1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3     drbd.c
4  
5     This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6  
7     Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8     Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9     Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10  
11     Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12     from Logicworks, Inc. for making SDP replication support possible.
13  
14  
15   */
16  
17  #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
18  
19  #include <linux/module.h>
20  #include <linux/jiffies.h>
21  #include <linux/drbd.h>
22  #include <linux/uaccess.h>
23  #include <asm/types.h>
24  #include <net/sock.h>
25  #include <linux/ctype.h>
26  #include <linux/mutex.h>
27  #include <linux/fs.h>
28  #include <linux/file.h>
29  #include <linux/proc_fs.h>
30  #include <linux/init.h>
31  #include <linux/mm.h>
32  #include <linux/memcontrol.h>
33  #include <linux/mm_inline.h>
34  #include <linux/slab.h>
35  #include <linux/random.h>
36  #include <linux/reboot.h>
37  #include <linux/notifier.h>
38  #include <linux/kthread.h>
39  #include <linux/workqueue.h>
40  #include <linux/unistd.h>
41  #include <linux/vmalloc.h>
42  #include <linux/sched/signal.h>
43  
44  #include <linux/drbd_limits.h>
45  #include "drbd_int.h"
46  #include "drbd_protocol.h"
47  #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
48  #include "drbd_vli.h"
49  #include "drbd_debugfs.h"
50  
51  static DEFINE_MUTEX(drbd_main_mutex);
52  static int drbd_open(struct gendisk *disk, blk_mode_t mode);
53  static void drbd_release(struct gendisk *gd);
54  static void md_sync_timer_fn(struct timer_list *t);
55  static int w_bitmap_io(struct drbd_work *w, int unused);
56  
57  MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
58  	      "Lars Ellenberg <lars@linbit.com>");
59  MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
60  MODULE_VERSION(REL_VERSION);
61  MODULE_LICENSE("GPL");
62  MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
63  		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
64  MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
65  
66  #include <linux/moduleparam.h>
67  /* thanks to these macros, if compiled into the kernel (not-module),
68   * these become boot parameters (e.g., drbd.minor_count) */
69  
70  #ifdef CONFIG_DRBD_FAULT_INJECTION
71  int drbd_enable_faults;
72  int drbd_fault_rate;
73  static int drbd_fault_count;
74  static int drbd_fault_devs;
75  /* bitmap of enabled faults */
76  module_param_named(enable_faults, drbd_enable_faults, int, 0664);
77  /* fault rate % value - applies to all enabled faults */
78  module_param_named(fault_rate, drbd_fault_rate, int, 0664);
79  /* count of faults inserted */
80  module_param_named(fault_count, drbd_fault_count, int, 0664);
81  /* bitmap of devices to insert faults on */
82  module_param_named(fault_devs, drbd_fault_devs, int, 0644);
83  #endif
84  
85  /* module parameters we can keep static */
86  static bool drbd_allow_oos; /* allow_open_on_secondary */
87  static bool drbd_disable_sendpage;
88  MODULE_PARM_DESC(allow_oos, "DONT USE!");
89  module_param_named(allow_oos, drbd_allow_oos, bool, 0);
90  module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
91  
92  /* module parameters we share */
93  int drbd_proc_details; /* Detail level in proc drbd*/
94  module_param_named(proc_details, drbd_proc_details, int, 0644);
95  /* module parameters shared with defaults */
96  unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
97  /* Module parameter for setting the user mode helper program
98   * to run. Default is /sbin/drbdadm */
99  char drbd_usermode_helper[80] = "/sbin/drbdadm";
100  module_param_named(minor_count, drbd_minor_count, uint, 0444);
101  module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
102  
103  /* in 2.6.x, our device mapping and config info contains our virtual gendisks
104   * as member "struct gendisk *vdisk;"
105   */
106  struct idr drbd_devices;
107  struct list_head drbd_resources;
108  struct mutex resources_mutex;
109  
110  struct kmem_cache *drbd_request_cache;
111  struct kmem_cache *drbd_ee_cache;	/* peer requests */
112  struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
113  struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
114  mempool_t drbd_request_mempool;
115  mempool_t drbd_ee_mempool;
116  mempool_t drbd_md_io_page_pool;
117  struct bio_set drbd_md_io_bio_set;
118  struct bio_set drbd_io_bio_set;
119  
120  /* I do not use a standard mempool, because:
121     1) I want to hand out the pre-allocated objects first.
122     2) I want to be able to interrupt sleeping allocation with a signal.
123     Note: This is a single linked list, the next pointer is the private
124  	 member of struct page.
125   */
126  struct page *drbd_pp_pool;
127  DEFINE_SPINLOCK(drbd_pp_lock);
128  int          drbd_pp_vacant;
129  wait_queue_head_t drbd_pp_wait;
130  
131  DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
132  
133  static const struct block_device_operations drbd_ops = {
134  	.owner		= THIS_MODULE,
135  	.submit_bio	= drbd_submit_bio,
136  	.open		= drbd_open,
137  	.release	= drbd_release,
138  };
139  
140  #ifdef __CHECKER__
141  /* When checking with sparse, and this is an inline function, sparse will
142     give tons of false positives. When this is a real functions sparse works.
143   */
_get_ldev_if_state(struct drbd_device * device,enum drbd_disk_state mins)144  int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
145  {
146  	int io_allowed;
147  
148  	atomic_inc(&device->local_cnt);
149  	io_allowed = (device->state.disk >= mins);
150  	if (!io_allowed) {
151  		if (atomic_dec_and_test(&device->local_cnt))
152  			wake_up(&device->misc_wait);
153  	}
154  	return io_allowed;
155  }
156  
157  #endif
158  
159  /**
160   * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
161   * @connection:	DRBD connection.
162   * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
163   * @set_size:	Expected number of requests before that barrier.
164   *
165   * In case the passed barrier_nr or set_size does not match the oldest
166   * epoch of not yet barrier-acked requests, this function will cause a
167   * termination of the connection.
168   */
tl_release(struct drbd_connection * connection,unsigned int barrier_nr,unsigned int set_size)169  void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
170  		unsigned int set_size)
171  {
172  	struct drbd_request *r;
173  	struct drbd_request *req = NULL, *tmp = NULL;
174  	int expect_epoch = 0;
175  	int expect_size = 0;
176  
177  	spin_lock_irq(&connection->resource->req_lock);
178  
179  	/* find oldest not yet barrier-acked write request,
180  	 * count writes in its epoch. */
181  	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
182  		const unsigned s = r->rq_state;
183  		if (!req) {
184  			if (!(s & RQ_WRITE))
185  				continue;
186  			if (!(s & RQ_NET_MASK))
187  				continue;
188  			if (s & RQ_NET_DONE)
189  				continue;
190  			req = r;
191  			expect_epoch = req->epoch;
192  			expect_size ++;
193  		} else {
194  			if (r->epoch != expect_epoch)
195  				break;
196  			if (!(s & RQ_WRITE))
197  				continue;
198  			/* if (s & RQ_DONE): not expected */
199  			/* if (!(s & RQ_NET_MASK)): not expected */
200  			expect_size++;
201  		}
202  	}
203  
204  	/* first some paranoia code */
205  	if (req == NULL) {
206  		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
207  			 barrier_nr);
208  		goto bail;
209  	}
210  	if (expect_epoch != barrier_nr) {
211  		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
212  			 barrier_nr, expect_epoch);
213  		goto bail;
214  	}
215  
216  	if (expect_size != set_size) {
217  		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
218  			 barrier_nr, set_size, expect_size);
219  		goto bail;
220  	}
221  
222  	/* Clean up list of requests processed during current epoch. */
223  	/* this extra list walk restart is paranoia,
224  	 * to catch requests being barrier-acked "unexpectedly".
225  	 * It usually should find the same req again, or some READ preceding it. */
226  	list_for_each_entry(req, &connection->transfer_log, tl_requests)
227  		if (req->epoch == expect_epoch) {
228  			tmp = req;
229  			break;
230  		}
231  	req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
232  	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
233  		struct drbd_peer_device *peer_device;
234  		if (req->epoch != expect_epoch)
235  			break;
236  		peer_device = conn_peer_device(connection, req->device->vnr);
237  		_req_mod(req, BARRIER_ACKED, peer_device);
238  	}
239  	spin_unlock_irq(&connection->resource->req_lock);
240  
241  	return;
242  
243  bail:
244  	spin_unlock_irq(&connection->resource->req_lock);
245  	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
246  }
247  
248  
249  /**
250   * _tl_restart() - Walks the transfer log, and applies an action to all requests
251   * @connection:	DRBD connection to operate on.
252   * @what:       The action/event to perform with all request objects
253   *
254   * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
255   * RESTART_FROZEN_DISK_IO.
256   */
257  /* must hold resource->req_lock */
_tl_restart(struct drbd_connection * connection,enum drbd_req_event what)258  void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
259  {
260  	struct drbd_peer_device *peer_device;
261  	struct drbd_request *req, *r;
262  
263  	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
264  		peer_device = conn_peer_device(connection, req->device->vnr);
265  		_req_mod(req, what, peer_device);
266  	}
267  }
268  
tl_restart(struct drbd_connection * connection,enum drbd_req_event what)269  void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
270  {
271  	spin_lock_irq(&connection->resource->req_lock);
272  	_tl_restart(connection, what);
273  	spin_unlock_irq(&connection->resource->req_lock);
274  }
275  
276  /**
277   * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
278   * @connection:	DRBD connection.
279   *
280   * This is called after the connection to the peer was lost. The storage covered
281   * by the requests on the transfer gets marked as our of sync. Called from the
282   * receiver thread and the worker thread.
283   */
tl_clear(struct drbd_connection * connection)284  void tl_clear(struct drbd_connection *connection)
285  {
286  	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
287  }
288  
289  /**
290   * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
291   * @device:	DRBD device.
292   */
tl_abort_disk_io(struct drbd_device * device)293  void tl_abort_disk_io(struct drbd_device *device)
294  {
295  	struct drbd_connection *connection = first_peer_device(device)->connection;
296  	struct drbd_request *req, *r;
297  
298  	spin_lock_irq(&connection->resource->req_lock);
299  	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
300  		if (!(req->rq_state & RQ_LOCAL_PENDING))
301  			continue;
302  		if (req->device != device)
303  			continue;
304  		_req_mod(req, ABORT_DISK_IO, NULL);
305  	}
306  	spin_unlock_irq(&connection->resource->req_lock);
307  }
308  
drbd_thread_setup(void * arg)309  static int drbd_thread_setup(void *arg)
310  {
311  	struct drbd_thread *thi = (struct drbd_thread *) arg;
312  	struct drbd_resource *resource = thi->resource;
313  	unsigned long flags;
314  	int retval;
315  
316  	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
317  		 thi->name[0],
318  		 resource->name);
319  
320  	allow_kernel_signal(DRBD_SIGKILL);
321  	allow_kernel_signal(SIGXCPU);
322  restart:
323  	retval = thi->function(thi);
324  
325  	spin_lock_irqsave(&thi->t_lock, flags);
326  
327  	/* if the receiver has been "EXITING", the last thing it did
328  	 * was set the conn state to "StandAlone",
329  	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
330  	 * and receiver thread will be "started".
331  	 * drbd_thread_start needs to set "RESTARTING" in that case.
332  	 * t_state check and assignment needs to be within the same spinlock,
333  	 * so either thread_start sees EXITING, and can remap to RESTARTING,
334  	 * or thread_start see NONE, and can proceed as normal.
335  	 */
336  
337  	if (thi->t_state == RESTARTING) {
338  		drbd_info(resource, "Restarting %s thread\n", thi->name);
339  		thi->t_state = RUNNING;
340  		spin_unlock_irqrestore(&thi->t_lock, flags);
341  		goto restart;
342  	}
343  
344  	thi->task = NULL;
345  	thi->t_state = NONE;
346  	smp_mb();
347  	complete_all(&thi->stop);
348  	spin_unlock_irqrestore(&thi->t_lock, flags);
349  
350  	drbd_info(resource, "Terminating %s\n", current->comm);
351  
352  	/* Release mod reference taken when thread was started */
353  
354  	if (thi->connection)
355  		kref_put(&thi->connection->kref, drbd_destroy_connection);
356  	kref_put(&resource->kref, drbd_destroy_resource);
357  	module_put(THIS_MODULE);
358  	return retval;
359  }
360  
drbd_thread_init(struct drbd_resource * resource,struct drbd_thread * thi,int (* func)(struct drbd_thread *),const char * name)361  static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
362  			     int (*func) (struct drbd_thread *), const char *name)
363  {
364  	spin_lock_init(&thi->t_lock);
365  	thi->task    = NULL;
366  	thi->t_state = NONE;
367  	thi->function = func;
368  	thi->resource = resource;
369  	thi->connection = NULL;
370  	thi->name = name;
371  }
372  
drbd_thread_start(struct drbd_thread * thi)373  int drbd_thread_start(struct drbd_thread *thi)
374  {
375  	struct drbd_resource *resource = thi->resource;
376  	struct task_struct *nt;
377  	unsigned long flags;
378  
379  	/* is used from state engine doing drbd_thread_stop_nowait,
380  	 * while holding the req lock irqsave */
381  	spin_lock_irqsave(&thi->t_lock, flags);
382  
383  	switch (thi->t_state) {
384  	case NONE:
385  		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
386  			 thi->name, current->comm, current->pid);
387  
388  		/* Get ref on module for thread - this is released when thread exits */
389  		if (!try_module_get(THIS_MODULE)) {
390  			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
391  			spin_unlock_irqrestore(&thi->t_lock, flags);
392  			return false;
393  		}
394  
395  		kref_get(&resource->kref);
396  		if (thi->connection)
397  			kref_get(&thi->connection->kref);
398  
399  		init_completion(&thi->stop);
400  		thi->reset_cpu_mask = 1;
401  		thi->t_state = RUNNING;
402  		spin_unlock_irqrestore(&thi->t_lock, flags);
403  		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
404  
405  		nt = kthread_create(drbd_thread_setup, (void *) thi,
406  				    "drbd_%c_%s", thi->name[0], thi->resource->name);
407  
408  		if (IS_ERR(nt)) {
409  			drbd_err(resource, "Couldn't start thread\n");
410  
411  			if (thi->connection)
412  				kref_put(&thi->connection->kref, drbd_destroy_connection);
413  			kref_put(&resource->kref, drbd_destroy_resource);
414  			module_put(THIS_MODULE);
415  			return false;
416  		}
417  		spin_lock_irqsave(&thi->t_lock, flags);
418  		thi->task = nt;
419  		thi->t_state = RUNNING;
420  		spin_unlock_irqrestore(&thi->t_lock, flags);
421  		wake_up_process(nt);
422  		break;
423  	case EXITING:
424  		thi->t_state = RESTARTING;
425  		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
426  				thi->name, current->comm, current->pid);
427  		fallthrough;
428  	case RUNNING:
429  	case RESTARTING:
430  	default:
431  		spin_unlock_irqrestore(&thi->t_lock, flags);
432  		break;
433  	}
434  
435  	return true;
436  }
437  
438  
_drbd_thread_stop(struct drbd_thread * thi,int restart,int wait)439  void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
440  {
441  	unsigned long flags;
442  
443  	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
444  
445  	/* may be called from state engine, holding the req lock irqsave */
446  	spin_lock_irqsave(&thi->t_lock, flags);
447  
448  	if (thi->t_state == NONE) {
449  		spin_unlock_irqrestore(&thi->t_lock, flags);
450  		if (restart)
451  			drbd_thread_start(thi);
452  		return;
453  	}
454  
455  	if (thi->t_state != ns) {
456  		if (thi->task == NULL) {
457  			spin_unlock_irqrestore(&thi->t_lock, flags);
458  			return;
459  		}
460  
461  		thi->t_state = ns;
462  		smp_mb();
463  		init_completion(&thi->stop);
464  		if (thi->task != current)
465  			send_sig(DRBD_SIGKILL, thi->task, 1);
466  	}
467  
468  	spin_unlock_irqrestore(&thi->t_lock, flags);
469  
470  	if (wait)
471  		wait_for_completion(&thi->stop);
472  }
473  
474  #ifdef CONFIG_SMP
475  /*
476   * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
477   *
478   * Forces all threads of a resource onto the same CPU. This is beneficial for
479   * DRBD's performance. May be overwritten by user's configuration.
480   */
drbd_calc_cpu_mask(cpumask_var_t * cpu_mask)481  static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
482  {
483  	unsigned int *resources_per_cpu, min_index = ~0;
484  
485  	resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
486  				    GFP_KERNEL);
487  	if (resources_per_cpu) {
488  		struct drbd_resource *resource;
489  		unsigned int cpu, min = ~0;
490  
491  		rcu_read_lock();
492  		for_each_resource_rcu(resource, &drbd_resources) {
493  			for_each_cpu(cpu, resource->cpu_mask)
494  				resources_per_cpu[cpu]++;
495  		}
496  		rcu_read_unlock();
497  		for_each_online_cpu(cpu) {
498  			if (resources_per_cpu[cpu] < min) {
499  				min = resources_per_cpu[cpu];
500  				min_index = cpu;
501  			}
502  		}
503  		kfree(resources_per_cpu);
504  	}
505  	if (min_index == ~0) {
506  		cpumask_setall(*cpu_mask);
507  		return;
508  	}
509  	cpumask_set_cpu(min_index, *cpu_mask);
510  }
511  
512  /**
513   * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
514   * @thi:	drbd_thread object
515   *
516   * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
517   * prematurely.
518   */
drbd_thread_current_set_cpu(struct drbd_thread * thi)519  void drbd_thread_current_set_cpu(struct drbd_thread *thi)
520  {
521  	struct drbd_resource *resource = thi->resource;
522  	struct task_struct *p = current;
523  
524  	if (!thi->reset_cpu_mask)
525  		return;
526  	thi->reset_cpu_mask = 0;
527  	set_cpus_allowed_ptr(p, resource->cpu_mask);
528  }
529  #else
530  #define drbd_calc_cpu_mask(A) ({})
531  #endif
532  
533  /*
534   * drbd_header_size  -  size of a packet header
535   *
536   * The header size is a multiple of 8, so any payload following the header is
537   * word aligned on 64-bit architectures.  (The bitmap send and receive code
538   * relies on this.)
539   */
drbd_header_size(struct drbd_connection * connection)540  unsigned int drbd_header_size(struct drbd_connection *connection)
541  {
542  	if (connection->agreed_pro_version >= 100) {
543  		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
544  		return sizeof(struct p_header100);
545  	} else {
546  		BUILD_BUG_ON(sizeof(struct p_header80) !=
547  			     sizeof(struct p_header95));
548  		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
549  		return sizeof(struct p_header80);
550  	}
551  }
552  
prepare_header80(struct p_header80 * h,enum drbd_packet cmd,int size)553  static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
554  {
555  	h->magic   = cpu_to_be32(DRBD_MAGIC);
556  	h->command = cpu_to_be16(cmd);
557  	h->length  = cpu_to_be16(size);
558  	return sizeof(struct p_header80);
559  }
560  
prepare_header95(struct p_header95 * h,enum drbd_packet cmd,int size)561  static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
562  {
563  	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
564  	h->command = cpu_to_be16(cmd);
565  	h->length = cpu_to_be32(size);
566  	return sizeof(struct p_header95);
567  }
568  
prepare_header100(struct p_header100 * h,enum drbd_packet cmd,int size,int vnr)569  static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
570  				      int size, int vnr)
571  {
572  	h->magic = cpu_to_be32(DRBD_MAGIC_100);
573  	h->volume = cpu_to_be16(vnr);
574  	h->command = cpu_to_be16(cmd);
575  	h->length = cpu_to_be32(size);
576  	h->pad = 0;
577  	return sizeof(struct p_header100);
578  }
579  
prepare_header(struct drbd_connection * connection,int vnr,void * buffer,enum drbd_packet cmd,int size)580  static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
581  				   void *buffer, enum drbd_packet cmd, int size)
582  {
583  	if (connection->agreed_pro_version >= 100)
584  		return prepare_header100(buffer, cmd, size, vnr);
585  	else if (connection->agreed_pro_version >= 95 &&
586  		 size > DRBD_MAX_SIZE_H80_PACKET)
587  		return prepare_header95(buffer, cmd, size);
588  	else
589  		return prepare_header80(buffer, cmd, size);
590  }
591  
__conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)592  static void *__conn_prepare_command(struct drbd_connection *connection,
593  				    struct drbd_socket *sock)
594  {
595  	if (!sock->socket)
596  		return NULL;
597  	return sock->sbuf + drbd_header_size(connection);
598  }
599  
conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)600  void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
601  {
602  	void *p;
603  
604  	mutex_lock(&sock->mutex);
605  	p = __conn_prepare_command(connection, sock);
606  	if (!p)
607  		mutex_unlock(&sock->mutex);
608  
609  	return p;
610  }
611  
drbd_prepare_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock)612  void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
613  {
614  	return conn_prepare_command(peer_device->connection, sock);
615  }
616  
__send_command(struct drbd_connection * connection,int vnr,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)617  static int __send_command(struct drbd_connection *connection, int vnr,
618  			  struct drbd_socket *sock, enum drbd_packet cmd,
619  			  unsigned int header_size, void *data,
620  			  unsigned int size)
621  {
622  	int msg_flags;
623  	int err;
624  
625  	/*
626  	 * Called with @data == NULL and the size of the data blocks in @size
627  	 * for commands that send data blocks.  For those commands, omit the
628  	 * MSG_MORE flag: this will increase the likelihood that data blocks
629  	 * which are page aligned on the sender will end up page aligned on the
630  	 * receiver.
631  	 */
632  	msg_flags = data ? MSG_MORE : 0;
633  
634  	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
635  				      header_size + size);
636  	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
637  			    msg_flags);
638  	if (data && !err)
639  		err = drbd_send_all(connection, sock->socket, data, size, 0);
640  	/* DRBD protocol "pings" are latency critical.
641  	 * This is supposed to trigger tcp_push_pending_frames() */
642  	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
643  		tcp_sock_set_nodelay(sock->socket->sk);
644  
645  	return err;
646  }
647  
__conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)648  static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
649  			       enum drbd_packet cmd, unsigned int header_size,
650  			       void *data, unsigned int size)
651  {
652  	return __send_command(connection, 0, sock, cmd, header_size, data, size);
653  }
654  
conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)655  int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
656  		      enum drbd_packet cmd, unsigned int header_size,
657  		      void *data, unsigned int size)
658  {
659  	int err;
660  
661  	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
662  	mutex_unlock(&sock->mutex);
663  	return err;
664  }
665  
drbd_send_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)666  int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
667  		      enum drbd_packet cmd, unsigned int header_size,
668  		      void *data, unsigned int size)
669  {
670  	int err;
671  
672  	err = __send_command(peer_device->connection, peer_device->device->vnr,
673  			     sock, cmd, header_size, data, size);
674  	mutex_unlock(&sock->mutex);
675  	return err;
676  }
677  
drbd_send_ping(struct drbd_connection * connection)678  int drbd_send_ping(struct drbd_connection *connection)
679  {
680  	struct drbd_socket *sock;
681  
682  	sock = &connection->meta;
683  	if (!conn_prepare_command(connection, sock))
684  		return -EIO;
685  	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
686  }
687  
drbd_send_ping_ack(struct drbd_connection * connection)688  int drbd_send_ping_ack(struct drbd_connection *connection)
689  {
690  	struct drbd_socket *sock;
691  
692  	sock = &connection->meta;
693  	if (!conn_prepare_command(connection, sock))
694  		return -EIO;
695  	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
696  }
697  
drbd_send_sync_param(struct drbd_peer_device * peer_device)698  int drbd_send_sync_param(struct drbd_peer_device *peer_device)
699  {
700  	struct drbd_socket *sock;
701  	struct p_rs_param_95 *p;
702  	int size;
703  	const int apv = peer_device->connection->agreed_pro_version;
704  	enum drbd_packet cmd;
705  	struct net_conf *nc;
706  	struct disk_conf *dc;
707  
708  	sock = &peer_device->connection->data;
709  	p = drbd_prepare_command(peer_device, sock);
710  	if (!p)
711  		return -EIO;
712  
713  	rcu_read_lock();
714  	nc = rcu_dereference(peer_device->connection->net_conf);
715  
716  	size = apv <= 87 ? sizeof(struct p_rs_param)
717  		: apv == 88 ? sizeof(struct p_rs_param)
718  			+ strlen(nc->verify_alg) + 1
719  		: apv <= 94 ? sizeof(struct p_rs_param_89)
720  		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
721  
722  	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
723  
724  	/* initialize verify_alg and csums_alg */
725  	BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
726  	memset(&p->algs, 0, sizeof(p->algs));
727  
728  	if (get_ldev(peer_device->device)) {
729  		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
730  		p->resync_rate = cpu_to_be32(dc->resync_rate);
731  		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
732  		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
733  		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
734  		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
735  		put_ldev(peer_device->device);
736  	} else {
737  		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
738  		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
739  		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
740  		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
741  		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
742  	}
743  
744  	if (apv >= 88)
745  		strcpy(p->verify_alg, nc->verify_alg);
746  	if (apv >= 89)
747  		strcpy(p->csums_alg, nc->csums_alg);
748  	rcu_read_unlock();
749  
750  	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
751  }
752  
__drbd_send_protocol(struct drbd_connection * connection,enum drbd_packet cmd)753  int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
754  {
755  	struct drbd_socket *sock;
756  	struct p_protocol *p;
757  	struct net_conf *nc;
758  	int size, cf;
759  
760  	sock = &connection->data;
761  	p = __conn_prepare_command(connection, sock);
762  	if (!p)
763  		return -EIO;
764  
765  	rcu_read_lock();
766  	nc = rcu_dereference(connection->net_conf);
767  
768  	if (nc->tentative && connection->agreed_pro_version < 92) {
769  		rcu_read_unlock();
770  		drbd_err(connection, "--dry-run is not supported by peer");
771  		return -EOPNOTSUPP;
772  	}
773  
774  	size = sizeof(*p);
775  	if (connection->agreed_pro_version >= 87)
776  		size += strlen(nc->integrity_alg) + 1;
777  
778  	p->protocol      = cpu_to_be32(nc->wire_protocol);
779  	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
780  	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
781  	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
782  	p->two_primaries = cpu_to_be32(nc->two_primaries);
783  	cf = 0;
784  	if (nc->discard_my_data)
785  		cf |= CF_DISCARD_MY_DATA;
786  	if (nc->tentative)
787  		cf |= CF_DRY_RUN;
788  	p->conn_flags    = cpu_to_be32(cf);
789  
790  	if (connection->agreed_pro_version >= 87)
791  		strcpy(p->integrity_alg, nc->integrity_alg);
792  	rcu_read_unlock();
793  
794  	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
795  }
796  
drbd_send_protocol(struct drbd_connection * connection)797  int drbd_send_protocol(struct drbd_connection *connection)
798  {
799  	int err;
800  
801  	mutex_lock(&connection->data.mutex);
802  	err = __drbd_send_protocol(connection, P_PROTOCOL);
803  	mutex_unlock(&connection->data.mutex);
804  
805  	return err;
806  }
807  
_drbd_send_uuids(struct drbd_peer_device * peer_device,u64 uuid_flags)808  static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
809  {
810  	struct drbd_device *device = peer_device->device;
811  	struct drbd_socket *sock;
812  	struct p_uuids *p;
813  	int i;
814  
815  	if (!get_ldev_if_state(device, D_NEGOTIATING))
816  		return 0;
817  
818  	sock = &peer_device->connection->data;
819  	p = drbd_prepare_command(peer_device, sock);
820  	if (!p) {
821  		put_ldev(device);
822  		return -EIO;
823  	}
824  	spin_lock_irq(&device->ldev->md.uuid_lock);
825  	for (i = UI_CURRENT; i < UI_SIZE; i++)
826  		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
827  	spin_unlock_irq(&device->ldev->md.uuid_lock);
828  
829  	device->comm_bm_set = drbd_bm_total_weight(device);
830  	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
831  	rcu_read_lock();
832  	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
833  	rcu_read_unlock();
834  	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
835  	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
836  	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
837  
838  	put_ldev(device);
839  	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
840  }
841  
drbd_send_uuids(struct drbd_peer_device * peer_device)842  int drbd_send_uuids(struct drbd_peer_device *peer_device)
843  {
844  	return _drbd_send_uuids(peer_device, 0);
845  }
846  
drbd_send_uuids_skip_initial_sync(struct drbd_peer_device * peer_device)847  int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
848  {
849  	return _drbd_send_uuids(peer_device, 8);
850  }
851  
drbd_print_uuids(struct drbd_device * device,const char * text)852  void drbd_print_uuids(struct drbd_device *device, const char *text)
853  {
854  	if (get_ldev_if_state(device, D_NEGOTIATING)) {
855  		u64 *uuid = device->ldev->md.uuid;
856  		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
857  		     text,
858  		     (unsigned long long)uuid[UI_CURRENT],
859  		     (unsigned long long)uuid[UI_BITMAP],
860  		     (unsigned long long)uuid[UI_HISTORY_START],
861  		     (unsigned long long)uuid[UI_HISTORY_END]);
862  		put_ldev(device);
863  	} else {
864  		drbd_info(device, "%s effective data uuid: %016llX\n",
865  				text,
866  				(unsigned long long)device->ed_uuid);
867  	}
868  }
869  
drbd_gen_and_send_sync_uuid(struct drbd_peer_device * peer_device)870  void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
871  {
872  	struct drbd_device *device = peer_device->device;
873  	struct drbd_socket *sock;
874  	struct p_rs_uuid *p;
875  	u64 uuid;
876  
877  	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
878  
879  	uuid = device->ldev->md.uuid[UI_BITMAP];
880  	if (uuid && uuid != UUID_JUST_CREATED)
881  		uuid = uuid + UUID_NEW_BM_OFFSET;
882  	else
883  		get_random_bytes(&uuid, sizeof(u64));
884  	drbd_uuid_set(device, UI_BITMAP, uuid);
885  	drbd_print_uuids(device, "updated sync UUID");
886  	drbd_md_sync(device);
887  
888  	sock = &peer_device->connection->data;
889  	p = drbd_prepare_command(peer_device, sock);
890  	if (p) {
891  		p->uuid = cpu_to_be64(uuid);
892  		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
893  	}
894  }
895  
drbd_send_sizes(struct drbd_peer_device * peer_device,int trigger_reply,enum dds_flags flags)896  int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
897  {
898  	struct drbd_device *device = peer_device->device;
899  	struct drbd_socket *sock;
900  	struct p_sizes *p;
901  	sector_t d_size, u_size;
902  	int q_order_type;
903  	unsigned int max_bio_size;
904  	unsigned int packet_size;
905  
906  	sock = &peer_device->connection->data;
907  	p = drbd_prepare_command(peer_device, sock);
908  	if (!p)
909  		return -EIO;
910  
911  	packet_size = sizeof(*p);
912  	if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
913  		packet_size += sizeof(p->qlim[0]);
914  
915  	memset(p, 0, packet_size);
916  	if (get_ldev_if_state(device, D_NEGOTIATING)) {
917  		struct block_device *bdev = device->ldev->backing_bdev;
918  		struct request_queue *q = bdev_get_queue(bdev);
919  
920  		d_size = drbd_get_max_capacity(device->ldev);
921  		rcu_read_lock();
922  		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
923  		rcu_read_unlock();
924  		q_order_type = drbd_queue_order_type(device);
925  		max_bio_size = queue_max_hw_sectors(q) << 9;
926  		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
927  		p->qlim->physical_block_size =
928  			cpu_to_be32(bdev_physical_block_size(bdev));
929  		p->qlim->logical_block_size =
930  			cpu_to_be32(bdev_logical_block_size(bdev));
931  		p->qlim->alignment_offset =
932  			cpu_to_be32(bdev_alignment_offset(bdev));
933  		p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev));
934  		p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev));
935  		p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev);
936  		put_ldev(device);
937  	} else {
938  		struct request_queue *q = device->rq_queue;
939  
940  		p->qlim->physical_block_size =
941  			cpu_to_be32(queue_physical_block_size(q));
942  		p->qlim->logical_block_size =
943  			cpu_to_be32(queue_logical_block_size(q));
944  		p->qlim->alignment_offset = 0;
945  		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
946  		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
947  		p->qlim->discard_enabled = 0;
948  
949  		d_size = 0;
950  		u_size = 0;
951  		q_order_type = QUEUE_ORDERED_NONE;
952  		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
953  	}
954  
955  	if (peer_device->connection->agreed_pro_version <= 94)
956  		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
957  	else if (peer_device->connection->agreed_pro_version < 100)
958  		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
959  
960  	p->d_size = cpu_to_be64(d_size);
961  	p->u_size = cpu_to_be64(u_size);
962  	if (trigger_reply)
963  		p->c_size = 0;
964  	else
965  		p->c_size = cpu_to_be64(get_capacity(device->vdisk));
966  	p->max_bio_size = cpu_to_be32(max_bio_size);
967  	p->queue_order_type = cpu_to_be16(q_order_type);
968  	p->dds_flags = cpu_to_be16(flags);
969  
970  	return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
971  }
972  
973  /**
974   * drbd_send_current_state() - Sends the drbd state to the peer
975   * @peer_device:	DRBD peer device.
976   */
drbd_send_current_state(struct drbd_peer_device * peer_device)977  int drbd_send_current_state(struct drbd_peer_device *peer_device)
978  {
979  	struct drbd_socket *sock;
980  	struct p_state *p;
981  
982  	sock = &peer_device->connection->data;
983  	p = drbd_prepare_command(peer_device, sock);
984  	if (!p)
985  		return -EIO;
986  	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
987  	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
988  }
989  
990  /**
991   * drbd_send_state() - After a state change, sends the new state to the peer
992   * @peer_device:      DRBD peer device.
993   * @state:     the state to send, not necessarily the current state.
994   *
995   * Each state change queues an "after_state_ch" work, which will eventually
996   * send the resulting new state to the peer. If more state changes happen
997   * between queuing and processing of the after_state_ch work, we still
998   * want to send each intermediary state in the order it occurred.
999   */
drbd_send_state(struct drbd_peer_device * peer_device,union drbd_state state)1000  int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1001  {
1002  	struct drbd_socket *sock;
1003  	struct p_state *p;
1004  
1005  	sock = &peer_device->connection->data;
1006  	p = drbd_prepare_command(peer_device, sock);
1007  	if (!p)
1008  		return -EIO;
1009  	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1010  	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1011  }
1012  
drbd_send_state_req(struct drbd_peer_device * peer_device,union drbd_state mask,union drbd_state val)1013  int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1014  {
1015  	struct drbd_socket *sock;
1016  	struct p_req_state *p;
1017  
1018  	sock = &peer_device->connection->data;
1019  	p = drbd_prepare_command(peer_device, sock);
1020  	if (!p)
1021  		return -EIO;
1022  	p->mask = cpu_to_be32(mask.i);
1023  	p->val = cpu_to_be32(val.i);
1024  	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1025  }
1026  
conn_send_state_req(struct drbd_connection * connection,union drbd_state mask,union drbd_state val)1027  int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1028  {
1029  	enum drbd_packet cmd;
1030  	struct drbd_socket *sock;
1031  	struct p_req_state *p;
1032  
1033  	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1034  	sock = &connection->data;
1035  	p = conn_prepare_command(connection, sock);
1036  	if (!p)
1037  		return -EIO;
1038  	p->mask = cpu_to_be32(mask.i);
1039  	p->val = cpu_to_be32(val.i);
1040  	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1041  }
1042  
drbd_send_sr_reply(struct drbd_peer_device * peer_device,enum drbd_state_rv retcode)1043  void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1044  {
1045  	struct drbd_socket *sock;
1046  	struct p_req_state_reply *p;
1047  
1048  	sock = &peer_device->connection->meta;
1049  	p = drbd_prepare_command(peer_device, sock);
1050  	if (p) {
1051  		p->retcode = cpu_to_be32(retcode);
1052  		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1053  	}
1054  }
1055  
conn_send_sr_reply(struct drbd_connection * connection,enum drbd_state_rv retcode)1056  void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1057  {
1058  	struct drbd_socket *sock;
1059  	struct p_req_state_reply *p;
1060  	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1061  
1062  	sock = &connection->meta;
1063  	p = conn_prepare_command(connection, sock);
1064  	if (p) {
1065  		p->retcode = cpu_to_be32(retcode);
1066  		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1067  	}
1068  }
1069  
dcbp_set_code(struct p_compressed_bm * p,enum drbd_bitmap_code code)1070  static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1071  {
1072  	BUG_ON(code & ~0xf);
1073  	p->encoding = (p->encoding & ~0xf) | code;
1074  }
1075  
dcbp_set_start(struct p_compressed_bm * p,int set)1076  static void dcbp_set_start(struct p_compressed_bm *p, int set)
1077  {
1078  	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1079  }
1080  
dcbp_set_pad_bits(struct p_compressed_bm * p,int n)1081  static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1082  {
1083  	BUG_ON(n & ~0x7);
1084  	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1085  }
1086  
fill_bitmap_rle_bits(struct drbd_device * device,struct p_compressed_bm * p,unsigned int size,struct bm_xfer_ctx * c)1087  static int fill_bitmap_rle_bits(struct drbd_device *device,
1088  			 struct p_compressed_bm *p,
1089  			 unsigned int size,
1090  			 struct bm_xfer_ctx *c)
1091  {
1092  	struct bitstream bs;
1093  	unsigned long plain_bits;
1094  	unsigned long tmp;
1095  	unsigned long rl;
1096  	unsigned len;
1097  	unsigned toggle;
1098  	int bits, use_rle;
1099  
1100  	/* may we use this feature? */
1101  	rcu_read_lock();
1102  	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1103  	rcu_read_unlock();
1104  	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1105  		return 0;
1106  
1107  	if (c->bit_offset >= c->bm_bits)
1108  		return 0; /* nothing to do. */
1109  
1110  	/* use at most thus many bytes */
1111  	bitstream_init(&bs, p->code, size, 0);
1112  	memset(p->code, 0, size);
1113  	/* plain bits covered in this code string */
1114  	plain_bits = 0;
1115  
1116  	/* p->encoding & 0x80 stores whether the first run length is set.
1117  	 * bit offset is implicit.
1118  	 * start with toggle == 2 to be able to tell the first iteration */
1119  	toggle = 2;
1120  
1121  	/* see how much plain bits we can stuff into one packet
1122  	 * using RLE and VLI. */
1123  	do {
1124  		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1125  				    : _drbd_bm_find_next(device, c->bit_offset);
1126  		if (tmp == -1UL)
1127  			tmp = c->bm_bits;
1128  		rl = tmp - c->bit_offset;
1129  
1130  		if (toggle == 2) { /* first iteration */
1131  			if (rl == 0) {
1132  				/* the first checked bit was set,
1133  				 * store start value, */
1134  				dcbp_set_start(p, 1);
1135  				/* but skip encoding of zero run length */
1136  				toggle = !toggle;
1137  				continue;
1138  			}
1139  			dcbp_set_start(p, 0);
1140  		}
1141  
1142  		/* paranoia: catch zero runlength.
1143  		 * can only happen if bitmap is modified while we scan it. */
1144  		if (rl == 0) {
1145  			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1146  			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1147  			return -1;
1148  		}
1149  
1150  		bits = vli_encode_bits(&bs, rl);
1151  		if (bits == -ENOBUFS) /* buffer full */
1152  			break;
1153  		if (bits <= 0) {
1154  			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1155  			return 0;
1156  		}
1157  
1158  		toggle = !toggle;
1159  		plain_bits += rl;
1160  		c->bit_offset = tmp;
1161  	} while (c->bit_offset < c->bm_bits);
1162  
1163  	len = bs.cur.b - p->code + !!bs.cur.bit;
1164  
1165  	if (plain_bits < (len << 3)) {
1166  		/* incompressible with this method.
1167  		 * we need to rewind both word and bit position. */
1168  		c->bit_offset -= plain_bits;
1169  		bm_xfer_ctx_bit_to_word_offset(c);
1170  		c->bit_offset = c->word_offset * BITS_PER_LONG;
1171  		return 0;
1172  	}
1173  
1174  	/* RLE + VLI was able to compress it just fine.
1175  	 * update c->word_offset. */
1176  	bm_xfer_ctx_bit_to_word_offset(c);
1177  
1178  	/* store pad_bits */
1179  	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1180  
1181  	return len;
1182  }
1183  
1184  /*
1185   * send_bitmap_rle_or_plain
1186   *
1187   * Return 0 when done, 1 when another iteration is needed, and a negative error
1188   * code upon failure.
1189   */
1190  static int
send_bitmap_rle_or_plain(struct drbd_peer_device * peer_device,struct bm_xfer_ctx * c)1191  send_bitmap_rle_or_plain(struct drbd_peer_device *peer_device, struct bm_xfer_ctx *c)
1192  {
1193  	struct drbd_device *device = peer_device->device;
1194  	struct drbd_socket *sock = &peer_device->connection->data;
1195  	unsigned int header_size = drbd_header_size(peer_device->connection);
1196  	struct p_compressed_bm *p = sock->sbuf + header_size;
1197  	int len, err;
1198  
1199  	len = fill_bitmap_rle_bits(device, p,
1200  			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1201  	if (len < 0)
1202  		return -EIO;
1203  
1204  	if (len) {
1205  		dcbp_set_code(p, RLE_VLI_Bits);
1206  		err = __send_command(peer_device->connection, device->vnr, sock,
1207  				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1208  				     NULL, 0);
1209  		c->packets[0]++;
1210  		c->bytes[0] += header_size + sizeof(*p) + len;
1211  
1212  		if (c->bit_offset >= c->bm_bits)
1213  			len = 0; /* DONE */
1214  	} else {
1215  		/* was not compressible.
1216  		 * send a buffer full of plain text bits instead. */
1217  		unsigned int data_size;
1218  		unsigned long num_words;
1219  		unsigned long *p = sock->sbuf + header_size;
1220  
1221  		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1222  		num_words = min_t(size_t, data_size / sizeof(*p),
1223  				  c->bm_words - c->word_offset);
1224  		len = num_words * sizeof(*p);
1225  		if (len)
1226  			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1227  		err = __send_command(peer_device->connection, device->vnr, sock, P_BITMAP,
1228  				     len, NULL, 0);
1229  		c->word_offset += num_words;
1230  		c->bit_offset = c->word_offset * BITS_PER_LONG;
1231  
1232  		c->packets[1]++;
1233  		c->bytes[1] += header_size + len;
1234  
1235  		if (c->bit_offset > c->bm_bits)
1236  			c->bit_offset = c->bm_bits;
1237  	}
1238  	if (!err) {
1239  		if (len == 0) {
1240  			INFO_bm_xfer_stats(peer_device, "send", c);
1241  			return 0;
1242  		} else
1243  			return 1;
1244  	}
1245  	return -EIO;
1246  }
1247  
1248  /* See the comment at receive_bitmap() */
_drbd_send_bitmap(struct drbd_device * device,struct drbd_peer_device * peer_device)1249  static int _drbd_send_bitmap(struct drbd_device *device,
1250  			    struct drbd_peer_device *peer_device)
1251  {
1252  	struct bm_xfer_ctx c;
1253  	int err;
1254  
1255  	if (!expect(device, device->bitmap))
1256  		return false;
1257  
1258  	if (get_ldev(device)) {
1259  		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1260  			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1261  			drbd_bm_set_all(device);
1262  			if (drbd_bm_write(device, peer_device)) {
1263  				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1264  				 * but otherwise process as per normal - need to tell other
1265  				 * side that a full resync is required! */
1266  				drbd_err(device, "Failed to write bitmap to disk!\n");
1267  			} else {
1268  				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1269  				drbd_md_sync(device);
1270  			}
1271  		}
1272  		put_ldev(device);
1273  	}
1274  
1275  	c = (struct bm_xfer_ctx) {
1276  		.bm_bits = drbd_bm_bits(device),
1277  		.bm_words = drbd_bm_words(device),
1278  	};
1279  
1280  	do {
1281  		err = send_bitmap_rle_or_plain(peer_device, &c);
1282  	} while (err > 0);
1283  
1284  	return err == 0;
1285  }
1286  
drbd_send_bitmap(struct drbd_device * device,struct drbd_peer_device * peer_device)1287  int drbd_send_bitmap(struct drbd_device *device, struct drbd_peer_device *peer_device)
1288  {
1289  	struct drbd_socket *sock = &peer_device->connection->data;
1290  	int err = -1;
1291  
1292  	mutex_lock(&sock->mutex);
1293  	if (sock->socket)
1294  		err = !_drbd_send_bitmap(device, peer_device);
1295  	mutex_unlock(&sock->mutex);
1296  	return err;
1297  }
1298  
drbd_send_b_ack(struct drbd_connection * connection,u32 barrier_nr,u32 set_size)1299  void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1300  {
1301  	struct drbd_socket *sock;
1302  	struct p_barrier_ack *p;
1303  
1304  	if (connection->cstate < C_WF_REPORT_PARAMS)
1305  		return;
1306  
1307  	sock = &connection->meta;
1308  	p = conn_prepare_command(connection, sock);
1309  	if (!p)
1310  		return;
1311  	p->barrier = barrier_nr;
1312  	p->set_size = cpu_to_be32(set_size);
1313  	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1314  }
1315  
1316  /**
1317   * _drbd_send_ack() - Sends an ack packet
1318   * @peer_device:	DRBD peer device.
1319   * @cmd:		Packet command code.
1320   * @sector:		sector, needs to be in big endian byte order
1321   * @blksize:		size in byte, needs to be in big endian byte order
1322   * @block_id:		Id, big endian byte order
1323   */
_drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,u64 sector,u32 blksize,u64 block_id)1324  static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1325  			  u64 sector, u32 blksize, u64 block_id)
1326  {
1327  	struct drbd_socket *sock;
1328  	struct p_block_ack *p;
1329  
1330  	if (peer_device->device->state.conn < C_CONNECTED)
1331  		return -EIO;
1332  
1333  	sock = &peer_device->connection->meta;
1334  	p = drbd_prepare_command(peer_device, sock);
1335  	if (!p)
1336  		return -EIO;
1337  	p->sector = sector;
1338  	p->block_id = block_id;
1339  	p->blksize = blksize;
1340  	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1341  	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1342  }
1343  
1344  /* dp->sector and dp->block_id already/still in network byte order,
1345   * data_size is payload size according to dp->head,
1346   * and may need to be corrected for digest size. */
drbd_send_ack_dp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_data * dp,int data_size)1347  void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1348  		      struct p_data *dp, int data_size)
1349  {
1350  	if (peer_device->connection->peer_integrity_tfm)
1351  		data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1352  	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1353  		       dp->block_id);
1354  }
1355  
drbd_send_ack_rp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_block_req * rp)1356  void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1357  		      struct p_block_req *rp)
1358  {
1359  	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1360  }
1361  
1362  /**
1363   * drbd_send_ack() - Sends an ack packet
1364   * @peer_device:	DRBD peer device
1365   * @cmd:		packet command code
1366   * @peer_req:		peer request
1367   */
drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1368  int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1369  		  struct drbd_peer_request *peer_req)
1370  {
1371  	return _drbd_send_ack(peer_device, cmd,
1372  			      cpu_to_be64(peer_req->i.sector),
1373  			      cpu_to_be32(peer_req->i.size),
1374  			      peer_req->block_id);
1375  }
1376  
1377  /* This function misuses the block_id field to signal if the blocks
1378   * are is sync or not. */
drbd_send_ack_ex(struct drbd_peer_device * peer_device,enum drbd_packet cmd,sector_t sector,int blksize,u64 block_id)1379  int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1380  		     sector_t sector, int blksize, u64 block_id)
1381  {
1382  	return _drbd_send_ack(peer_device, cmd,
1383  			      cpu_to_be64(sector),
1384  			      cpu_to_be32(blksize),
1385  			      cpu_to_be64(block_id));
1386  }
1387  
drbd_send_rs_deallocated(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1388  int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1389  			     struct drbd_peer_request *peer_req)
1390  {
1391  	struct drbd_socket *sock;
1392  	struct p_block_desc *p;
1393  
1394  	sock = &peer_device->connection->data;
1395  	p = drbd_prepare_command(peer_device, sock);
1396  	if (!p)
1397  		return -EIO;
1398  	p->sector = cpu_to_be64(peer_req->i.sector);
1399  	p->blksize = cpu_to_be32(peer_req->i.size);
1400  	p->pad = 0;
1401  	return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1402  }
1403  
drbd_send_drequest(struct drbd_peer_device * peer_device,int cmd,sector_t sector,int size,u64 block_id)1404  int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1405  		       sector_t sector, int size, u64 block_id)
1406  {
1407  	struct drbd_socket *sock;
1408  	struct p_block_req *p;
1409  
1410  	sock = &peer_device->connection->data;
1411  	p = drbd_prepare_command(peer_device, sock);
1412  	if (!p)
1413  		return -EIO;
1414  	p->sector = cpu_to_be64(sector);
1415  	p->block_id = block_id;
1416  	p->blksize = cpu_to_be32(size);
1417  	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1418  }
1419  
drbd_send_drequest_csum(struct drbd_peer_device * peer_device,sector_t sector,int size,void * digest,int digest_size,enum drbd_packet cmd)1420  int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1421  			    void *digest, int digest_size, enum drbd_packet cmd)
1422  {
1423  	struct drbd_socket *sock;
1424  	struct p_block_req *p;
1425  
1426  	/* FIXME: Put the digest into the preallocated socket buffer.  */
1427  
1428  	sock = &peer_device->connection->data;
1429  	p = drbd_prepare_command(peer_device, sock);
1430  	if (!p)
1431  		return -EIO;
1432  	p->sector = cpu_to_be64(sector);
1433  	p->block_id = ID_SYNCER /* unused */;
1434  	p->blksize = cpu_to_be32(size);
1435  	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1436  }
1437  
drbd_send_ov_request(struct drbd_peer_device * peer_device,sector_t sector,int size)1438  int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1439  {
1440  	struct drbd_socket *sock;
1441  	struct p_block_req *p;
1442  
1443  	sock = &peer_device->connection->data;
1444  	p = drbd_prepare_command(peer_device, sock);
1445  	if (!p)
1446  		return -EIO;
1447  	p->sector = cpu_to_be64(sector);
1448  	p->block_id = ID_SYNCER /* unused */;
1449  	p->blksize = cpu_to_be32(size);
1450  	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1451  }
1452  
1453  /* called on sndtimeo
1454   * returns false if we should retry,
1455   * true if we think connection is dead
1456   */
we_should_drop_the_connection(struct drbd_connection * connection,struct socket * sock)1457  static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1458  {
1459  	int drop_it;
1460  	/* long elapsed = (long)(jiffies - device->last_received); */
1461  
1462  	drop_it =   connection->meta.socket == sock
1463  		|| !connection->ack_receiver.task
1464  		|| get_t_state(&connection->ack_receiver) != RUNNING
1465  		|| connection->cstate < C_WF_REPORT_PARAMS;
1466  
1467  	if (drop_it)
1468  		return true;
1469  
1470  	drop_it = !--connection->ko_count;
1471  	if (!drop_it) {
1472  		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1473  			 current->comm, current->pid, connection->ko_count);
1474  		request_ping(connection);
1475  	}
1476  
1477  	return drop_it; /* && (device->state == R_PRIMARY) */;
1478  }
1479  
drbd_update_congested(struct drbd_connection * connection)1480  static void drbd_update_congested(struct drbd_connection *connection)
1481  {
1482  	struct sock *sk = connection->data.socket->sk;
1483  	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1484  		set_bit(NET_CONGESTED, &connection->flags);
1485  }
1486  
1487  /* The idea of sendpage seems to be to put some kind of reference
1488   * to the page into the skb, and to hand it over to the NIC. In
1489   * this process get_page() gets called.
1490   *
1491   * As soon as the page was really sent over the network put_page()
1492   * gets called by some part of the network layer. [ NIC driver? ]
1493   *
1494   * [ get_page() / put_page() increment/decrement the count. If count
1495   *   reaches 0 the page will be freed. ]
1496   *
1497   * This works nicely with pages from FSs.
1498   * But this means that in protocol A we might signal IO completion too early!
1499   *
1500   * In order not to corrupt data during a resync we must make sure
1501   * that we do not reuse our own buffer pages (EEs) to early, therefore
1502   * we have the net_ee list.
1503   *
1504   * XFS seems to have problems, still, it submits pages with page_count == 0!
1505   * As a workaround, we disable sendpage on pages
1506   * with page_count == 0 or PageSlab.
1507   */
_drbd_no_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1508  static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1509  			      int offset, size_t size, unsigned msg_flags)
1510  {
1511  	struct socket *socket;
1512  	void *addr;
1513  	int err;
1514  
1515  	socket = peer_device->connection->data.socket;
1516  	addr = kmap(page) + offset;
1517  	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1518  	kunmap(page);
1519  	if (!err)
1520  		peer_device->device->send_cnt += size >> 9;
1521  	return err;
1522  }
1523  
_drbd_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1524  static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1525  		    int offset, size_t size, unsigned msg_flags)
1526  {
1527  	struct socket *socket = peer_device->connection->data.socket;
1528  	struct msghdr msg = { .msg_flags = msg_flags, };
1529  	struct bio_vec bvec;
1530  	int len = size;
1531  	int err = -EIO;
1532  
1533  	/* e.g. XFS meta- & log-data is in slab pages, which have a
1534  	 * page_count of 0 and/or have PageSlab() set.
1535  	 * we cannot use send_page for those, as that does get_page();
1536  	 * put_page(); and would cause either a VM_BUG directly, or
1537  	 * __page_cache_release a page that would actually still be referenced
1538  	 * by someone, leading to some obscure delayed Oops somewhere else. */
1539  	if (!drbd_disable_sendpage && sendpages_ok(page, len, offset))
1540  		msg.msg_flags |= MSG_NOSIGNAL | MSG_SPLICE_PAGES;
1541  
1542  	drbd_update_congested(peer_device->connection);
1543  	do {
1544  		int sent;
1545  
1546  		bvec_set_page(&bvec, page, len, offset);
1547  		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1548  
1549  		sent = sock_sendmsg(socket, &msg);
1550  		if (sent <= 0) {
1551  			if (sent == -EAGAIN) {
1552  				if (we_should_drop_the_connection(peer_device->connection, socket))
1553  					break;
1554  				continue;
1555  			}
1556  			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1557  			     __func__, (int)size, len, sent);
1558  			if (sent < 0)
1559  				err = sent;
1560  			break;
1561  		}
1562  		len    -= sent;
1563  		offset += sent;
1564  	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1565  	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1566  
1567  	if (len == 0) {
1568  		err = 0;
1569  		peer_device->device->send_cnt += size >> 9;
1570  	}
1571  	return err;
1572  }
1573  
_drbd_send_bio(struct drbd_peer_device * peer_device,struct bio * bio)1574  static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1575  {
1576  	struct bio_vec bvec;
1577  	struct bvec_iter iter;
1578  
1579  	/* hint all but last page with MSG_MORE */
1580  	bio_for_each_segment(bvec, bio, iter) {
1581  		int err;
1582  
1583  		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1584  					 bvec.bv_offset, bvec.bv_len,
1585  					 bio_iter_last(bvec, iter)
1586  					 ? 0 : MSG_MORE);
1587  		if (err)
1588  			return err;
1589  	}
1590  	return 0;
1591  }
1592  
_drbd_send_zc_bio(struct drbd_peer_device * peer_device,struct bio * bio)1593  static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1594  {
1595  	struct bio_vec bvec;
1596  	struct bvec_iter iter;
1597  
1598  	/* hint all but last page with MSG_MORE */
1599  	bio_for_each_segment(bvec, bio, iter) {
1600  		int err;
1601  
1602  		err = _drbd_send_page(peer_device, bvec.bv_page,
1603  				      bvec.bv_offset, bvec.bv_len,
1604  				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1605  		if (err)
1606  			return err;
1607  	}
1608  	return 0;
1609  }
1610  
_drbd_send_zc_ee(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1611  static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1612  			    struct drbd_peer_request *peer_req)
1613  {
1614  	struct page *page = peer_req->pages;
1615  	unsigned len = peer_req->i.size;
1616  	int err;
1617  
1618  	/* hint all but last page with MSG_MORE */
1619  	page_chain_for_each(page) {
1620  		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1621  
1622  		err = _drbd_send_page(peer_device, page, 0, l,
1623  				      page_chain_next(page) ? MSG_MORE : 0);
1624  		if (err)
1625  			return err;
1626  		len -= l;
1627  	}
1628  	return 0;
1629  }
1630  
bio_flags_to_wire(struct drbd_connection * connection,struct bio * bio)1631  static u32 bio_flags_to_wire(struct drbd_connection *connection,
1632  			     struct bio *bio)
1633  {
1634  	if (connection->agreed_pro_version >= 95)
1635  		return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1636  			(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1637  			(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1638  			(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1639  			(bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1640  			  ((connection->agreed_features & DRBD_FF_WZEROES) ?
1641  			   (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1642  			   : DP_DISCARD)
1643  			: 0);
1644  	else
1645  		return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1646  }
1647  
1648  /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1649   * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1650   */
drbd_send_dblock(struct drbd_peer_device * peer_device,struct drbd_request * req)1651  int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1652  {
1653  	struct drbd_device *device = peer_device->device;
1654  	struct drbd_socket *sock;
1655  	struct p_data *p;
1656  	void *digest_out;
1657  	unsigned int dp_flags = 0;
1658  	int digest_size;
1659  	int err;
1660  
1661  	sock = &peer_device->connection->data;
1662  	p = drbd_prepare_command(peer_device, sock);
1663  	digest_size = peer_device->connection->integrity_tfm ?
1664  		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1665  
1666  	if (!p)
1667  		return -EIO;
1668  	p->sector = cpu_to_be64(req->i.sector);
1669  	p->block_id = (unsigned long)req;
1670  	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1671  	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1672  	if (device->state.conn >= C_SYNC_SOURCE &&
1673  	    device->state.conn <= C_PAUSED_SYNC_T)
1674  		dp_flags |= DP_MAY_SET_IN_SYNC;
1675  	if (peer_device->connection->agreed_pro_version >= 100) {
1676  		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1677  			dp_flags |= DP_SEND_RECEIVE_ACK;
1678  		/* During resync, request an explicit write ack,
1679  		 * even in protocol != C */
1680  		if (req->rq_state & RQ_EXP_WRITE_ACK
1681  		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1682  			dp_flags |= DP_SEND_WRITE_ACK;
1683  	}
1684  	p->dp_flags = cpu_to_be32(dp_flags);
1685  
1686  	if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1687  		enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1688  		struct p_trim *t = (struct p_trim*)p;
1689  		t->size = cpu_to_be32(req->i.size);
1690  		err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1691  		goto out;
1692  	}
1693  	digest_out = p + 1;
1694  
1695  	/* our digest is still only over the payload.
1696  	 * TRIM does not carry any payload. */
1697  	if (digest_size)
1698  		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1699  	err = __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1700  			     sizeof(*p) + digest_size, NULL, req->i.size);
1701  	if (!err) {
1702  		/* For protocol A, we have to memcpy the payload into
1703  		 * socket buffers, as we may complete right away
1704  		 * as soon as we handed it over to tcp, at which point the data
1705  		 * pages may become invalid.
1706  		 *
1707  		 * For data-integrity enabled, we copy it as well, so we can be
1708  		 * sure that even if the bio pages may still be modified, it
1709  		 * won't change the data on the wire, thus if the digest checks
1710  		 * out ok after sending on this side, but does not fit on the
1711  		 * receiving side, we sure have detected corruption elsewhere.
1712  		 */
1713  		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1714  			err = _drbd_send_bio(peer_device, req->master_bio);
1715  		else
1716  			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1717  
1718  		/* double check digest, sometimes buffers have been modified in flight. */
1719  		if (digest_size > 0 && digest_size <= 64) {
1720  			/* 64 byte, 512 bit, is the largest digest size
1721  			 * currently supported in kernel crypto. */
1722  			unsigned char digest[64];
1723  			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1724  			if (memcmp(p + 1, digest, digest_size)) {
1725  				drbd_warn(device,
1726  					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1727  					(unsigned long long)req->i.sector, req->i.size);
1728  			}
1729  		} /* else if (digest_size > 64) {
1730  		     ... Be noisy about digest too large ...
1731  		} */
1732  	}
1733  out:
1734  	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1735  
1736  	return err;
1737  }
1738  
1739  /* answer packet, used to send data back for read requests:
1740   *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1741   *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1742   */
drbd_send_block(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1743  int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1744  		    struct drbd_peer_request *peer_req)
1745  {
1746  	struct drbd_device *device = peer_device->device;
1747  	struct drbd_socket *sock;
1748  	struct p_data *p;
1749  	int err;
1750  	int digest_size;
1751  
1752  	sock = &peer_device->connection->data;
1753  	p = drbd_prepare_command(peer_device, sock);
1754  
1755  	digest_size = peer_device->connection->integrity_tfm ?
1756  		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1757  
1758  	if (!p)
1759  		return -EIO;
1760  	p->sector = cpu_to_be64(peer_req->i.sector);
1761  	p->block_id = peer_req->block_id;
1762  	p->seq_num = 0;  /* unused */
1763  	p->dp_flags = 0;
1764  	if (digest_size)
1765  		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1766  	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1767  	if (!err)
1768  		err = _drbd_send_zc_ee(peer_device, peer_req);
1769  	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1770  
1771  	return err;
1772  }
1773  
drbd_send_out_of_sync(struct drbd_peer_device * peer_device,struct drbd_request * req)1774  int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1775  {
1776  	struct drbd_socket *sock;
1777  	struct p_block_desc *p;
1778  
1779  	sock = &peer_device->connection->data;
1780  	p = drbd_prepare_command(peer_device, sock);
1781  	if (!p)
1782  		return -EIO;
1783  	p->sector = cpu_to_be64(req->i.sector);
1784  	p->blksize = cpu_to_be32(req->i.size);
1785  	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1786  }
1787  
1788  /*
1789    drbd_send distinguishes two cases:
1790  
1791    Packets sent via the data socket "sock"
1792    and packets sent via the meta data socket "msock"
1793  
1794  		    sock                      msock
1795    -----------------+-------------------------+------------------------------
1796    timeout           conf.timeout / 2          conf.timeout / 2
1797    timeout action    send a ping via msock     Abort communication
1798  					      and close all sockets
1799  */
1800  
1801  /*
1802   * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1803   */
drbd_send(struct drbd_connection * connection,struct socket * sock,void * buf,size_t size,unsigned msg_flags)1804  int drbd_send(struct drbd_connection *connection, struct socket *sock,
1805  	      void *buf, size_t size, unsigned msg_flags)
1806  {
1807  	struct kvec iov = {.iov_base = buf, .iov_len = size};
1808  	struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1809  	int rv, sent = 0;
1810  
1811  	if (!sock)
1812  		return -EBADR;
1813  
1814  	/* THINK  if (signal_pending) return ... ? */
1815  
1816  	iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &iov, 1, size);
1817  
1818  	if (sock == connection->data.socket) {
1819  		rcu_read_lock();
1820  		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1821  		rcu_read_unlock();
1822  		drbd_update_congested(connection);
1823  	}
1824  	do {
1825  		rv = sock_sendmsg(sock, &msg);
1826  		if (rv == -EAGAIN) {
1827  			if (we_should_drop_the_connection(connection, sock))
1828  				break;
1829  			else
1830  				continue;
1831  		}
1832  		if (rv == -EINTR) {
1833  			flush_signals(current);
1834  			rv = 0;
1835  		}
1836  		if (rv < 0)
1837  			break;
1838  		sent += rv;
1839  	} while (sent < size);
1840  
1841  	if (sock == connection->data.socket)
1842  		clear_bit(NET_CONGESTED, &connection->flags);
1843  
1844  	if (rv <= 0) {
1845  		if (rv != -EAGAIN) {
1846  			drbd_err(connection, "%s_sendmsg returned %d\n",
1847  				 sock == connection->meta.socket ? "msock" : "sock",
1848  				 rv);
1849  			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1850  		} else
1851  			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1852  	}
1853  
1854  	return sent;
1855  }
1856  
1857  /*
1858   * drbd_send_all  -  Send an entire buffer
1859   *
1860   * Returns 0 upon success and a negative error value otherwise.
1861   */
drbd_send_all(struct drbd_connection * connection,struct socket * sock,void * buffer,size_t size,unsigned msg_flags)1862  int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1863  		  size_t size, unsigned msg_flags)
1864  {
1865  	int err;
1866  
1867  	err = drbd_send(connection, sock, buffer, size, msg_flags);
1868  	if (err < 0)
1869  		return err;
1870  	if (err != size)
1871  		return -EIO;
1872  	return 0;
1873  }
1874  
drbd_open(struct gendisk * disk,blk_mode_t mode)1875  static int drbd_open(struct gendisk *disk, blk_mode_t mode)
1876  {
1877  	struct drbd_device *device = disk->private_data;
1878  	unsigned long flags;
1879  	int rv = 0;
1880  
1881  	mutex_lock(&drbd_main_mutex);
1882  	spin_lock_irqsave(&device->resource->req_lock, flags);
1883  	/* to have a stable device->state.role
1884  	 * and no race with updating open_cnt */
1885  
1886  	if (device->state.role != R_PRIMARY) {
1887  		if (mode & BLK_OPEN_WRITE)
1888  			rv = -EROFS;
1889  		else if (!drbd_allow_oos)
1890  			rv = -EMEDIUMTYPE;
1891  	}
1892  
1893  	if (!rv)
1894  		device->open_cnt++;
1895  	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1896  	mutex_unlock(&drbd_main_mutex);
1897  
1898  	return rv;
1899  }
1900  
drbd_release(struct gendisk * gd)1901  static void drbd_release(struct gendisk *gd)
1902  {
1903  	struct drbd_device *device = gd->private_data;
1904  
1905  	mutex_lock(&drbd_main_mutex);
1906  	device->open_cnt--;
1907  	mutex_unlock(&drbd_main_mutex);
1908  }
1909  
1910  /* need to hold resource->req_lock */
drbd_queue_unplug(struct drbd_device * device)1911  void drbd_queue_unplug(struct drbd_device *device)
1912  {
1913  	if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1914  		D_ASSERT(device, device->state.role == R_PRIMARY);
1915  		if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1916  			drbd_queue_work_if_unqueued(
1917  				&first_peer_device(device)->connection->sender_work,
1918  				&device->unplug_work);
1919  		}
1920  	}
1921  }
1922  
drbd_set_defaults(struct drbd_device * device)1923  static void drbd_set_defaults(struct drbd_device *device)
1924  {
1925  	/* Beware! The actual layout differs
1926  	 * between big endian and little endian */
1927  	device->state = (union drbd_dev_state) {
1928  		{ .role = R_SECONDARY,
1929  		  .peer = R_UNKNOWN,
1930  		  .conn = C_STANDALONE,
1931  		  .disk = D_DISKLESS,
1932  		  .pdsk = D_UNKNOWN,
1933  		} };
1934  }
1935  
drbd_init_set_defaults(struct drbd_device * device)1936  void drbd_init_set_defaults(struct drbd_device *device)
1937  {
1938  	/* the memset(,0,) did most of this.
1939  	 * note: only assignments, no allocation in here */
1940  
1941  	drbd_set_defaults(device);
1942  
1943  	atomic_set(&device->ap_bio_cnt, 0);
1944  	atomic_set(&device->ap_actlog_cnt, 0);
1945  	atomic_set(&device->ap_pending_cnt, 0);
1946  	atomic_set(&device->rs_pending_cnt, 0);
1947  	atomic_set(&device->unacked_cnt, 0);
1948  	atomic_set(&device->local_cnt, 0);
1949  	atomic_set(&device->pp_in_use_by_net, 0);
1950  	atomic_set(&device->rs_sect_in, 0);
1951  	atomic_set(&device->rs_sect_ev, 0);
1952  	atomic_set(&device->ap_in_flight, 0);
1953  	atomic_set(&device->md_io.in_use, 0);
1954  
1955  	mutex_init(&device->own_state_mutex);
1956  	device->state_mutex = &device->own_state_mutex;
1957  
1958  	spin_lock_init(&device->al_lock);
1959  	spin_lock_init(&device->peer_seq_lock);
1960  
1961  	INIT_LIST_HEAD(&device->active_ee);
1962  	INIT_LIST_HEAD(&device->sync_ee);
1963  	INIT_LIST_HEAD(&device->done_ee);
1964  	INIT_LIST_HEAD(&device->read_ee);
1965  	INIT_LIST_HEAD(&device->net_ee);
1966  	INIT_LIST_HEAD(&device->resync_reads);
1967  	INIT_LIST_HEAD(&device->resync_work.list);
1968  	INIT_LIST_HEAD(&device->unplug_work.list);
1969  	INIT_LIST_HEAD(&device->bm_io_work.w.list);
1970  	INIT_LIST_HEAD(&device->pending_master_completion[0]);
1971  	INIT_LIST_HEAD(&device->pending_master_completion[1]);
1972  	INIT_LIST_HEAD(&device->pending_completion[0]);
1973  	INIT_LIST_HEAD(&device->pending_completion[1]);
1974  
1975  	device->resync_work.cb  = w_resync_timer;
1976  	device->unplug_work.cb  = w_send_write_hint;
1977  	device->bm_io_work.w.cb = w_bitmap_io;
1978  
1979  	timer_setup(&device->resync_timer, resync_timer_fn, 0);
1980  	timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
1981  	timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
1982  	timer_setup(&device->request_timer, request_timer_fn, 0);
1983  
1984  	init_waitqueue_head(&device->misc_wait);
1985  	init_waitqueue_head(&device->state_wait);
1986  	init_waitqueue_head(&device->ee_wait);
1987  	init_waitqueue_head(&device->al_wait);
1988  	init_waitqueue_head(&device->seq_wait);
1989  
1990  	device->resync_wenr = LC_FREE;
1991  	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1992  	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1993  }
1994  
drbd_set_my_capacity(struct drbd_device * device,sector_t size)1995  void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
1996  {
1997  	char ppb[10];
1998  
1999  	set_capacity_and_notify(device->vdisk, size);
2000  
2001  	drbd_info(device, "size = %s (%llu KB)\n",
2002  		ppsize(ppb, size>>1), (unsigned long long)size>>1);
2003  }
2004  
drbd_device_cleanup(struct drbd_device * device)2005  void drbd_device_cleanup(struct drbd_device *device)
2006  {
2007  	int i;
2008  	if (first_peer_device(device)->connection->receiver.t_state != NONE)
2009  		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2010  				first_peer_device(device)->connection->receiver.t_state);
2011  
2012  	device->al_writ_cnt  =
2013  	device->bm_writ_cnt  =
2014  	device->read_cnt     =
2015  	device->recv_cnt     =
2016  	device->send_cnt     =
2017  	device->writ_cnt     =
2018  	device->p_size       =
2019  	device->rs_start     =
2020  	device->rs_total     =
2021  	device->rs_failed    = 0;
2022  	device->rs_last_events = 0;
2023  	device->rs_last_sect_ev = 0;
2024  	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2025  		device->rs_mark_left[i] = 0;
2026  		device->rs_mark_time[i] = 0;
2027  	}
2028  	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2029  
2030  	set_capacity_and_notify(device->vdisk, 0);
2031  	if (device->bitmap) {
2032  		/* maybe never allocated. */
2033  		drbd_bm_resize(device, 0, 1);
2034  		drbd_bm_cleanup(device);
2035  	}
2036  
2037  	drbd_backing_dev_free(device, device->ldev);
2038  	device->ldev = NULL;
2039  
2040  	clear_bit(AL_SUSPENDED, &device->flags);
2041  
2042  	D_ASSERT(device, list_empty(&device->active_ee));
2043  	D_ASSERT(device, list_empty(&device->sync_ee));
2044  	D_ASSERT(device, list_empty(&device->done_ee));
2045  	D_ASSERT(device, list_empty(&device->read_ee));
2046  	D_ASSERT(device, list_empty(&device->net_ee));
2047  	D_ASSERT(device, list_empty(&device->resync_reads));
2048  	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2049  	D_ASSERT(device, list_empty(&device->resync_work.list));
2050  	D_ASSERT(device, list_empty(&device->unplug_work.list));
2051  
2052  	drbd_set_defaults(device);
2053  }
2054  
2055  
drbd_destroy_mempools(void)2056  static void drbd_destroy_mempools(void)
2057  {
2058  	struct page *page;
2059  
2060  	while (drbd_pp_pool) {
2061  		page = drbd_pp_pool;
2062  		drbd_pp_pool = (struct page *)page_private(page);
2063  		__free_page(page);
2064  		drbd_pp_vacant--;
2065  	}
2066  
2067  	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2068  
2069  	bioset_exit(&drbd_io_bio_set);
2070  	bioset_exit(&drbd_md_io_bio_set);
2071  	mempool_exit(&drbd_md_io_page_pool);
2072  	mempool_exit(&drbd_ee_mempool);
2073  	mempool_exit(&drbd_request_mempool);
2074  	kmem_cache_destroy(drbd_ee_cache);
2075  	kmem_cache_destroy(drbd_request_cache);
2076  	kmem_cache_destroy(drbd_bm_ext_cache);
2077  	kmem_cache_destroy(drbd_al_ext_cache);
2078  
2079  	drbd_ee_cache        = NULL;
2080  	drbd_request_cache   = NULL;
2081  	drbd_bm_ext_cache    = NULL;
2082  	drbd_al_ext_cache    = NULL;
2083  
2084  	return;
2085  }
2086  
drbd_create_mempools(void)2087  static int drbd_create_mempools(void)
2088  {
2089  	struct page *page;
2090  	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2091  	int i, ret;
2092  
2093  	/* caches */
2094  	drbd_request_cache = kmem_cache_create(
2095  		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2096  	if (drbd_request_cache == NULL)
2097  		goto Enomem;
2098  
2099  	drbd_ee_cache = kmem_cache_create(
2100  		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2101  	if (drbd_ee_cache == NULL)
2102  		goto Enomem;
2103  
2104  	drbd_bm_ext_cache = kmem_cache_create(
2105  		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2106  	if (drbd_bm_ext_cache == NULL)
2107  		goto Enomem;
2108  
2109  	drbd_al_ext_cache = kmem_cache_create(
2110  		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2111  	if (drbd_al_ext_cache == NULL)
2112  		goto Enomem;
2113  
2114  	/* mempools */
2115  	ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2116  	if (ret)
2117  		goto Enomem;
2118  
2119  	ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2120  			  BIOSET_NEED_BVECS);
2121  	if (ret)
2122  		goto Enomem;
2123  
2124  	ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2125  	if (ret)
2126  		goto Enomem;
2127  
2128  	ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2129  				     drbd_request_cache);
2130  	if (ret)
2131  		goto Enomem;
2132  
2133  	ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2134  	if (ret)
2135  		goto Enomem;
2136  
2137  	for (i = 0; i < number; i++) {
2138  		page = alloc_page(GFP_HIGHUSER);
2139  		if (!page)
2140  			goto Enomem;
2141  		set_page_private(page, (unsigned long)drbd_pp_pool);
2142  		drbd_pp_pool = page;
2143  	}
2144  	drbd_pp_vacant = number;
2145  
2146  	return 0;
2147  
2148  Enomem:
2149  	drbd_destroy_mempools(); /* in case we allocated some */
2150  	return -ENOMEM;
2151  }
2152  
drbd_release_all_peer_reqs(struct drbd_device * device)2153  static void drbd_release_all_peer_reqs(struct drbd_device *device)
2154  {
2155  	int rr;
2156  
2157  	rr = drbd_free_peer_reqs(device, &device->active_ee);
2158  	if (rr)
2159  		drbd_err(device, "%d EEs in active list found!\n", rr);
2160  
2161  	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2162  	if (rr)
2163  		drbd_err(device, "%d EEs in sync list found!\n", rr);
2164  
2165  	rr = drbd_free_peer_reqs(device, &device->read_ee);
2166  	if (rr)
2167  		drbd_err(device, "%d EEs in read list found!\n", rr);
2168  
2169  	rr = drbd_free_peer_reqs(device, &device->done_ee);
2170  	if (rr)
2171  		drbd_err(device, "%d EEs in done list found!\n", rr);
2172  
2173  	rr = drbd_free_peer_reqs(device, &device->net_ee);
2174  	if (rr)
2175  		drbd_err(device, "%d EEs in net list found!\n", rr);
2176  }
2177  
2178  /* caution. no locking. */
drbd_destroy_device(struct kref * kref)2179  void drbd_destroy_device(struct kref *kref)
2180  {
2181  	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2182  	struct drbd_resource *resource = device->resource;
2183  	struct drbd_peer_device *peer_device, *tmp_peer_device;
2184  
2185  	timer_shutdown_sync(&device->request_timer);
2186  
2187  	/* paranoia asserts */
2188  	D_ASSERT(device, device->open_cnt == 0);
2189  	/* end paranoia asserts */
2190  
2191  	/* cleanup stuff that may have been allocated during
2192  	 * device (re-)configuration or state changes */
2193  
2194  	drbd_backing_dev_free(device, device->ldev);
2195  	device->ldev = NULL;
2196  
2197  	drbd_release_all_peer_reqs(device);
2198  
2199  	lc_destroy(device->act_log);
2200  	lc_destroy(device->resync);
2201  
2202  	kfree(device->p_uuid);
2203  	/* device->p_uuid = NULL; */
2204  
2205  	if (device->bitmap) /* should no longer be there. */
2206  		drbd_bm_cleanup(device);
2207  	__free_page(device->md_io.page);
2208  	put_disk(device->vdisk);
2209  	kfree(device->rs_plan_s);
2210  
2211  	/* not for_each_connection(connection, resource):
2212  	 * those may have been cleaned up and disassociated already.
2213  	 */
2214  	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2215  		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2216  		kfree(peer_device);
2217  	}
2218  	if (device->submit.wq)
2219  		destroy_workqueue(device->submit.wq);
2220  	kfree(device);
2221  	kref_put(&resource->kref, drbd_destroy_resource);
2222  }
2223  
2224  /* One global retry thread, if we need to push back some bio and have it
2225   * reinserted through our make request function.
2226   */
2227  static struct retry_worker {
2228  	struct workqueue_struct *wq;
2229  	struct work_struct worker;
2230  
2231  	spinlock_t lock;
2232  	struct list_head writes;
2233  } retry;
2234  
do_retry(struct work_struct * ws)2235  static void do_retry(struct work_struct *ws)
2236  {
2237  	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2238  	LIST_HEAD(writes);
2239  	struct drbd_request *req, *tmp;
2240  
2241  	spin_lock_irq(&retry->lock);
2242  	list_splice_init(&retry->writes, &writes);
2243  	spin_unlock_irq(&retry->lock);
2244  
2245  	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2246  		struct drbd_device *device = req->device;
2247  		struct bio *bio = req->master_bio;
2248  		bool expected;
2249  
2250  		expected =
2251  			expect(device, atomic_read(&req->completion_ref) == 0) &&
2252  			expect(device, req->rq_state & RQ_POSTPONED) &&
2253  			expect(device, (req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2254  				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2255  
2256  		if (!expected)
2257  			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2258  				req, atomic_read(&req->completion_ref),
2259  				req->rq_state);
2260  
2261  		/* We still need to put one kref associated with the
2262  		 * "completion_ref" going zero in the code path that queued it
2263  		 * here.  The request object may still be referenced by a
2264  		 * frozen local req->private_bio, in case we force-detached.
2265  		 */
2266  		kref_put(&req->kref, drbd_req_destroy);
2267  
2268  		/* A single suspended or otherwise blocking device may stall
2269  		 * all others as well.  Fortunately, this code path is to
2270  		 * recover from a situation that "should not happen":
2271  		 * concurrent writes in multi-primary setup.
2272  		 * In a "normal" lifecycle, this workqueue is supposed to be
2273  		 * destroyed without ever doing anything.
2274  		 * If it turns out to be an issue anyways, we can do per
2275  		 * resource (replication group) or per device (minor) retry
2276  		 * workqueues instead.
2277  		 */
2278  
2279  		/* We are not just doing submit_bio_noacct(),
2280  		 * as we want to keep the start_time information. */
2281  		inc_ap_bio(device);
2282  		__drbd_make_request(device, bio);
2283  	}
2284  }
2285  
2286  /* called via drbd_req_put_completion_ref(),
2287   * holds resource->req_lock */
drbd_restart_request(struct drbd_request * req)2288  void drbd_restart_request(struct drbd_request *req)
2289  {
2290  	unsigned long flags;
2291  	spin_lock_irqsave(&retry.lock, flags);
2292  	list_move_tail(&req->tl_requests, &retry.writes);
2293  	spin_unlock_irqrestore(&retry.lock, flags);
2294  
2295  	/* Drop the extra reference that would otherwise
2296  	 * have been dropped by complete_master_bio.
2297  	 * do_retry() needs to grab a new one. */
2298  	dec_ap_bio(req->device);
2299  
2300  	queue_work(retry.wq, &retry.worker);
2301  }
2302  
drbd_destroy_resource(struct kref * kref)2303  void drbd_destroy_resource(struct kref *kref)
2304  {
2305  	struct drbd_resource *resource =
2306  		container_of(kref, struct drbd_resource, kref);
2307  
2308  	idr_destroy(&resource->devices);
2309  	free_cpumask_var(resource->cpu_mask);
2310  	kfree(resource->name);
2311  	kfree(resource);
2312  }
2313  
drbd_free_resource(struct drbd_resource * resource)2314  void drbd_free_resource(struct drbd_resource *resource)
2315  {
2316  	struct drbd_connection *connection, *tmp;
2317  
2318  	for_each_connection_safe(connection, tmp, resource) {
2319  		list_del(&connection->connections);
2320  		drbd_debugfs_connection_cleanup(connection);
2321  		kref_put(&connection->kref, drbd_destroy_connection);
2322  	}
2323  	drbd_debugfs_resource_cleanup(resource);
2324  	kref_put(&resource->kref, drbd_destroy_resource);
2325  }
2326  
drbd_cleanup(void)2327  static void drbd_cleanup(void)
2328  {
2329  	unsigned int i;
2330  	struct drbd_device *device;
2331  	struct drbd_resource *resource, *tmp;
2332  
2333  	/* first remove proc,
2334  	 * drbdsetup uses it's presence to detect
2335  	 * whether DRBD is loaded.
2336  	 * If we would get stuck in proc removal,
2337  	 * but have netlink already deregistered,
2338  	 * some drbdsetup commands may wait forever
2339  	 * for an answer.
2340  	 */
2341  	if (drbd_proc)
2342  		remove_proc_entry("drbd", NULL);
2343  
2344  	if (retry.wq)
2345  		destroy_workqueue(retry.wq);
2346  
2347  	drbd_genl_unregister();
2348  
2349  	idr_for_each_entry(&drbd_devices, device, i)
2350  		drbd_delete_device(device);
2351  
2352  	/* not _rcu since, no other updater anymore. Genl already unregistered */
2353  	for_each_resource_safe(resource, tmp, &drbd_resources) {
2354  		list_del(&resource->resources);
2355  		drbd_free_resource(resource);
2356  	}
2357  
2358  	drbd_debugfs_cleanup();
2359  
2360  	drbd_destroy_mempools();
2361  	unregister_blkdev(DRBD_MAJOR, "drbd");
2362  
2363  	idr_destroy(&drbd_devices);
2364  
2365  	pr_info("module cleanup done.\n");
2366  }
2367  
drbd_init_workqueue(struct drbd_work_queue * wq)2368  static void drbd_init_workqueue(struct drbd_work_queue* wq)
2369  {
2370  	spin_lock_init(&wq->q_lock);
2371  	INIT_LIST_HEAD(&wq->q);
2372  	init_waitqueue_head(&wq->q_wait);
2373  }
2374  
2375  struct completion_work {
2376  	struct drbd_work w;
2377  	struct completion done;
2378  };
2379  
w_complete(struct drbd_work * w,int cancel)2380  static int w_complete(struct drbd_work *w, int cancel)
2381  {
2382  	struct completion_work *completion_work =
2383  		container_of(w, struct completion_work, w);
2384  
2385  	complete(&completion_work->done);
2386  	return 0;
2387  }
2388  
drbd_flush_workqueue(struct drbd_work_queue * work_queue)2389  void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2390  {
2391  	struct completion_work completion_work;
2392  
2393  	completion_work.w.cb = w_complete;
2394  	init_completion(&completion_work.done);
2395  	drbd_queue_work(work_queue, &completion_work.w);
2396  	wait_for_completion(&completion_work.done);
2397  }
2398  
drbd_find_resource(const char * name)2399  struct drbd_resource *drbd_find_resource(const char *name)
2400  {
2401  	struct drbd_resource *resource;
2402  
2403  	if (!name || !name[0])
2404  		return NULL;
2405  
2406  	rcu_read_lock();
2407  	for_each_resource_rcu(resource, &drbd_resources) {
2408  		if (!strcmp(resource->name, name)) {
2409  			kref_get(&resource->kref);
2410  			goto found;
2411  		}
2412  	}
2413  	resource = NULL;
2414  found:
2415  	rcu_read_unlock();
2416  	return resource;
2417  }
2418  
conn_get_by_addrs(void * my_addr,int my_addr_len,void * peer_addr,int peer_addr_len)2419  struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2420  				     void *peer_addr, int peer_addr_len)
2421  {
2422  	struct drbd_resource *resource;
2423  	struct drbd_connection *connection;
2424  
2425  	rcu_read_lock();
2426  	for_each_resource_rcu(resource, &drbd_resources) {
2427  		for_each_connection_rcu(connection, resource) {
2428  			if (connection->my_addr_len == my_addr_len &&
2429  			    connection->peer_addr_len == peer_addr_len &&
2430  			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2431  			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2432  				kref_get(&connection->kref);
2433  				goto found;
2434  			}
2435  		}
2436  	}
2437  	connection = NULL;
2438  found:
2439  	rcu_read_unlock();
2440  	return connection;
2441  }
2442  
drbd_alloc_socket(struct drbd_socket * socket)2443  static int drbd_alloc_socket(struct drbd_socket *socket)
2444  {
2445  	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2446  	if (!socket->rbuf)
2447  		return -ENOMEM;
2448  	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2449  	if (!socket->sbuf)
2450  		return -ENOMEM;
2451  	return 0;
2452  }
2453  
drbd_free_socket(struct drbd_socket * socket)2454  static void drbd_free_socket(struct drbd_socket *socket)
2455  {
2456  	free_page((unsigned long) socket->sbuf);
2457  	free_page((unsigned long) socket->rbuf);
2458  }
2459  
conn_free_crypto(struct drbd_connection * connection)2460  void conn_free_crypto(struct drbd_connection *connection)
2461  {
2462  	drbd_free_sock(connection);
2463  
2464  	crypto_free_shash(connection->csums_tfm);
2465  	crypto_free_shash(connection->verify_tfm);
2466  	crypto_free_shash(connection->cram_hmac_tfm);
2467  	crypto_free_shash(connection->integrity_tfm);
2468  	crypto_free_shash(connection->peer_integrity_tfm);
2469  	kfree(connection->int_dig_in);
2470  	kfree(connection->int_dig_vv);
2471  
2472  	connection->csums_tfm = NULL;
2473  	connection->verify_tfm = NULL;
2474  	connection->cram_hmac_tfm = NULL;
2475  	connection->integrity_tfm = NULL;
2476  	connection->peer_integrity_tfm = NULL;
2477  	connection->int_dig_in = NULL;
2478  	connection->int_dig_vv = NULL;
2479  }
2480  
set_resource_options(struct drbd_resource * resource,struct res_opts * res_opts)2481  int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2482  {
2483  	struct drbd_connection *connection;
2484  	cpumask_var_t new_cpu_mask;
2485  	int err;
2486  
2487  	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2488  		return -ENOMEM;
2489  
2490  	/* silently ignore cpu mask on UP kernel */
2491  	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2492  		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2493  				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2494  		if (err == -EOVERFLOW) {
2495  			/* So what. mask it out. */
2496  			cpumask_var_t tmp_cpu_mask;
2497  			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2498  				cpumask_setall(tmp_cpu_mask);
2499  				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2500  				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2501  					res_opts->cpu_mask,
2502  					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2503  					nr_cpu_ids);
2504  				free_cpumask_var(tmp_cpu_mask);
2505  				err = 0;
2506  			}
2507  		}
2508  		if (err) {
2509  			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2510  			/* retcode = ERR_CPU_MASK_PARSE; */
2511  			goto fail;
2512  		}
2513  	}
2514  	resource->res_opts = *res_opts;
2515  	if (cpumask_empty(new_cpu_mask))
2516  		drbd_calc_cpu_mask(&new_cpu_mask);
2517  	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2518  		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2519  		for_each_connection_rcu(connection, resource) {
2520  			connection->receiver.reset_cpu_mask = 1;
2521  			connection->ack_receiver.reset_cpu_mask = 1;
2522  			connection->worker.reset_cpu_mask = 1;
2523  		}
2524  	}
2525  	err = 0;
2526  
2527  fail:
2528  	free_cpumask_var(new_cpu_mask);
2529  	return err;
2530  
2531  }
2532  
drbd_create_resource(const char * name)2533  struct drbd_resource *drbd_create_resource(const char *name)
2534  {
2535  	struct drbd_resource *resource;
2536  
2537  	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2538  	if (!resource)
2539  		goto fail;
2540  	resource->name = kstrdup(name, GFP_KERNEL);
2541  	if (!resource->name)
2542  		goto fail_free_resource;
2543  	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2544  		goto fail_free_name;
2545  	kref_init(&resource->kref);
2546  	idr_init(&resource->devices);
2547  	INIT_LIST_HEAD(&resource->connections);
2548  	resource->write_ordering = WO_BDEV_FLUSH;
2549  	list_add_tail_rcu(&resource->resources, &drbd_resources);
2550  	mutex_init(&resource->conf_update);
2551  	mutex_init(&resource->adm_mutex);
2552  	spin_lock_init(&resource->req_lock);
2553  	drbd_debugfs_resource_add(resource);
2554  	return resource;
2555  
2556  fail_free_name:
2557  	kfree(resource->name);
2558  fail_free_resource:
2559  	kfree(resource);
2560  fail:
2561  	return NULL;
2562  }
2563  
2564  /* caller must be under adm_mutex */
conn_create(const char * name,struct res_opts * res_opts)2565  struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2566  {
2567  	struct drbd_resource *resource;
2568  	struct drbd_connection *connection;
2569  
2570  	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2571  	if (!connection)
2572  		return NULL;
2573  
2574  	if (drbd_alloc_socket(&connection->data))
2575  		goto fail;
2576  	if (drbd_alloc_socket(&connection->meta))
2577  		goto fail;
2578  
2579  	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2580  	if (!connection->current_epoch)
2581  		goto fail;
2582  
2583  	INIT_LIST_HEAD(&connection->transfer_log);
2584  
2585  	INIT_LIST_HEAD(&connection->current_epoch->list);
2586  	connection->epochs = 1;
2587  	spin_lock_init(&connection->epoch_lock);
2588  
2589  	connection->send.seen_any_write_yet = false;
2590  	connection->send.current_epoch_nr = 0;
2591  	connection->send.current_epoch_writes = 0;
2592  
2593  	resource = drbd_create_resource(name);
2594  	if (!resource)
2595  		goto fail;
2596  
2597  	connection->cstate = C_STANDALONE;
2598  	mutex_init(&connection->cstate_mutex);
2599  	init_waitqueue_head(&connection->ping_wait);
2600  	idr_init(&connection->peer_devices);
2601  
2602  	drbd_init_workqueue(&connection->sender_work);
2603  	mutex_init(&connection->data.mutex);
2604  	mutex_init(&connection->meta.mutex);
2605  
2606  	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2607  	connection->receiver.connection = connection;
2608  	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2609  	connection->worker.connection = connection;
2610  	drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2611  	connection->ack_receiver.connection = connection;
2612  
2613  	kref_init(&connection->kref);
2614  
2615  	connection->resource = resource;
2616  
2617  	if (set_resource_options(resource, res_opts))
2618  		goto fail_resource;
2619  
2620  	kref_get(&resource->kref);
2621  	list_add_tail_rcu(&connection->connections, &resource->connections);
2622  	drbd_debugfs_connection_add(connection);
2623  	return connection;
2624  
2625  fail_resource:
2626  	list_del(&resource->resources);
2627  	drbd_free_resource(resource);
2628  fail:
2629  	kfree(connection->current_epoch);
2630  	drbd_free_socket(&connection->meta);
2631  	drbd_free_socket(&connection->data);
2632  	kfree(connection);
2633  	return NULL;
2634  }
2635  
drbd_destroy_connection(struct kref * kref)2636  void drbd_destroy_connection(struct kref *kref)
2637  {
2638  	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2639  	struct drbd_resource *resource = connection->resource;
2640  
2641  	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2642  		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2643  	kfree(connection->current_epoch);
2644  
2645  	idr_destroy(&connection->peer_devices);
2646  
2647  	drbd_free_socket(&connection->meta);
2648  	drbd_free_socket(&connection->data);
2649  	kfree(connection->int_dig_in);
2650  	kfree(connection->int_dig_vv);
2651  	kfree(connection);
2652  	kref_put(&resource->kref, drbd_destroy_resource);
2653  }
2654  
init_submitter(struct drbd_device * device)2655  static int init_submitter(struct drbd_device *device)
2656  {
2657  	/* opencoded create_singlethread_workqueue(),
2658  	 * to be able to say "drbd%d", ..., minor */
2659  	device->submit.wq =
2660  		alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2661  	if (!device->submit.wq)
2662  		return -ENOMEM;
2663  
2664  	INIT_WORK(&device->submit.worker, do_submit);
2665  	INIT_LIST_HEAD(&device->submit.writes);
2666  	return 0;
2667  }
2668  
drbd_create_device(struct drbd_config_context * adm_ctx,unsigned int minor)2669  enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2670  {
2671  	struct drbd_resource *resource = adm_ctx->resource;
2672  	struct drbd_connection *connection, *n;
2673  	struct drbd_device *device;
2674  	struct drbd_peer_device *peer_device, *tmp_peer_device;
2675  	struct gendisk *disk;
2676  	int id;
2677  	int vnr = adm_ctx->volume;
2678  	enum drbd_ret_code err = ERR_NOMEM;
2679  	struct queue_limits lim = {
2680  		/*
2681  		 * Setting the max_hw_sectors to an odd value of 8kibyte here.
2682  		 * This triggers a max_bio_size message upon first attach or
2683  		 * connect.
2684  		 */
2685  		.max_hw_sectors		= DRBD_MAX_BIO_SIZE_SAFE >> 8,
2686  		.features		= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA |
2687  					  BLK_FEAT_ROTATIONAL |
2688  					  BLK_FEAT_STABLE_WRITES,
2689  	};
2690  
2691  	device = minor_to_device(minor);
2692  	if (device)
2693  		return ERR_MINOR_OR_VOLUME_EXISTS;
2694  
2695  	/* GFP_KERNEL, we are outside of all write-out paths */
2696  	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2697  	if (!device)
2698  		return ERR_NOMEM;
2699  	kref_init(&device->kref);
2700  
2701  	kref_get(&resource->kref);
2702  	device->resource = resource;
2703  	device->minor = minor;
2704  	device->vnr = vnr;
2705  
2706  	drbd_init_set_defaults(device);
2707  
2708  	disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2709  	if (IS_ERR(disk)) {
2710  		err = PTR_ERR(disk);
2711  		goto out_no_disk;
2712  	}
2713  
2714  	device->vdisk = disk;
2715  	device->rq_queue = disk->queue;
2716  
2717  	set_disk_ro(disk, true);
2718  
2719  	disk->major = DRBD_MAJOR;
2720  	disk->first_minor = minor;
2721  	disk->minors = 1;
2722  	disk->fops = &drbd_ops;
2723  	disk->flags |= GENHD_FL_NO_PART;
2724  	sprintf(disk->disk_name, "drbd%d", minor);
2725  	disk->private_data = device;
2726  
2727  	device->md_io.page = alloc_page(GFP_KERNEL);
2728  	if (!device->md_io.page)
2729  		goto out_no_io_page;
2730  
2731  	if (drbd_bm_init(device))
2732  		goto out_no_bitmap;
2733  	device->read_requests = RB_ROOT;
2734  	device->write_requests = RB_ROOT;
2735  
2736  	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2737  	if (id < 0) {
2738  		if (id == -ENOSPC)
2739  			err = ERR_MINOR_OR_VOLUME_EXISTS;
2740  		goto out_no_minor_idr;
2741  	}
2742  	kref_get(&device->kref);
2743  
2744  	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2745  	if (id < 0) {
2746  		if (id == -ENOSPC)
2747  			err = ERR_MINOR_OR_VOLUME_EXISTS;
2748  		goto out_idr_remove_minor;
2749  	}
2750  	kref_get(&device->kref);
2751  
2752  	INIT_LIST_HEAD(&device->peer_devices);
2753  	INIT_LIST_HEAD(&device->pending_bitmap_io);
2754  	for_each_connection(connection, resource) {
2755  		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2756  		if (!peer_device)
2757  			goto out_idr_remove_from_resource;
2758  		peer_device->connection = connection;
2759  		peer_device->device = device;
2760  
2761  		list_add(&peer_device->peer_devices, &device->peer_devices);
2762  		kref_get(&device->kref);
2763  
2764  		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2765  		if (id < 0) {
2766  			if (id == -ENOSPC)
2767  				err = ERR_INVALID_REQUEST;
2768  			goto out_idr_remove_from_resource;
2769  		}
2770  		kref_get(&connection->kref);
2771  		INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2772  	}
2773  
2774  	if (init_submitter(device)) {
2775  		err = ERR_NOMEM;
2776  		goto out_idr_remove_from_resource;
2777  	}
2778  
2779  	err = add_disk(disk);
2780  	if (err)
2781  		goto out_destroy_workqueue;
2782  
2783  	/* inherit the connection state */
2784  	device->state.conn = first_connection(resource)->cstate;
2785  	if (device->state.conn == C_WF_REPORT_PARAMS) {
2786  		for_each_peer_device(peer_device, device)
2787  			drbd_connected(peer_device);
2788  	}
2789  	/* move to create_peer_device() */
2790  	for_each_peer_device(peer_device, device)
2791  		drbd_debugfs_peer_device_add(peer_device);
2792  	drbd_debugfs_device_add(device);
2793  	return NO_ERROR;
2794  
2795  out_destroy_workqueue:
2796  	destroy_workqueue(device->submit.wq);
2797  out_idr_remove_from_resource:
2798  	for_each_connection_safe(connection, n, resource) {
2799  		peer_device = idr_remove(&connection->peer_devices, vnr);
2800  		if (peer_device)
2801  			kref_put(&connection->kref, drbd_destroy_connection);
2802  	}
2803  	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2804  		list_del(&peer_device->peer_devices);
2805  		kfree(peer_device);
2806  	}
2807  	idr_remove(&resource->devices, vnr);
2808  out_idr_remove_minor:
2809  	idr_remove(&drbd_devices, minor);
2810  	synchronize_rcu();
2811  out_no_minor_idr:
2812  	drbd_bm_cleanup(device);
2813  out_no_bitmap:
2814  	__free_page(device->md_io.page);
2815  out_no_io_page:
2816  	put_disk(disk);
2817  out_no_disk:
2818  	kref_put(&resource->kref, drbd_destroy_resource);
2819  	kfree(device);
2820  	return err;
2821  }
2822  
drbd_delete_device(struct drbd_device * device)2823  void drbd_delete_device(struct drbd_device *device)
2824  {
2825  	struct drbd_resource *resource = device->resource;
2826  	struct drbd_connection *connection;
2827  	struct drbd_peer_device *peer_device;
2828  
2829  	/* move to free_peer_device() */
2830  	for_each_peer_device(peer_device, device)
2831  		drbd_debugfs_peer_device_cleanup(peer_device);
2832  	drbd_debugfs_device_cleanup(device);
2833  	for_each_connection(connection, resource) {
2834  		idr_remove(&connection->peer_devices, device->vnr);
2835  		kref_put(&device->kref, drbd_destroy_device);
2836  	}
2837  	idr_remove(&resource->devices, device->vnr);
2838  	kref_put(&device->kref, drbd_destroy_device);
2839  	idr_remove(&drbd_devices, device_to_minor(device));
2840  	kref_put(&device->kref, drbd_destroy_device);
2841  	del_gendisk(device->vdisk);
2842  	synchronize_rcu();
2843  	kref_put(&device->kref, drbd_destroy_device);
2844  }
2845  
drbd_init(void)2846  static int __init drbd_init(void)
2847  {
2848  	int err;
2849  
2850  	if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2851  		pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2852  #ifdef MODULE
2853  		return -EINVAL;
2854  #else
2855  		drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2856  #endif
2857  	}
2858  
2859  	err = register_blkdev(DRBD_MAJOR, "drbd");
2860  	if (err) {
2861  		pr_err("unable to register block device major %d\n",
2862  		       DRBD_MAJOR);
2863  		return err;
2864  	}
2865  
2866  	/*
2867  	 * allocate all necessary structs
2868  	 */
2869  	init_waitqueue_head(&drbd_pp_wait);
2870  
2871  	drbd_proc = NULL; /* play safe for drbd_cleanup */
2872  	idr_init(&drbd_devices);
2873  
2874  	mutex_init(&resources_mutex);
2875  	INIT_LIST_HEAD(&drbd_resources);
2876  
2877  	err = drbd_genl_register();
2878  	if (err) {
2879  		pr_err("unable to register generic netlink family\n");
2880  		goto fail;
2881  	}
2882  
2883  	err = drbd_create_mempools();
2884  	if (err)
2885  		goto fail;
2886  
2887  	err = -ENOMEM;
2888  	drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2889  	if (!drbd_proc)	{
2890  		pr_err("unable to register proc file\n");
2891  		goto fail;
2892  	}
2893  
2894  	retry.wq = create_singlethread_workqueue("drbd-reissue");
2895  	if (!retry.wq) {
2896  		pr_err("unable to create retry workqueue\n");
2897  		goto fail;
2898  	}
2899  	INIT_WORK(&retry.worker, do_retry);
2900  	spin_lock_init(&retry.lock);
2901  	INIT_LIST_HEAD(&retry.writes);
2902  
2903  	drbd_debugfs_init();
2904  
2905  	pr_info("initialized. "
2906  	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2907  	       GENL_MAGIC_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2908  	pr_info("%s\n", drbd_buildtag());
2909  	pr_info("registered as block device major %d\n", DRBD_MAJOR);
2910  	return 0; /* Success! */
2911  
2912  fail:
2913  	drbd_cleanup();
2914  	if (err == -ENOMEM)
2915  		pr_err("ran out of memory\n");
2916  	else
2917  		pr_err("initialization failure\n");
2918  	return err;
2919  }
2920  
drbd_free_one_sock(struct drbd_socket * ds)2921  static void drbd_free_one_sock(struct drbd_socket *ds)
2922  {
2923  	struct socket *s;
2924  	mutex_lock(&ds->mutex);
2925  	s = ds->socket;
2926  	ds->socket = NULL;
2927  	mutex_unlock(&ds->mutex);
2928  	if (s) {
2929  		/* so debugfs does not need to mutex_lock() */
2930  		synchronize_rcu();
2931  		kernel_sock_shutdown(s, SHUT_RDWR);
2932  		sock_release(s);
2933  	}
2934  }
2935  
drbd_free_sock(struct drbd_connection * connection)2936  void drbd_free_sock(struct drbd_connection *connection)
2937  {
2938  	if (connection->data.socket)
2939  		drbd_free_one_sock(&connection->data);
2940  	if (connection->meta.socket)
2941  		drbd_free_one_sock(&connection->meta);
2942  }
2943  
2944  /* meta data management */
2945  
conn_md_sync(struct drbd_connection * connection)2946  void conn_md_sync(struct drbd_connection *connection)
2947  {
2948  	struct drbd_peer_device *peer_device;
2949  	int vnr;
2950  
2951  	rcu_read_lock();
2952  	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2953  		struct drbd_device *device = peer_device->device;
2954  
2955  		kref_get(&device->kref);
2956  		rcu_read_unlock();
2957  		drbd_md_sync(device);
2958  		kref_put(&device->kref, drbd_destroy_device);
2959  		rcu_read_lock();
2960  	}
2961  	rcu_read_unlock();
2962  }
2963  
2964  /* aligned 4kByte */
2965  struct meta_data_on_disk {
2966  	u64 la_size_sect;      /* last agreed size. */
2967  	u64 uuid[UI_SIZE];   /* UUIDs. */
2968  	u64 device_uuid;
2969  	u64 reserved_u64_1;
2970  	u32 flags;             /* MDF */
2971  	u32 magic;
2972  	u32 md_size_sect;
2973  	u32 al_offset;         /* offset to this block */
2974  	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
2975  	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2976  	u32 bm_offset;         /* offset to the bitmap, from here */
2977  	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
2978  	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
2979  
2980  	/* see al_tr_number_to_on_disk_sector() */
2981  	u32 al_stripes;
2982  	u32 al_stripe_size_4k;
2983  
2984  	u8 reserved_u8[4096 - (7*8 + 10*4)];
2985  } __packed;
2986  
2987  
2988  
drbd_md_write(struct drbd_device * device,void * b)2989  void drbd_md_write(struct drbd_device *device, void *b)
2990  {
2991  	struct meta_data_on_disk *buffer = b;
2992  	sector_t sector;
2993  	int i;
2994  
2995  	memset(buffer, 0, sizeof(*buffer));
2996  
2997  	buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
2998  	for (i = UI_CURRENT; i < UI_SIZE; i++)
2999  		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3000  	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3001  	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3002  
3003  	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3004  	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3005  	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3006  	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3007  	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3008  
3009  	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3010  	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3011  
3012  	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3013  	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3014  
3015  	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3016  	sector = device->ldev->md.md_offset;
3017  
3018  	if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3019  		/* this was a try anyways ... */
3020  		drbd_err(device, "meta data update failed!\n");
3021  		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3022  	}
3023  }
3024  
3025  /**
3026   * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3027   * @device:	DRBD device.
3028   */
drbd_md_sync(struct drbd_device * device)3029  void drbd_md_sync(struct drbd_device *device)
3030  {
3031  	struct meta_data_on_disk *buffer;
3032  
3033  	/* Don't accidentally change the DRBD meta data layout. */
3034  	BUILD_BUG_ON(UI_SIZE != 4);
3035  	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3036  
3037  	del_timer(&device->md_sync_timer);
3038  	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3039  	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3040  		return;
3041  
3042  	/* We use here D_FAILED and not D_ATTACHING because we try to write
3043  	 * metadata even if we detach due to a disk failure! */
3044  	if (!get_ldev_if_state(device, D_FAILED))
3045  		return;
3046  
3047  	buffer = drbd_md_get_buffer(device, __func__);
3048  	if (!buffer)
3049  		goto out;
3050  
3051  	drbd_md_write(device, buffer);
3052  
3053  	/* Update device->ldev->md.la_size_sect,
3054  	 * since we updated it on metadata. */
3055  	device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3056  
3057  	drbd_md_put_buffer(device);
3058  out:
3059  	put_ldev(device);
3060  }
3061  
check_activity_log_stripe_size(struct drbd_device * device,struct meta_data_on_disk * on_disk,struct drbd_md * in_core)3062  static int check_activity_log_stripe_size(struct drbd_device *device,
3063  		struct meta_data_on_disk *on_disk,
3064  		struct drbd_md *in_core)
3065  {
3066  	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3067  	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3068  	u64 al_size_4k;
3069  
3070  	/* both not set: default to old fixed size activity log */
3071  	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3072  		al_stripes = 1;
3073  		al_stripe_size_4k = MD_32kB_SECT/8;
3074  	}
3075  
3076  	/* some paranoia plausibility checks */
3077  
3078  	/* we need both values to be set */
3079  	if (al_stripes == 0 || al_stripe_size_4k == 0)
3080  		goto err;
3081  
3082  	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3083  
3084  	/* Upper limit of activity log area, to avoid potential overflow
3085  	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3086  	 * than 72 * 4k blocks total only increases the amount of history,
3087  	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3088  	if (al_size_4k > (16 * 1024 * 1024/4))
3089  		goto err;
3090  
3091  	/* Lower limit: we need at least 8 transaction slots (32kB)
3092  	 * to not break existing setups */
3093  	if (al_size_4k < MD_32kB_SECT/8)
3094  		goto err;
3095  
3096  	in_core->al_stripe_size_4k = al_stripe_size_4k;
3097  	in_core->al_stripes = al_stripes;
3098  	in_core->al_size_4k = al_size_4k;
3099  
3100  	return 0;
3101  err:
3102  	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3103  			al_stripes, al_stripe_size_4k);
3104  	return -EINVAL;
3105  }
3106  
check_offsets_and_sizes(struct drbd_device * device,struct drbd_backing_dev * bdev)3107  static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3108  {
3109  	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3110  	struct drbd_md *in_core = &bdev->md;
3111  	s32 on_disk_al_sect;
3112  	s32 on_disk_bm_sect;
3113  
3114  	/* The on-disk size of the activity log, calculated from offsets, and
3115  	 * the size of the activity log calculated from the stripe settings,
3116  	 * should match.
3117  	 * Though we could relax this a bit: it is ok, if the striped activity log
3118  	 * fits in the available on-disk activity log size.
3119  	 * Right now, that would break how resize is implemented.
3120  	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3121  	 * of possible unused padding space in the on disk layout. */
3122  	if (in_core->al_offset < 0) {
3123  		if (in_core->bm_offset > in_core->al_offset)
3124  			goto err;
3125  		on_disk_al_sect = -in_core->al_offset;
3126  		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3127  	} else {
3128  		if (in_core->al_offset != MD_4kB_SECT)
3129  			goto err;
3130  		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3131  			goto err;
3132  
3133  		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3134  		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3135  	}
3136  
3137  	/* old fixed size meta data is exactly that: fixed. */
3138  	if (in_core->meta_dev_idx >= 0) {
3139  		if (in_core->md_size_sect != MD_128MB_SECT
3140  		||  in_core->al_offset != MD_4kB_SECT
3141  		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3142  		||  in_core->al_stripes != 1
3143  		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3144  			goto err;
3145  	}
3146  
3147  	if (capacity < in_core->md_size_sect)
3148  		goto err;
3149  	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3150  		goto err;
3151  
3152  	/* should be aligned, and at least 32k */
3153  	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3154  		goto err;
3155  
3156  	/* should fit (for now: exactly) into the available on-disk space;
3157  	 * overflow prevention is in check_activity_log_stripe_size() above. */
3158  	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3159  		goto err;
3160  
3161  	/* again, should be aligned */
3162  	if (in_core->bm_offset & 7)
3163  		goto err;
3164  
3165  	/* FIXME check for device grow with flex external meta data? */
3166  
3167  	/* can the available bitmap space cover the last agreed device size? */
3168  	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3169  		goto err;
3170  
3171  	return 0;
3172  
3173  err:
3174  	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3175  			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3176  			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3177  			in_core->meta_dev_idx,
3178  			in_core->al_stripes, in_core->al_stripe_size_4k,
3179  			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3180  			(unsigned long long)in_core->la_size_sect,
3181  			(unsigned long long)capacity);
3182  
3183  	return -EINVAL;
3184  }
3185  
3186  
3187  /**
3188   * drbd_md_read() - Reads in the meta data super block
3189   * @device:	DRBD device.
3190   * @bdev:	Device from which the meta data should be read in.
3191   *
3192   * Return NO_ERROR on success, and an enum drbd_ret_code in case
3193   * something goes wrong.
3194   *
3195   * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3196   * even before @bdev is assigned to @device->ldev.
3197   */
drbd_md_read(struct drbd_device * device,struct drbd_backing_dev * bdev)3198  int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3199  {
3200  	struct meta_data_on_disk *buffer;
3201  	u32 magic, flags;
3202  	int i, rv = NO_ERROR;
3203  
3204  	if (device->state.disk != D_DISKLESS)
3205  		return ERR_DISK_CONFIGURED;
3206  
3207  	buffer = drbd_md_get_buffer(device, __func__);
3208  	if (!buffer)
3209  		return ERR_NOMEM;
3210  
3211  	/* First, figure out where our meta data superblock is located,
3212  	 * and read it. */
3213  	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3214  	bdev->md.md_offset = drbd_md_ss(bdev);
3215  	/* Even for (flexible or indexed) external meta data,
3216  	 * initially restrict us to the 4k superblock for now.
3217  	 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3218  	bdev->md.md_size_sect = 8;
3219  
3220  	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3221  				 REQ_OP_READ)) {
3222  		/* NOTE: can't do normal error processing here as this is
3223  		   called BEFORE disk is attached */
3224  		drbd_err(device, "Error while reading metadata.\n");
3225  		rv = ERR_IO_MD_DISK;
3226  		goto err;
3227  	}
3228  
3229  	magic = be32_to_cpu(buffer->magic);
3230  	flags = be32_to_cpu(buffer->flags);
3231  	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3232  	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3233  			/* btw: that's Activity Log clean, not "all" clean. */
3234  		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3235  		rv = ERR_MD_UNCLEAN;
3236  		goto err;
3237  	}
3238  
3239  	rv = ERR_MD_INVALID;
3240  	if (magic != DRBD_MD_MAGIC_08) {
3241  		if (magic == DRBD_MD_MAGIC_07)
3242  			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3243  		else
3244  			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3245  		goto err;
3246  	}
3247  
3248  	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3249  		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3250  		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3251  		goto err;
3252  	}
3253  
3254  
3255  	/* convert to in_core endian */
3256  	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3257  	for (i = UI_CURRENT; i < UI_SIZE; i++)
3258  		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3259  	bdev->md.flags = be32_to_cpu(buffer->flags);
3260  	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3261  
3262  	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3263  	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3264  	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3265  
3266  	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3267  		goto err;
3268  	if (check_offsets_and_sizes(device, bdev))
3269  		goto err;
3270  
3271  	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3272  		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3273  		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3274  		goto err;
3275  	}
3276  	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3277  		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3278  		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3279  		goto err;
3280  	}
3281  
3282  	rv = NO_ERROR;
3283  
3284  	spin_lock_irq(&device->resource->req_lock);
3285  	if (device->state.conn < C_CONNECTED) {
3286  		unsigned int peer;
3287  		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3288  		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3289  		device->peer_max_bio_size = peer;
3290  	}
3291  	spin_unlock_irq(&device->resource->req_lock);
3292  
3293   err:
3294  	drbd_md_put_buffer(device);
3295  
3296  	return rv;
3297  }
3298  
3299  /**
3300   * drbd_md_mark_dirty() - Mark meta data super block as dirty
3301   * @device:	DRBD device.
3302   *
3303   * Call this function if you change anything that should be written to
3304   * the meta-data super block. This function sets MD_DIRTY, and starts a
3305   * timer that ensures that within five seconds you have to call drbd_md_sync().
3306   */
drbd_md_mark_dirty(struct drbd_device * device)3307  void drbd_md_mark_dirty(struct drbd_device *device)
3308  {
3309  	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3310  		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3311  }
3312  
drbd_uuid_move_history(struct drbd_device * device)3313  void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3314  {
3315  	int i;
3316  
3317  	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3318  		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3319  }
3320  
__drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3321  void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3322  {
3323  	if (idx == UI_CURRENT) {
3324  		if (device->state.role == R_PRIMARY)
3325  			val |= 1;
3326  		else
3327  			val &= ~((u64)1);
3328  
3329  		drbd_set_ed_uuid(device, val);
3330  	}
3331  
3332  	device->ldev->md.uuid[idx] = val;
3333  	drbd_md_mark_dirty(device);
3334  }
3335  
_drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3336  void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3337  {
3338  	unsigned long flags;
3339  	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3340  	__drbd_uuid_set(device, idx, val);
3341  	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3342  }
3343  
drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3344  void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3345  {
3346  	unsigned long flags;
3347  	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3348  	if (device->ldev->md.uuid[idx]) {
3349  		drbd_uuid_move_history(device);
3350  		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3351  	}
3352  	__drbd_uuid_set(device, idx, val);
3353  	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3354  }
3355  
3356  /**
3357   * drbd_uuid_new_current() - Creates a new current UUID
3358   * @device:	DRBD device.
3359   *
3360   * Creates a new current UUID, and rotates the old current UUID into
3361   * the bitmap slot. Causes an incremental resync upon next connect.
3362   */
drbd_uuid_new_current(struct drbd_device * device)3363  void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3364  {
3365  	u64 val;
3366  	unsigned long long bm_uuid;
3367  
3368  	get_random_bytes(&val, sizeof(u64));
3369  
3370  	spin_lock_irq(&device->ldev->md.uuid_lock);
3371  	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3372  
3373  	if (bm_uuid)
3374  		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3375  
3376  	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3377  	__drbd_uuid_set(device, UI_CURRENT, val);
3378  	spin_unlock_irq(&device->ldev->md.uuid_lock);
3379  
3380  	drbd_print_uuids(device, "new current UUID");
3381  	/* get it to stable storage _now_ */
3382  	drbd_md_sync(device);
3383  }
3384  
drbd_uuid_set_bm(struct drbd_device * device,u64 val)3385  void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3386  {
3387  	unsigned long flags;
3388  	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3389  	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) {
3390  		spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3391  		return;
3392  	}
3393  
3394  	if (val == 0) {
3395  		drbd_uuid_move_history(device);
3396  		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3397  		device->ldev->md.uuid[UI_BITMAP] = 0;
3398  	} else {
3399  		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3400  		if (bm_uuid)
3401  			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3402  
3403  		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3404  	}
3405  	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3406  
3407  	drbd_md_mark_dirty(device);
3408  }
3409  
3410  /**
3411   * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3412   * @device:	DRBD device.
3413   * @peer_device: Peer DRBD device.
3414   *
3415   * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3416   */
drbd_bmio_set_n_write(struct drbd_device * device,struct drbd_peer_device * peer_device)3417  int drbd_bmio_set_n_write(struct drbd_device *device,
3418  			  struct drbd_peer_device *peer_device) __must_hold(local)
3419  
3420  {
3421  	int rv = -EIO;
3422  
3423  	drbd_md_set_flag(device, MDF_FULL_SYNC);
3424  	drbd_md_sync(device);
3425  	drbd_bm_set_all(device);
3426  
3427  	rv = drbd_bm_write(device, peer_device);
3428  
3429  	if (!rv) {
3430  		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3431  		drbd_md_sync(device);
3432  	}
3433  
3434  	return rv;
3435  }
3436  
3437  /**
3438   * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3439   * @device:	DRBD device.
3440   * @peer_device: Peer DRBD device.
3441   *
3442   * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3443   */
drbd_bmio_clear_n_write(struct drbd_device * device,struct drbd_peer_device * peer_device)3444  int drbd_bmio_clear_n_write(struct drbd_device *device,
3445  			  struct drbd_peer_device *peer_device) __must_hold(local)
3446  
3447  {
3448  	drbd_resume_al(device);
3449  	drbd_bm_clear_all(device);
3450  	return drbd_bm_write(device, peer_device);
3451  }
3452  
w_bitmap_io(struct drbd_work * w,int unused)3453  static int w_bitmap_io(struct drbd_work *w, int unused)
3454  {
3455  	struct drbd_device *device =
3456  		container_of(w, struct drbd_device, bm_io_work.w);
3457  	struct bm_io_work *work = &device->bm_io_work;
3458  	int rv = -EIO;
3459  
3460  	if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3461  		int cnt = atomic_read(&device->ap_bio_cnt);
3462  		if (cnt)
3463  			drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3464  					cnt, work->why);
3465  	}
3466  
3467  	if (get_ldev(device)) {
3468  		drbd_bm_lock(device, work->why, work->flags);
3469  		rv = work->io_fn(device, work->peer_device);
3470  		drbd_bm_unlock(device);
3471  		put_ldev(device);
3472  	}
3473  
3474  	clear_bit_unlock(BITMAP_IO, &device->flags);
3475  	wake_up(&device->misc_wait);
3476  
3477  	if (work->done)
3478  		work->done(device, rv);
3479  
3480  	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3481  	work->why = NULL;
3482  	work->flags = 0;
3483  
3484  	return 0;
3485  }
3486  
3487  /**
3488   * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3489   * @device:	DRBD device.
3490   * @io_fn:	IO callback to be called when bitmap IO is possible
3491   * @done:	callback to be called after the bitmap IO was performed
3492   * @why:	Descriptive text of the reason for doing the IO
3493   * @flags:	Bitmap flags
3494   * @peer_device: Peer DRBD device.
3495   *
3496   * While IO on the bitmap happens we freeze application IO thus we ensure
3497   * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3498   * called from worker context. It MUST NOT be used while a previous such
3499   * work is still pending!
3500   *
3501   * Its worker function encloses the call of io_fn() by get_ldev() and
3502   * put_ldev().
3503   */
drbd_queue_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *,struct drbd_peer_device *),void (* done)(struct drbd_device *,int),char * why,enum bm_flag flags,struct drbd_peer_device * peer_device)3504  void drbd_queue_bitmap_io(struct drbd_device *device,
3505  			  int (*io_fn)(struct drbd_device *, struct drbd_peer_device *),
3506  			  void (*done)(struct drbd_device *, int),
3507  			  char *why, enum bm_flag flags,
3508  			  struct drbd_peer_device *peer_device)
3509  {
3510  	D_ASSERT(device, current == peer_device->connection->worker.task);
3511  
3512  	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3513  	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3514  	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3515  	if (device->bm_io_work.why)
3516  		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3517  			why, device->bm_io_work.why);
3518  
3519  	device->bm_io_work.peer_device = peer_device;
3520  	device->bm_io_work.io_fn = io_fn;
3521  	device->bm_io_work.done = done;
3522  	device->bm_io_work.why = why;
3523  	device->bm_io_work.flags = flags;
3524  
3525  	spin_lock_irq(&device->resource->req_lock);
3526  	set_bit(BITMAP_IO, &device->flags);
3527  	/* don't wait for pending application IO if the caller indicates that
3528  	 * application IO does not conflict anyways. */
3529  	if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3530  		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3531  			drbd_queue_work(&peer_device->connection->sender_work,
3532  					&device->bm_io_work.w);
3533  	}
3534  	spin_unlock_irq(&device->resource->req_lock);
3535  }
3536  
3537  /**
3538   * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3539   * @device:	DRBD device.
3540   * @io_fn:	IO callback to be called when bitmap IO is possible
3541   * @why:	Descriptive text of the reason for doing the IO
3542   * @flags:	Bitmap flags
3543   * @peer_device: Peer DRBD device.
3544   *
3545   * freezes application IO while that the actual IO operations runs. This
3546   * functions MAY NOT be called from worker context.
3547   */
drbd_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *,struct drbd_peer_device *),char * why,enum bm_flag flags,struct drbd_peer_device * peer_device)3548  int drbd_bitmap_io(struct drbd_device *device,
3549  		int (*io_fn)(struct drbd_device *, struct drbd_peer_device *),
3550  		char *why, enum bm_flag flags,
3551  		struct drbd_peer_device *peer_device)
3552  {
3553  	/* Only suspend io, if some operation is supposed to be locked out */
3554  	const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3555  	int rv;
3556  
3557  	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3558  
3559  	if (do_suspend_io)
3560  		drbd_suspend_io(device);
3561  
3562  	drbd_bm_lock(device, why, flags);
3563  	rv = io_fn(device, peer_device);
3564  	drbd_bm_unlock(device);
3565  
3566  	if (do_suspend_io)
3567  		drbd_resume_io(device);
3568  
3569  	return rv;
3570  }
3571  
drbd_md_set_flag(struct drbd_device * device,int flag)3572  void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3573  {
3574  	if ((device->ldev->md.flags & flag) != flag) {
3575  		drbd_md_mark_dirty(device);
3576  		device->ldev->md.flags |= flag;
3577  	}
3578  }
3579  
drbd_md_clear_flag(struct drbd_device * device,int flag)3580  void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3581  {
3582  	if ((device->ldev->md.flags & flag) != 0) {
3583  		drbd_md_mark_dirty(device);
3584  		device->ldev->md.flags &= ~flag;
3585  	}
3586  }
drbd_md_test_flag(struct drbd_backing_dev * bdev,int flag)3587  int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3588  {
3589  	return (bdev->md.flags & flag) != 0;
3590  }
3591  
md_sync_timer_fn(struct timer_list * t)3592  static void md_sync_timer_fn(struct timer_list *t)
3593  {
3594  	struct drbd_device *device = from_timer(device, t, md_sync_timer);
3595  	drbd_device_post_work(device, MD_SYNC);
3596  }
3597  
cmdname(enum drbd_packet cmd)3598  const char *cmdname(enum drbd_packet cmd)
3599  {
3600  	/* THINK may need to become several global tables
3601  	 * when we want to support more than
3602  	 * one PRO_VERSION */
3603  	static const char *cmdnames[] = {
3604  
3605  		[P_DATA]	        = "Data",
3606  		[P_DATA_REPLY]	        = "DataReply",
3607  		[P_RS_DATA_REPLY]	= "RSDataReply",
3608  		[P_BARRIER]	        = "Barrier",
3609  		[P_BITMAP]	        = "ReportBitMap",
3610  		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3611  		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3612  		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3613  		[P_DATA_REQUEST]	= "DataRequest",
3614  		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3615  		[P_SYNC_PARAM]	        = "SyncParam",
3616  		[P_PROTOCOL]            = "ReportProtocol",
3617  		[P_UUIDS]	        = "ReportUUIDs",
3618  		[P_SIZES]	        = "ReportSizes",
3619  		[P_STATE]	        = "ReportState",
3620  		[P_SYNC_UUID]           = "ReportSyncUUID",
3621  		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3622  		[P_AUTH_RESPONSE]	= "AuthResponse",
3623  		[P_STATE_CHG_REQ]       = "StateChgRequest",
3624  		[P_PING]		= "Ping",
3625  		[P_PING_ACK]	        = "PingAck",
3626  		[P_RECV_ACK]	        = "RecvAck",
3627  		[P_WRITE_ACK]	        = "WriteAck",
3628  		[P_RS_WRITE_ACK]	= "RSWriteAck",
3629  		[P_SUPERSEDED]          = "Superseded",
3630  		[P_NEG_ACK]	        = "NegAck",
3631  		[P_NEG_DREPLY]	        = "NegDReply",
3632  		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3633  		[P_BARRIER_ACK]	        = "BarrierAck",
3634  		[P_STATE_CHG_REPLY]     = "StateChgReply",
3635  		[P_OV_REQUEST]          = "OVRequest",
3636  		[P_OV_REPLY]            = "OVReply",
3637  		[P_OV_RESULT]           = "OVResult",
3638  		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3639  		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3640  		[P_SYNC_PARAM89]	= "SyncParam89",
3641  		[P_COMPRESSED_BITMAP]   = "CBitmap",
3642  		[P_DELAY_PROBE]         = "DelayProbe",
3643  		[P_OUT_OF_SYNC]		= "OutOfSync",
3644  		[P_RS_CANCEL]		= "RSCancel",
3645  		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3646  		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3647  		[P_PROTOCOL_UPDATE]	= "protocol_update",
3648  		[P_TRIM]	        = "Trim",
3649  		[P_RS_THIN_REQ]         = "rs_thin_req",
3650  		[P_RS_DEALLOCATED]      = "rs_deallocated",
3651  		[P_WSAME]	        = "WriteSame",
3652  		[P_ZEROES]		= "Zeroes",
3653  
3654  		/* enum drbd_packet, but not commands - obsoleted flags:
3655  		 *	P_MAY_IGNORE
3656  		 *	P_MAX_OPT_CMD
3657  		 */
3658  	};
3659  
3660  	/* too big for the array: 0xfffX */
3661  	if (cmd == P_INITIAL_META)
3662  		return "InitialMeta";
3663  	if (cmd == P_INITIAL_DATA)
3664  		return "InitialData";
3665  	if (cmd == P_CONNECTION_FEATURES)
3666  		return "ConnectionFeatures";
3667  	if (cmd >= ARRAY_SIZE(cmdnames))
3668  		return "Unknown";
3669  	return cmdnames[cmd];
3670  }
3671  
3672  /**
3673   * drbd_wait_misc  -  wait for a request to make progress
3674   * @device:	device associated with the request
3675   * @i:		the struct drbd_interval embedded in struct drbd_request or
3676   *		struct drbd_peer_request
3677   */
drbd_wait_misc(struct drbd_device * device,struct drbd_interval * i)3678  int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3679  {
3680  	struct net_conf *nc;
3681  	DEFINE_WAIT(wait);
3682  	long timeout;
3683  
3684  	rcu_read_lock();
3685  	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3686  	if (!nc) {
3687  		rcu_read_unlock();
3688  		return -ETIMEDOUT;
3689  	}
3690  	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3691  	rcu_read_unlock();
3692  
3693  	/* Indicate to wake up device->misc_wait on progress.  */
3694  	i->waiting = true;
3695  	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3696  	spin_unlock_irq(&device->resource->req_lock);
3697  	timeout = schedule_timeout(timeout);
3698  	finish_wait(&device->misc_wait, &wait);
3699  	spin_lock_irq(&device->resource->req_lock);
3700  	if (!timeout || device->state.conn < C_CONNECTED)
3701  		return -ETIMEDOUT;
3702  	if (signal_pending(current))
3703  		return -ERESTARTSYS;
3704  	return 0;
3705  }
3706  
lock_all_resources(void)3707  void lock_all_resources(void)
3708  {
3709  	struct drbd_resource *resource;
3710  	int __maybe_unused i = 0;
3711  
3712  	mutex_lock(&resources_mutex);
3713  	local_irq_disable();
3714  	for_each_resource(resource, &drbd_resources)
3715  		spin_lock_nested(&resource->req_lock, i++);
3716  }
3717  
unlock_all_resources(void)3718  void unlock_all_resources(void)
3719  {
3720  	struct drbd_resource *resource;
3721  
3722  	for_each_resource(resource, &drbd_resources)
3723  		spin_unlock(&resource->req_lock);
3724  	local_irq_enable();
3725  	mutex_unlock(&resources_mutex);
3726  }
3727  
3728  #ifdef CONFIG_DRBD_FAULT_INJECTION
3729  /* Fault insertion support including random number generator shamelessly
3730   * stolen from kernel/rcutorture.c */
3731  struct fault_random_state {
3732  	unsigned long state;
3733  	unsigned long count;
3734  };
3735  
3736  #define FAULT_RANDOM_MULT 39916801  /* prime */
3737  #define FAULT_RANDOM_ADD	479001701 /* prime */
3738  #define FAULT_RANDOM_REFRESH 10000
3739  
3740  /*
3741   * Crude but fast random-number generator.  Uses a linear congruential
3742   * generator, with occasional help from get_random_bytes().
3743   */
3744  static unsigned long
_drbd_fault_random(struct fault_random_state * rsp)3745  _drbd_fault_random(struct fault_random_state *rsp)
3746  {
3747  	long refresh;
3748  
3749  	if (!rsp->count--) {
3750  		get_random_bytes(&refresh, sizeof(refresh));
3751  		rsp->state += refresh;
3752  		rsp->count = FAULT_RANDOM_REFRESH;
3753  	}
3754  	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3755  	return swahw32(rsp->state);
3756  }
3757  
3758  static char *
_drbd_fault_str(unsigned int type)3759  _drbd_fault_str(unsigned int type) {
3760  	static char *_faults[] = {
3761  		[DRBD_FAULT_MD_WR] = "Meta-data write",
3762  		[DRBD_FAULT_MD_RD] = "Meta-data read",
3763  		[DRBD_FAULT_RS_WR] = "Resync write",
3764  		[DRBD_FAULT_RS_RD] = "Resync read",
3765  		[DRBD_FAULT_DT_WR] = "Data write",
3766  		[DRBD_FAULT_DT_RD] = "Data read",
3767  		[DRBD_FAULT_DT_RA] = "Data read ahead",
3768  		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3769  		[DRBD_FAULT_AL_EE] = "EE allocation",
3770  		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3771  	};
3772  
3773  	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3774  }
3775  
3776  unsigned int
_drbd_insert_fault(struct drbd_device * device,unsigned int type)3777  _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3778  {
3779  	static struct fault_random_state rrs = {0, 0};
3780  
3781  	unsigned int ret = (
3782  		(drbd_fault_devs == 0 ||
3783  			((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3784  		(((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3785  
3786  	if (ret) {
3787  		drbd_fault_count++;
3788  
3789  		if (drbd_ratelimit())
3790  			drbd_warn(device, "***Simulating %s failure\n",
3791  				_drbd_fault_str(type));
3792  	}
3793  
3794  	return ret;
3795  }
3796  #endif
3797  
3798  module_init(drbd_init)
3799  module_exit(drbd_cleanup)
3800  
3801  EXPORT_SYMBOL(drbd_conn_str);
3802  EXPORT_SYMBOL(drbd_role_str);
3803  EXPORT_SYMBOL(drbd_disk_str);
3804  EXPORT_SYMBOL(drbd_set_st_err_str);
3805