame is
1103 	 * the frame number we'll be put on the ready list and we won't be on
1104 	 * the bus until 1 frame later.
1105 	 */
1106 	next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
1107 
1108 	/*
1109 	 * By now we might actually be before the earliest_frame.  Let's move
1110 	 * up intervals until we're not.
1111 	 */
1112 	while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
1113 		next_active_frame = dwc2_frame_num_inc(next_active_frame,
1114 						       interval);
1115 
1116 exit:
1117 	qh->next_active_frame = next_active_frame;
1118 	qh->start_active_frame = next_active_frame;
1119 
1120 	dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
1121 		      qh, frame_number, qh->next_active_frame);
1122 }
1123 
1124 /**
1125  * dwc2_do_reserve() - Make a periodic reservation
1126  *
1127  * Try to allocate space in the periodic schedule.  Depending on parameters
1128  * this might use the microframe scheduler or the dumb scheduler.
1129  *
1130  * @hsotg: The HCD state structure for the DWC OTG controller
1131  * @qh:    QH for the periodic transfer.
1132  *
1133  * Returns: 0 upon success; error upon failure.
1134  */
dwc2_do_reserve(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1135 static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1136 {
1137 	int status;
1138 
1139 	if (hsotg->params.uframe_sched) {
1140 		status = dwc2_uframe_schedule(hsotg, qh);
1141 	} else {
1142 		status = dwc2_periodic_channel_available(hsotg);
1143 		if (status) {
1144 			dev_info(hsotg->dev,
1145 				 "%s: No host channel available for periodic transfer\n",
1146 				 __func__);
1147 			return status;
1148 		}
1149 
1150 		status = dwc2_check_periodic_bandwidth(hsotg, qh);
1151 	}
1152 
1153 	if (status) {
1154 		dev_dbg(hsotg->dev,
1155 			"%s: Insufficient periodic bandwidth for periodic transfer\n",
1156 			__func__);
1157 		return status;
1158 	}
1159 
1160 	if (!hsotg->params.uframe_sched)
1161 		/* Reserve periodic channel */
1162 		hsotg->periodic_channels++;
1163 
1164 	/* Update claimed usecs per (micro)frame */
1165 	hsotg->periodic_usecs += qh->host_us;
1166 
1167 	dwc2_pick_first_frame(hsotg, qh);
1168 
1169 	return 0;
1170 }
1171 
1172 /**
1173  * dwc2_do_unreserve() - Actually release the periodic reservation
1174  *
1175  * This function actually releases the periodic bandwidth that was reserved
1176  * by the given qh.
1177  *
1178  * @hsotg: The HCD state structure for the DWC OTG controller
1179  * @qh:    QH for the periodic transfer.
1180  */
dwc2_do_unreserve(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1181 static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1182 {
1183 	assert_spin_locked(&hsotg->lock);
1184 
1185 	WARN_ON(!qh->unreserve_pending);
1186 
1187 	/* No more unreserve pending--we're doing it */
1188 	qh->unreserve_pending = false;
1189 
1190 	if (WARN_ON(!list_empty(&qh->qh_list_entry)))
1191 		list_del_init(&qh->qh_list_entry);
1192 
1193 	/* Update claimed usecs per (micro)frame */
1194 	hsotg->periodic_usecs -= qh->host_us;
1195 
1196 	if (hsotg->params.uframe_sched) {
1197 		dwc2_uframe_unschedule(hsotg, qh);
1198 	} else {
1199 		/* Release periodic channel reservation */
1200 		hsotg->periodic_channels--;
1201 	}
1202 }
1203 
1204 /**
1205  * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1206  *
1207  * According to the kernel doc for usb_submit_urb() (specifically the part about
1208  * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1209  * long as a device driver keeps submitting.  Since we're using HCD_BH to give
1210  * back the URB we need to give the driver a little bit of time before we
1211  * release the reservation.  This worker is called after the appropriate
1212  * delay.
1213  *
1214  * @t: Address to a qh unreserve_work.
1215  */
dwc2_unreserve_timer_fn(struct timer_list * t)1216 static void dwc2_unreserve_timer_fn(struct timer_list *t)
1217 {
1218 	struct dwc2_qh *qh = from_timer(qh, t, unreserve_timer);
1219 	struct dwc2_hsotg *hsotg = qh->hsotg;
1220 	unsigned long flags;
1221 
1222 	/*
1223 	 * Wait for the lock, or for us to be scheduled again.  We
1224 	 * could be scheduled again if:
1225 	 * - We started executing but didn't get the lock yet.
1226 	 * - A new reservation came in, but cancel didn't take effect
1227 	 *   because we already started executing.
1228 	 * - The timer has been kicked again.
1229 	 * In that case cancel and wait for the next call.
1230 	 */
1231 	while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
1232 		if (timer_pending(&qh->unreserve_timer))
1233 			return;
1234 	}
1235 
1236 	/*
1237 	 * Might be no more unreserve pending if:
1238 	 * - We started executing but didn't get the lock yet.
1239 	 * - A new reservation came in, but cancel didn't take effect
1240 	 *   because we already started executing.
1241 	 *
1242 	 * We can't put this in the loop above because unreserve_pending needs
1243 	 * to be accessed under lock, so we can only check it once we got the
1244 	 * lock.
1245 	 */
1246 	if (qh->unreserve_pending)
1247 		dwc2_do_unreserve(hsotg, qh);
1248 
1249 	spin_unlock_irqrestore(&hsotg->lock, flags);
1250 }
1251 
1252 /**
1253  * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1254  * host channel is large enough to handle the maximum data transfer in a single
1255  * (micro)frame for a periodic transfer
1256  *
1257  * @hsotg: The HCD state structure for the DWC OTG controller
1258  * @qh:    QH for a periodic endpoint
1259  *
1260  * Return: 0 if successful, negative error code otherwise
1261  */
dwc2_check_max_xfer_size(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1262 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
1263 				    struct dwc2_qh *qh)
1264 {
1265 	u32 max_xfer_size;
1266 	u32 max_channel_xfer_size;
1267 	int status = 0;
1268 
1269 	max_xfer_size = qh->maxp * qh->maxp_mult;
1270 	max_channel_xfer_size = hsotg->params.max_transfer_size;
1271 
1272 	if (max_xfer_size > max_channel_xfer_size) {
1273 		dev_err(hsotg->dev,
1274 			"%s: Periodic xfer length %d > max xfer length for channel %d\n",
1275 			__func__, max_xfer_size, max_channel_xfer_size);
1276 		status = -ENOSPC;
1277 	}
1278 
1279 	return status;
1280 }
1281 
1282 /**
1283  * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1284  * the periodic schedule
1285  *
1286  * @hsotg: The HCD state structure for the DWC OTG controller
1287  * @qh:    QH for the periodic transfer. The QH should already contain the
1288  *         scheduling information.
1289  *
1290  * Return: 0 if successful, negative error code otherwise
1291  */
dwc2_schedule_periodic(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1292 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1293 {
1294 	int status;
1295 
1296 	status = dwc2_check_max_xfer_size(hsotg, qh);
1297 	if (status) {
1298 		dev_dbg(hsotg->dev,
1299 			"%s: Channel max transfer size too small for periodic transfer\n",
1300 			__func__);
1301 		return status;
1302 	}
1303 
1304 	/* Cancel pending unreserve; if canceled OK, unreserve was pending */
1305 	if (del_timer(&qh->unreserve_timer))
1306 		WARN_ON(!qh->unreserve_pending);
1307 
1308 	/*
1309 	 * Only need to reserve if there's not an unreserve pending, since if an
1310 	 * unreserve is pending then by definition our old reservation is still
1311 	 * valid.  Unreserve might still be pending even if we didn't cancel if
1312 	 * dwc2_unreserve_timer_fn() already started.  Code in the timer handles
1313 	 * that case.
1314 	 */
1315 	if (!qh->unreserve_pending) {
1316 		status = dwc2_do_reserve(hsotg, qh);
1317 		if (status)
1318 			return status;
1319 	} else {
1320 		/*
1321 		 * It might have been a while, so make sure that frame_number
1322 		 * is still good.  Note: we could also try to use the similar
1323 		 * dwc2_next_periodic_start() but that schedules much more
1324 		 * tightly and we might need to hurry and queue things up.
1325 		 */
1326 		if (dwc2_frame_num_le(qh->next_active_frame,
1327 				      hsotg->frame_number))
1328 			dwc2_pick_first_frame(hsotg, qh);
1329 	}
1330 
1331 	qh->unreserve_pending = 0;
1332 
1333 	if (hsotg->params.dma_desc_enable)
1334 		/* Don't rely on SOF and start in ready schedule */
1335 		list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
1336 	else
1337 		/* Always start in inactive schedule */
1338 		list_add_tail(&qh->qh_list_entry,
1339 			      &hsotg->periodic_sched_inactive);
1340 
1341 	return 0;
1342 }
1343 
1344 /**
1345  * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1346  * from the periodic schedule
1347  *
1348  * @hsotg: The HCD state structure for the DWC OTG controller
1349  * @qh:	   QH for the periodic transfer
1350  */
dwc2_deschedule_periodic(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1351 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
1352 				     struct dwc2_qh *qh)
1353 {
1354 	bool did_modify;
1355 
1356 	assert_spin_locked(&hsotg->lock);
1357 
1358 	/*
1359 	 * Schedule the unreserve to happen in a little bit.  Cases here:
1360 	 * - Unreserve worker might be sitting there waiting to grab the lock.
1361 	 *   In this case it will notice it's been schedule again and will
1362 	 *   quit.
1363 	 * - Unreserve worker might not be scheduled.
1364 	 *
1365 	 * We should never already be scheduled since dwc2_schedule_periodic()
1366 	 * should have canceled the scheduled unreserve timer (hence the
1367 	 * warning on did_modify).
1368 	 *
1369 	 * We add + 1 to the timer to guarantee that at least 1 jiffy has
1370 	 * passed (otherwise if the jiffy counter might tick right after we
1371 	 * read it and we'll get no delay).
1372 	 */
1373 	did_modify = mod_timer(&qh->unreserve_timer,
1374 			       jiffies + DWC2_UNRESERVE_DELAY + 1);
1375 	WARN_ON(did_modify);
1376 	qh->unreserve_pending = 1;
1377 
1378 	list_del_init(&qh->qh_list_entry);
1379 }
1380 
1381 /**
1382  * dwc2_wait_timer_fn() - Timer function to re-queue after waiting
1383  *
1384  * As per the spec, a NAK indicates that "a function is temporarily unable to
1385  * transmit or receive data, but will eventually be able to do so without need
1386  * of host intervention".
1387  *
1388  * That means that when we encounter a NAK we're supposed to retry.
1389  *
1390  * ...but if we retry right away (from the interrupt handler that saw the NAK)
1391  * then we can end up with an interrupt storm (if the other side keeps NAKing
1392  * us) because on slow enough CPUs it could take us longer to get out of the
1393  * interrupt routine than it takes for the device to send another NAK.  That
1394  * leads to a constant stream of NAK interrupts and the CPU locks.
1395  *
1396  * ...so instead of retrying right away in the case of a NAK we'll set a timer
1397  * to retry some time later.  This function handles that timer and moves the
1398  * qh back to the "inactive" list, then queues transactions.
1399  *
1400  * @t: Pointer to wait_timer in a qh.
1401  *
1402  * Return: HRTIMER_NORESTART to not automatically restart this timer.
1403  */
dwc2_wait_timer_fn(struct hrtimer * t)1404 static enum hrtimer_restart dwc2_wait_timer_fn(struct hrtimer *t)
1405 {
1406 	struct dwc2_qh *qh = container_of(t, struct dwc2_qh, wait_timer);
1407 	struct dwc2_hsotg *hsotg = qh->hsotg;
1408 	unsigned long flags;
1409 
1410 	spin_lock_irqsave(&hsotg->lock, flags);
1411 
1412 	/*
1413 	 * We'll set wait_timer_cancel to true if we want to cancel this
1414 	 * operation in dwc2_hcd_qh_unlink().
1415 	 */
1416 	if (!qh->wait_timer_cancel) {
1417 		enum dwc2_transaction_type tr_type;
1418 
1419 		qh->want_wait = false;
1420 
1421 		list_move(&qh->qh_list_entry,
1422 			  &hsotg->non_periodic_sched_inactive);
1423 
1424 		tr_type = dwc2_hcd_select_transactions(hsotg);
1425 		if (tr_type != DWC2_TRANSACTION_NONE)
1426 			dwc2_hcd_queue_transactions(hsotg, tr_type);
1427 	}
1428 
1429 	spin_unlock_irqrestore(&hsotg->lock, flags);
1430 	return HRTIMER_NORESTART;
1431 }
1432 
1433 /**
1434  * dwc2_qh_init() - Initializes a QH structure
1435  *
1436  * @hsotg: The HCD state structure for the DWC OTG controller
1437  * @qh:    The QH to init
1438  * @urb:   Holds the information about the device/endpoint needed to initialize
1439  *         the QH
1440  * @mem_flags: Flags for allocating memory.
1441  */
dwc2_qh_init(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,struct dwc2_hcd_urb * urb,gfp_t mem_flags)1442 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1443 			 struct dwc2_hcd_urb *urb, gfp_t mem_flags)
1444 {
1445 	int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1446 	u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
1447 	bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
1448 	bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
1449 	bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
1450 	u32 hprt = dwc2_readl(hsotg, HPRT0);
1451 	u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1452 	bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
1453 			 dev_speed != USB_SPEED_HIGH);
1454 	int maxp = dwc2_hcd_get_maxp(&urb->pipe_info);
1455 	int maxp_mult = dwc2_hcd_get_maxp_mult(&urb->pipe_info);
1456 	int bytecount = maxp_mult * maxp;
1457 	char *speed, *type;
1458 
1459 	/* Initialize QH */
1460 	qh->hsotg = hsotg;
1461 	timer_setup(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 0);
1462 	hrtimer_init(&qh->wait_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1463 	qh->wait_timer.function = &dwc2_wait_timer_fn;
1464 	qh->ep_type = ep_type;
1465 	qh->ep_is_in = ep_is_in;
1466 
1467 	qh->data_toggle = DWC2_HC_PID_DATA0;
1468 	qh->maxp = maxp;
1469 	qh->maxp_mult = maxp_mult;
1470 	INIT_LIST_HEAD(&qh->qtd_list);
1471 	INIT_LIST_HEAD(&qh->qh_list_entry);
1472 
1473 	qh->do_split = do_split;
1474 	qh->dev_speed = dev_speed;
1475 
1476 	if (ep_is_int || ep_is_isoc) {
1477 		/* Compute scheduling parameters once and save them */
1478 		int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
1479 		struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
1480 							       mem_flags,
1481 							       &qh->ttport);
1482 		int device_ns;
1483 
1484 		qh->dwc_tt = dwc_tt;
1485 
1486 		qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
1487 				       ep_is_isoc, bytecount));
1488 		device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
1489 					      ep_is_isoc, bytecount);
1490 
1491 		if (do_split && dwc_tt)
1492 			device_ns += dwc_tt->usb_tt->think_time;
1493 		qh->device_us = NS_TO_US(device_ns);
1494 
1495 		qh->device_interval = urb->interval;
1496 		qh->host_interval = urb->interval * (do_split ? 8 : 1);
1497 
1498 		/*
1499 		 * Schedule low speed if we're running the host in low or
1500 		 * full speed OR if we've got a "TT" to deal with to access this
1501 		 * device.
1502 		 */
1503 		qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
1504 					 dwc_tt;
1505 
1506 		if (do_split) {
1507 			/* We won't know num transfers until we schedule */
1508 			qh->num_hs_transfers = -1;
1509 		} else if (dev_speed == USB_SPEED_HIGH) {
1510 			qh->num_hs_transfers = 1;
1511 		} else {
1512 			qh->num_hs_transfers = 0;
1513 		}
1514 
1515 		/* We'll schedule later when we have something to do */
1516 	}
1517 
1518 	switch (dev_speed) {
1519 	case USB_SPEED_LOW:
1520 		speed = "low";
1521 		break;
1522 	case USB_SPEED_FULL:
1523 		speed = "full";
1524 		break;
1525 	case USB_SPEED_HIGH:
1526 		speed = "high";
1527 		break;
1528 	default:
1529 		speed = "?";
1530 		break;
1531 	}
1532 
1533 	switch (qh->ep_type) {
1534 	case USB_ENDPOINT_XFER_ISOC:
1535 		type = "isochronous";
1536 		break;
1537 	case USB_ENDPOINT_XFER_INT:
1538 		type = "interrupt";
1539 		break;
1540 	case USB_ENDPOINT_XFER_CONTROL:
1541 		type = "control";
1542 		break;
1543 	case USB_ENDPOINT_XFER_BULK:
1544 		type = "bulk";
1545 		break;
1546 	default:
1547 		type = "?";
1548 		break;
1549 	}
1550 
1551 	dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
1552 		     speed, bytecount);
1553 	dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
1554 		     dwc2_hcd_get_dev_addr(&urb->pipe_info),
1555 		     dwc2_hcd_get_ep_num(&urb->pipe_info),
1556 		     ep_is_in ? "IN" : "OUT");
1557 	if (ep_is_int || ep_is_isoc) {
1558 		dwc2_sch_dbg(hsotg,
1559 			     "QH=%p ...duration: host=%d us, device=%d us\n",
1560 			     qh, qh->host_us, qh->device_us);
1561 		dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
1562 			     qh, qh->host_interval, qh->device_interval);
1563 		if (qh->schedule_low_speed)
1564 			dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
1565 				     qh, dwc2_get_ls_map(hsotg, qh));
1566 	}
1567 }
1568 
1569 /**
1570  * dwc2_hcd_qh_create() - Allocates and initializes a QH
1571  *
1572  * @hsotg:        The HCD state structure for the DWC OTG controller
1573  * @urb:          Holds the information about the device/endpoint needed
1574  *                to initialize the QH
1575  * @mem_flags:   Flags for allocating memory.
1576  *
1577  * Return: Pointer to the newly allocated QH, or NULL on error
1578  */
dwc2_hcd_qh_create(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb,gfp_t mem_flags)1579 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
1580 				   struct dwc2_hcd_urb *urb,
1581 					  gfp_t mem_flags)
1582 {
1583 	struct dwc2_qh *qh;
1584 
1585 	if (!urb->priv)
1586 		return NULL;
1587 
1588 	/* Allocate memory */
1589 	qh = kzalloc(sizeof(*qh), mem_flags);
1590 	if (!qh)
1591 		return NULL;
1592 
1593 	dwc2_qh_init(hsotg, qh, urb, mem_flags);
1594 
1595 	if (hsotg->params.dma_desc_enable &&
1596 	    dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
1597 		dwc2_hcd_qh_free(hsotg, qh);
1598 		return NULL;
1599 	}
1600 
1601 	return qh;
1602 }
1603 
1604 /**
1605  * dwc2_hcd_qh_free() - Frees the QH
1606  *
1607  * @hsotg: HCD instance
1608  * @qh:    The QH to free
1609  *
1610  * QH should already be removed from the list. QTD list should already be empty
1611  * if called from URB Dequeue.
1612  *
1613  * Must NOT be called with interrupt disabled or spinlock held
1614  */
dwc2_hcd_qh_free(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1615 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1616 {
1617 	/* Make sure any unreserve work is finished. */
1618 	if (del_timer_sync(&qh->unreserve_timer)) {
1619 		unsigned long flags;
1620 
1621 		spin_lock_irqsave(&hsotg->lock, flags);
1622 		dwc2_do_unreserve(hsotg, qh);
1623 		spin_unlock_irqrestore(&hsotg->lock, flags);
1624 	}
1625 
1626 	/*
1627 	 * We don't have the lock so we can safely wait until the wait timer
1628 	 * finishes.  Of course, at this point in time we'd better have set
1629 	 * wait_timer_active to false so if this timer was still pending it
1630 	 * won't do anything anyway, but we want it to finish before we free
1631 	 * memory.
1632 	 */
1633 	hrtimer_cancel(&qh->wait_timer);
1634 
1635 	dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
1636 
1637 	if (qh->desc_list)
1638 		dwc2_hcd_qh_free_ddma(hsotg, qh);
1639 	else if (hsotg->unaligned_cache && qh->dw_align_buf)
1640 		kmem_cache_free(hsotg->unaligned_cache, qh->dw_align_buf);
1641 
1642 	kfree(qh);
1643 }
1644 
1645 /**
1646  * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1647  * schedule if it is not already in the schedule. If the QH is already in
1648  * the schedule, no action is taken.
1649  *
1650  * @hsotg: The HCD state structure for the DWC OTG controller
1651  * @qh:    The QH to add
1652  *
1653  * Return: 0 if successful, negative error code otherwise
1654  */
dwc2_hcd_qh_add(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1655 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1656 {
1657 	int status;
1658 	u32 intr_mask;
1659 	ktime_t delay;
1660 
1661 	if (dbg_qh(qh))
1662 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1663 
1664 	if (!list_empty(&qh->qh_list_entry))
1665 		/* QH already in a schedule */
1666 		return 0;
1667 
1668 	/* Add the new QH to the appropriate schedule */
1669 	if (dwc2_qh_is_non_per(qh)) {
1670 		/* Schedule right away */
1671 		qh->start_active_frame = hsotg->frame_number;
1672 		qh->next_active_frame = qh->start_active_frame;
1673 
1674 		if (qh->want_wait) {
1675 			list_add_tail(&qh->qh_list_entry,
1676 				      &hsotg->non_periodic_sched_waiting);
1677 			qh->wait_timer_cancel = false;
1678 			delay = ktime_set(0, DWC2_RETRY_WAIT_DELAY);
1679 			hrtimer_start(&qh->wait_timer, delay, HRTIMER_MODE_REL);
1680 		} else {
1681 			list_add_tail(&qh->qh_list_entry,
1682 				      &hsotg->non_periodic_sched_inactive);
1683 		}
1684 		return 0;
1685 	}
1686 
1687 	status = dwc2_schedule_periodic(hsotg, qh);
1688 	if (status)
1689 		return status;
1690 	if (!hsotg->periodic_qh_count) {
1691 		intr_mask = dwc2_readl(hsotg, GINTMSK);
1692 		intr_mask |= GINTSTS_SOF;
1693 		dwc2_writel(hsotg, intr_mask, GINTMSK);
1694 	}
1695 	hsotg->periodic_qh_count++;
1696 
1697 	return 0;
1698 }
1699 
1700 /**
1701  * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1702  * schedule. Memory is not freed.
1703  *
1704  * @hsotg: The HCD state structure
1705  * @qh:    QH to remove from schedule
1706  */
dwc2_hcd_qh_unlink(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1707 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1708 {
1709 	u32 intr_mask;
1710 
1711 	dev_vdbg(hsotg->dev, "%s()\n", __func__);
1712 
1713 	/* If the wait_timer is pending, this will stop it from acting */
1714 	qh->wait_timer_cancel = true;
1715 
1716 	if (list_empty(&qh->qh_list_entry))
1717 		/* QH is not in a schedule */
1718 		return;
1719 
1720 	if (dwc2_qh_is_non_per(qh)) {
1721 		if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
1722 			hsotg->non_periodic_qh_ptr =
1723 					hsotg->non_periodic_qh_ptr->next;
1724 		list_del_init(&qh->qh_list_entry);
1725 		return;
1726 	}
1727 
1728 	dwc2_deschedule_periodic(hsotg, qh);
1729 	hsotg->periodic_qh_count--;
1730 	if (!hsotg->periodic_qh_count &&
1731 	    !hsotg->params.dma_desc_enable) {
1732 		intr_mask = dwc2_readl(hsotg, GINTMSK);
1733 		intr_mask &= ~GINTSTS_SOF;
1734 		dwc2_writel(hsotg, intr_mask, GINTMSK);
1735 	}
1736 }
1737 
1738 /**
1739  * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1740  *
1741  * This is called for setting next_active_frame for periodic splits for all but
1742  * the first packet of the split.  Confusing?  I thought so...
1743  *
1744  * Periodic splits are single low/full speed transfers that we end up splitting
1745  * up into several high speed transfers.  They always fit into one full (1 ms)
1746  * frame but might be split over several microframes (125 us each).  We to put
1747  * each of the parts on a very specific high speed frame.
1748  *
1749  * This function figures out where the next active uFrame needs to be.
1750  *
1751  * @hsotg:        The HCD state structure
1752  * @qh:           QH for the periodic transfer.
1753  * @frame_number: The current frame number.
1754  *
1755  * Return: number missed by (or 0 if we didn't miss).
1756  */
dwc2_next_for_periodic_split(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,u16 frame_number)1757 static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
1758 					struct dwc2_qh *qh, u16 frame_number)
1759 {
1760 	u16 old_frame = qh->next_active_frame;
1761 	u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1762 	int missed = 0;
1763 	u16 incr;
1764 
1765 	/*
1766 	 * See dwc2_uframe_schedule_split() for split scheduling.
1767 	 *
1768 	 * Basically: increment 1 normally, but 2 right after the start split
1769 	 * (except for ISOC out).
1770 	 */
1771 	if (old_frame == qh->start_active_frame &&
1772 	    !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
1773 		incr = 2;
1774 	else
1775 		incr = 1;
1776 
1777 	qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
1778 
1779 	/*
1780 	 * Note that it's OK for frame_number to be 1 frame past
1781 	 * next_active_frame.  Remember that next_active_frame is supposed to
1782 	 * be 1 frame _before_ when we want to be scheduled.  If we're 1 frame
1783 	 * past it just means schedule ASAP.
1784 	 *
1785 	 * It's _not_ OK, however, if we're more than one frame past.
1786 	 */
1787 	if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
1788 		/*
1789 		 * OOPS, we missed.  That's actually pretty bad since
1790 		 * the hub will be unhappy; try ASAP I guess.
1791 		 */
1792 		missed = dwc2_frame_num_dec(prev_frame_number,
1793 					    qh->next_active_frame);
1794 		qh->next_active_frame = frame_number;
1795 	}
1796 
1797 	return missed;
1798 }
1799 
1800 /**
1801  * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1802  *
1803  * This is called for setting next_active_frame for a periodic transfer for
1804  * all cases other than midway through a periodic split.  This will also update
1805  * start_active_frame.
1806  *
1807  * Since we _always_ keep start_active_frame as the start of the previous
1808  * transfer this is normally pretty easy: we just add our interval to
1809  * start_active_frame and we've got our answer.
1810  *
1811  * The tricks come into play if we miss.  In that case we'll look for the next
1812  * slot we can fit into.
1813  *
1814  * @hsotg:        The HCD state structure
1815  * @qh:           QH for the periodic transfer.
1816  * @frame_number: The current frame number.
1817  *
1818  * Return: number missed by (or 0 if we didn't miss).
1819  */
dwc2_next_periodic_start(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,u16 frame_number)1820 static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
1821 				    struct dwc2_qh *qh, u16 frame_number)
1822 {
1823 	int missed = 0;
1824 	u16 interval = qh->host_interval;
1825 	u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1826 
1827 	qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
1828 						    interval);
1829 
1830 	/*
1831 	 * The dwc2_frame_num_gt() function used below won't work terribly well
1832 	 * with if we just incremented by a really large intervals since the
1833 	 * frame counter only goes to 0x3fff.  It's terribly unlikely that we
1834 	 * will have missed in this case anyway.  Just go to exit.  If we want
1835 	 * to try to do better we'll need to keep track of a bigger counter
1836 	 * somewhere in the driver and handle overflows.
1837 	 */
1838 	if (interval >= 0x1000)
1839 		goto exit;
1840 
1841 	/*
1842 	 * Test for misses, which is when it's too late to schedule.
1843 	 *
1844 	 * A few things to note:
1845 	 * - We compare against prev_frame_number since start_active_frame
1846 	 *   and next_active_frame are always 1 frame before we want things
1847 	 *   to be active and we assume we can still get scheduled in the
1848 	 *   current frame number.
1849 	 * - It's possible for start_active_frame (now incremented) to be
1850 	 *   next_active_frame if we got an EO MISS (even_odd miss) which
1851 	 *   basically means that we detected there wasn't enough time for
1852 	 *   the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1853 	 *   at the last second.  We want to make sure we don't schedule
1854 	 *   another transfer for the same frame.  My test webcam doesn't seem
1855 	 *   terribly upset by missing a transfer but really doesn't like when
1856 	 *   we do two transfers in the same frame.
1857 	 * - Some misses are expected.  Specifically, in order to work
1858 	 *   perfectly dwc2 really needs quite spectacular interrupt latency
1859 	 *   requirements.  It needs to be able to handle its interrupts
1860 	 *   completely within 125 us of them being asserted. That not only
1861 	 *   means that the dwc2 interrupt handler needs to be fast but it
1862 	 *   means that nothing else in the system has to block dwc2 for a long
1863 	 *   time.  We can help with the dwc2 parts of this, but it's hard to
1864 	 *   guarantee that a system will have interrupt latency < 125 us, so
1865 	 *   we have to be robust to some misses.
1866 	 */
1867 	if (qh->start_active_frame == qh->next_active_frame ||
1868 	    dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
1869 		u16 ideal_start = qh->start_active_frame;
1870 		int periods_in_map;
1871 
1872 		/*
1873 		 * Adjust interval as per gcd with map size.
1874 		 * See pmap_schedule() for more details here.
1875 		 */
1876 		if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
1877 			periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
1878 		else
1879 			periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
1880 		interval = gcd(interval, periods_in_map);
1881 
1882 		do {
1883 			qh->start_active_frame = dwc2_frame_num_inc(
1884 				qh->start_active_frame, interval);
1885 		} while (dwc2_frame_num_gt(prev_frame_number,
1886 					   qh->start_active_frame));
1887 
1888 		missed = dwc2_frame_num_dec(qh->start_active_frame,
1889 					    ideal_start);
1890 	}
1891 
1892 exit:
1893 	qh->next_active_frame = qh->start_active_frame;
1894 
1895 	return missed;
1896 }
1897 
1898 /*
1899  * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1900  * non-periodic schedule. The QH is added to the inactive non-periodic
1901  * schedule if any QTDs are still attached to the QH.
1902  *
1903  * For periodic QHs, the QH is removed from the periodic queued schedule. If
1904  * there are any QTDs still attached to the QH, the QH is added to either the
1905  * periodic inactive schedule or the periodic ready schedule and its next
1906  * scheduled frame is calculated. The QH is placed in the ready schedule if
1907  * the scheduled frame has been reached already. Otherwise it's placed in the
1908  * inactive schedule. If there are no QTDs attached to the QH, the QH is
1909  * completely removed from the periodic schedule.
1910  */
dwc2_hcd_qh_deactivate(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,int sched_next_periodic_split)1911 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1912 			    int sched_next_periodic_split)
1913 {
1914 	u16 old_frame = qh->next_active_frame;
1915 	u16 frame_number;
1916 	int missed;
1917 
1918 	if (dbg_qh(qh))
1919 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1920 
1921 	if (dwc2_qh_is_non_per(qh)) {
1922 		dwc2_hcd_qh_unlink(hsotg, qh);
1923 		if (!list_empty(&qh->qtd_list))
1924 			/* Add back to inactive/waiting non-periodic schedule */
1925 			dwc2_hcd_qh_add(hsotg, qh);
1926 		return;
1927 	}
1928 
1929 	/*
1930 	 * Use the real frame number rather than the cached value as of the
1931 	 * last SOF just to get us a little closer to reality.  Note that
1932 	 * means we don't actually know if we've already handled the SOF
1933 	 * interrupt for this frame.
1934 	 */
1935 	frame_number = dwc2_hcd_get_frame_number(hsotg);
1936 
1937 	if (sched_next_periodic_split)
1938 		missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
1939 	else
1940 		missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
1941 
1942 	dwc2_sch_vdbg(hsotg,
1943 		      "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
1944 		     qh, sched_next_periodic_split, frame_number, old_frame,
1945 		     qh->next_active_frame,
1946 		     dwc2_frame_num_dec(qh->next_active_frame, old_frame),
1947 		missed, missed ? "MISS" : "");
1948 
1949 	if (list_empty(&qh->qtd_list)) {
1950 		dwc2_hcd_qh_unlink(hsotg, qh);
1951 		return;
1952 	}
1953 
1954 	/*
1955 	 * Remove from periodic_sched_queued and move to
1956 	 * appropriate queue
1957 	 *
1958 	 * Note: we purposely use the frame_number from the "hsotg" structure
1959 	 * since we know SOF interrupt will handle future frames.
1960 	 */
1961 	if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
1962 		list_move_tail(&qh->qh_list_entry,
1963 			       &hsotg->periodic_sched_ready);
1964 	else
1965 		list_move_tail(&qh->qh_list_entry,
1966 			       &hsotg->periodic_sched_inactive);
1967 }
1968 
1969 /**
1970  * dwc2_hcd_qtd_init() - Initializes a QTD structure
1971  *
1972  * @qtd: The QTD to initialize
1973  * @urb: The associated URB
1974  */
dwc2_hcd_qtd_init(struct dwc2_qtd * qtd,struct dwc2_hcd_urb * urb)1975 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
1976 {
1977 	qtd->urb = urb;
1978 	if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
1979 			USB_ENDPOINT_XFER_CONTROL) {
1980 		/*
1981 		 * The only time the QTD data toggle is used is on the data
1982 		 * phase of control transfers. This phase always starts with
1983 		 * DATA1.
1984 		 */
1985 		qtd->data_toggle = DWC2_HC_PID_DATA1;
1986 		qtd->control_phase = DWC2_CONTROL_SETUP;
1987 	}
1988 
1989 	/* Start split */
1990 	qtd->complete_split = 0;
1991 	qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
1992 	qtd->isoc_split_offset = 0;
1993 	qtd->in_process = 0;
1994 
1995 	/* Store the qtd ptr in the urb to reference the QTD */
1996 	urb->qtd = qtd;
1997 }
1998 
1999 /**
2000  * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
2001  *			Caller must hold driver lock.
2002  *
2003  * @hsotg:        The DWC HCD structure
2004  * @qtd:          The QTD to add
2005  * @qh:           Queue head to add qtd to
2006  *
2007  * Return: 0 if successful, negative error code otherwise
2008  *
2009  * If the QH to which the QTD is added is not currently scheduled, it is placed
2010  * into the proper schedule based on its EP type.
2011  */
dwc2_hcd_qtd_add(struct dwc2_hsotg * hsotg,struct dwc2_qtd * qtd,struct dwc2_qh * qh)2012 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
2013 		     struct dwc2_qh *qh)
2014 {
2015 	int retval;
2016 
2017 	if (unlikely(!qh)) {
2018 		dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
2019 		retval = -EINVAL;
2020 		goto fail;
2021 	}
2022 
2023 	retval = dwc2_hcd_qh_add(hsotg, qh);
2024 	if (retval)
2025 		goto fail;
2026 
2027 	qtd->qh = qh;
2028 	list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
2029 
2030 	return 0;
2031 fail:
2032 	return retval;
2033 }
2034