1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * DSA topology and switch handling
4   *
5   * Copyright (c) 2008-2009 Marvell Semiconductor
6   * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7   * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8   */
9  
10  #include <linux/device.h>
11  #include <linux/err.h>
12  #include <linux/list.h>
13  #include <linux/module.h>
14  #include <linux/netdevice.h>
15  #include <linux/slab.h>
16  #include <linux/rtnetlink.h>
17  #include <linux/of.h>
18  #include <linux/of_net.h>
19  #include <net/dsa_stubs.h>
20  #include <net/sch_generic.h>
21  
22  #include "conduit.h"
23  #include "devlink.h"
24  #include "dsa.h"
25  #include "netlink.h"
26  #include "port.h"
27  #include "switch.h"
28  #include "tag.h"
29  #include "user.h"
30  
31  #define DSA_MAX_NUM_OFFLOADING_BRIDGES		BITS_PER_LONG
32  
33  static DEFINE_MUTEX(dsa2_mutex);
34  LIST_HEAD(dsa_tree_list);
35  
36  static struct workqueue_struct *dsa_owq;
37  
38  /* Track the bridges with forwarding offload enabled */
39  static unsigned long dsa_fwd_offloading_bridges;
40  
dsa_schedule_work(struct work_struct * work)41  bool dsa_schedule_work(struct work_struct *work)
42  {
43  	return queue_work(dsa_owq, work);
44  }
45  
dsa_flush_workqueue(void)46  void dsa_flush_workqueue(void)
47  {
48  	flush_workqueue(dsa_owq);
49  }
50  EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
51  
52  /**
53   * dsa_lag_map() - Map LAG structure to a linear LAG array
54   * @dst: Tree in which to record the mapping.
55   * @lag: LAG structure that is to be mapped to the tree's array.
56   *
57   * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
58   * two spaces. The size of the mapping space is determined by the
59   * driver by setting ds->num_lag_ids. It is perfectly legal to leave
60   * it unset if it is not needed, in which case these functions become
61   * no-ops.
62   */
dsa_lag_map(struct dsa_switch_tree * dst,struct dsa_lag * lag)63  void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
64  {
65  	unsigned int id;
66  
67  	for (id = 1; id <= dst->lags_len; id++) {
68  		if (!dsa_lag_by_id(dst, id)) {
69  			dst->lags[id - 1] = lag;
70  			lag->id = id;
71  			return;
72  		}
73  	}
74  
75  	/* No IDs left, which is OK. Some drivers do not need it. The
76  	 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
77  	 * returns an error for this device when joining the LAG. The
78  	 * driver can then return -EOPNOTSUPP back to DSA, which will
79  	 * fall back to a software LAG.
80  	 */
81  }
82  
83  /**
84   * dsa_lag_unmap() - Remove a LAG ID mapping
85   * @dst: Tree in which the mapping is recorded.
86   * @lag: LAG structure that was mapped.
87   *
88   * As there may be multiple users of the mapping, it is only removed
89   * if there are no other references to it.
90   */
dsa_lag_unmap(struct dsa_switch_tree * dst,struct dsa_lag * lag)91  void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
92  {
93  	unsigned int id;
94  
95  	dsa_lags_foreach_id(id, dst) {
96  		if (dsa_lag_by_id(dst, id) == lag) {
97  			dst->lags[id - 1] = NULL;
98  			lag->id = 0;
99  			break;
100  		}
101  	}
102  }
103  
dsa_tree_lag_find(struct dsa_switch_tree * dst,const struct net_device * lag_dev)104  struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
105  				  const struct net_device *lag_dev)
106  {
107  	struct dsa_port *dp;
108  
109  	list_for_each_entry(dp, &dst->ports, list)
110  		if (dsa_port_lag_dev_get(dp) == lag_dev)
111  			return dp->lag;
112  
113  	return NULL;
114  }
115  
dsa_tree_bridge_find(struct dsa_switch_tree * dst,const struct net_device * br)116  struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
117  					const struct net_device *br)
118  {
119  	struct dsa_port *dp;
120  
121  	list_for_each_entry(dp, &dst->ports, list)
122  		if (dsa_port_bridge_dev_get(dp) == br)
123  			return dp->bridge;
124  
125  	return NULL;
126  }
127  
dsa_bridge_num_find(const struct net_device * bridge_dev)128  static int dsa_bridge_num_find(const struct net_device *bridge_dev)
129  {
130  	struct dsa_switch_tree *dst;
131  
132  	list_for_each_entry(dst, &dsa_tree_list, list) {
133  		struct dsa_bridge *bridge;
134  
135  		bridge = dsa_tree_bridge_find(dst, bridge_dev);
136  		if (bridge)
137  			return bridge->num;
138  	}
139  
140  	return 0;
141  }
142  
dsa_bridge_num_get(const struct net_device * bridge_dev,int max)143  unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
144  {
145  	unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
146  
147  	/* Switches without FDB isolation support don't get unique
148  	 * bridge numbering
149  	 */
150  	if (!max)
151  		return 0;
152  
153  	if (!bridge_num) {
154  		/* First port that requests FDB isolation or TX forwarding
155  		 * offload for this bridge
156  		 */
157  		bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
158  						DSA_MAX_NUM_OFFLOADING_BRIDGES,
159  						1);
160  		if (bridge_num >= max)
161  			return 0;
162  
163  		set_bit(bridge_num, &dsa_fwd_offloading_bridges);
164  	}
165  
166  	return bridge_num;
167  }
168  
dsa_bridge_num_put(const struct net_device * bridge_dev,unsigned int bridge_num)169  void dsa_bridge_num_put(const struct net_device *bridge_dev,
170  			unsigned int bridge_num)
171  {
172  	/* Since we refcount bridges, we know that when we call this function
173  	 * it is no longer in use, so we can just go ahead and remove it from
174  	 * the bit mask.
175  	 */
176  	clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
177  }
178  
dsa_switch_find(int tree_index,int sw_index)179  struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
180  {
181  	struct dsa_switch_tree *dst;
182  	struct dsa_port *dp;
183  
184  	list_for_each_entry(dst, &dsa_tree_list, list) {
185  		if (dst->index != tree_index)
186  			continue;
187  
188  		list_for_each_entry(dp, &dst->ports, list) {
189  			if (dp->ds->index != sw_index)
190  				continue;
191  
192  			return dp->ds;
193  		}
194  	}
195  
196  	return NULL;
197  }
198  EXPORT_SYMBOL_GPL(dsa_switch_find);
199  
dsa_tree_find(int index)200  static struct dsa_switch_tree *dsa_tree_find(int index)
201  {
202  	struct dsa_switch_tree *dst;
203  
204  	list_for_each_entry(dst, &dsa_tree_list, list)
205  		if (dst->index == index)
206  			return dst;
207  
208  	return NULL;
209  }
210  
dsa_tree_alloc(int index)211  static struct dsa_switch_tree *dsa_tree_alloc(int index)
212  {
213  	struct dsa_switch_tree *dst;
214  
215  	dst = kzalloc(sizeof(*dst), GFP_KERNEL);
216  	if (!dst)
217  		return NULL;
218  
219  	dst->index = index;
220  
221  	INIT_LIST_HEAD(&dst->rtable);
222  
223  	INIT_LIST_HEAD(&dst->ports);
224  
225  	INIT_LIST_HEAD(&dst->list);
226  	list_add_tail(&dst->list, &dsa_tree_list);
227  
228  	kref_init(&dst->refcount);
229  
230  	return dst;
231  }
232  
dsa_tree_free(struct dsa_switch_tree * dst)233  static void dsa_tree_free(struct dsa_switch_tree *dst)
234  {
235  	if (dst->tag_ops)
236  		dsa_tag_driver_put(dst->tag_ops);
237  	list_del(&dst->list);
238  	kfree(dst);
239  }
240  
dsa_tree_get(struct dsa_switch_tree * dst)241  static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
242  {
243  	if (dst)
244  		kref_get(&dst->refcount);
245  
246  	return dst;
247  }
248  
dsa_tree_touch(int index)249  static struct dsa_switch_tree *dsa_tree_touch(int index)
250  {
251  	struct dsa_switch_tree *dst;
252  
253  	dst = dsa_tree_find(index);
254  	if (dst)
255  		return dsa_tree_get(dst);
256  	else
257  		return dsa_tree_alloc(index);
258  }
259  
dsa_tree_release(struct kref * ref)260  static void dsa_tree_release(struct kref *ref)
261  {
262  	struct dsa_switch_tree *dst;
263  
264  	dst = container_of(ref, struct dsa_switch_tree, refcount);
265  
266  	dsa_tree_free(dst);
267  }
268  
dsa_tree_put(struct dsa_switch_tree * dst)269  static void dsa_tree_put(struct dsa_switch_tree *dst)
270  {
271  	if (dst)
272  		kref_put(&dst->refcount, dsa_tree_release);
273  }
274  
dsa_tree_find_port_by_node(struct dsa_switch_tree * dst,struct device_node * dn)275  static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
276  						   struct device_node *dn)
277  {
278  	struct dsa_port *dp;
279  
280  	list_for_each_entry(dp, &dst->ports, list)
281  		if (dp->dn == dn)
282  			return dp;
283  
284  	return NULL;
285  }
286  
dsa_link_touch(struct dsa_port * dp,struct dsa_port * link_dp)287  static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
288  				       struct dsa_port *link_dp)
289  {
290  	struct dsa_switch *ds = dp->ds;
291  	struct dsa_switch_tree *dst;
292  	struct dsa_link *dl;
293  
294  	dst = ds->dst;
295  
296  	list_for_each_entry(dl, &dst->rtable, list)
297  		if (dl->dp == dp && dl->link_dp == link_dp)
298  			return dl;
299  
300  	dl = kzalloc(sizeof(*dl), GFP_KERNEL);
301  	if (!dl)
302  		return NULL;
303  
304  	dl->dp = dp;
305  	dl->link_dp = link_dp;
306  
307  	INIT_LIST_HEAD(&dl->list);
308  	list_add_tail(&dl->list, &dst->rtable);
309  
310  	return dl;
311  }
312  
dsa_port_setup_routing_table(struct dsa_port * dp)313  static bool dsa_port_setup_routing_table(struct dsa_port *dp)
314  {
315  	struct dsa_switch *ds = dp->ds;
316  	struct dsa_switch_tree *dst = ds->dst;
317  	struct device_node *dn = dp->dn;
318  	struct of_phandle_iterator it;
319  	struct dsa_port *link_dp;
320  	struct dsa_link *dl;
321  	int err;
322  
323  	of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
324  		link_dp = dsa_tree_find_port_by_node(dst, it.node);
325  		if (!link_dp) {
326  			of_node_put(it.node);
327  			return false;
328  		}
329  
330  		dl = dsa_link_touch(dp, link_dp);
331  		if (!dl) {
332  			of_node_put(it.node);
333  			return false;
334  		}
335  	}
336  
337  	return true;
338  }
339  
dsa_tree_setup_routing_table(struct dsa_switch_tree * dst)340  static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
341  {
342  	bool complete = true;
343  	struct dsa_port *dp;
344  
345  	list_for_each_entry(dp, &dst->ports, list) {
346  		if (dsa_port_is_dsa(dp)) {
347  			complete = dsa_port_setup_routing_table(dp);
348  			if (!complete)
349  				break;
350  		}
351  	}
352  
353  	return complete;
354  }
355  
dsa_tree_find_first_cpu(struct dsa_switch_tree * dst)356  static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
357  {
358  	struct dsa_port *dp;
359  
360  	list_for_each_entry(dp, &dst->ports, list)
361  		if (dsa_port_is_cpu(dp))
362  			return dp;
363  
364  	return NULL;
365  }
366  
dsa_tree_find_first_conduit(struct dsa_switch_tree * dst)367  struct net_device *dsa_tree_find_first_conduit(struct dsa_switch_tree *dst)
368  {
369  	struct device_node *ethernet;
370  	struct net_device *conduit;
371  	struct dsa_port *cpu_dp;
372  
373  	cpu_dp = dsa_tree_find_first_cpu(dst);
374  	ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0);
375  	conduit = of_find_net_device_by_node(ethernet);
376  	of_node_put(ethernet);
377  
378  	return conduit;
379  }
380  
381  /* Assign the default CPU port (the first one in the tree) to all ports of the
382   * fabric which don't already have one as part of their own switch.
383   */
dsa_tree_setup_default_cpu(struct dsa_switch_tree * dst)384  static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
385  {
386  	struct dsa_port *cpu_dp, *dp;
387  
388  	cpu_dp = dsa_tree_find_first_cpu(dst);
389  	if (!cpu_dp) {
390  		pr_err("DSA: tree %d has no CPU port\n", dst->index);
391  		return -EINVAL;
392  	}
393  
394  	list_for_each_entry(dp, &dst->ports, list) {
395  		if (dp->cpu_dp)
396  			continue;
397  
398  		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
399  			dp->cpu_dp = cpu_dp;
400  	}
401  
402  	return 0;
403  }
404  
405  static struct dsa_port *
dsa_switch_preferred_default_local_cpu_port(struct dsa_switch * ds)406  dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds)
407  {
408  	struct dsa_port *cpu_dp;
409  
410  	if (!ds->ops->preferred_default_local_cpu_port)
411  		return NULL;
412  
413  	cpu_dp = ds->ops->preferred_default_local_cpu_port(ds);
414  	if (!cpu_dp)
415  		return NULL;
416  
417  	if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds))
418  		return NULL;
419  
420  	return cpu_dp;
421  }
422  
423  /* Perform initial assignment of CPU ports to user ports and DSA links in the
424   * fabric, giving preference to CPU ports local to each switch. Default to
425   * using the first CPU port in the switch tree if the port does not have a CPU
426   * port local to this switch.
427   */
dsa_tree_setup_cpu_ports(struct dsa_switch_tree * dst)428  static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
429  {
430  	struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp;
431  
432  	list_for_each_entry(cpu_dp, &dst->ports, list) {
433  		if (!dsa_port_is_cpu(cpu_dp))
434  			continue;
435  
436  		preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds);
437  		if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp)
438  			continue;
439  
440  		/* Prefer a local CPU port */
441  		dsa_switch_for_each_port(dp, cpu_dp->ds) {
442  			/* Prefer the first local CPU port found */
443  			if (dp->cpu_dp)
444  				continue;
445  
446  			if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
447  				dp->cpu_dp = cpu_dp;
448  		}
449  	}
450  
451  	return dsa_tree_setup_default_cpu(dst);
452  }
453  
dsa_tree_teardown_cpu_ports(struct dsa_switch_tree * dst)454  static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
455  {
456  	struct dsa_port *dp;
457  
458  	list_for_each_entry(dp, &dst->ports, list)
459  		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
460  			dp->cpu_dp = NULL;
461  }
462  
dsa_port_setup(struct dsa_port * dp)463  static int dsa_port_setup(struct dsa_port *dp)
464  {
465  	bool dsa_port_link_registered = false;
466  	struct dsa_switch *ds = dp->ds;
467  	bool dsa_port_enabled = false;
468  	int err = 0;
469  
470  	if (dp->setup)
471  		return 0;
472  
473  	err = dsa_port_devlink_setup(dp);
474  	if (err)
475  		return err;
476  
477  	switch (dp->type) {
478  	case DSA_PORT_TYPE_UNUSED:
479  		dsa_port_disable(dp);
480  		break;
481  	case DSA_PORT_TYPE_CPU:
482  		if (dp->dn) {
483  			err = dsa_shared_port_link_register_of(dp);
484  			if (err)
485  				break;
486  			dsa_port_link_registered = true;
487  		} else {
488  			dev_warn(ds->dev,
489  				 "skipping link registration for CPU port %d\n",
490  				 dp->index);
491  		}
492  
493  		err = dsa_port_enable(dp, NULL);
494  		if (err)
495  			break;
496  		dsa_port_enabled = true;
497  
498  		break;
499  	case DSA_PORT_TYPE_DSA:
500  		if (dp->dn) {
501  			err = dsa_shared_port_link_register_of(dp);
502  			if (err)
503  				break;
504  			dsa_port_link_registered = true;
505  		} else {
506  			dev_warn(ds->dev,
507  				 "skipping link registration for DSA port %d\n",
508  				 dp->index);
509  		}
510  
511  		err = dsa_port_enable(dp, NULL);
512  		if (err)
513  			break;
514  		dsa_port_enabled = true;
515  
516  		break;
517  	case DSA_PORT_TYPE_USER:
518  		of_get_mac_address(dp->dn, dp->mac);
519  		err = dsa_user_create(dp);
520  		break;
521  	}
522  
523  	if (err && dsa_port_enabled)
524  		dsa_port_disable(dp);
525  	if (err && dsa_port_link_registered)
526  		dsa_shared_port_link_unregister_of(dp);
527  	if (err) {
528  		dsa_port_devlink_teardown(dp);
529  		return err;
530  	}
531  
532  	dp->setup = true;
533  
534  	return 0;
535  }
536  
dsa_port_teardown(struct dsa_port * dp)537  static void dsa_port_teardown(struct dsa_port *dp)
538  {
539  	if (!dp->setup)
540  		return;
541  
542  	switch (dp->type) {
543  	case DSA_PORT_TYPE_UNUSED:
544  		break;
545  	case DSA_PORT_TYPE_CPU:
546  		dsa_port_disable(dp);
547  		if (dp->dn)
548  			dsa_shared_port_link_unregister_of(dp);
549  		break;
550  	case DSA_PORT_TYPE_DSA:
551  		dsa_port_disable(dp);
552  		if (dp->dn)
553  			dsa_shared_port_link_unregister_of(dp);
554  		break;
555  	case DSA_PORT_TYPE_USER:
556  		if (dp->user) {
557  			dsa_user_destroy(dp->user);
558  			dp->user = NULL;
559  		}
560  		break;
561  	}
562  
563  	dsa_port_devlink_teardown(dp);
564  
565  	dp->setup = false;
566  }
567  
dsa_port_setup_as_unused(struct dsa_port * dp)568  static int dsa_port_setup_as_unused(struct dsa_port *dp)
569  {
570  	dp->type = DSA_PORT_TYPE_UNUSED;
571  	return dsa_port_setup(dp);
572  }
573  
dsa_switch_setup_tag_protocol(struct dsa_switch * ds)574  static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
575  {
576  	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
577  	struct dsa_switch_tree *dst = ds->dst;
578  	int err;
579  
580  	if (tag_ops->proto == dst->default_proto)
581  		goto connect;
582  
583  	rtnl_lock();
584  	err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
585  	rtnl_unlock();
586  	if (err) {
587  		dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
588  			tag_ops->name, ERR_PTR(err));
589  		return err;
590  	}
591  
592  connect:
593  	if (tag_ops->connect) {
594  		err = tag_ops->connect(ds);
595  		if (err)
596  			return err;
597  	}
598  
599  	if (ds->ops->connect_tag_protocol) {
600  		err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
601  		if (err) {
602  			dev_err(ds->dev,
603  				"Unable to connect to tag protocol \"%s\": %pe\n",
604  				tag_ops->name, ERR_PTR(err));
605  			goto disconnect;
606  		}
607  	}
608  
609  	return 0;
610  
611  disconnect:
612  	if (tag_ops->disconnect)
613  		tag_ops->disconnect(ds);
614  
615  	return err;
616  }
617  
dsa_switch_teardown_tag_protocol(struct dsa_switch * ds)618  static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
619  {
620  	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
621  
622  	if (tag_ops->disconnect)
623  		tag_ops->disconnect(ds);
624  }
625  
dsa_switch_setup(struct dsa_switch * ds)626  static int dsa_switch_setup(struct dsa_switch *ds)
627  {
628  	int err;
629  
630  	if (ds->setup)
631  		return 0;
632  
633  	/* Initialize ds->phys_mii_mask before registering the user MDIO bus
634  	 * driver and before ops->setup() has run, since the switch drivers and
635  	 * the user MDIO bus driver rely on these values for probing PHY
636  	 * devices or not
637  	 */
638  	ds->phys_mii_mask |= dsa_user_ports(ds);
639  
640  	err = dsa_switch_devlink_alloc(ds);
641  	if (err)
642  		return err;
643  
644  	err = dsa_switch_register_notifier(ds);
645  	if (err)
646  		goto devlink_free;
647  
648  	ds->configure_vlan_while_not_filtering = true;
649  
650  	err = ds->ops->setup(ds);
651  	if (err < 0)
652  		goto unregister_notifier;
653  
654  	err = dsa_switch_setup_tag_protocol(ds);
655  	if (err)
656  		goto teardown;
657  
658  	if (!ds->user_mii_bus && ds->ops->phy_read) {
659  		ds->user_mii_bus = mdiobus_alloc();
660  		if (!ds->user_mii_bus) {
661  			err = -ENOMEM;
662  			goto teardown;
663  		}
664  
665  		dsa_user_mii_bus_init(ds);
666  
667  		err = mdiobus_register(ds->user_mii_bus);
668  		if (err < 0)
669  			goto free_user_mii_bus;
670  	}
671  
672  	dsa_switch_devlink_register(ds);
673  
674  	ds->setup = true;
675  	return 0;
676  
677  free_user_mii_bus:
678  	if (ds->user_mii_bus && ds->ops->phy_read)
679  		mdiobus_free(ds->user_mii_bus);
680  teardown:
681  	if (ds->ops->teardown)
682  		ds->ops->teardown(ds);
683  unregister_notifier:
684  	dsa_switch_unregister_notifier(ds);
685  devlink_free:
686  	dsa_switch_devlink_free(ds);
687  	return err;
688  }
689  
dsa_switch_teardown(struct dsa_switch * ds)690  static void dsa_switch_teardown(struct dsa_switch *ds)
691  {
692  	if (!ds->setup)
693  		return;
694  
695  	dsa_switch_devlink_unregister(ds);
696  
697  	if (ds->user_mii_bus && ds->ops->phy_read) {
698  		mdiobus_unregister(ds->user_mii_bus);
699  		mdiobus_free(ds->user_mii_bus);
700  		ds->user_mii_bus = NULL;
701  	}
702  
703  	dsa_switch_teardown_tag_protocol(ds);
704  
705  	if (ds->ops->teardown)
706  		ds->ops->teardown(ds);
707  
708  	dsa_switch_unregister_notifier(ds);
709  
710  	dsa_switch_devlink_free(ds);
711  
712  	ds->setup = false;
713  }
714  
715  /* First tear down the non-shared, then the shared ports. This ensures that
716   * all work items scheduled by our switchdev handlers for user ports have
717   * completed before we destroy the refcounting kept on the shared ports.
718   */
dsa_tree_teardown_ports(struct dsa_switch_tree * dst)719  static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
720  {
721  	struct dsa_port *dp;
722  
723  	list_for_each_entry(dp, &dst->ports, list)
724  		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
725  			dsa_port_teardown(dp);
726  
727  	dsa_flush_workqueue();
728  
729  	list_for_each_entry(dp, &dst->ports, list)
730  		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
731  			dsa_port_teardown(dp);
732  }
733  
dsa_tree_teardown_switches(struct dsa_switch_tree * dst)734  static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
735  {
736  	struct dsa_port *dp;
737  
738  	list_for_each_entry(dp, &dst->ports, list)
739  		dsa_switch_teardown(dp->ds);
740  }
741  
742  /* Bring shared ports up first, then non-shared ports */
dsa_tree_setup_ports(struct dsa_switch_tree * dst)743  static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
744  {
745  	struct dsa_port *dp;
746  	int err = 0;
747  
748  	list_for_each_entry(dp, &dst->ports, list) {
749  		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
750  			err = dsa_port_setup(dp);
751  			if (err)
752  				goto teardown;
753  		}
754  	}
755  
756  	list_for_each_entry(dp, &dst->ports, list) {
757  		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
758  			err = dsa_port_setup(dp);
759  			if (err) {
760  				err = dsa_port_setup_as_unused(dp);
761  				if (err)
762  					goto teardown;
763  			}
764  		}
765  	}
766  
767  	return 0;
768  
769  teardown:
770  	dsa_tree_teardown_ports(dst);
771  
772  	return err;
773  }
774  
dsa_tree_setup_switches(struct dsa_switch_tree * dst)775  static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
776  {
777  	struct dsa_port *dp;
778  	int err = 0;
779  
780  	list_for_each_entry(dp, &dst->ports, list) {
781  		err = dsa_switch_setup(dp->ds);
782  		if (err) {
783  			dsa_tree_teardown_switches(dst);
784  			break;
785  		}
786  	}
787  
788  	return err;
789  }
790  
dsa_tree_setup_conduit(struct dsa_switch_tree * dst)791  static int dsa_tree_setup_conduit(struct dsa_switch_tree *dst)
792  {
793  	struct dsa_port *cpu_dp;
794  	int err = 0;
795  
796  	rtnl_lock();
797  
798  	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
799  		struct net_device *conduit = cpu_dp->conduit;
800  		bool admin_up = (conduit->flags & IFF_UP) &&
801  				!qdisc_tx_is_noop(conduit);
802  
803  		err = dsa_conduit_setup(conduit, cpu_dp);
804  		if (err)
805  			break;
806  
807  		/* Replay conduit state event */
808  		dsa_tree_conduit_admin_state_change(dst, conduit, admin_up);
809  		dsa_tree_conduit_oper_state_change(dst, conduit,
810  						   netif_oper_up(conduit));
811  	}
812  
813  	rtnl_unlock();
814  
815  	return err;
816  }
817  
dsa_tree_teardown_conduit(struct dsa_switch_tree * dst)818  static void dsa_tree_teardown_conduit(struct dsa_switch_tree *dst)
819  {
820  	struct dsa_port *cpu_dp;
821  
822  	rtnl_lock();
823  
824  	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
825  		struct net_device *conduit = cpu_dp->conduit;
826  
827  		/* Synthesizing an "admin down" state is sufficient for
828  		 * the switches to get a notification if the conduit is
829  		 * currently up and running.
830  		 */
831  		dsa_tree_conduit_admin_state_change(dst, conduit, false);
832  
833  		dsa_conduit_teardown(conduit);
834  	}
835  
836  	rtnl_unlock();
837  }
838  
dsa_tree_setup_lags(struct dsa_switch_tree * dst)839  static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
840  {
841  	unsigned int len = 0;
842  	struct dsa_port *dp;
843  
844  	list_for_each_entry(dp, &dst->ports, list) {
845  		if (dp->ds->num_lag_ids > len)
846  			len = dp->ds->num_lag_ids;
847  	}
848  
849  	if (!len)
850  		return 0;
851  
852  	dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
853  	if (!dst->lags)
854  		return -ENOMEM;
855  
856  	dst->lags_len = len;
857  	return 0;
858  }
859  
dsa_tree_teardown_lags(struct dsa_switch_tree * dst)860  static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
861  {
862  	kfree(dst->lags);
863  }
864  
dsa_tree_setup(struct dsa_switch_tree * dst)865  static int dsa_tree_setup(struct dsa_switch_tree *dst)
866  {
867  	bool complete;
868  	int err;
869  
870  	if (dst->setup) {
871  		pr_err("DSA: tree %d already setup! Disjoint trees?\n",
872  		       dst->index);
873  		return -EEXIST;
874  	}
875  
876  	complete = dsa_tree_setup_routing_table(dst);
877  	if (!complete)
878  		return 0;
879  
880  	err = dsa_tree_setup_cpu_ports(dst);
881  	if (err)
882  		return err;
883  
884  	err = dsa_tree_setup_switches(dst);
885  	if (err)
886  		goto teardown_cpu_ports;
887  
888  	err = dsa_tree_setup_ports(dst);
889  	if (err)
890  		goto teardown_switches;
891  
892  	err = dsa_tree_setup_conduit(dst);
893  	if (err)
894  		goto teardown_ports;
895  
896  	err = dsa_tree_setup_lags(dst);
897  	if (err)
898  		goto teardown_conduit;
899  
900  	dst->setup = true;
901  
902  	pr_info("DSA: tree %d setup\n", dst->index);
903  
904  	return 0;
905  
906  teardown_conduit:
907  	dsa_tree_teardown_conduit(dst);
908  teardown_ports:
909  	dsa_tree_teardown_ports(dst);
910  teardown_switches:
911  	dsa_tree_teardown_switches(dst);
912  teardown_cpu_ports:
913  	dsa_tree_teardown_cpu_ports(dst);
914  
915  	return err;
916  }
917  
dsa_tree_teardown(struct dsa_switch_tree * dst)918  static void dsa_tree_teardown(struct dsa_switch_tree *dst)
919  {
920  	struct dsa_link *dl, *next;
921  
922  	if (!dst->setup)
923  		return;
924  
925  	dsa_tree_teardown_lags(dst);
926  
927  	dsa_tree_teardown_conduit(dst);
928  
929  	dsa_tree_teardown_ports(dst);
930  
931  	dsa_tree_teardown_switches(dst);
932  
933  	dsa_tree_teardown_cpu_ports(dst);
934  
935  	list_for_each_entry_safe(dl, next, &dst->rtable, list) {
936  		list_del(&dl->list);
937  		kfree(dl);
938  	}
939  
940  	pr_info("DSA: tree %d torn down\n", dst->index);
941  
942  	dst->setup = false;
943  }
944  
dsa_tree_bind_tag_proto(struct dsa_switch_tree * dst,const struct dsa_device_ops * tag_ops)945  static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
946  				   const struct dsa_device_ops *tag_ops)
947  {
948  	const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
949  	struct dsa_notifier_tag_proto_info info;
950  	int err;
951  
952  	dst->tag_ops = tag_ops;
953  
954  	/* Notify the switches from this tree about the connection
955  	 * to the new tagger
956  	 */
957  	info.tag_ops = tag_ops;
958  	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
959  	if (err && err != -EOPNOTSUPP)
960  		goto out_disconnect;
961  
962  	/* Notify the old tagger about the disconnection from this tree */
963  	info.tag_ops = old_tag_ops;
964  	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
965  
966  	return 0;
967  
968  out_disconnect:
969  	info.tag_ops = tag_ops;
970  	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
971  	dst->tag_ops = old_tag_ops;
972  
973  	return err;
974  }
975  
976  /* Since the dsa/tagging sysfs device attribute is per conduit, the assumption
977   * is that all DSA switches within a tree share the same tagger, otherwise
978   * they would have formed disjoint trees (different "dsa,member" values).
979   */
dsa_tree_change_tag_proto(struct dsa_switch_tree * dst,const struct dsa_device_ops * tag_ops,const struct dsa_device_ops * old_tag_ops)980  int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
981  			      const struct dsa_device_ops *tag_ops,
982  			      const struct dsa_device_ops *old_tag_ops)
983  {
984  	struct dsa_notifier_tag_proto_info info;
985  	struct dsa_port *dp;
986  	int err = -EBUSY;
987  
988  	if (!rtnl_trylock())
989  		return restart_syscall();
990  
991  	/* At the moment we don't allow changing the tag protocol under
992  	 * traffic. The rtnl_mutex also happens to serialize concurrent
993  	 * attempts to change the tagging protocol. If we ever lift the IFF_UP
994  	 * restriction, there needs to be another mutex which serializes this.
995  	 */
996  	dsa_tree_for_each_user_port(dp, dst) {
997  		if (dsa_port_to_conduit(dp)->flags & IFF_UP)
998  			goto out_unlock;
999  
1000  		if (dp->user->flags & IFF_UP)
1001  			goto out_unlock;
1002  	}
1003  
1004  	/* Notify the tag protocol change */
1005  	info.tag_ops = tag_ops;
1006  	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1007  	if (err)
1008  		goto out_unwind_tagger;
1009  
1010  	err = dsa_tree_bind_tag_proto(dst, tag_ops);
1011  	if (err)
1012  		goto out_unwind_tagger;
1013  
1014  	rtnl_unlock();
1015  
1016  	return 0;
1017  
1018  out_unwind_tagger:
1019  	info.tag_ops = old_tag_ops;
1020  	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1021  out_unlock:
1022  	rtnl_unlock();
1023  	return err;
1024  }
1025  
dsa_tree_conduit_state_change(struct dsa_switch_tree * dst,struct net_device * conduit)1026  static void dsa_tree_conduit_state_change(struct dsa_switch_tree *dst,
1027  					  struct net_device *conduit)
1028  {
1029  	struct dsa_notifier_conduit_state_info info;
1030  	struct dsa_port *cpu_dp = conduit->dsa_ptr;
1031  
1032  	info.conduit = conduit;
1033  	info.operational = dsa_port_conduit_is_operational(cpu_dp);
1034  
1035  	dsa_tree_notify(dst, DSA_NOTIFIER_CONDUIT_STATE_CHANGE, &info);
1036  }
1037  
dsa_tree_conduit_admin_state_change(struct dsa_switch_tree * dst,struct net_device * conduit,bool up)1038  void dsa_tree_conduit_admin_state_change(struct dsa_switch_tree *dst,
1039  					 struct net_device *conduit,
1040  					 bool up)
1041  {
1042  	struct dsa_port *cpu_dp = conduit->dsa_ptr;
1043  	bool notify = false;
1044  
1045  	/* Don't keep track of admin state on LAG DSA conduits,
1046  	 * but rather just of physical DSA conduits
1047  	 */
1048  	if (netif_is_lag_master(conduit))
1049  		return;
1050  
1051  	if ((dsa_port_conduit_is_operational(cpu_dp)) !=
1052  	    (up && cpu_dp->conduit_oper_up))
1053  		notify = true;
1054  
1055  	cpu_dp->conduit_admin_up = up;
1056  
1057  	if (notify)
1058  		dsa_tree_conduit_state_change(dst, conduit);
1059  }
1060  
dsa_tree_conduit_oper_state_change(struct dsa_switch_tree * dst,struct net_device * conduit,bool up)1061  void dsa_tree_conduit_oper_state_change(struct dsa_switch_tree *dst,
1062  					struct net_device *conduit,
1063  					bool up)
1064  {
1065  	struct dsa_port *cpu_dp = conduit->dsa_ptr;
1066  	bool notify = false;
1067  
1068  	/* Don't keep track of oper state on LAG DSA conduits,
1069  	 * but rather just of physical DSA conduits
1070  	 */
1071  	if (netif_is_lag_master(conduit))
1072  		return;
1073  
1074  	if ((dsa_port_conduit_is_operational(cpu_dp)) !=
1075  	    (cpu_dp->conduit_admin_up && up))
1076  		notify = true;
1077  
1078  	cpu_dp->conduit_oper_up = up;
1079  
1080  	if (notify)
1081  		dsa_tree_conduit_state_change(dst, conduit);
1082  }
1083  
dsa_port_touch(struct dsa_switch * ds,int index)1084  static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1085  {
1086  	struct dsa_switch_tree *dst = ds->dst;
1087  	struct dsa_port *dp;
1088  
1089  	dsa_switch_for_each_port(dp, ds)
1090  		if (dp->index == index)
1091  			return dp;
1092  
1093  	dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1094  	if (!dp)
1095  		return NULL;
1096  
1097  	dp->ds = ds;
1098  	dp->index = index;
1099  
1100  	mutex_init(&dp->addr_lists_lock);
1101  	mutex_init(&dp->vlans_lock);
1102  	INIT_LIST_HEAD(&dp->fdbs);
1103  	INIT_LIST_HEAD(&dp->mdbs);
1104  	INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */
1105  	INIT_LIST_HEAD(&dp->list);
1106  	list_add_tail(&dp->list, &dst->ports);
1107  
1108  	return dp;
1109  }
1110  
dsa_port_parse_user(struct dsa_port * dp,const char * name)1111  static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1112  {
1113  	dp->type = DSA_PORT_TYPE_USER;
1114  	dp->name = name;
1115  
1116  	return 0;
1117  }
1118  
dsa_port_parse_dsa(struct dsa_port * dp)1119  static int dsa_port_parse_dsa(struct dsa_port *dp)
1120  {
1121  	dp->type = DSA_PORT_TYPE_DSA;
1122  
1123  	return 0;
1124  }
1125  
dsa_get_tag_protocol(struct dsa_port * dp,struct net_device * conduit)1126  static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1127  						  struct net_device *conduit)
1128  {
1129  	enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1130  	struct dsa_switch *mds, *ds = dp->ds;
1131  	unsigned int mdp_upstream;
1132  	struct dsa_port *mdp;
1133  
1134  	/* It is possible to stack DSA switches onto one another when that
1135  	 * happens the switch driver may want to know if its tagging protocol
1136  	 * is going to work in such a configuration.
1137  	 */
1138  	if (dsa_user_dev_check(conduit)) {
1139  		mdp = dsa_user_to_port(conduit);
1140  		mds = mdp->ds;
1141  		mdp_upstream = dsa_upstream_port(mds, mdp->index);
1142  		tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1143  							  DSA_TAG_PROTO_NONE);
1144  	}
1145  
1146  	/* If the conduit device is not itself a DSA user in a disjoint DSA
1147  	 * tree, then return immediately.
1148  	 */
1149  	return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1150  }
1151  
dsa_port_parse_cpu(struct dsa_port * dp,struct net_device * conduit,const char * user_protocol)1152  static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *conduit,
1153  			      const char *user_protocol)
1154  {
1155  	const struct dsa_device_ops *tag_ops = NULL;
1156  	struct dsa_switch *ds = dp->ds;
1157  	struct dsa_switch_tree *dst = ds->dst;
1158  	enum dsa_tag_protocol default_proto;
1159  
1160  	/* Find out which protocol the switch would prefer. */
1161  	default_proto = dsa_get_tag_protocol(dp, conduit);
1162  	if (dst->default_proto) {
1163  		if (dst->default_proto != default_proto) {
1164  			dev_err(ds->dev,
1165  				"A DSA switch tree can have only one tagging protocol\n");
1166  			return -EINVAL;
1167  		}
1168  	} else {
1169  		dst->default_proto = default_proto;
1170  	}
1171  
1172  	/* See if the user wants to override that preference. */
1173  	if (user_protocol) {
1174  		if (!ds->ops->change_tag_protocol) {
1175  			dev_err(ds->dev, "Tag protocol cannot be modified\n");
1176  			return -EINVAL;
1177  		}
1178  
1179  		tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1180  		if (IS_ERR(tag_ops)) {
1181  			dev_warn(ds->dev,
1182  				 "Failed to find a tagging driver for protocol %s, using default\n",
1183  				 user_protocol);
1184  			tag_ops = NULL;
1185  		}
1186  	}
1187  
1188  	if (!tag_ops)
1189  		tag_ops = dsa_tag_driver_get_by_id(default_proto);
1190  
1191  	if (IS_ERR(tag_ops)) {
1192  		if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1193  			return -EPROBE_DEFER;
1194  
1195  		dev_warn(ds->dev, "No tagger for this switch\n");
1196  		return PTR_ERR(tag_ops);
1197  	}
1198  
1199  	if (dst->tag_ops) {
1200  		if (dst->tag_ops != tag_ops) {
1201  			dev_err(ds->dev,
1202  				"A DSA switch tree can have only one tagging protocol\n");
1203  
1204  			dsa_tag_driver_put(tag_ops);
1205  			return -EINVAL;
1206  		}
1207  
1208  		/* In the case of multiple CPU ports per switch, the tagging
1209  		 * protocol is still reference-counted only per switch tree.
1210  		 */
1211  		dsa_tag_driver_put(tag_ops);
1212  	} else {
1213  		dst->tag_ops = tag_ops;
1214  	}
1215  
1216  	dp->conduit = conduit;
1217  	dp->type = DSA_PORT_TYPE_CPU;
1218  	dsa_port_set_tag_protocol(dp, dst->tag_ops);
1219  	dp->dst = dst;
1220  
1221  	/* At this point, the tree may be configured to use a different
1222  	 * tagger than the one chosen by the switch driver during
1223  	 * .setup, in the case when a user selects a custom protocol
1224  	 * through the DT.
1225  	 *
1226  	 * This is resolved by syncing the driver with the tree in
1227  	 * dsa_switch_setup_tag_protocol once .setup has run and the
1228  	 * driver is ready to accept calls to .change_tag_protocol. If
1229  	 * the driver does not support the custom protocol at that
1230  	 * point, the tree is wholly rejected, thereby ensuring that the
1231  	 * tree and driver are always in agreement on the protocol to
1232  	 * use.
1233  	 */
1234  	return 0;
1235  }
1236  
dsa_port_parse_of(struct dsa_port * dp,struct device_node * dn)1237  static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1238  {
1239  	struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1240  	const char *name = of_get_property(dn, "label", NULL);
1241  	bool link = of_property_read_bool(dn, "link");
1242  
1243  	dp->dn = dn;
1244  
1245  	if (ethernet) {
1246  		struct net_device *conduit;
1247  		const char *user_protocol;
1248  
1249  		conduit = of_find_net_device_by_node(ethernet);
1250  		of_node_put(ethernet);
1251  		if (!conduit)
1252  			return -EPROBE_DEFER;
1253  
1254  		user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1255  		return dsa_port_parse_cpu(dp, conduit, user_protocol);
1256  	}
1257  
1258  	if (link)
1259  		return dsa_port_parse_dsa(dp);
1260  
1261  	return dsa_port_parse_user(dp, name);
1262  }
1263  
dsa_switch_parse_ports_of(struct dsa_switch * ds,struct device_node * dn)1264  static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1265  				     struct device_node *dn)
1266  {
1267  	struct device_node *ports, *port;
1268  	struct dsa_port *dp;
1269  	int err = 0;
1270  	u32 reg;
1271  
1272  	ports = of_get_child_by_name(dn, "ports");
1273  	if (!ports) {
1274  		/* The second possibility is "ethernet-ports" */
1275  		ports = of_get_child_by_name(dn, "ethernet-ports");
1276  		if (!ports) {
1277  			dev_err(ds->dev, "no ports child node found\n");
1278  			return -EINVAL;
1279  		}
1280  	}
1281  
1282  	for_each_available_child_of_node(ports, port) {
1283  		err = of_property_read_u32(port, "reg", &reg);
1284  		if (err) {
1285  			of_node_put(port);
1286  			goto out_put_node;
1287  		}
1288  
1289  		if (reg >= ds->num_ports) {
1290  			dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1291  				port, reg, ds->num_ports);
1292  			of_node_put(port);
1293  			err = -EINVAL;
1294  			goto out_put_node;
1295  		}
1296  
1297  		dp = dsa_to_port(ds, reg);
1298  
1299  		err = dsa_port_parse_of(dp, port);
1300  		if (err) {
1301  			of_node_put(port);
1302  			goto out_put_node;
1303  		}
1304  	}
1305  
1306  out_put_node:
1307  	of_node_put(ports);
1308  	return err;
1309  }
1310  
dsa_switch_parse_member_of(struct dsa_switch * ds,struct device_node * dn)1311  static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1312  				      struct device_node *dn)
1313  {
1314  	u32 m[2] = { 0, 0 };
1315  	int sz;
1316  
1317  	/* Don't error out if this optional property isn't found */
1318  	sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1319  	if (sz < 0 && sz != -EINVAL)
1320  		return sz;
1321  
1322  	ds->index = m[1];
1323  
1324  	ds->dst = dsa_tree_touch(m[0]);
1325  	if (!ds->dst)
1326  		return -ENOMEM;
1327  
1328  	if (dsa_switch_find(ds->dst->index, ds->index)) {
1329  		dev_err(ds->dev,
1330  			"A DSA switch with index %d already exists in tree %d\n",
1331  			ds->index, ds->dst->index);
1332  		return -EEXIST;
1333  	}
1334  
1335  	if (ds->dst->last_switch < ds->index)
1336  		ds->dst->last_switch = ds->index;
1337  
1338  	return 0;
1339  }
1340  
dsa_switch_touch_ports(struct dsa_switch * ds)1341  static int dsa_switch_touch_ports(struct dsa_switch *ds)
1342  {
1343  	struct dsa_port *dp;
1344  	int port;
1345  
1346  	for (port = 0; port < ds->num_ports; port++) {
1347  		dp = dsa_port_touch(ds, port);
1348  		if (!dp)
1349  			return -ENOMEM;
1350  	}
1351  
1352  	return 0;
1353  }
1354  
dsa_switch_parse_of(struct dsa_switch * ds,struct device_node * dn)1355  static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1356  {
1357  	int err;
1358  
1359  	err = dsa_switch_parse_member_of(ds, dn);
1360  	if (err)
1361  		return err;
1362  
1363  	err = dsa_switch_touch_ports(ds);
1364  	if (err)
1365  		return err;
1366  
1367  	return dsa_switch_parse_ports_of(ds, dn);
1368  }
1369  
dev_is_class(struct device * dev,void * class)1370  static int dev_is_class(struct device *dev, void *class)
1371  {
1372  	if (dev->class != NULL && !strcmp(dev->class->name, class))
1373  		return 1;
1374  
1375  	return 0;
1376  }
1377  
dev_find_class(struct device * parent,char * class)1378  static struct device *dev_find_class(struct device *parent, char *class)
1379  {
1380  	if (dev_is_class(parent, class)) {
1381  		get_device(parent);
1382  		return parent;
1383  	}
1384  
1385  	return device_find_child(parent, class, dev_is_class);
1386  }
1387  
dsa_dev_to_net_device(struct device * dev)1388  static struct net_device *dsa_dev_to_net_device(struct device *dev)
1389  {
1390  	struct device *d;
1391  
1392  	d = dev_find_class(dev, "net");
1393  	if (d != NULL) {
1394  		struct net_device *nd;
1395  
1396  		nd = to_net_dev(d);
1397  		dev_hold(nd);
1398  		put_device(d);
1399  
1400  		return nd;
1401  	}
1402  
1403  	return NULL;
1404  }
1405  
dsa_port_parse(struct dsa_port * dp,const char * name,struct device * dev)1406  static int dsa_port_parse(struct dsa_port *dp, const char *name,
1407  			  struct device *dev)
1408  {
1409  	if (!strcmp(name, "cpu")) {
1410  		struct net_device *conduit;
1411  
1412  		conduit = dsa_dev_to_net_device(dev);
1413  		if (!conduit)
1414  			return -EPROBE_DEFER;
1415  
1416  		dev_put(conduit);
1417  
1418  		return dsa_port_parse_cpu(dp, conduit, NULL);
1419  	}
1420  
1421  	if (!strcmp(name, "dsa"))
1422  		return dsa_port_parse_dsa(dp);
1423  
1424  	return dsa_port_parse_user(dp, name);
1425  }
1426  
dsa_switch_parse_ports(struct dsa_switch * ds,struct dsa_chip_data * cd)1427  static int dsa_switch_parse_ports(struct dsa_switch *ds,
1428  				  struct dsa_chip_data *cd)
1429  {
1430  	bool valid_name_found = false;
1431  	struct dsa_port *dp;
1432  	struct device *dev;
1433  	const char *name;
1434  	unsigned int i;
1435  	int err;
1436  
1437  	for (i = 0; i < DSA_MAX_PORTS; i++) {
1438  		name = cd->port_names[i];
1439  		dev = cd->netdev[i];
1440  		dp = dsa_to_port(ds, i);
1441  
1442  		if (!name)
1443  			continue;
1444  
1445  		err = dsa_port_parse(dp, name, dev);
1446  		if (err)
1447  			return err;
1448  
1449  		valid_name_found = true;
1450  	}
1451  
1452  	if (!valid_name_found && i == DSA_MAX_PORTS)
1453  		return -EINVAL;
1454  
1455  	return 0;
1456  }
1457  
dsa_switch_parse(struct dsa_switch * ds,struct dsa_chip_data * cd)1458  static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1459  {
1460  	int err;
1461  
1462  	ds->cd = cd;
1463  
1464  	/* We don't support interconnected switches nor multiple trees via
1465  	 * platform data, so this is the unique switch of the tree.
1466  	 */
1467  	ds->index = 0;
1468  	ds->dst = dsa_tree_touch(0);
1469  	if (!ds->dst)
1470  		return -ENOMEM;
1471  
1472  	err = dsa_switch_touch_ports(ds);
1473  	if (err)
1474  		return err;
1475  
1476  	return dsa_switch_parse_ports(ds, cd);
1477  }
1478  
dsa_switch_release_ports(struct dsa_switch * ds)1479  static void dsa_switch_release_ports(struct dsa_switch *ds)
1480  {
1481  	struct dsa_port *dp, *next;
1482  
1483  	dsa_switch_for_each_port_safe(dp, next, ds) {
1484  		WARN_ON(!list_empty(&dp->fdbs));
1485  		WARN_ON(!list_empty(&dp->mdbs));
1486  		WARN_ON(!list_empty(&dp->vlans));
1487  		list_del(&dp->list);
1488  		kfree(dp);
1489  	}
1490  }
1491  
dsa_switch_probe(struct dsa_switch * ds)1492  static int dsa_switch_probe(struct dsa_switch *ds)
1493  {
1494  	struct dsa_switch_tree *dst;
1495  	struct dsa_chip_data *pdata;
1496  	struct device_node *np;
1497  	int err;
1498  
1499  	if (!ds->dev)
1500  		return -ENODEV;
1501  
1502  	pdata = ds->dev->platform_data;
1503  	np = ds->dev->of_node;
1504  
1505  	if (!ds->num_ports)
1506  		return -EINVAL;
1507  
1508  	if (ds->phylink_mac_ops) {
1509  		if (ds->ops->phylink_mac_select_pcs ||
1510  		    ds->ops->phylink_mac_config ||
1511  		    ds->ops->phylink_mac_link_down ||
1512  		    ds->ops->phylink_mac_link_up)
1513  			return -EINVAL;
1514  	}
1515  
1516  	if (np) {
1517  		err = dsa_switch_parse_of(ds, np);
1518  		if (err)
1519  			dsa_switch_release_ports(ds);
1520  	} else if (pdata) {
1521  		err = dsa_switch_parse(ds, pdata);
1522  		if (err)
1523  			dsa_switch_release_ports(ds);
1524  	} else {
1525  		err = -ENODEV;
1526  	}
1527  
1528  	if (err)
1529  		return err;
1530  
1531  	dst = ds->dst;
1532  	dsa_tree_get(dst);
1533  	err = dsa_tree_setup(dst);
1534  	if (err) {
1535  		dsa_switch_release_ports(ds);
1536  		dsa_tree_put(dst);
1537  	}
1538  
1539  	return err;
1540  }
1541  
dsa_register_switch(struct dsa_switch * ds)1542  int dsa_register_switch(struct dsa_switch *ds)
1543  {
1544  	int err;
1545  
1546  	mutex_lock(&dsa2_mutex);
1547  	err = dsa_switch_probe(ds);
1548  	dsa_tree_put(ds->dst);
1549  	mutex_unlock(&dsa2_mutex);
1550  
1551  	return err;
1552  }
1553  EXPORT_SYMBOL_GPL(dsa_register_switch);
1554  
dsa_switch_remove(struct dsa_switch * ds)1555  static void dsa_switch_remove(struct dsa_switch *ds)
1556  {
1557  	struct dsa_switch_tree *dst = ds->dst;
1558  
1559  	dsa_tree_teardown(dst);
1560  	dsa_switch_release_ports(ds);
1561  	dsa_tree_put(dst);
1562  }
1563  
dsa_unregister_switch(struct dsa_switch * ds)1564  void dsa_unregister_switch(struct dsa_switch *ds)
1565  {
1566  	mutex_lock(&dsa2_mutex);
1567  	dsa_switch_remove(ds);
1568  	mutex_unlock(&dsa2_mutex);
1569  }
1570  EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1571  
1572  /* If the DSA conduit chooses to unregister its net_device on .shutdown, DSA is
1573   * blocking that operation from completion, due to the dev_hold taken inside
1574   * netdev_upper_dev_link. Unlink the DSA user interfaces from being uppers of
1575   * the DSA conduit, so that the system can reboot successfully.
1576   */
dsa_switch_shutdown(struct dsa_switch * ds)1577  void dsa_switch_shutdown(struct dsa_switch *ds)
1578  {
1579  	struct net_device *conduit, *user_dev;
1580  	LIST_HEAD(close_list);
1581  	struct dsa_port *dp;
1582  
1583  	mutex_lock(&dsa2_mutex);
1584  
1585  	if (!ds->setup)
1586  		goto out;
1587  
1588  	rtnl_lock();
1589  
1590  	dsa_switch_for_each_cpu_port(dp, ds)
1591  		list_add(&dp->conduit->close_list, &close_list);
1592  
1593  	dev_close_many(&close_list, true);
1594  
1595  	dsa_switch_for_each_user_port(dp, ds) {
1596  		conduit = dsa_port_to_conduit(dp);
1597  		user_dev = dp->user;
1598  
1599  		netif_device_detach(user_dev);
1600  		netdev_upper_dev_unlink(conduit, user_dev);
1601  	}
1602  
1603  	/* Disconnect from further netdevice notifiers on the conduit,
1604  	 * since netdev_uses_dsa() will now return false.
1605  	 */
1606  	dsa_switch_for_each_cpu_port(dp, ds)
1607  		dp->conduit->dsa_ptr = NULL;
1608  
1609  	rtnl_unlock();
1610  out:
1611  	mutex_unlock(&dsa2_mutex);
1612  }
1613  EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1614  
1615  #ifdef CONFIG_PM_SLEEP
dsa_port_is_initialized(const struct dsa_port * dp)1616  static bool dsa_port_is_initialized(const struct dsa_port *dp)
1617  {
1618  	return dp->type == DSA_PORT_TYPE_USER && dp->user;
1619  }
1620  
dsa_switch_suspend(struct dsa_switch * ds)1621  int dsa_switch_suspend(struct dsa_switch *ds)
1622  {
1623  	struct dsa_port *dp;
1624  	int ret = 0;
1625  
1626  	/* Suspend user network devices */
1627  	dsa_switch_for_each_port(dp, ds) {
1628  		if (!dsa_port_is_initialized(dp))
1629  			continue;
1630  
1631  		ret = dsa_user_suspend(dp->user);
1632  		if (ret)
1633  			return ret;
1634  	}
1635  
1636  	if (ds->ops->suspend)
1637  		ret = ds->ops->suspend(ds);
1638  
1639  	return ret;
1640  }
1641  EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1642  
dsa_switch_resume(struct dsa_switch * ds)1643  int dsa_switch_resume(struct dsa_switch *ds)
1644  {
1645  	struct dsa_port *dp;
1646  	int ret = 0;
1647  
1648  	if (ds->ops->resume)
1649  		ret = ds->ops->resume(ds);
1650  
1651  	if (ret)
1652  		return ret;
1653  
1654  	/* Resume user network devices */
1655  	dsa_switch_for_each_port(dp, ds) {
1656  		if (!dsa_port_is_initialized(dp))
1657  			continue;
1658  
1659  		ret = dsa_user_resume(dp->user);
1660  		if (ret)
1661  			return ret;
1662  	}
1663  
1664  	return 0;
1665  }
1666  EXPORT_SYMBOL_GPL(dsa_switch_resume);
1667  #endif
1668  
dsa_port_from_netdev(struct net_device * netdev)1669  struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1670  {
1671  	if (!netdev || !dsa_user_dev_check(netdev))
1672  		return ERR_PTR(-ENODEV);
1673  
1674  	return dsa_user_to_port(netdev);
1675  }
1676  EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1677  
dsa_db_equal(const struct dsa_db * a,const struct dsa_db * b)1678  bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1679  {
1680  	if (a->type != b->type)
1681  		return false;
1682  
1683  	switch (a->type) {
1684  	case DSA_DB_PORT:
1685  		return a->dp == b->dp;
1686  	case DSA_DB_LAG:
1687  		return a->lag.dev == b->lag.dev;
1688  	case DSA_DB_BRIDGE:
1689  		return a->bridge.num == b->bridge.num;
1690  	default:
1691  		WARN_ON(1);
1692  		return false;
1693  	}
1694  }
1695  
dsa_fdb_present_in_other_db(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1696  bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1697  				 const unsigned char *addr, u16 vid,
1698  				 struct dsa_db db)
1699  {
1700  	struct dsa_port *dp = dsa_to_port(ds, port);
1701  	struct dsa_mac_addr *a;
1702  
1703  	lockdep_assert_held(&dp->addr_lists_lock);
1704  
1705  	list_for_each_entry(a, &dp->fdbs, list) {
1706  		if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1707  			continue;
1708  
1709  		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1710  			return true;
1711  	}
1712  
1713  	return false;
1714  }
1715  EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1716  
dsa_mdb_present_in_other_db(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1717  bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1718  				 const struct switchdev_obj_port_mdb *mdb,
1719  				 struct dsa_db db)
1720  {
1721  	struct dsa_port *dp = dsa_to_port(ds, port);
1722  	struct dsa_mac_addr *a;
1723  
1724  	lockdep_assert_held(&dp->addr_lists_lock);
1725  
1726  	list_for_each_entry(a, &dp->mdbs, list) {
1727  		if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1728  			continue;
1729  
1730  		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1731  			return true;
1732  	}
1733  
1734  	return false;
1735  }
1736  EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1737  
1738  static const struct dsa_stubs __dsa_stubs = {
1739  	.conduit_hwtstamp_validate = __dsa_conduit_hwtstamp_validate,
1740  };
1741  
dsa_register_stubs(void)1742  static void dsa_register_stubs(void)
1743  {
1744  	dsa_stubs = &__dsa_stubs;
1745  }
1746  
dsa_unregister_stubs(void)1747  static void dsa_unregister_stubs(void)
1748  {
1749  	dsa_stubs = NULL;
1750  }
1751  
dsa_init_module(void)1752  static int __init dsa_init_module(void)
1753  {
1754  	int rc;
1755  
1756  	dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1757  					  WQ_MEM_RECLAIM);
1758  	if (!dsa_owq)
1759  		return -ENOMEM;
1760  
1761  	rc = dsa_user_register_notifier();
1762  	if (rc)
1763  		goto register_notifier_fail;
1764  
1765  	dev_add_pack(&dsa_pack_type);
1766  
1767  	rc = rtnl_link_register(&dsa_link_ops);
1768  	if (rc)
1769  		goto netlink_register_fail;
1770  
1771  	dsa_register_stubs();
1772  
1773  	return 0;
1774  
1775  netlink_register_fail:
1776  	dsa_user_unregister_notifier();
1777  	dev_remove_pack(&dsa_pack_type);
1778  register_notifier_fail:
1779  	destroy_workqueue(dsa_owq);
1780  
1781  	return rc;
1782  }
1783  module_init(dsa_init_module);
1784  
dsa_cleanup_module(void)1785  static void __exit dsa_cleanup_module(void)
1786  {
1787  	dsa_unregister_stubs();
1788  
1789  	rtnl_link_unregister(&dsa_link_ops);
1790  
1791  	dsa_user_unregister_notifier();
1792  	dev_remove_pack(&dsa_pack_type);
1793  	destroy_workqueue(dsa_owq);
1794  }
1795  module_exit(dsa_cleanup_module);
1796  
1797  MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1798  MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1799  MODULE_LICENSE("GPL");
1800  MODULE_ALIAS("platform:dsa");
1801