1  /*
2   * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3   *
4   * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5   * All Rights Reserved.
6   *
7   * Author Rickard E. (Rik) Faith <faith@valinux.com>
8   *
9   * Permission is hereby granted, free of charge, to any person obtaining a
10   * copy of this software and associated documentation files (the "Software"),
11   * to deal in the Software without restriction, including without limitation
12   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13   * and/or sell copies of the Software, and to permit persons to whom the
14   * Software is furnished to do so, subject to the following conditions:
15   *
16   * The above copyright notice and this permission notice (including the next
17   * paragraph) shall be included in all copies or substantial portions of the
18   * Software.
19   *
20   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23   * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24   * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25   * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26   * DEALINGS IN THE SOFTWARE.
27   */
28  
29  #include <linux/debugfs.h>
30  #include <linux/fs.h>
31  #include <linux/module.h>
32  #include <linux/moduleparam.h>
33  #include <linux/mount.h>
34  #include <linux/pseudo_fs.h>
35  #include <linux/slab.h>
36  #include <linux/srcu.h>
37  #include <linux/xarray.h>
38  
39  #include <drm/drm_accel.h>
40  #include <drm/drm_cache.h>
41  #include <drm/drm_client.h>
42  #include <drm/drm_color_mgmt.h>
43  #include <drm/drm_drv.h>
44  #include <drm/drm_file.h>
45  #include <drm/drm_managed.h>
46  #include <drm/drm_mode_object.h>
47  #include <drm/drm_panic.h>
48  #include <drm/drm_print.h>
49  #include <drm/drm_privacy_screen_machine.h>
50  
51  #include "drm_crtc_internal.h"
52  #include "drm_internal.h"
53  
54  MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
55  MODULE_DESCRIPTION("DRM shared core routines");
56  MODULE_LICENSE("GPL and additional rights");
57  
58  DEFINE_XARRAY_ALLOC(drm_minors_xa);
59  
60  /*
61   * If the drm core fails to init for whatever reason,
62   * we should prevent any drivers from registering with it.
63   * It's best to check this at drm_dev_init(), as some drivers
64   * prefer to embed struct drm_device into their own device
65   * structure and call drm_dev_init() themselves.
66   */
67  static bool drm_core_init_complete;
68  
69  static struct dentry *drm_debugfs_root;
70  
71  DEFINE_STATIC_SRCU(drm_unplug_srcu);
72  
73  /*
74   * DRM Minors
75   * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
76   * of them is represented by a drm_minor object. Depending on the capabilities
77   * of the device-driver, different interfaces are registered.
78   *
79   * Minors can be accessed via dev->$minor_name. This pointer is either
80   * NULL or a valid drm_minor pointer and stays valid as long as the device is
81   * valid. This means, DRM minors have the same life-time as the underlying
82   * device. However, this doesn't mean that the minor is active. Minors are
83   * registered and unregistered dynamically according to device-state.
84   */
85  
drm_minor_get_xa(enum drm_minor_type type)86  static struct xarray *drm_minor_get_xa(enum drm_minor_type type)
87  {
88  	if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)
89  		return &drm_minors_xa;
90  #if IS_ENABLED(CONFIG_DRM_ACCEL)
91  	else if (type == DRM_MINOR_ACCEL)
92  		return &accel_minors_xa;
93  #endif
94  	else
95  		return ERR_PTR(-EOPNOTSUPP);
96  }
97  
drm_minor_get_slot(struct drm_device * dev,enum drm_minor_type type)98  static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
99  					     enum drm_minor_type type)
100  {
101  	switch (type) {
102  	case DRM_MINOR_PRIMARY:
103  		return &dev->primary;
104  	case DRM_MINOR_RENDER:
105  		return &dev->render;
106  	case DRM_MINOR_ACCEL:
107  		return &dev->accel;
108  	default:
109  		BUG();
110  	}
111  }
112  
drm_minor_alloc_release(struct drm_device * dev,void * data)113  static void drm_minor_alloc_release(struct drm_device *dev, void *data)
114  {
115  	struct drm_minor *minor = data;
116  
117  	WARN_ON(dev != minor->dev);
118  
119  	put_device(minor->kdev);
120  
121  	xa_erase(drm_minor_get_xa(minor->type), minor->index);
122  }
123  
124  /*
125   * DRM used to support 64 devices, for backwards compatibility we need to maintain the
126   * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes,
127   * and 128-191 are render nodes.
128   * After reaching the limit, we're allocating minors dynamically - first-come, first-serve.
129   * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX
130   * range.
131   */
132  #define DRM_MINOR_LIMIT(t) ({ \
133  	typeof(t) _t = (t); \
134  	_t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \
135  })
136  #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1)
137  
drm_minor_alloc(struct drm_device * dev,enum drm_minor_type type)138  static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
139  {
140  	struct drm_minor *minor;
141  	int r;
142  
143  	minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
144  	if (!minor)
145  		return -ENOMEM;
146  
147  	minor->type = type;
148  	minor->dev = dev;
149  
150  	r = xa_alloc(drm_minor_get_xa(type), &minor->index,
151  		     NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL);
152  	if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER))
153  		r = xa_alloc(&drm_minors_xa, &minor->index,
154  			     NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL);
155  	if (r < 0)
156  		return r;
157  
158  	r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
159  	if (r)
160  		return r;
161  
162  	minor->kdev = drm_sysfs_minor_alloc(minor);
163  	if (IS_ERR(minor->kdev))
164  		return PTR_ERR(minor->kdev);
165  
166  	*drm_minor_get_slot(dev, type) = minor;
167  	return 0;
168  }
169  
drm_minor_register(struct drm_device * dev,enum drm_minor_type type)170  static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
171  {
172  	struct drm_minor *minor;
173  	void *entry;
174  	int ret;
175  
176  	DRM_DEBUG("\n");
177  
178  	minor = *drm_minor_get_slot(dev, type);
179  	if (!minor)
180  		return 0;
181  
182  	if (minor->type != DRM_MINOR_ACCEL) {
183  		ret = drm_debugfs_register(minor, minor->index,
184  					   drm_debugfs_root);
185  		if (ret) {
186  			DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
187  			goto err_debugfs;
188  		}
189  	}
190  
191  	ret = device_add(minor->kdev);
192  	if (ret)
193  		goto err_debugfs;
194  
195  	/* replace NULL with @minor so lookups will succeed from now on */
196  	entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL);
197  	if (xa_is_err(entry)) {
198  		ret = xa_err(entry);
199  		goto err_debugfs;
200  	}
201  	WARN_ON(entry);
202  
203  	DRM_DEBUG("new minor registered %d\n", minor->index);
204  	return 0;
205  
206  err_debugfs:
207  	drm_debugfs_unregister(minor);
208  	return ret;
209  }
210  
drm_minor_unregister(struct drm_device * dev,enum drm_minor_type type)211  static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
212  {
213  	struct drm_minor *minor;
214  
215  	minor = *drm_minor_get_slot(dev, type);
216  	if (!minor || !device_is_registered(minor->kdev))
217  		return;
218  
219  	/* replace @minor with NULL so lookups will fail from now on */
220  	xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL);
221  
222  	device_del(minor->kdev);
223  	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
224  	drm_debugfs_unregister(minor);
225  }
226  
227  /*
228   * Looks up the given minor-ID and returns the respective DRM-minor object. The
229   * refence-count of the underlying device is increased so you must release this
230   * object with drm_minor_release().
231   *
232   * As long as you hold this minor, it is guaranteed that the object and the
233   * minor->dev pointer will stay valid! However, the device may get unplugged and
234   * unregistered while you hold the minor.
235   */
drm_minor_acquire(struct xarray * minor_xa,unsigned int minor_id)236  struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id)
237  {
238  	struct drm_minor *minor;
239  
240  	xa_lock(minor_xa);
241  	minor = xa_load(minor_xa, minor_id);
242  	if (minor)
243  		drm_dev_get(minor->dev);
244  	xa_unlock(minor_xa);
245  
246  	if (!minor) {
247  		return ERR_PTR(-ENODEV);
248  	} else if (drm_dev_is_unplugged(minor->dev)) {
249  		drm_dev_put(minor->dev);
250  		return ERR_PTR(-ENODEV);
251  	}
252  
253  	return minor;
254  }
255  
drm_minor_release(struct drm_minor * minor)256  void drm_minor_release(struct drm_minor *minor)
257  {
258  	drm_dev_put(minor->dev);
259  }
260  
261  /**
262   * DOC: driver instance overview
263   *
264   * A device instance for a drm driver is represented by &struct drm_device. This
265   * is allocated and initialized with devm_drm_dev_alloc(), usually from
266   * bus-specific ->probe() callbacks implemented by the driver. The driver then
267   * needs to initialize all the various subsystems for the drm device like memory
268   * management, vblank handling, modesetting support and initial output
269   * configuration plus obviously initialize all the corresponding hardware bits.
270   * Finally when everything is up and running and ready for userspace the device
271   * instance can be published using drm_dev_register().
272   *
273   * There is also deprecated support for initializing device instances using
274   * bus-specific helpers and the &drm_driver.load callback. But due to
275   * backwards-compatibility needs the device instance have to be published too
276   * early, which requires unpretty global locking to make safe and is therefore
277   * only support for existing drivers not yet converted to the new scheme.
278   *
279   * When cleaning up a device instance everything needs to be done in reverse:
280   * First unpublish the device instance with drm_dev_unregister(). Then clean up
281   * any other resources allocated at device initialization and drop the driver's
282   * reference to &drm_device using drm_dev_put().
283   *
284   * Note that any allocation or resource which is visible to userspace must be
285   * released only when the final drm_dev_put() is called, and not when the
286   * driver is unbound from the underlying physical struct &device. Best to use
287   * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
288   * related functions.
289   *
290   * devres managed resources like devm_kmalloc() can only be used for resources
291   * directly related to the underlying hardware device, and only used in code
292   * paths fully protected by drm_dev_enter() and drm_dev_exit().
293   *
294   * Display driver example
295   * ~~~~~~~~~~~~~~~~~~~~~~
296   *
297   * The following example shows a typical structure of a DRM display driver.
298   * The example focus on the probe() function and the other functions that is
299   * almost always present and serves as a demonstration of devm_drm_dev_alloc().
300   *
301   * .. code-block:: c
302   *
303   *	struct driver_device {
304   *		struct drm_device drm;
305   *		void *userspace_facing;
306   *		struct clk *pclk;
307   *	};
308   *
309   *	static const struct drm_driver driver_drm_driver = {
310   *		[...]
311   *	};
312   *
313   *	static int driver_probe(struct platform_device *pdev)
314   *	{
315   *		struct driver_device *priv;
316   *		struct drm_device *drm;
317   *		int ret;
318   *
319   *		priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
320   *					  struct driver_device, drm);
321   *		if (IS_ERR(priv))
322   *			return PTR_ERR(priv);
323   *		drm = &priv->drm;
324   *
325   *		ret = drmm_mode_config_init(drm);
326   *		if (ret)
327   *			return ret;
328   *
329   *		priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
330   *		if (!priv->userspace_facing)
331   *			return -ENOMEM;
332   *
333   *		priv->pclk = devm_clk_get(dev, "PCLK");
334   *		if (IS_ERR(priv->pclk))
335   *			return PTR_ERR(priv->pclk);
336   *
337   *		// Further setup, display pipeline etc
338   *
339   *		platform_set_drvdata(pdev, drm);
340   *
341   *		drm_mode_config_reset(drm);
342   *
343   *		ret = drm_dev_register(drm);
344   *		if (ret)
345   *			return ret;
346   *
347   *		drm_fbdev_{...}_setup(drm, 32);
348   *
349   *		return 0;
350   *	}
351   *
352   *	// This function is called before the devm_ resources are released
353   *	static int driver_remove(struct platform_device *pdev)
354   *	{
355   *		struct drm_device *drm = platform_get_drvdata(pdev);
356   *
357   *		drm_dev_unregister(drm);
358   *		drm_atomic_helper_shutdown(drm)
359   *
360   *		return 0;
361   *	}
362   *
363   *	// This function is called on kernel restart and shutdown
364   *	static void driver_shutdown(struct platform_device *pdev)
365   *	{
366   *		drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
367   *	}
368   *
369   *	static int __maybe_unused driver_pm_suspend(struct device *dev)
370   *	{
371   *		return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
372   *	}
373   *
374   *	static int __maybe_unused driver_pm_resume(struct device *dev)
375   *	{
376   *		drm_mode_config_helper_resume(dev_get_drvdata(dev));
377   *
378   *		return 0;
379   *	}
380   *
381   *	static const struct dev_pm_ops driver_pm_ops = {
382   *		SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
383   *	};
384   *
385   *	static struct platform_driver driver_driver = {
386   *		.driver = {
387   *			[...]
388   *			.pm = &driver_pm_ops,
389   *		},
390   *		.probe = driver_probe,
391   *		.remove = driver_remove,
392   *		.shutdown = driver_shutdown,
393   *	};
394   *	module_platform_driver(driver_driver);
395   *
396   * Drivers that want to support device unplugging (USB, DT overlay unload) should
397   * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
398   * regions that is accessing device resources to prevent use after they're
399   * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
400   * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
401   * drm_atomic_helper_shutdown() is called. This means that if the disable code
402   * paths are protected, they will not run on regular driver module unload,
403   * possibly leaving the hardware enabled.
404   */
405  
406  /**
407   * drm_put_dev - Unregister and release a DRM device
408   * @dev: DRM device
409   *
410   * Called at module unload time or when a PCI device is unplugged.
411   *
412   * Cleans up all DRM device, calling drm_lastclose().
413   *
414   * Note: Use of this function is deprecated. It will eventually go away
415   * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
416   * instead to make sure that the device isn't userspace accessible any more
417   * while teardown is in progress, ensuring that userspace can't access an
418   * inconsistent state.
419   */
drm_put_dev(struct drm_device * dev)420  void drm_put_dev(struct drm_device *dev)
421  {
422  	DRM_DEBUG("\n");
423  
424  	if (!dev) {
425  		DRM_ERROR("cleanup called no dev\n");
426  		return;
427  	}
428  
429  	drm_dev_unregister(dev);
430  	drm_dev_put(dev);
431  }
432  EXPORT_SYMBOL(drm_put_dev);
433  
434  /**
435   * drm_dev_enter - Enter device critical section
436   * @dev: DRM device
437   * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
438   *
439   * This function marks and protects the beginning of a section that should not
440   * be entered after the device has been unplugged. The section end is marked
441   * with drm_dev_exit(). Calls to this function can be nested.
442   *
443   * Returns:
444   * True if it is OK to enter the section, false otherwise.
445   */
drm_dev_enter(struct drm_device * dev,int * idx)446  bool drm_dev_enter(struct drm_device *dev, int *idx)
447  {
448  	*idx = srcu_read_lock(&drm_unplug_srcu);
449  
450  	if (dev->unplugged) {
451  		srcu_read_unlock(&drm_unplug_srcu, *idx);
452  		return false;
453  	}
454  
455  	return true;
456  }
457  EXPORT_SYMBOL(drm_dev_enter);
458  
459  /**
460   * drm_dev_exit - Exit device critical section
461   * @idx: index returned from drm_dev_enter()
462   *
463   * This function marks the end of a section that should not be entered after
464   * the device has been unplugged.
465   */
drm_dev_exit(int idx)466  void drm_dev_exit(int idx)
467  {
468  	srcu_read_unlock(&drm_unplug_srcu, idx);
469  }
470  EXPORT_SYMBOL(drm_dev_exit);
471  
472  /**
473   * drm_dev_unplug - unplug a DRM device
474   * @dev: DRM device
475   *
476   * This unplugs a hotpluggable DRM device, which makes it inaccessible to
477   * userspace operations. Entry-points can use drm_dev_enter() and
478   * drm_dev_exit() to protect device resources in a race free manner. This
479   * essentially unregisters the device like drm_dev_unregister(), but can be
480   * called while there are still open users of @dev.
481   */
drm_dev_unplug(struct drm_device * dev)482  void drm_dev_unplug(struct drm_device *dev)
483  {
484  	/*
485  	 * After synchronizing any critical read section is guaranteed to see
486  	 * the new value of ->unplugged, and any critical section which might
487  	 * still have seen the old value of ->unplugged is guaranteed to have
488  	 * finished.
489  	 */
490  	dev->unplugged = true;
491  	synchronize_srcu(&drm_unplug_srcu);
492  
493  	drm_dev_unregister(dev);
494  
495  	/* Clear all CPU mappings pointing to this device */
496  	unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
497  }
498  EXPORT_SYMBOL(drm_dev_unplug);
499  
500  /*
501   * DRM internal mount
502   * We want to be able to allocate our own "struct address_space" to control
503   * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
504   * stand-alone address_space objects, so we need an underlying inode. As there
505   * is no way to allocate an independent inode easily, we need a fake internal
506   * VFS mount-point.
507   *
508   * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
509   * frees it again. You are allowed to use iget() and iput() to get references to
510   * the inode. But each drm_fs_inode_new() call must be paired with exactly one
511   * drm_fs_inode_free() call (which does not have to be the last iput()).
512   * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
513   * between multiple inode-users. You could, technically, call
514   * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
515   * iput(), but this way you'd end up with a new vfsmount for each inode.
516   */
517  
518  static int drm_fs_cnt;
519  static struct vfsmount *drm_fs_mnt;
520  
drm_fs_init_fs_context(struct fs_context * fc)521  static int drm_fs_init_fs_context(struct fs_context *fc)
522  {
523  	return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
524  }
525  
526  static struct file_system_type drm_fs_type = {
527  	.name		= "drm",
528  	.owner		= THIS_MODULE,
529  	.init_fs_context = drm_fs_init_fs_context,
530  	.kill_sb	= kill_anon_super,
531  };
532  
drm_fs_inode_new(void)533  static struct inode *drm_fs_inode_new(void)
534  {
535  	struct inode *inode;
536  	int r;
537  
538  	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
539  	if (r < 0) {
540  		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
541  		return ERR_PTR(r);
542  	}
543  
544  	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
545  	if (IS_ERR(inode))
546  		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
547  
548  	return inode;
549  }
550  
drm_fs_inode_free(struct inode * inode)551  static void drm_fs_inode_free(struct inode *inode)
552  {
553  	if (inode) {
554  		iput(inode);
555  		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
556  	}
557  }
558  
559  /**
560   * DOC: component helper usage recommendations
561   *
562   * DRM drivers that drive hardware where a logical device consists of a pile of
563   * independent hardware blocks are recommended to use the :ref:`component helper
564   * library<component>`. For consistency and better options for code reuse the
565   * following guidelines apply:
566   *
567   *  - The entire device initialization procedure should be run from the
568   *    &component_master_ops.master_bind callback, starting with
569   *    devm_drm_dev_alloc(), then binding all components with
570   *    component_bind_all() and finishing with drm_dev_register().
571   *
572   *  - The opaque pointer passed to all components through component_bind_all()
573   *    should point at &struct drm_device of the device instance, not some driver
574   *    specific private structure.
575   *
576   *  - The component helper fills the niche where further standardization of
577   *    interfaces is not practical. When there already is, or will be, a
578   *    standardized interface like &drm_bridge or &drm_panel, providing its own
579   *    functions to find such components at driver load time, like
580   *    drm_of_find_panel_or_bridge(), then the component helper should not be
581   *    used.
582   */
583  
drm_dev_init_release(struct drm_device * dev,void * res)584  static void drm_dev_init_release(struct drm_device *dev, void *res)
585  {
586  	drm_fs_inode_free(dev->anon_inode);
587  
588  	put_device(dev->dev);
589  	/* Prevent use-after-free in drm_managed_release when debugging is
590  	 * enabled. Slightly awkward, but can't really be helped. */
591  	dev->dev = NULL;
592  	mutex_destroy(&dev->master_mutex);
593  	mutex_destroy(&dev->clientlist_mutex);
594  	mutex_destroy(&dev->filelist_mutex);
595  	mutex_destroy(&dev->struct_mutex);
596  }
597  
drm_dev_init(struct drm_device * dev,const struct drm_driver * driver,struct device * parent)598  static int drm_dev_init(struct drm_device *dev,
599  			const struct drm_driver *driver,
600  			struct device *parent)
601  {
602  	struct inode *inode;
603  	int ret;
604  
605  	if (!drm_core_init_complete) {
606  		DRM_ERROR("DRM core is not initialized\n");
607  		return -ENODEV;
608  	}
609  
610  	if (WARN_ON(!parent))
611  		return -EINVAL;
612  
613  	kref_init(&dev->ref);
614  	dev->dev = get_device(parent);
615  	dev->driver = driver;
616  
617  	INIT_LIST_HEAD(&dev->managed.resources);
618  	spin_lock_init(&dev->managed.lock);
619  
620  	/* no per-device feature limits by default */
621  	dev->driver_features = ~0u;
622  
623  	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
624  				(drm_core_check_feature(dev, DRIVER_RENDER) ||
625  				drm_core_check_feature(dev, DRIVER_MODESET))) {
626  		DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
627  		return -EINVAL;
628  	}
629  
630  	INIT_LIST_HEAD(&dev->filelist);
631  	INIT_LIST_HEAD(&dev->filelist_internal);
632  	INIT_LIST_HEAD(&dev->clientlist);
633  	INIT_LIST_HEAD(&dev->vblank_event_list);
634  
635  	spin_lock_init(&dev->event_lock);
636  	mutex_init(&dev->struct_mutex);
637  	mutex_init(&dev->filelist_mutex);
638  	mutex_init(&dev->clientlist_mutex);
639  	mutex_init(&dev->master_mutex);
640  	raw_spin_lock_init(&dev->mode_config.panic_lock);
641  
642  	ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
643  	if (ret)
644  		return ret;
645  
646  	inode = drm_fs_inode_new();
647  	if (IS_ERR(inode)) {
648  		ret = PTR_ERR(inode);
649  		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
650  		goto err;
651  	}
652  
653  	dev->anon_inode = inode;
654  
655  	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
656  		ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
657  		if (ret)
658  			goto err;
659  	} else {
660  		if (drm_core_check_feature(dev, DRIVER_RENDER)) {
661  			ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
662  			if (ret)
663  				goto err;
664  		}
665  
666  		ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
667  		if (ret)
668  			goto err;
669  	}
670  
671  	if (drm_core_check_feature(dev, DRIVER_GEM)) {
672  		ret = drm_gem_init(dev);
673  		if (ret) {
674  			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
675  			goto err;
676  		}
677  	}
678  
679  	dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
680  	if (!dev->unique) {
681  		ret = -ENOMEM;
682  		goto err;
683  	}
684  
685  	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
686  		accel_debugfs_init(dev);
687  	else
688  		drm_debugfs_dev_init(dev, drm_debugfs_root);
689  
690  	return 0;
691  
692  err:
693  	drm_managed_release(dev);
694  
695  	return ret;
696  }
697  
devm_drm_dev_init_release(void * data)698  static void devm_drm_dev_init_release(void *data)
699  {
700  	drm_dev_put(data);
701  }
702  
devm_drm_dev_init(struct device * parent,struct drm_device * dev,const struct drm_driver * driver)703  static int devm_drm_dev_init(struct device *parent,
704  			     struct drm_device *dev,
705  			     const struct drm_driver *driver)
706  {
707  	int ret;
708  
709  	ret = drm_dev_init(dev, driver, parent);
710  	if (ret)
711  		return ret;
712  
713  	return devm_add_action_or_reset(parent,
714  					devm_drm_dev_init_release, dev);
715  }
716  
__devm_drm_dev_alloc(struct device * parent,const struct drm_driver * driver,size_t size,size_t offset)717  void *__devm_drm_dev_alloc(struct device *parent,
718  			   const struct drm_driver *driver,
719  			   size_t size, size_t offset)
720  {
721  	void *container;
722  	struct drm_device *drm;
723  	int ret;
724  
725  	container = kzalloc(size, GFP_KERNEL);
726  	if (!container)
727  		return ERR_PTR(-ENOMEM);
728  
729  	drm = container + offset;
730  	ret = devm_drm_dev_init(parent, drm, driver);
731  	if (ret) {
732  		kfree(container);
733  		return ERR_PTR(ret);
734  	}
735  	drmm_add_final_kfree(drm, container);
736  
737  	return container;
738  }
739  EXPORT_SYMBOL(__devm_drm_dev_alloc);
740  
741  /**
742   * drm_dev_alloc - Allocate new DRM device
743   * @driver: DRM driver to allocate device for
744   * @parent: Parent device object
745   *
746   * This is the deprecated version of devm_drm_dev_alloc(), which does not support
747   * subclassing through embedding the struct &drm_device in a driver private
748   * structure, and which does not support automatic cleanup through devres.
749   *
750   * RETURNS:
751   * Pointer to new DRM device, or ERR_PTR on failure.
752   */
drm_dev_alloc(const struct drm_driver * driver,struct device * parent)753  struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
754  				 struct device *parent)
755  {
756  	struct drm_device *dev;
757  	int ret;
758  
759  	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
760  	if (!dev)
761  		return ERR_PTR(-ENOMEM);
762  
763  	ret = drm_dev_init(dev, driver, parent);
764  	if (ret) {
765  		kfree(dev);
766  		return ERR_PTR(ret);
767  	}
768  
769  	drmm_add_final_kfree(dev, dev);
770  
771  	return dev;
772  }
773  EXPORT_SYMBOL(drm_dev_alloc);
774  
drm_dev_release(struct kref * ref)775  static void drm_dev_release(struct kref *ref)
776  {
777  	struct drm_device *dev = container_of(ref, struct drm_device, ref);
778  
779  	/* Just in case register/unregister was never called */
780  	drm_debugfs_dev_fini(dev);
781  
782  	if (dev->driver->release)
783  		dev->driver->release(dev);
784  
785  	drm_managed_release(dev);
786  
787  	kfree(dev->managed.final_kfree);
788  }
789  
790  /**
791   * drm_dev_get - Take reference of a DRM device
792   * @dev: device to take reference of or NULL
793   *
794   * This increases the ref-count of @dev by one. You *must* already own a
795   * reference when calling this. Use drm_dev_put() to drop this reference
796   * again.
797   *
798   * This function never fails. However, this function does not provide *any*
799   * guarantee whether the device is alive or running. It only provides a
800   * reference to the object and the memory associated with it.
801   */
drm_dev_get(struct drm_device * dev)802  void drm_dev_get(struct drm_device *dev)
803  {
804  	if (dev)
805  		kref_get(&dev->ref);
806  }
807  EXPORT_SYMBOL(drm_dev_get);
808  
809  /**
810   * drm_dev_put - Drop reference of a DRM device
811   * @dev: device to drop reference of or NULL
812   *
813   * This decreases the ref-count of @dev by one. The device is destroyed if the
814   * ref-count drops to zero.
815   */
drm_dev_put(struct drm_device * dev)816  void drm_dev_put(struct drm_device *dev)
817  {
818  	if (dev)
819  		kref_put(&dev->ref, drm_dev_release);
820  }
821  EXPORT_SYMBOL(drm_dev_put);
822  
create_compat_control_link(struct drm_device * dev)823  static int create_compat_control_link(struct drm_device *dev)
824  {
825  	struct drm_minor *minor;
826  	char *name;
827  	int ret;
828  
829  	if (!drm_core_check_feature(dev, DRIVER_MODESET))
830  		return 0;
831  
832  	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
833  	if (!minor)
834  		return 0;
835  
836  	/*
837  	 * Some existing userspace out there uses the existing of the controlD*
838  	 * sysfs files to figure out whether it's a modeset driver. It only does
839  	 * readdir, hence a symlink is sufficient (and the least confusing
840  	 * option). Otherwise controlD* is entirely unused.
841  	 *
842  	 * Old controlD chardev have been allocated in the range
843  	 * 64-127.
844  	 */
845  	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
846  	if (!name)
847  		return -ENOMEM;
848  
849  	ret = sysfs_create_link(minor->kdev->kobj.parent,
850  				&minor->kdev->kobj,
851  				name);
852  
853  	kfree(name);
854  
855  	return ret;
856  }
857  
remove_compat_control_link(struct drm_device * dev)858  static void remove_compat_control_link(struct drm_device *dev)
859  {
860  	struct drm_minor *minor;
861  	char *name;
862  
863  	if (!drm_core_check_feature(dev, DRIVER_MODESET))
864  		return;
865  
866  	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
867  	if (!minor)
868  		return;
869  
870  	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
871  	if (!name)
872  		return;
873  
874  	sysfs_remove_link(minor->kdev->kobj.parent, name);
875  
876  	kfree(name);
877  }
878  
879  /**
880   * drm_dev_register - Register DRM device
881   * @dev: Device to register
882   * @flags: Flags passed to the driver's .load() function
883   *
884   * Register the DRM device @dev with the system, advertise device to user-space
885   * and start normal device operation. @dev must be initialized via drm_dev_init()
886   * previously.
887   *
888   * Never call this twice on any device!
889   *
890   * NOTE: To ensure backward compatibility with existing drivers method this
891   * function calls the &drm_driver.load method after registering the device
892   * nodes, creating race conditions. Usage of the &drm_driver.load methods is
893   * therefore deprecated, drivers must perform all initialization before calling
894   * drm_dev_register().
895   *
896   * RETURNS:
897   * 0 on success, negative error code on failure.
898   */
drm_dev_register(struct drm_device * dev,unsigned long flags)899  int drm_dev_register(struct drm_device *dev, unsigned long flags)
900  {
901  	const struct drm_driver *driver = dev->driver;
902  	int ret;
903  
904  	if (!driver->load)
905  		drm_mode_config_validate(dev);
906  
907  	WARN_ON(!dev->managed.final_kfree);
908  
909  	if (drm_dev_needs_global_mutex(dev))
910  		mutex_lock(&drm_global_mutex);
911  
912  	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
913  		accel_debugfs_register(dev);
914  	else
915  		drm_debugfs_dev_register(dev);
916  
917  	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
918  	if (ret)
919  		goto err_minors;
920  
921  	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
922  	if (ret)
923  		goto err_minors;
924  
925  	ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
926  	if (ret)
927  		goto err_minors;
928  
929  	ret = create_compat_control_link(dev);
930  	if (ret)
931  		goto err_minors;
932  
933  	dev->registered = true;
934  
935  	if (driver->load) {
936  		ret = driver->load(dev, flags);
937  		if (ret)
938  			goto err_minors;
939  	}
940  
941  	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
942  		ret = drm_modeset_register_all(dev);
943  		if (ret)
944  			goto err_unload;
945  	}
946  	drm_panic_register(dev);
947  
948  	DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n",
949  		 driver->name, driver->major, driver->minor,
950  		 driver->patchlevel,
951  		 dev->dev ? dev_name(dev->dev) : "virtual device",
952  		 dev->primary ? dev->primary->index : dev->accel->index);
953  
954  	goto out_unlock;
955  
956  err_unload:
957  	if (dev->driver->unload)
958  		dev->driver->unload(dev);
959  err_minors:
960  	remove_compat_control_link(dev);
961  	drm_minor_unregister(dev, DRM_MINOR_ACCEL);
962  	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
963  	drm_minor_unregister(dev, DRM_MINOR_RENDER);
964  out_unlock:
965  	if (drm_dev_needs_global_mutex(dev))
966  		mutex_unlock(&drm_global_mutex);
967  	return ret;
968  }
969  EXPORT_SYMBOL(drm_dev_register);
970  
971  /**
972   * drm_dev_unregister - Unregister DRM device
973   * @dev: Device to unregister
974   *
975   * Unregister the DRM device from the system. This does the reverse of
976   * drm_dev_register() but does not deallocate the device. The caller must call
977   * drm_dev_put() to drop their final reference, unless it is managed with devres
978   * (as devices allocated with devm_drm_dev_alloc() are), in which case there is
979   * already an unwind action registered.
980   *
981   * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
982   * which can be called while there are still open users of @dev.
983   *
984   * This should be called first in the device teardown code to make sure
985   * userspace can't access the device instance any more.
986   */
drm_dev_unregister(struct drm_device * dev)987  void drm_dev_unregister(struct drm_device *dev)
988  {
989  	dev->registered = false;
990  
991  	drm_panic_unregister(dev);
992  
993  	drm_client_dev_unregister(dev);
994  
995  	if (drm_core_check_feature(dev, DRIVER_MODESET))
996  		drm_modeset_unregister_all(dev);
997  
998  	if (dev->driver->unload)
999  		dev->driver->unload(dev);
1000  
1001  	remove_compat_control_link(dev);
1002  	drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1003  	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1004  	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1005  	drm_debugfs_dev_fini(dev);
1006  }
1007  EXPORT_SYMBOL(drm_dev_unregister);
1008  
1009  /*
1010   * DRM Core
1011   * The DRM core module initializes all global DRM objects and makes them
1012   * available to drivers. Once setup, drivers can probe their respective
1013   * devices.
1014   * Currently, core management includes:
1015   *  - The "DRM-Global" key/value database
1016   *  - Global ID management for connectors
1017   *  - DRM major number allocation
1018   *  - DRM minor management
1019   *  - DRM sysfs class
1020   *  - DRM debugfs root
1021   *
1022   * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1023   * interface registered on a DRM device, you can request minor numbers from DRM
1024   * core. DRM core takes care of major-number management and char-dev
1025   * registration. A stub ->open() callback forwards any open() requests to the
1026   * registered minor.
1027   */
1028  
drm_stub_open(struct inode * inode,struct file * filp)1029  static int drm_stub_open(struct inode *inode, struct file *filp)
1030  {
1031  	const struct file_operations *new_fops;
1032  	struct drm_minor *minor;
1033  	int err;
1034  
1035  	DRM_DEBUG("\n");
1036  
1037  	minor = drm_minor_acquire(&drm_minors_xa, iminor(inode));
1038  	if (IS_ERR(minor))
1039  		return PTR_ERR(minor);
1040  
1041  	new_fops = fops_get(minor->dev->driver->fops);
1042  	if (!new_fops) {
1043  		err = -ENODEV;
1044  		goto out;
1045  	}
1046  
1047  	replace_fops(filp, new_fops);
1048  	if (filp->f_op->open)
1049  		err = filp->f_op->open(inode, filp);
1050  	else
1051  		err = 0;
1052  
1053  out:
1054  	drm_minor_release(minor);
1055  
1056  	return err;
1057  }
1058  
1059  static const struct file_operations drm_stub_fops = {
1060  	.owner = THIS_MODULE,
1061  	.open = drm_stub_open,
1062  	.llseek = noop_llseek,
1063  };
1064  
drm_core_exit(void)1065  static void drm_core_exit(void)
1066  {
1067  	drm_privacy_screen_lookup_exit();
1068  	drm_panic_exit();
1069  	accel_core_exit();
1070  	unregister_chrdev(DRM_MAJOR, "drm");
1071  	debugfs_remove(drm_debugfs_root);
1072  	drm_sysfs_destroy();
1073  	WARN_ON(!xa_empty(&drm_minors_xa));
1074  	drm_connector_ida_destroy();
1075  }
1076  
drm_core_init(void)1077  static int __init drm_core_init(void)
1078  {
1079  	int ret;
1080  
1081  	drm_connector_ida_init();
1082  	drm_memcpy_init_early();
1083  
1084  	ret = drm_sysfs_init();
1085  	if (ret < 0) {
1086  		DRM_ERROR("Cannot create DRM class: %d\n", ret);
1087  		goto error;
1088  	}
1089  
1090  	drm_debugfs_root = debugfs_create_dir("dri", NULL);
1091  
1092  	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1093  	if (ret < 0)
1094  		goto error;
1095  
1096  	ret = accel_core_init();
1097  	if (ret < 0)
1098  		goto error;
1099  
1100  	drm_panic_init();
1101  
1102  	drm_privacy_screen_lookup_init();
1103  
1104  	drm_core_init_complete = true;
1105  
1106  	DRM_DEBUG("Initialized\n");
1107  	return 0;
1108  
1109  error:
1110  	drm_core_exit();
1111  	return ret;
1112  }
1113  
1114  module_init(drm_core_init);
1115  module_exit(drm_core_exit);
1116