1  /*
2   * drm_irq.c IRQ and vblank support
3   *
4   * \author Rickard E. (Rik) Faith <faith@valinux.com>
5   * \author Gareth Hughes <gareth@valinux.com>
6   *
7   * Permission is hereby granted, free of charge, to any person obtaining a
8   * copy of this software and associated documentation files (the "Software"),
9   * to deal in the Software without restriction, including without limitation
10   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11   * and/or sell copies of the Software, and to permit persons to whom the
12   * Software is furnished to do so, subject to the following conditions:
13   *
14   * The above copyright notice and this permission notice (including the next
15   * paragraph) shall be included in all copies or substantial portions of the
16   * Software.
17   *
18   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21   * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22   * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23   * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24   * OTHER DEALINGS IN THE SOFTWARE.
25   */
26  
27  #include <linux/export.h>
28  #include <linux/kthread.h>
29  #include <linux/moduleparam.h>
30  
31  #include <drm/drm_crtc.h>
32  #include <drm/drm_drv.h>
33  #include <drm/drm_framebuffer.h>
34  #include <drm/drm_managed.h>
35  #include <drm/drm_modeset_helper_vtables.h>
36  #include <drm/drm_print.h>
37  #include <drm/drm_vblank.h>
38  
39  #include "drm_internal.h"
40  #include "drm_trace.h"
41  
42  /**
43   * DOC: vblank handling
44   *
45   * From the computer's perspective, every time the monitor displays
46   * a new frame the scanout engine has "scanned out" the display image
47   * from top to bottom, one row of pixels at a time. The current row
48   * of pixels is referred to as the current scanline.
49   *
50   * In addition to the display's visible area, there's usually a couple of
51   * extra scanlines which aren't actually displayed on the screen.
52   * These extra scanlines don't contain image data and are occasionally used
53   * for features like audio and infoframes. The region made up of these
54   * scanlines is referred to as the vertical blanking region, or vblank for
55   * short.
56   *
57   * For historical reference, the vertical blanking period was designed to
58   * give the electron gun (on CRTs) enough time to move back to the top of
59   * the screen to start scanning out the next frame. Similar for horizontal
60   * blanking periods. They were designed to give the electron gun enough
61   * time to move back to the other side of the screen to start scanning the
62   * next scanline.
63   *
64   * ::
65   *
66   *
67   *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
68   *    top of      |                                        |
69   *    display     |                                        |
70   *                |               New frame                |
71   *                |                                        |
72   *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
73   *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
74   *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
75   *                |                                        |   frame as it
76   *                |                                        |   travels down
77   *                |                                        |   ("scan out")
78   *                |               Old frame                |
79   *                |                                        |
80   *                |                                        |
81   *                |                                        |
82   *                |                                        |   physical
83   *                |                                        |   bottom of
84   *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
85   *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86   *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87   *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
88   *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
89   *    new frame
90   *
91   * "Physical top of display" is the reference point for the high-precision/
92   * corrected timestamp.
93   *
94   * On a lot of display hardware, programming needs to take effect during the
95   * vertical blanking period so that settings like gamma, the image buffer
96   * buffer to be scanned out, etc. can safely be changed without showing
97   * any visual artifacts on the screen. In some unforgiving hardware, some of
98   * this programming has to both start and end in the same vblank. To help
99   * with the timing of the hardware programming, an interrupt is usually
100   * available to notify the driver when it can start the updating of registers.
101   * The interrupt is in this context named the vblank interrupt.
102   *
103   * The vblank interrupt may be fired at different points depending on the
104   * hardware. Some hardware implementations will fire the interrupt when the
105   * new frame start, other implementations will fire the interrupt at different
106   * points in time.
107   *
108   * Vertical blanking plays a major role in graphics rendering. To achieve
109   * tear-free display, users must synchronize page flips and/or rendering to
110   * vertical blanking. The DRM API offers ioctls to perform page flips
111   * synchronized to vertical blanking and wait for vertical blanking.
112   *
113   * The DRM core handles most of the vertical blanking management logic, which
114   * involves filtering out spurious interrupts, keeping race-free blanking
115   * counters, coping with counter wrap-around and resets and keeping use counts.
116   * It relies on the driver to generate vertical blanking interrupts and
117   * optionally provide a hardware vertical blanking counter.
118   *
119   * Drivers must initialize the vertical blanking handling core with a call to
120   * drm_vblank_init(). Minimally, a driver needs to implement
121   * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
122   * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
123   * support.
124   *
125   * Vertical blanking interrupts can be enabled by the DRM core or by drivers
126   * themselves (for instance to handle page flipping operations).  The DRM core
127   * maintains a vertical blanking use count to ensure that the interrupts are not
128   * disabled while a user still needs them. To increment the use count, drivers
129   * call drm_crtc_vblank_get() and release the vblank reference again with
130   * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
131   * guaranteed to be enabled.
132   *
133   * On many hardware disabling the vblank interrupt cannot be done in a race-free
134   * manner, see &drm_vblank_crtc_config.disable_immediate and
135   * &drm_driver.max_vblank_count. In that case the vblank core only disables the
136   * vblanks after a timer has expired, which can be configured through the
137   * ``vblankoffdelay`` module parameter.
138   *
139   * Drivers for hardware without support for vertical-blanking interrupts
140   * must not call drm_vblank_init(). For such drivers, atomic helpers will
141   * automatically generate fake vblank events as part of the display update.
142   * This functionality also can be controlled by the driver by enabling and
143   * disabling struct drm_crtc_state.no_vblank.
144   */
145  
146  /* Retry timestamp calculation up to 3 times to satisfy
147   * drm_timestamp_precision before giving up.
148   */
149  #define DRM_TIMESTAMP_MAXRETRIES 3
150  
151  /* Threshold in nanoseconds for detection of redundant
152   * vblank irq in drm_handle_vblank(). 1 msec should be ok.
153   */
154  #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
155  
156  static bool
157  drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
158  			  ktime_t *tvblank, bool in_vblank_irq);
159  
160  static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
161  
162  static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
163  
164  module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
165  module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
166  MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
167  MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
168  
169  static struct drm_vblank_crtc *
drm_vblank_crtc(struct drm_device * dev,unsigned int pipe)170  drm_vblank_crtc(struct drm_device *dev, unsigned int pipe)
171  {
172  	return &dev->vblank[pipe];
173  }
174  
175  struct drm_vblank_crtc *
drm_crtc_vblank_crtc(struct drm_crtc * crtc)176  drm_crtc_vblank_crtc(struct drm_crtc *crtc)
177  {
178  	return drm_vblank_crtc(crtc->dev, drm_crtc_index(crtc));
179  }
180  EXPORT_SYMBOL(drm_crtc_vblank_crtc);
181  
store_vblank(struct drm_device * dev,unsigned int pipe,u32 vblank_count_inc,ktime_t t_vblank,u32 last)182  static void store_vblank(struct drm_device *dev, unsigned int pipe,
183  			 u32 vblank_count_inc,
184  			 ktime_t t_vblank, u32 last)
185  {
186  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
187  
188  	assert_spin_locked(&dev->vblank_time_lock);
189  
190  	vblank->last = last;
191  
192  	write_seqlock(&vblank->seqlock);
193  	vblank->time = t_vblank;
194  	atomic64_add(vblank_count_inc, &vblank->count);
195  	write_sequnlock(&vblank->seqlock);
196  }
197  
drm_max_vblank_count(struct drm_device * dev,unsigned int pipe)198  static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
199  {
200  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
201  
202  	return vblank->max_vblank_count ?: dev->max_vblank_count;
203  }
204  
205  /*
206   * "No hw counter" fallback implementation of .get_vblank_counter() hook,
207   * if there is no usable hardware frame counter available.
208   */
drm_vblank_no_hw_counter(struct drm_device * dev,unsigned int pipe)209  static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
210  {
211  	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
212  	return 0;
213  }
214  
__get_vblank_counter(struct drm_device * dev,unsigned int pipe)215  static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
216  {
217  	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
218  		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
219  
220  		if (drm_WARN_ON(dev, !crtc))
221  			return 0;
222  
223  		if (crtc->funcs->get_vblank_counter)
224  			return crtc->funcs->get_vblank_counter(crtc);
225  	}
226  
227  	return drm_vblank_no_hw_counter(dev, pipe);
228  }
229  
230  /*
231   * Reset the stored timestamp for the current vblank count to correspond
232   * to the last vblank occurred.
233   *
234   * Only to be called from drm_crtc_vblank_on().
235   *
236   * Note: caller must hold &drm_device.vbl_lock since this reads & writes
237   * device vblank fields.
238   */
drm_reset_vblank_timestamp(struct drm_device * dev,unsigned int pipe)239  static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
240  {
241  	u32 cur_vblank;
242  	bool rc;
243  	ktime_t t_vblank;
244  	int count = DRM_TIMESTAMP_MAXRETRIES;
245  
246  	spin_lock(&dev->vblank_time_lock);
247  
248  	/*
249  	 * sample the current counter to avoid random jumps
250  	 * when drm_vblank_enable() applies the diff
251  	 */
252  	do {
253  		cur_vblank = __get_vblank_counter(dev, pipe);
254  		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
255  	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
256  
257  	/*
258  	 * Only reinitialize corresponding vblank timestamp if high-precision query
259  	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
260  	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
261  	 */
262  	if (!rc)
263  		t_vblank = 0;
264  
265  	/*
266  	 * +1 to make sure user will never see the same
267  	 * vblank counter value before and after a modeset
268  	 */
269  	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
270  
271  	spin_unlock(&dev->vblank_time_lock);
272  }
273  
274  /*
275   * Call back into the driver to update the appropriate vblank counter
276   * (specified by @pipe).  Deal with wraparound, if it occurred, and
277   * update the last read value so we can deal with wraparound on the next
278   * call if necessary.
279   *
280   * Only necessary when going from off->on, to account for frames we
281   * didn't get an interrupt for.
282   *
283   * Note: caller must hold &drm_device.vbl_lock since this reads & writes
284   * device vblank fields.
285   */
drm_update_vblank_count(struct drm_device * dev,unsigned int pipe,bool in_vblank_irq)286  static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
287  				    bool in_vblank_irq)
288  {
289  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
290  	u32 cur_vblank, diff;
291  	bool rc;
292  	ktime_t t_vblank;
293  	int count = DRM_TIMESTAMP_MAXRETRIES;
294  	int framedur_ns = vblank->framedur_ns;
295  	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
296  
297  	/*
298  	 * Interrupts were disabled prior to this call, so deal with counter
299  	 * wrap if needed.
300  	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
301  	 * here if the register is small or we had vblank interrupts off for
302  	 * a long time.
303  	 *
304  	 * We repeat the hardware vblank counter & timestamp query until
305  	 * we get consistent results. This to prevent races between gpu
306  	 * updating its hardware counter while we are retrieving the
307  	 * corresponding vblank timestamp.
308  	 */
309  	do {
310  		cur_vblank = __get_vblank_counter(dev, pipe);
311  		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
312  	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
313  
314  	if (max_vblank_count) {
315  		/* trust the hw counter when it's around */
316  		diff = (cur_vblank - vblank->last) & max_vblank_count;
317  	} else if (rc && framedur_ns) {
318  		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
319  
320  		/*
321  		 * Figure out how many vblanks we've missed based
322  		 * on the difference in the timestamps and the
323  		 * frame/field duration.
324  		 */
325  
326  		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
327  			    " diff_ns = %lld, framedur_ns = %d)\n",
328  			    pipe, (long long)diff_ns, framedur_ns);
329  
330  		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
331  
332  		if (diff == 0 && in_vblank_irq)
333  			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
334  				    pipe);
335  	} else {
336  		/* some kind of default for drivers w/o accurate vbl timestamping */
337  		diff = in_vblank_irq ? 1 : 0;
338  	}
339  
340  	/*
341  	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
342  	 * interval? If so then vblank irqs keep running and it will likely
343  	 * happen that the hardware vblank counter is not trustworthy as it
344  	 * might reset at some point in that interval and vblank timestamps
345  	 * are not trustworthy either in that interval. Iow. this can result
346  	 * in a bogus diff >> 1 which must be avoided as it would cause
347  	 * random large forward jumps of the software vblank counter.
348  	 */
349  	if (diff > 1 && (vblank->inmodeset & 0x2)) {
350  		drm_dbg_vbl(dev,
351  			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
352  			    " due to pre-modeset.\n", pipe, diff);
353  		diff = 1;
354  	}
355  
356  	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
357  		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
358  		    pipe, (unsigned long long)atomic64_read(&vblank->count),
359  		    diff, cur_vblank, vblank->last);
360  
361  	if (diff == 0) {
362  		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
363  		return;
364  	}
365  
366  	/*
367  	 * Only reinitialize corresponding vblank timestamp if high-precision query
368  	 * available and didn't fail, or we were called from the vblank interrupt.
369  	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
370  	 * for now, to mark the vblanktimestamp as invalid.
371  	 */
372  	if (!rc && !in_vblank_irq)
373  		t_vblank = 0;
374  
375  	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
376  }
377  
drm_vblank_count(struct drm_device * dev,unsigned int pipe)378  u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
379  {
380  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
381  	u64 count;
382  
383  	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
384  		return 0;
385  
386  	count = atomic64_read(&vblank->count);
387  
388  	/*
389  	 * This read barrier corresponds to the implicit write barrier of the
390  	 * write seqlock in store_vblank(). Note that this is the only place
391  	 * where we need an explicit barrier, since all other access goes
392  	 * through drm_vblank_count_and_time(), which already has the required
393  	 * read barrier curtesy of the read seqlock.
394  	 */
395  	smp_rmb();
396  
397  	return count;
398  }
399  
400  /**
401   * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
402   * @crtc: which counter to retrieve
403   *
404   * This function is similar to drm_crtc_vblank_count() but this function
405   * interpolates to handle a race with vblank interrupts using the high precision
406   * timestamping support.
407   *
408   * This is mostly useful for hardware that can obtain the scanout position, but
409   * doesn't have a hardware frame counter.
410   */
drm_crtc_accurate_vblank_count(struct drm_crtc * crtc)411  u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
412  {
413  	struct drm_device *dev = crtc->dev;
414  	unsigned int pipe = drm_crtc_index(crtc);
415  	u64 vblank;
416  	unsigned long flags;
417  
418  	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
419  		      !crtc->funcs->get_vblank_timestamp,
420  		      "This function requires support for accurate vblank timestamps.");
421  
422  	spin_lock_irqsave(&dev->vblank_time_lock, flags);
423  
424  	drm_update_vblank_count(dev, pipe, false);
425  	vblank = drm_vblank_count(dev, pipe);
426  
427  	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
428  
429  	return vblank;
430  }
431  EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
432  
__disable_vblank(struct drm_device * dev,unsigned int pipe)433  static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
434  {
435  	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
436  		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
437  
438  		if (drm_WARN_ON(dev, !crtc))
439  			return;
440  
441  		if (crtc->funcs->disable_vblank)
442  			crtc->funcs->disable_vblank(crtc);
443  	}
444  }
445  
446  /*
447   * Disable vblank irq's on crtc, make sure that last vblank count
448   * of hardware and corresponding consistent software vblank counter
449   * are preserved, even if there are any spurious vblank irq's after
450   * disable.
451   */
drm_vblank_disable_and_save(struct drm_device * dev,unsigned int pipe)452  void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
453  {
454  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
455  	unsigned long irqflags;
456  
457  	assert_spin_locked(&dev->vbl_lock);
458  
459  	/* Prevent vblank irq processing while disabling vblank irqs,
460  	 * so no updates of timestamps or count can happen after we've
461  	 * disabled. Needed to prevent races in case of delayed irq's.
462  	 */
463  	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
464  
465  	/*
466  	 * Update vblank count and disable vblank interrupts only if the
467  	 * interrupts were enabled. This avoids calling the ->disable_vblank()
468  	 * operation in atomic context with the hardware potentially runtime
469  	 * suspended.
470  	 */
471  	if (!vblank->enabled)
472  		goto out;
473  
474  	/*
475  	 * Update the count and timestamp to maintain the
476  	 * appearance that the counter has been ticking all along until
477  	 * this time. This makes the count account for the entire time
478  	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
479  	 */
480  	drm_update_vblank_count(dev, pipe, false);
481  	__disable_vblank(dev, pipe);
482  	vblank->enabled = false;
483  
484  out:
485  	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
486  }
487  
vblank_disable_fn(struct timer_list * t)488  static void vblank_disable_fn(struct timer_list *t)
489  {
490  	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
491  	struct drm_device *dev = vblank->dev;
492  	unsigned int pipe = vblank->pipe;
493  	unsigned long irqflags;
494  
495  	spin_lock_irqsave(&dev->vbl_lock, irqflags);
496  	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
497  		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
498  		drm_vblank_disable_and_save(dev, pipe);
499  	}
500  	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
501  }
502  
drm_vblank_init_release(struct drm_device * dev,void * ptr)503  static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
504  {
505  	struct drm_vblank_crtc *vblank = ptr;
506  
507  	drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
508  		    drm_core_check_feature(dev, DRIVER_MODESET));
509  
510  	drm_vblank_destroy_worker(vblank);
511  	del_timer_sync(&vblank->disable_timer);
512  }
513  
514  /**
515   * drm_vblank_init - initialize vblank support
516   * @dev: DRM device
517   * @num_crtcs: number of CRTCs supported by @dev
518   *
519   * This function initializes vblank support for @num_crtcs display pipelines.
520   * Cleanup is handled automatically through a cleanup function added with
521   * drmm_add_action_or_reset().
522   *
523   * Returns:
524   * Zero on success or a negative error code on failure.
525   */
drm_vblank_init(struct drm_device * dev,unsigned int num_crtcs)526  int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
527  {
528  	int ret;
529  	unsigned int i;
530  
531  	spin_lock_init(&dev->vbl_lock);
532  	spin_lock_init(&dev->vblank_time_lock);
533  
534  	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
535  	if (!dev->vblank)
536  		return -ENOMEM;
537  
538  	dev->num_crtcs = num_crtcs;
539  
540  	for (i = 0; i < num_crtcs; i++) {
541  		struct drm_vblank_crtc *vblank = &dev->vblank[i];
542  
543  		vblank->dev = dev;
544  		vblank->pipe = i;
545  		init_waitqueue_head(&vblank->queue);
546  		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
547  		seqlock_init(&vblank->seqlock);
548  
549  		ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
550  					       vblank);
551  		if (ret)
552  			return ret;
553  
554  		ret = drm_vblank_worker_init(vblank);
555  		if (ret)
556  			return ret;
557  	}
558  
559  	return 0;
560  }
561  EXPORT_SYMBOL(drm_vblank_init);
562  
563  /**
564   * drm_dev_has_vblank - test if vblanking has been initialized for
565   *                      a device
566   * @dev: the device
567   *
568   * Drivers may call this function to test if vblank support is
569   * initialized for a device. For most hardware this means that vblanking
570   * can also be enabled.
571   *
572   * Atomic helpers use this function to initialize
573   * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
574   *
575   * Returns:
576   * True if vblanking has been initialized for the given device, false
577   * otherwise.
578   */
drm_dev_has_vblank(const struct drm_device * dev)579  bool drm_dev_has_vblank(const struct drm_device *dev)
580  {
581  	return dev->num_crtcs != 0;
582  }
583  EXPORT_SYMBOL(drm_dev_has_vblank);
584  
585  /**
586   * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
587   * @crtc: which CRTC's vblank waitqueue to retrieve
588   *
589   * This function returns a pointer to the vblank waitqueue for the CRTC.
590   * Drivers can use this to implement vblank waits using wait_event() and related
591   * functions.
592   */
drm_crtc_vblank_waitqueue(struct drm_crtc * crtc)593  wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
594  {
595  	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
596  }
597  EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
598  
599  
600  /**
601   * drm_calc_timestamping_constants - calculate vblank timestamp constants
602   * @crtc: drm_crtc whose timestamp constants should be updated.
603   * @mode: display mode containing the scanout timings
604   *
605   * Calculate and store various constants which are later needed by vblank and
606   * swap-completion timestamping, e.g, by
607   * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
608   * CRTC's true scanout timing, so they take things like panel scaling or
609   * other adjustments into account.
610   */
drm_calc_timestamping_constants(struct drm_crtc * crtc,const struct drm_display_mode * mode)611  void drm_calc_timestamping_constants(struct drm_crtc *crtc,
612  				     const struct drm_display_mode *mode)
613  {
614  	struct drm_device *dev = crtc->dev;
615  	unsigned int pipe = drm_crtc_index(crtc);
616  	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
617  	int linedur_ns = 0, framedur_ns = 0;
618  	int dotclock = mode->crtc_clock;
619  
620  	if (!drm_dev_has_vblank(dev))
621  		return;
622  
623  	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
624  		return;
625  
626  	/* Valid dotclock? */
627  	if (dotclock > 0) {
628  		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
629  
630  		/*
631  		 * Convert scanline length in pixels and video
632  		 * dot clock to line duration and frame duration
633  		 * in nanoseconds:
634  		 */
635  		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
636  		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
637  
638  		/*
639  		 * Fields of interlaced scanout modes are only half a frame duration.
640  		 */
641  		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
642  			framedur_ns /= 2;
643  	} else {
644  		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
645  			crtc->base.id);
646  	}
647  
648  	vblank->linedur_ns  = linedur_ns;
649  	vblank->framedur_ns = framedur_ns;
650  	drm_mode_copy(&vblank->hwmode, mode);
651  
652  	drm_dbg_core(dev,
653  		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
654  		     crtc->base.id, mode->crtc_htotal,
655  		     mode->crtc_vtotal, mode->crtc_vdisplay);
656  	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
657  		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
658  }
659  EXPORT_SYMBOL(drm_calc_timestamping_constants);
660  
661  /**
662   * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
663   *                                                        timestamp helper
664   * @crtc: CRTC whose vblank timestamp to retrieve
665   * @max_error: Desired maximum allowable error in timestamps (nanosecs)
666   *             On return contains true maximum error of timestamp
667   * @vblank_time: Pointer to time which should receive the timestamp
668   * @in_vblank_irq:
669   *     True when called from drm_crtc_handle_vblank().  Some drivers
670   *     need to apply some workarounds for gpu-specific vblank irq quirks
671   *     if flag is set.
672   * @get_scanout_position:
673   *     Callback function to retrieve the scanout position. See
674   *     @struct drm_crtc_helper_funcs.get_scanout_position.
675   *
676   * Implements calculation of exact vblank timestamps from given drm_display_mode
677   * timings and current video scanout position of a CRTC.
678   *
679   * The current implementation only handles standard video modes. For double scan
680   * and interlaced modes the driver is supposed to adjust the hardware mode
681   * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
682   * match the scanout position reported.
683   *
684   * Note that atomic drivers must call drm_calc_timestamping_constants() before
685   * enabling a CRTC. The atomic helpers already take care of that in
686   * drm_atomic_helper_calc_timestamping_constants().
687   *
688   * Returns:
689   * Returns true on success, and false on failure, i.e. when no accurate
690   * timestamp could be acquired.
691   */
692  bool
drm_crtc_vblank_helper_get_vblank_timestamp_internal(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq,drm_vblank_get_scanout_position_func get_scanout_position)693  drm_crtc_vblank_helper_get_vblank_timestamp_internal(
694  	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
695  	bool in_vblank_irq,
696  	drm_vblank_get_scanout_position_func get_scanout_position)
697  {
698  	struct drm_device *dev = crtc->dev;
699  	unsigned int pipe = crtc->index;
700  	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
701  	struct timespec64 ts_etime, ts_vblank_time;
702  	ktime_t stime, etime;
703  	bool vbl_status;
704  	const struct drm_display_mode *mode;
705  	int vpos, hpos, i;
706  	int delta_ns, duration_ns;
707  
708  	if (pipe >= dev->num_crtcs) {
709  		drm_err(dev, "Invalid crtc %u\n", pipe);
710  		return false;
711  	}
712  
713  	/* Scanout position query not supported? Should not happen. */
714  	if (!get_scanout_position) {
715  		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
716  		return false;
717  	}
718  
719  	if (drm_drv_uses_atomic_modeset(dev))
720  		mode = &vblank->hwmode;
721  	else
722  		mode = &crtc->hwmode;
723  
724  	/* If mode timing undefined, just return as no-op:
725  	 * Happens during initial modesetting of a crtc.
726  	 */
727  	if (mode->crtc_clock == 0) {
728  		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
729  			     pipe);
730  		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
731  		return false;
732  	}
733  
734  	/* Get current scanout position with system timestamp.
735  	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
736  	 * if single query takes longer than max_error nanoseconds.
737  	 *
738  	 * This guarantees a tight bound on maximum error if
739  	 * code gets preempted or delayed for some reason.
740  	 */
741  	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
742  		/*
743  		 * Get vertical and horizontal scanout position vpos, hpos,
744  		 * and bounding timestamps stime, etime, pre/post query.
745  		 */
746  		vbl_status = get_scanout_position(crtc, in_vblank_irq,
747  						  &vpos, &hpos,
748  						  &stime, &etime,
749  						  mode);
750  
751  		/* Return as no-op if scanout query unsupported or failed. */
752  		if (!vbl_status) {
753  			drm_dbg_core(dev,
754  				     "crtc %u : scanoutpos query failed.\n",
755  				     pipe);
756  			return false;
757  		}
758  
759  		/* Compute uncertainty in timestamp of scanout position query. */
760  		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
761  
762  		/* Accept result with <  max_error nsecs timing uncertainty. */
763  		if (duration_ns <= *max_error)
764  			break;
765  	}
766  
767  	/* Noisy system timing? */
768  	if (i == DRM_TIMESTAMP_MAXRETRIES) {
769  		drm_dbg_core(dev,
770  			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
771  			     pipe, duration_ns / 1000, *max_error / 1000, i);
772  	}
773  
774  	/* Return upper bound of timestamp precision error. */
775  	*max_error = duration_ns;
776  
777  	/* Convert scanout position into elapsed time at raw_time query
778  	 * since start of scanout at first display scanline. delta_ns
779  	 * can be negative if start of scanout hasn't happened yet.
780  	 */
781  	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
782  			   mode->crtc_clock);
783  
784  	/* Subtract time delta from raw timestamp to get final
785  	 * vblank_time timestamp for end of vblank.
786  	 */
787  	*vblank_time = ktime_sub_ns(etime, delta_ns);
788  
789  	if (!drm_debug_enabled(DRM_UT_VBL))
790  		return true;
791  
792  	ts_etime = ktime_to_timespec64(etime);
793  	ts_vblank_time = ktime_to_timespec64(*vblank_time);
794  
795  	drm_dbg_vbl(dev,
796  		    "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
797  		    pipe, hpos, vpos,
798  		    (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
799  		    (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
800  		    duration_ns / 1000, i);
801  
802  	return true;
803  }
804  EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
805  
806  /**
807   * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
808   *                                               helper
809   * @crtc: CRTC whose vblank timestamp to retrieve
810   * @max_error: Desired maximum allowable error in timestamps (nanosecs)
811   *             On return contains true maximum error of timestamp
812   * @vblank_time: Pointer to time which should receive the timestamp
813   * @in_vblank_irq:
814   *     True when called from drm_crtc_handle_vblank().  Some drivers
815   *     need to apply some workarounds for gpu-specific vblank irq quirks
816   *     if flag is set.
817   *
818   * Implements calculation of exact vblank timestamps from given drm_display_mode
819   * timings and current video scanout position of a CRTC. This can be directly
820   * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
821   * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
822   *
823   * The current implementation only handles standard video modes. For double scan
824   * and interlaced modes the driver is supposed to adjust the hardware mode
825   * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
826   * match the scanout position reported.
827   *
828   * Note that atomic drivers must call drm_calc_timestamping_constants() before
829   * enabling a CRTC. The atomic helpers already take care of that in
830   * drm_atomic_helper_calc_timestamping_constants().
831   *
832   * Returns:
833   * Returns true on success, and false on failure, i.e. when no accurate
834   * timestamp could be acquired.
835   */
drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq)836  bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
837  						 int *max_error,
838  						 ktime_t *vblank_time,
839  						 bool in_vblank_irq)
840  {
841  	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
842  		crtc, max_error, vblank_time, in_vblank_irq,
843  		crtc->helper_private->get_scanout_position);
844  }
845  EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
846  
847  /**
848   * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most
849   *                                  recent vblank interval
850   * @crtc: CRTC whose vblank timestamp to retrieve
851   * @tvblank: Pointer to target time which should receive the timestamp
852   * @in_vblank_irq:
853   *     True when called from drm_crtc_handle_vblank().  Some drivers
854   *     need to apply some workarounds for gpu-specific vblank irq quirks
855   *     if flag is set.
856   *
857   * Fetches the system timestamp corresponding to the time of the most recent
858   * vblank interval on specified CRTC. May call into kms-driver to
859   * compute the timestamp with a high-precision GPU specific method.
860   *
861   * Returns zero if timestamp originates from uncorrected do_gettimeofday()
862   * call, i.e., it isn't very precisely locked to the true vblank.
863   *
864   * Returns:
865   * True if timestamp is considered to be very precise, false otherwise.
866   */
867  static bool
drm_crtc_get_last_vbltimestamp(struct drm_crtc * crtc,ktime_t * tvblank,bool in_vblank_irq)868  drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank,
869  			       bool in_vblank_irq)
870  {
871  	bool ret = false;
872  
873  	/* Define requested maximum error on timestamps (nanoseconds). */
874  	int max_error = (int) drm_timestamp_precision * 1000;
875  
876  	/* Query driver if possible and precision timestamping enabled. */
877  	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
878  		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
879  							tvblank, in_vblank_irq);
880  	}
881  
882  	/* GPU high precision timestamp query unsupported or failed.
883  	 * Return current monotonic/gettimeofday timestamp as best estimate.
884  	 */
885  	if (!ret)
886  		*tvblank = ktime_get();
887  
888  	return ret;
889  }
890  
891  static bool
drm_get_last_vbltimestamp(struct drm_device * dev,unsigned int pipe,ktime_t * tvblank,bool in_vblank_irq)892  drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
893  			  ktime_t *tvblank, bool in_vblank_irq)
894  {
895  	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
896  
897  	return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq);
898  }
899  
900  /**
901   * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
902   * @crtc: which counter to retrieve
903   *
904   * Fetches the "cooked" vblank count value that represents the number of
905   * vblank events since the system was booted, including lost events due to
906   * modesetting activity. Note that this timer isn't correct against a racing
907   * vblank interrupt (since it only reports the software vblank counter), see
908   * drm_crtc_accurate_vblank_count() for such use-cases.
909   *
910   * Note that for a given vblank counter value drm_crtc_handle_vblank()
911   * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
912   * provide a barrier: Any writes done before calling
913   * drm_crtc_handle_vblank() will be visible to callers of the later
914   * functions, if the vblank count is the same or a later one.
915   *
916   * See also &drm_vblank_crtc.count.
917   *
918   * Returns:
919   * The software vblank counter.
920   */
drm_crtc_vblank_count(struct drm_crtc * crtc)921  u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
922  {
923  	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
924  }
925  EXPORT_SYMBOL(drm_crtc_vblank_count);
926  
927  /**
928   * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
929   *     system timestamp corresponding to that vblank counter value.
930   * @dev: DRM device
931   * @pipe: index of CRTC whose counter to retrieve
932   * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
933   *
934   * Fetches the "cooked" vblank count value that represents the number of
935   * vblank events since the system was booted, including lost events due to
936   * modesetting activity. Returns corresponding system timestamp of the time
937   * of the vblank interval that corresponds to the current vblank counter value.
938   *
939   * This is the legacy version of drm_crtc_vblank_count_and_time().
940   */
drm_vblank_count_and_time(struct drm_device * dev,unsigned int pipe,ktime_t * vblanktime)941  static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
942  				     ktime_t *vblanktime)
943  {
944  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
945  	u64 vblank_count;
946  	unsigned int seq;
947  
948  	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
949  		*vblanktime = 0;
950  		return 0;
951  	}
952  
953  	do {
954  		seq = read_seqbegin(&vblank->seqlock);
955  		vblank_count = atomic64_read(&vblank->count);
956  		*vblanktime = vblank->time;
957  	} while (read_seqretry(&vblank->seqlock, seq));
958  
959  	return vblank_count;
960  }
961  
962  /**
963   * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
964   *     and the system timestamp corresponding to that vblank counter value
965   * @crtc: which counter to retrieve
966   * @vblanktime: Pointer to time to receive the vblank timestamp.
967   *
968   * Fetches the "cooked" vblank count value that represents the number of
969   * vblank events since the system was booted, including lost events due to
970   * modesetting activity. Returns corresponding system timestamp of the time
971   * of the vblank interval that corresponds to the current vblank counter value.
972   *
973   * Note that for a given vblank counter value drm_crtc_handle_vblank()
974   * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
975   * provide a barrier: Any writes done before calling
976   * drm_crtc_handle_vblank() will be visible to callers of the later
977   * functions, if the vblank count is the same or a later one.
978   *
979   * See also &drm_vblank_crtc.count.
980   */
drm_crtc_vblank_count_and_time(struct drm_crtc * crtc,ktime_t * vblanktime)981  u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
982  				   ktime_t *vblanktime)
983  {
984  	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
985  					 vblanktime);
986  }
987  EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
988  
989  /**
990   * drm_crtc_next_vblank_start - calculate the time of the next vblank
991   * @crtc: the crtc for which to calculate next vblank time
992   * @vblanktime: pointer to time to receive the next vblank timestamp.
993   *
994   * Calculate the expected time of the start of the next vblank period,
995   * based on time of previous vblank and frame duration
996   */
drm_crtc_next_vblank_start(struct drm_crtc * crtc,ktime_t * vblanktime)997  int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime)
998  {
999  	struct drm_vblank_crtc *vblank;
1000  	struct drm_display_mode *mode;
1001  	u64 vblank_start;
1002  
1003  	if (!drm_dev_has_vblank(crtc->dev))
1004  		return -EINVAL;
1005  
1006  	vblank = drm_crtc_vblank_crtc(crtc);
1007  	mode = &vblank->hwmode;
1008  
1009  	if (!vblank->framedur_ns || !vblank->linedur_ns)
1010  		return -EINVAL;
1011  
1012  	if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false))
1013  		return -EINVAL;
1014  
1015  	vblank_start = DIV_ROUND_DOWN_ULL(
1016  			(u64)vblank->framedur_ns * mode->crtc_vblank_start,
1017  			mode->crtc_vtotal);
1018  	*vblanktime  = ktime_add(*vblanktime, ns_to_ktime(vblank_start));
1019  
1020  	return 0;
1021  }
1022  EXPORT_SYMBOL(drm_crtc_next_vblank_start);
1023  
send_vblank_event(struct drm_device * dev,struct drm_pending_vblank_event * e,u64 seq,ktime_t now)1024  static void send_vblank_event(struct drm_device *dev,
1025  		struct drm_pending_vblank_event *e,
1026  		u64 seq, ktime_t now)
1027  {
1028  	struct timespec64 tv;
1029  
1030  	switch (e->event.base.type) {
1031  	case DRM_EVENT_VBLANK:
1032  	case DRM_EVENT_FLIP_COMPLETE:
1033  		tv = ktime_to_timespec64(now);
1034  		e->event.vbl.sequence = seq;
1035  		/*
1036  		 * e->event is a user space structure, with hardcoded unsigned
1037  		 * 32-bit seconds/microseconds. This is safe as we always use
1038  		 * monotonic timestamps since linux-4.15
1039  		 */
1040  		e->event.vbl.tv_sec = tv.tv_sec;
1041  		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
1042  		break;
1043  	case DRM_EVENT_CRTC_SEQUENCE:
1044  		if (seq)
1045  			e->event.seq.sequence = seq;
1046  		e->event.seq.time_ns = ktime_to_ns(now);
1047  		break;
1048  	}
1049  	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1050  	/*
1051  	 * Use the same timestamp for any associated fence signal to avoid
1052  	 * mismatch in timestamps for vsync & fence events triggered by the
1053  	 * same HW event. Frameworks like SurfaceFlinger in Android expects the
1054  	 * retire-fence timestamp to match exactly with HW vsync as it uses it
1055  	 * for its software vsync modeling.
1056  	 */
1057  	drm_send_event_timestamp_locked(dev, &e->base, now);
1058  }
1059  
1060  /**
1061   * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1062   * @crtc: the source CRTC of the vblank event
1063   * @e: the event to send
1064   *
1065   * A lot of drivers need to generate vblank events for the very next vblank
1066   * interrupt. For example when the page flip interrupt happens when the page
1067   * flip gets armed, but not when it actually executes within the next vblank
1068   * period. This helper function implements exactly the required vblank arming
1069   * behaviour.
1070   *
1071   * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1072   * atomic commit must ensure that the next vblank happens at exactly the same
1073   * time as the atomic commit is committed to the hardware. This function itself
1074   * does **not** protect against the next vblank interrupt racing with either this
1075   * function call or the atomic commit operation. A possible sequence could be:
1076   *
1077   * 1. Driver commits new hardware state into vblank-synchronized registers.
1078   * 2. A vblank happens, committing the hardware state. Also the corresponding
1079   *    vblank interrupt is fired off and fully processed by the interrupt
1080   *    handler.
1081   * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1082   * 4. The event is only send out for the next vblank, which is wrong.
1083   *
1084   * An equivalent race can happen when the driver calls
1085   * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1086   *
1087   * The only way to make this work safely is to prevent the vblank from firing
1088   * (and the hardware from committing anything else) until the entire atomic
1089   * commit sequence has run to completion. If the hardware does not have such a
1090   * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1091   * Instead drivers need to manually send out the event from their interrupt
1092   * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1093   * possible race with the hardware committing the atomic update.
1094   *
1095   * Caller must hold a vblank reference for the event @e acquired by a
1096   * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1097   */
drm_crtc_arm_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)1098  void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1099  			       struct drm_pending_vblank_event *e)
1100  {
1101  	struct drm_device *dev = crtc->dev;
1102  	unsigned int pipe = drm_crtc_index(crtc);
1103  
1104  	assert_spin_locked(&dev->event_lock);
1105  
1106  	e->pipe = pipe;
1107  	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1108  	list_add_tail(&e->base.link, &dev->vblank_event_list);
1109  }
1110  EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1111  
1112  /**
1113   * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1114   * @crtc: the source CRTC of the vblank event
1115   * @e: the event to send
1116   *
1117   * Updates sequence # and timestamp on event for the most recently processed
1118   * vblank, and sends it to userspace.  Caller must hold event lock.
1119   *
1120   * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1121   * situation, especially to send out events for atomic commit operations.
1122   */
drm_crtc_send_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)1123  void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1124  				struct drm_pending_vblank_event *e)
1125  {
1126  	struct drm_device *dev = crtc->dev;
1127  	u64 seq;
1128  	unsigned int pipe = drm_crtc_index(crtc);
1129  	ktime_t now;
1130  
1131  	if (drm_dev_has_vblank(dev)) {
1132  		seq = drm_vblank_count_and_time(dev, pipe, &now);
1133  	} else {
1134  		seq = 0;
1135  
1136  		now = ktime_get();
1137  	}
1138  	e->pipe = pipe;
1139  	send_vblank_event(dev, e, seq, now);
1140  }
1141  EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1142  
__enable_vblank(struct drm_device * dev,unsigned int pipe)1143  static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1144  {
1145  	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1146  		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1147  
1148  		if (drm_WARN_ON(dev, !crtc))
1149  			return 0;
1150  
1151  		if (crtc->funcs->enable_vblank)
1152  			return crtc->funcs->enable_vblank(crtc);
1153  	}
1154  
1155  	return -EINVAL;
1156  }
1157  
drm_vblank_enable(struct drm_device * dev,unsigned int pipe)1158  static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1159  {
1160  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1161  	int ret = 0;
1162  
1163  	assert_spin_locked(&dev->vbl_lock);
1164  
1165  	spin_lock(&dev->vblank_time_lock);
1166  
1167  	if (!vblank->enabled) {
1168  		/*
1169  		 * Enable vblank irqs under vblank_time_lock protection.
1170  		 * All vblank count & timestamp updates are held off
1171  		 * until we are done reinitializing master counter and
1172  		 * timestamps. Filtercode in drm_handle_vblank() will
1173  		 * prevent double-accounting of same vblank interval.
1174  		 */
1175  		ret = __enable_vblank(dev, pipe);
1176  		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1177  			     pipe, ret);
1178  		if (ret) {
1179  			atomic_dec(&vblank->refcount);
1180  		} else {
1181  			drm_update_vblank_count(dev, pipe, 0);
1182  			/* drm_update_vblank_count() includes a wmb so we just
1183  			 * need to ensure that the compiler emits the write
1184  			 * to mark the vblank as enabled after the call
1185  			 * to drm_update_vblank_count().
1186  			 */
1187  			WRITE_ONCE(vblank->enabled, true);
1188  		}
1189  	}
1190  
1191  	spin_unlock(&dev->vblank_time_lock);
1192  
1193  	return ret;
1194  }
1195  
drm_vblank_get(struct drm_device * dev,unsigned int pipe)1196  int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1197  {
1198  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1199  	unsigned long irqflags;
1200  	int ret = 0;
1201  
1202  	if (!drm_dev_has_vblank(dev))
1203  		return -EINVAL;
1204  
1205  	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1206  		return -EINVAL;
1207  
1208  	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1209  	/* Going from 0->1 means we have to enable interrupts again */
1210  	if (atomic_add_return(1, &vblank->refcount) == 1) {
1211  		ret = drm_vblank_enable(dev, pipe);
1212  	} else {
1213  		if (!vblank->enabled) {
1214  			atomic_dec(&vblank->refcount);
1215  			ret = -EINVAL;
1216  		}
1217  	}
1218  	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1219  
1220  	return ret;
1221  }
1222  
1223  /**
1224   * drm_crtc_vblank_get - get a reference count on vblank events
1225   * @crtc: which CRTC to own
1226   *
1227   * Acquire a reference count on vblank events to avoid having them disabled
1228   * while in use.
1229   *
1230   * Returns:
1231   * Zero on success or a negative error code on failure.
1232   */
drm_crtc_vblank_get(struct drm_crtc * crtc)1233  int drm_crtc_vblank_get(struct drm_crtc *crtc)
1234  {
1235  	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1236  }
1237  EXPORT_SYMBOL(drm_crtc_vblank_get);
1238  
drm_vblank_put(struct drm_device * dev,unsigned int pipe)1239  void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1240  {
1241  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1242  	int vblank_offdelay = vblank->config.offdelay_ms;
1243  
1244  	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1245  		return;
1246  
1247  	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1248  		return;
1249  
1250  	/* Last user schedules interrupt disable */
1251  	if (atomic_dec_and_test(&vblank->refcount)) {
1252  		if (!vblank_offdelay)
1253  			return;
1254  		else if (vblank_offdelay < 0)
1255  			vblank_disable_fn(&vblank->disable_timer);
1256  		else if (!vblank->config.disable_immediate)
1257  			mod_timer(&vblank->disable_timer,
1258  				  jiffies + ((vblank_offdelay * HZ) / 1000));
1259  	}
1260  }
1261  
1262  /**
1263   * drm_crtc_vblank_put - give up ownership of vblank events
1264   * @crtc: which counter to give up
1265   *
1266   * Release ownership of a given vblank counter, turning off interrupts
1267   * if possible. Disable interrupts after &drm_vblank_crtc_config.offdelay_ms
1268   * milliseconds.
1269   */
drm_crtc_vblank_put(struct drm_crtc * crtc)1270  void drm_crtc_vblank_put(struct drm_crtc *crtc)
1271  {
1272  	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1273  }
1274  EXPORT_SYMBOL(drm_crtc_vblank_put);
1275  
1276  /**
1277   * drm_wait_one_vblank - wait for one vblank
1278   * @dev: DRM device
1279   * @pipe: CRTC index
1280   *
1281   * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1282   * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1283   * due to lack of driver support or because the crtc is off.
1284   *
1285   * This is the legacy version of drm_crtc_wait_one_vblank().
1286   */
drm_wait_one_vblank(struct drm_device * dev,unsigned int pipe)1287  void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1288  {
1289  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1290  	int ret;
1291  	u64 last;
1292  
1293  	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1294  		return;
1295  
1296  	ret = drm_vblank_get(dev, pipe);
1297  	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1298  		     pipe, ret))
1299  		return;
1300  
1301  	last = drm_vblank_count(dev, pipe);
1302  
1303  	ret = wait_event_timeout(vblank->queue,
1304  				 last != drm_vblank_count(dev, pipe),
1305  				 msecs_to_jiffies(100));
1306  
1307  	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1308  
1309  	drm_vblank_put(dev, pipe);
1310  }
1311  EXPORT_SYMBOL(drm_wait_one_vblank);
1312  
1313  /**
1314   * drm_crtc_wait_one_vblank - wait for one vblank
1315   * @crtc: DRM crtc
1316   *
1317   * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1318   * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1319   * due to lack of driver support or because the crtc is off.
1320   */
drm_crtc_wait_one_vblank(struct drm_crtc * crtc)1321  void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1322  {
1323  	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1324  }
1325  EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1326  
1327  /**
1328   * drm_crtc_vblank_off - disable vblank events on a CRTC
1329   * @crtc: CRTC in question
1330   *
1331   * Drivers can use this function to shut down the vblank interrupt handling when
1332   * disabling a crtc. This function ensures that the latest vblank frame count is
1333   * stored so that drm_vblank_on can restore it again.
1334   *
1335   * Drivers must use this function when the hardware vblank counter can get
1336   * reset, e.g. when suspending or disabling the @crtc in general.
1337   */
drm_crtc_vblank_off(struct drm_crtc * crtc)1338  void drm_crtc_vblank_off(struct drm_crtc *crtc)
1339  {
1340  	struct drm_device *dev = crtc->dev;
1341  	unsigned int pipe = drm_crtc_index(crtc);
1342  	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1343  	struct drm_pending_vblank_event *e, *t;
1344  	ktime_t now;
1345  	u64 seq;
1346  
1347  	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1348  		return;
1349  
1350  	/*
1351  	 * Grab event_lock early to prevent vblank work from being scheduled
1352  	 * while we're in the middle of shutting down vblank interrupts
1353  	 */
1354  	spin_lock_irq(&dev->event_lock);
1355  
1356  	spin_lock(&dev->vbl_lock);
1357  	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1358  		    pipe, vblank->enabled, vblank->inmodeset);
1359  
1360  	/* Avoid redundant vblank disables without previous
1361  	 * drm_crtc_vblank_on(). */
1362  	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1363  		drm_vblank_disable_and_save(dev, pipe);
1364  
1365  	wake_up(&vblank->queue);
1366  
1367  	/*
1368  	 * Prevent subsequent drm_vblank_get() from re-enabling
1369  	 * the vblank interrupt by bumping the refcount.
1370  	 */
1371  	if (!vblank->inmodeset) {
1372  		atomic_inc(&vblank->refcount);
1373  		vblank->inmodeset = 1;
1374  	}
1375  	spin_unlock(&dev->vbl_lock);
1376  
1377  	/* Send any queued vblank events, lest the natives grow disquiet */
1378  	seq = drm_vblank_count_and_time(dev, pipe, &now);
1379  
1380  	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1381  		if (e->pipe != pipe)
1382  			continue;
1383  		drm_dbg_core(dev, "Sending premature vblank event on disable: "
1384  			     "wanted %llu, current %llu\n",
1385  			     e->sequence, seq);
1386  		list_del(&e->base.link);
1387  		drm_vblank_put(dev, pipe);
1388  		send_vblank_event(dev, e, seq, now);
1389  	}
1390  
1391  	/* Cancel any leftover pending vblank work */
1392  	drm_vblank_cancel_pending_works(vblank);
1393  
1394  	spin_unlock_irq(&dev->event_lock);
1395  
1396  	/* Will be reset by the modeset helpers when re-enabling the crtc by
1397  	 * calling drm_calc_timestamping_constants(). */
1398  	vblank->hwmode.crtc_clock = 0;
1399  
1400  	/* Wait for any vblank work that's still executing to finish */
1401  	drm_vblank_flush_worker(vblank);
1402  }
1403  EXPORT_SYMBOL(drm_crtc_vblank_off);
1404  
1405  /**
1406   * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1407   * @crtc: CRTC in question
1408   *
1409   * Drivers can use this function to reset the vblank state to off at load time.
1410   * Drivers should use this together with the drm_crtc_vblank_off() and
1411   * drm_crtc_vblank_on() functions. The difference compared to
1412   * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1413   * and hence doesn't need to call any driver hooks.
1414   *
1415   * This is useful for recovering driver state e.g. on driver load, or on resume.
1416   */
drm_crtc_vblank_reset(struct drm_crtc * crtc)1417  void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1418  {
1419  	struct drm_device *dev = crtc->dev;
1420  	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1421  
1422  	spin_lock_irq(&dev->vbl_lock);
1423  	/*
1424  	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1425  	 * interrupt by bumping the refcount.
1426  	 */
1427  	if (!vblank->inmodeset) {
1428  		atomic_inc(&vblank->refcount);
1429  		vblank->inmodeset = 1;
1430  	}
1431  	spin_unlock_irq(&dev->vbl_lock);
1432  
1433  	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1434  	drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1435  }
1436  EXPORT_SYMBOL(drm_crtc_vblank_reset);
1437  
1438  /**
1439   * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1440   * @crtc: CRTC in question
1441   * @max_vblank_count: max hardware vblank counter value
1442   *
1443   * Update the maximum hardware vblank counter value for @crtc
1444   * at runtime. Useful for hardware where the operation of the
1445   * hardware vblank counter depends on the currently active
1446   * display configuration.
1447   *
1448   * For example, if the hardware vblank counter does not work
1449   * when a specific connector is active the maximum can be set
1450   * to zero. And when that specific connector isn't active the
1451   * maximum can again be set to the appropriate non-zero value.
1452   *
1453   * If used, must be called before drm_vblank_on().
1454   */
drm_crtc_set_max_vblank_count(struct drm_crtc * crtc,u32 max_vblank_count)1455  void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1456  				   u32 max_vblank_count)
1457  {
1458  	struct drm_device *dev = crtc->dev;
1459  	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1460  
1461  	drm_WARN_ON(dev, dev->max_vblank_count);
1462  	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1463  
1464  	vblank->max_vblank_count = max_vblank_count;
1465  }
1466  EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1467  
1468  /**
1469   * drm_crtc_vblank_on_config - enable vblank events on a CRTC with custom
1470   *     configuration options
1471   * @crtc: CRTC in question
1472   * @config: Vblank configuration value
1473   *
1474   * See drm_crtc_vblank_on(). In addition, this function allows you to provide a
1475   * custom vblank configuration for a given CRTC.
1476   *
1477   * Note that @config is copied, the pointer does not need to stay valid beyond
1478   * this function call. For details of the parameters see
1479   * struct drm_vblank_crtc_config.
1480   */
drm_crtc_vblank_on_config(struct drm_crtc * crtc,const struct drm_vblank_crtc_config * config)1481  void drm_crtc_vblank_on_config(struct drm_crtc *crtc,
1482  			       const struct drm_vblank_crtc_config *config)
1483  {
1484  	struct drm_device *dev = crtc->dev;
1485  	unsigned int pipe = drm_crtc_index(crtc);
1486  	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1487  
1488  	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1489  		return;
1490  
1491  	spin_lock_irq(&dev->vbl_lock);
1492  	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1493  		    pipe, vblank->enabled, vblank->inmodeset);
1494  
1495  	vblank->config = *config;
1496  
1497  	/* Drop our private "prevent drm_vblank_get" refcount */
1498  	if (vblank->inmodeset) {
1499  		atomic_dec(&vblank->refcount);
1500  		vblank->inmodeset = 0;
1501  	}
1502  
1503  	drm_reset_vblank_timestamp(dev, pipe);
1504  
1505  	/*
1506  	 * re-enable interrupts if there are users left, or the
1507  	 * user wishes vblank interrupts to be enabled all the time.
1508  	 */
1509  	if (atomic_read(&vblank->refcount) != 0 || !vblank->config.offdelay_ms)
1510  		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1511  	spin_unlock_irq(&dev->vbl_lock);
1512  }
1513  EXPORT_SYMBOL(drm_crtc_vblank_on_config);
1514  
1515  /**
1516   * drm_crtc_vblank_on - enable vblank events on a CRTC
1517   * @crtc: CRTC in question
1518   *
1519   * This functions restores the vblank interrupt state captured with
1520   * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1521   * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1522   * unbalanced and so can also be unconditionally called in driver load code to
1523   * reflect the current hardware state of the crtc.
1524   *
1525   * Note that unlike in drm_crtc_vblank_on_config(), default values are used.
1526   */
drm_crtc_vblank_on(struct drm_crtc * crtc)1527  void drm_crtc_vblank_on(struct drm_crtc *crtc)
1528  {
1529  	const struct drm_vblank_crtc_config config = {
1530  		.offdelay_ms = drm_vblank_offdelay,
1531  		.disable_immediate = crtc->dev->vblank_disable_immediate
1532  	};
1533  
1534  	drm_crtc_vblank_on_config(crtc, &config);
1535  }
1536  EXPORT_SYMBOL(drm_crtc_vblank_on);
1537  
drm_vblank_restore(struct drm_device * dev,unsigned int pipe)1538  static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1539  {
1540  	ktime_t t_vblank;
1541  	struct drm_vblank_crtc *vblank;
1542  	int framedur_ns;
1543  	u64 diff_ns;
1544  	u32 cur_vblank, diff = 1;
1545  	int count = DRM_TIMESTAMP_MAXRETRIES;
1546  	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
1547  
1548  	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1549  		return;
1550  
1551  	assert_spin_locked(&dev->vbl_lock);
1552  	assert_spin_locked(&dev->vblank_time_lock);
1553  
1554  	vblank = drm_vblank_crtc(dev, pipe);
1555  	drm_WARN_ONCE(dev,
1556  		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1557  		      "Cannot compute missed vblanks without frame duration\n");
1558  	framedur_ns = vblank->framedur_ns;
1559  
1560  	do {
1561  		cur_vblank = __get_vblank_counter(dev, pipe);
1562  		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1563  	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1564  
1565  	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1566  	if (framedur_ns)
1567  		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1568  
1569  
1570  	drm_dbg_vbl(dev,
1571  		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1572  		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1573  	vblank->last = (cur_vblank - diff) & max_vblank_count;
1574  }
1575  
1576  /**
1577   * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1578   * @crtc: CRTC in question
1579   *
1580   * Power manamement features can cause frame counter resets between vblank
1581   * disable and enable. Drivers can use this function in their
1582   * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1583   * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1584   * vblank counter.
1585   *
1586   * Note that drivers must have race-free high-precision timestamping support,
1587   * i.e.  &drm_crtc_funcs.get_vblank_timestamp must be hooked up and
1588   * &drm_vblank_crtc_config.disable_immediate must be set to indicate the
1589   * time-stamping functions are race-free against vblank hardware counter
1590   * increments.
1591   */
drm_crtc_vblank_restore(struct drm_crtc * crtc)1592  void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1593  {
1594  	struct drm_device *dev = crtc->dev;
1595  	unsigned int pipe = drm_crtc_index(crtc);
1596  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1597  
1598  	drm_WARN_ON_ONCE(dev, !crtc->funcs->get_vblank_timestamp);
1599  	drm_WARN_ON_ONCE(dev, vblank->inmodeset);
1600  	drm_WARN_ON_ONCE(dev, !vblank->config.disable_immediate);
1601  
1602  	drm_vblank_restore(dev, pipe);
1603  }
1604  EXPORT_SYMBOL(drm_crtc_vblank_restore);
1605  
drm_queue_vblank_event(struct drm_device * dev,unsigned int pipe,u64 req_seq,union drm_wait_vblank * vblwait,struct drm_file * file_priv)1606  static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1607  				  u64 req_seq,
1608  				  union drm_wait_vblank *vblwait,
1609  				  struct drm_file *file_priv)
1610  {
1611  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1612  	struct drm_pending_vblank_event *e;
1613  	ktime_t now;
1614  	u64 seq;
1615  	int ret;
1616  
1617  	e = kzalloc(sizeof(*e), GFP_KERNEL);
1618  	if (e == NULL) {
1619  		ret = -ENOMEM;
1620  		goto err_put;
1621  	}
1622  
1623  	e->pipe = pipe;
1624  	e->event.base.type = DRM_EVENT_VBLANK;
1625  	e->event.base.length = sizeof(e->event.vbl);
1626  	e->event.vbl.user_data = vblwait->request.signal;
1627  	e->event.vbl.crtc_id = 0;
1628  	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1629  		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1630  
1631  		if (crtc)
1632  			e->event.vbl.crtc_id = crtc->base.id;
1633  	}
1634  
1635  	spin_lock_irq(&dev->event_lock);
1636  
1637  	/*
1638  	 * drm_crtc_vblank_off() might have been called after we called
1639  	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1640  	 * vblank disable, so no need for further locking.  The reference from
1641  	 * drm_vblank_get() protects against vblank disable from another source.
1642  	 */
1643  	if (!READ_ONCE(vblank->enabled)) {
1644  		ret = -EINVAL;
1645  		goto err_unlock;
1646  	}
1647  
1648  	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1649  					    &e->event.base);
1650  
1651  	if (ret)
1652  		goto err_unlock;
1653  
1654  	seq = drm_vblank_count_and_time(dev, pipe, &now);
1655  
1656  	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1657  		     req_seq, seq, pipe);
1658  
1659  	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1660  
1661  	e->sequence = req_seq;
1662  	if (drm_vblank_passed(seq, req_seq)) {
1663  		drm_vblank_put(dev, pipe);
1664  		send_vblank_event(dev, e, seq, now);
1665  		vblwait->reply.sequence = seq;
1666  	} else {
1667  		/* drm_handle_vblank_events will call drm_vblank_put */
1668  		list_add_tail(&e->base.link, &dev->vblank_event_list);
1669  		vblwait->reply.sequence = req_seq;
1670  	}
1671  
1672  	spin_unlock_irq(&dev->event_lock);
1673  
1674  	return 0;
1675  
1676  err_unlock:
1677  	spin_unlock_irq(&dev->event_lock);
1678  	kfree(e);
1679  err_put:
1680  	drm_vblank_put(dev, pipe);
1681  	return ret;
1682  }
1683  
drm_wait_vblank_is_query(union drm_wait_vblank * vblwait)1684  static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1685  {
1686  	if (vblwait->request.sequence)
1687  		return false;
1688  
1689  	return _DRM_VBLANK_RELATIVE ==
1690  		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1691  					  _DRM_VBLANK_EVENT |
1692  					  _DRM_VBLANK_NEXTONMISS));
1693  }
1694  
1695  /*
1696   * Widen a 32-bit param to 64-bits.
1697   *
1698   * \param narrow 32-bit value (missing upper 32 bits)
1699   * \param near 64-bit value that should be 'close' to near
1700   *
1701   * This function returns a 64-bit value using the lower 32-bits from
1702   * 'narrow' and constructing the upper 32-bits so that the result is
1703   * as close as possible to 'near'.
1704   */
1705  
widen_32_to_64(u32 narrow,u64 near)1706  static u64 widen_32_to_64(u32 narrow, u64 near)
1707  {
1708  	return near + (s32) (narrow - near);
1709  }
1710  
drm_wait_vblank_reply(struct drm_device * dev,unsigned int pipe,struct drm_wait_vblank_reply * reply)1711  static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1712  				  struct drm_wait_vblank_reply *reply)
1713  {
1714  	ktime_t now;
1715  	struct timespec64 ts;
1716  
1717  	/*
1718  	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1719  	 * to store the seconds. This is safe as we always use monotonic
1720  	 * timestamps since linux-4.15.
1721  	 */
1722  	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1723  	ts = ktime_to_timespec64(now);
1724  	reply->tval_sec = (u32)ts.tv_sec;
1725  	reply->tval_usec = ts.tv_nsec / 1000;
1726  }
1727  
drm_wait_vblank_supported(struct drm_device * dev)1728  static bool drm_wait_vblank_supported(struct drm_device *dev)
1729  {
1730  	return drm_dev_has_vblank(dev);
1731  }
1732  
drm_wait_vblank_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1733  int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1734  			  struct drm_file *file_priv)
1735  {
1736  	struct drm_crtc *crtc;
1737  	struct drm_vblank_crtc *vblank;
1738  	union drm_wait_vblank *vblwait = data;
1739  	int ret;
1740  	u64 req_seq, seq;
1741  	unsigned int pipe_index;
1742  	unsigned int flags, pipe, high_pipe;
1743  
1744  	if (!drm_wait_vblank_supported(dev))
1745  		return -EOPNOTSUPP;
1746  
1747  	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1748  		return -EINVAL;
1749  
1750  	if (vblwait->request.type &
1751  	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1752  	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1753  		drm_dbg_core(dev,
1754  			     "Unsupported type value 0x%x, supported mask 0x%x\n",
1755  			     vblwait->request.type,
1756  			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1757  			      _DRM_VBLANK_HIGH_CRTC_MASK));
1758  		return -EINVAL;
1759  	}
1760  
1761  	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1762  	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1763  	if (high_pipe)
1764  		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1765  	else
1766  		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1767  
1768  	/* Convert lease-relative crtc index into global crtc index */
1769  	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1770  		pipe = 0;
1771  		drm_for_each_crtc(crtc, dev) {
1772  			if (drm_lease_held(file_priv, crtc->base.id)) {
1773  				if (pipe_index == 0)
1774  					break;
1775  				pipe_index--;
1776  			}
1777  			pipe++;
1778  		}
1779  	} else {
1780  		pipe = pipe_index;
1781  	}
1782  
1783  	if (pipe >= dev->num_crtcs)
1784  		return -EINVAL;
1785  
1786  	vblank = &dev->vblank[pipe];
1787  
1788  	/* If the counter is currently enabled and accurate, short-circuit
1789  	 * queries to return the cached timestamp of the last vblank.
1790  	 */
1791  	if (vblank->config.disable_immediate &&
1792  	    drm_wait_vblank_is_query(vblwait) &&
1793  	    READ_ONCE(vblank->enabled)) {
1794  		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1795  		return 0;
1796  	}
1797  
1798  	ret = drm_vblank_get(dev, pipe);
1799  	if (ret) {
1800  		drm_dbg_core(dev,
1801  			     "crtc %d failed to acquire vblank counter, %d\n",
1802  			     pipe, ret);
1803  		return ret;
1804  	}
1805  	seq = drm_vblank_count(dev, pipe);
1806  
1807  	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1808  	case _DRM_VBLANK_RELATIVE:
1809  		req_seq = seq + vblwait->request.sequence;
1810  		vblwait->request.sequence = req_seq;
1811  		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1812  		break;
1813  	case _DRM_VBLANK_ABSOLUTE:
1814  		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1815  		break;
1816  	default:
1817  		ret = -EINVAL;
1818  		goto done;
1819  	}
1820  
1821  	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1822  	    drm_vblank_passed(seq, req_seq)) {
1823  		req_seq = seq + 1;
1824  		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1825  		vblwait->request.sequence = req_seq;
1826  	}
1827  
1828  	if (flags & _DRM_VBLANK_EVENT) {
1829  		/* must hold on to the vblank ref until the event fires
1830  		 * drm_vblank_put will be called asynchronously
1831  		 */
1832  		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1833  	}
1834  
1835  	if (req_seq != seq) {
1836  		int wait;
1837  
1838  		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1839  			     req_seq, pipe);
1840  		wait = wait_event_interruptible_timeout(vblank->queue,
1841  			drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1842  				      !READ_ONCE(vblank->enabled),
1843  			msecs_to_jiffies(3000));
1844  
1845  		switch (wait) {
1846  		case 0:
1847  			/* timeout */
1848  			ret = -EBUSY;
1849  			break;
1850  		case -ERESTARTSYS:
1851  			/* interrupted by signal */
1852  			ret = -EINTR;
1853  			break;
1854  		default:
1855  			ret = 0;
1856  			break;
1857  		}
1858  	}
1859  
1860  	if (ret != -EINTR) {
1861  		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1862  
1863  		drm_dbg_core(dev, "crtc %d returning %u to client\n",
1864  			     pipe, vblwait->reply.sequence);
1865  	} else {
1866  		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1867  			     pipe);
1868  	}
1869  
1870  done:
1871  	drm_vblank_put(dev, pipe);
1872  	return ret;
1873  }
1874  
drm_handle_vblank_events(struct drm_device * dev,unsigned int pipe)1875  static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1876  {
1877  	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1878  	bool high_prec = false;
1879  	struct drm_pending_vblank_event *e, *t;
1880  	ktime_t now;
1881  	u64 seq;
1882  
1883  	assert_spin_locked(&dev->event_lock);
1884  
1885  	seq = drm_vblank_count_and_time(dev, pipe, &now);
1886  
1887  	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1888  		if (e->pipe != pipe)
1889  			continue;
1890  		if (!drm_vblank_passed(seq, e->sequence))
1891  			continue;
1892  
1893  		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1894  			     e->sequence, seq);
1895  
1896  		list_del(&e->base.link);
1897  		drm_vblank_put(dev, pipe);
1898  		send_vblank_event(dev, e, seq, now);
1899  	}
1900  
1901  	if (crtc && crtc->funcs->get_vblank_timestamp)
1902  		high_prec = true;
1903  
1904  	trace_drm_vblank_event(pipe, seq, now, high_prec);
1905  }
1906  
1907  /**
1908   * drm_handle_vblank - handle a vblank event
1909   * @dev: DRM device
1910   * @pipe: index of CRTC where this event occurred
1911   *
1912   * Drivers should call this routine in their vblank interrupt handlers to
1913   * update the vblank counter and send any signals that may be pending.
1914   *
1915   * This is the legacy version of drm_crtc_handle_vblank().
1916   */
drm_handle_vblank(struct drm_device * dev,unsigned int pipe)1917  bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1918  {
1919  	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1920  	unsigned long irqflags;
1921  	bool disable_irq;
1922  
1923  	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1924  		return false;
1925  
1926  	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1927  		return false;
1928  
1929  	spin_lock_irqsave(&dev->event_lock, irqflags);
1930  
1931  	/* Need timestamp lock to prevent concurrent execution with
1932  	 * vblank enable/disable, as this would cause inconsistent
1933  	 * or corrupted timestamps and vblank counts.
1934  	 */
1935  	spin_lock(&dev->vblank_time_lock);
1936  
1937  	/* Vblank irq handling disabled. Nothing to do. */
1938  	if (!vblank->enabled) {
1939  		spin_unlock(&dev->vblank_time_lock);
1940  		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1941  		return false;
1942  	}
1943  
1944  	drm_update_vblank_count(dev, pipe, true);
1945  
1946  	spin_unlock(&dev->vblank_time_lock);
1947  
1948  	wake_up(&vblank->queue);
1949  
1950  	/* With instant-off, we defer disabling the interrupt until after
1951  	 * we finish processing the following vblank after all events have
1952  	 * been signaled. The disable has to be last (after
1953  	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1954  	 */
1955  	disable_irq = (vblank->config.disable_immediate &&
1956  		       vblank->config.offdelay_ms > 0 &&
1957  		       !atomic_read(&vblank->refcount));
1958  
1959  	drm_handle_vblank_events(dev, pipe);
1960  	drm_handle_vblank_works(vblank);
1961  
1962  	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1963  
1964  	if (disable_irq)
1965  		vblank_disable_fn(&vblank->disable_timer);
1966  
1967  	return true;
1968  }
1969  EXPORT_SYMBOL(drm_handle_vblank);
1970  
1971  /**
1972   * drm_crtc_handle_vblank - handle a vblank event
1973   * @crtc: where this event occurred
1974   *
1975   * Drivers should call this routine in their vblank interrupt handlers to
1976   * update the vblank counter and send any signals that may be pending.
1977   *
1978   * This is the native KMS version of drm_handle_vblank().
1979   *
1980   * Note that for a given vblank counter value drm_crtc_handle_vblank()
1981   * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1982   * provide a barrier: Any writes done before calling
1983   * drm_crtc_handle_vblank() will be visible to callers of the later
1984   * functions, if the vblank count is the same or a later one.
1985   *
1986   * See also &drm_vblank_crtc.count.
1987   *
1988   * Returns:
1989   * True if the event was successfully handled, false on failure.
1990   */
drm_crtc_handle_vblank(struct drm_crtc * crtc)1991  bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1992  {
1993  	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1994  }
1995  EXPORT_SYMBOL(drm_crtc_handle_vblank);
1996  
1997  /*
1998   * Get crtc VBLANK count.
1999   *
2000   * \param dev DRM device
2001   * \param data user argument, pointing to a drm_crtc_get_sequence structure.
2002   * \param file_priv drm file private for the user's open file descriptor
2003   */
2004  
drm_crtc_get_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)2005  int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2006  				struct drm_file *file_priv)
2007  {
2008  	struct drm_crtc *crtc;
2009  	struct drm_vblank_crtc *vblank;
2010  	int pipe;
2011  	struct drm_crtc_get_sequence *get_seq = data;
2012  	ktime_t now;
2013  	bool vblank_enabled;
2014  	int ret;
2015  
2016  	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2017  		return -EOPNOTSUPP;
2018  
2019  	if (!drm_dev_has_vblank(dev))
2020  		return -EOPNOTSUPP;
2021  
2022  	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2023  	if (!crtc)
2024  		return -ENOENT;
2025  
2026  	pipe = drm_crtc_index(crtc);
2027  
2028  	vblank = drm_crtc_vblank_crtc(crtc);
2029  	vblank_enabled = READ_ONCE(vblank->config.disable_immediate) &&
2030  		READ_ONCE(vblank->enabled);
2031  
2032  	if (!vblank_enabled) {
2033  		ret = drm_crtc_vblank_get(crtc);
2034  		if (ret) {
2035  			drm_dbg_core(dev,
2036  				     "crtc %d failed to acquire vblank counter, %d\n",
2037  				     pipe, ret);
2038  			return ret;
2039  		}
2040  	}
2041  	drm_modeset_lock(&crtc->mutex, NULL);
2042  	if (crtc->state)
2043  		get_seq->active = crtc->state->enable;
2044  	else
2045  		get_seq->active = crtc->enabled;
2046  	drm_modeset_unlock(&crtc->mutex);
2047  	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2048  	get_seq->sequence_ns = ktime_to_ns(now);
2049  	if (!vblank_enabled)
2050  		drm_crtc_vblank_put(crtc);
2051  	return 0;
2052  }
2053  
2054  /*
2055   * Queue a event for VBLANK sequence
2056   *
2057   * \param dev DRM device
2058   * \param data user argument, pointing to a drm_crtc_queue_sequence structure.
2059   * \param file_priv drm file private for the user's open file descriptor
2060   */
2061  
drm_crtc_queue_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)2062  int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2063  				  struct drm_file *file_priv)
2064  {
2065  	struct drm_crtc *crtc;
2066  	struct drm_vblank_crtc *vblank;
2067  	int pipe;
2068  	struct drm_crtc_queue_sequence *queue_seq = data;
2069  	ktime_t now;
2070  	struct drm_pending_vblank_event *e;
2071  	u32 flags;
2072  	u64 seq;
2073  	u64 req_seq;
2074  	int ret;
2075  
2076  	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2077  		return -EOPNOTSUPP;
2078  
2079  	if (!drm_dev_has_vblank(dev))
2080  		return -EOPNOTSUPP;
2081  
2082  	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2083  	if (!crtc)
2084  		return -ENOENT;
2085  
2086  	flags = queue_seq->flags;
2087  	/* Check valid flag bits */
2088  	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2089  		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2090  		return -EINVAL;
2091  
2092  	pipe = drm_crtc_index(crtc);
2093  
2094  	vblank = drm_crtc_vblank_crtc(crtc);
2095  
2096  	e = kzalloc(sizeof(*e), GFP_KERNEL);
2097  	if (e == NULL)
2098  		return -ENOMEM;
2099  
2100  	ret = drm_crtc_vblank_get(crtc);
2101  	if (ret) {
2102  		drm_dbg_core(dev,
2103  			     "crtc %d failed to acquire vblank counter, %d\n",
2104  			     pipe, ret);
2105  		goto err_free;
2106  	}
2107  
2108  	seq = drm_vblank_count_and_time(dev, pipe, &now);
2109  	req_seq = queue_seq->sequence;
2110  
2111  	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2112  		req_seq += seq;
2113  
2114  	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2115  		req_seq = seq + 1;
2116  
2117  	e->pipe = pipe;
2118  	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2119  	e->event.base.length = sizeof(e->event.seq);
2120  	e->event.seq.user_data = queue_seq->user_data;
2121  
2122  	spin_lock_irq(&dev->event_lock);
2123  
2124  	/*
2125  	 * drm_crtc_vblank_off() might have been called after we called
2126  	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2127  	 * vblank disable, so no need for further locking.  The reference from
2128  	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2129  	 */
2130  	if (!READ_ONCE(vblank->enabled)) {
2131  		ret = -EINVAL;
2132  		goto err_unlock;
2133  	}
2134  
2135  	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2136  					    &e->event.base);
2137  
2138  	if (ret)
2139  		goto err_unlock;
2140  
2141  	e->sequence = req_seq;
2142  
2143  	if (drm_vblank_passed(seq, req_seq)) {
2144  		drm_crtc_vblank_put(crtc);
2145  		send_vblank_event(dev, e, seq, now);
2146  		queue_seq->sequence = seq;
2147  	} else {
2148  		/* drm_handle_vblank_events will call drm_vblank_put */
2149  		list_add_tail(&e->base.link, &dev->vblank_event_list);
2150  		queue_seq->sequence = req_seq;
2151  	}
2152  
2153  	spin_unlock_irq(&dev->event_lock);
2154  	return 0;
2155  
2156  err_unlock:
2157  	spin_unlock_irq(&dev->event_lock);
2158  	drm_crtc_vblank_put(crtc);
2159  err_free:
2160  	kfree(e);
2161  	return ret;
2162  }
2163  
2164