1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7 
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16 
17 /**
18  * typedef dma_cookie_t - an opaque DMA cookie
19  *
20  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21  */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE	1
24 
dma_submit_error(dma_cookie_t cookie)25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 	return cookie < 0 ? cookie : 0;
28 }
29 
30 /**
31  * enum dma_status - DMA transaction status
32  * @DMA_COMPLETE: transaction completed
33  * @DMA_IN_PROGRESS: transaction not yet processed
34  * @DMA_PAUSED: transaction is paused
35  * @DMA_ERROR: transaction failed
36  */
37 enum dma_status {
38 	DMA_COMPLETE,
39 	DMA_IN_PROGRESS,
40 	DMA_PAUSED,
41 	DMA_ERROR,
42 	DMA_OUT_OF_ORDER,
43 };
44 
45 /**
46  * enum dma_transaction_type - DMA transaction types/indexes
47  *
48  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
49  * automatically set as dma devices are registered.
50  */
51 enum dma_transaction_type {
52 	DMA_MEMCPY,
53 	DMA_XOR,
54 	DMA_PQ,
55 	DMA_XOR_VAL,
56 	DMA_PQ_VAL,
57 	DMA_MEMSET,
58 	DMA_MEMSET_SG,
59 	DMA_INTERRUPT,
60 	DMA_PRIVATE,
61 	DMA_ASYNC_TX,
62 	DMA_SLAVE,
63 	DMA_CYCLIC,
64 	DMA_INTERLEAVE,
65 	DMA_COMPLETION_NO_ORDER,
66 	DMA_REPEAT,
67 	DMA_LOAD_EOT,
68 /* last transaction type for creation of the capabilities mask */
69 	DMA_TX_TYPE_END,
70 };
71 
72 /**
73  * enum dma_transfer_direction - dma transfer mode and direction indicator
74  * @DMA_MEM_TO_MEM: Async/Memcpy mode
75  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78  */
79 enum dma_transfer_direction {
80 	DMA_MEM_TO_MEM,
81 	DMA_MEM_TO_DEV,
82 	DMA_DEV_TO_MEM,
83 	DMA_DEV_TO_DEV,
84 	DMA_TRANS_NONE,
85 };
86 
87 /**
88  * Interleaved Transfer Request
89  * ----------------------------
90  * A chunk is collection of contiguous bytes to be transferred.
91  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
92  * ICGs may or may not change between chunks.
93  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94  *  that when repeated an integral number of times, specifies the transfer.
95  * A transfer template is specification of a Frame, the number of times
96  *  it is to be repeated and other per-transfer attributes.
97  *
98  * Practically, a client driver would have ready a template for each
99  *  type of transfer it is going to need during its lifetime and
100  *  set only 'src_start' and 'dst_start' before submitting the requests.
101  *
102  *
103  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
104  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105  *
106  *    ==  Chunk size
107  *    ... ICG
108  */
109 
110 /**
111  * struct data_chunk - Element of scatter-gather list that makes a frame.
112  * @size: Number of bytes to read from source.
113  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
114  * @icg: Number of bytes to jump after last src/dst address of this
115  *	 chunk and before first src/dst address for next chunk.
116  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
118  * @dst_icg: Number of bytes to jump after last dst address of this
119  *	 chunk and before the first dst address for next chunk.
120  *	 Ignored if dst_inc is true and dst_sgl is false.
121  * @src_icg: Number of bytes to jump after last src address of this
122  *	 chunk and before the first src address for next chunk.
123  *	 Ignored if src_inc is true and src_sgl is false.
124  */
125 struct data_chunk {
126 	size_t size;
127 	size_t icg;
128 	size_t dst_icg;
129 	size_t src_icg;
130 };
131 
132 /**
133  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134  *	 and attributes.
135  * @src_start: Bus address of source for the first chunk.
136  * @dst_start: Bus address of destination for the first chunk.
137  * @dir: Specifies the type of Source and Destination.
138  * @src_inc: If the source address increments after reading from it.
139  * @dst_inc: If the destination address increments after writing to it.
140  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141  *		Otherwise, source is read contiguously (icg ignored).
142  *		Ignored if src_inc is false.
143  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144  *		Otherwise, destination is filled contiguously (icg ignored).
145  *		Ignored if dst_inc is false.
146  * @numf: Number of frames in this template.
147  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148  * @sgl: Array of {chunk,icg} pairs that make up a frame.
149  */
150 struct dma_interleaved_template {
151 	dma_addr_t src_start;
152 	dma_addr_t dst_start;
153 	enum dma_transfer_direction dir;
154 	bool src_inc;
155 	bool dst_inc;
156 	bool src_sgl;
157 	bool dst_sgl;
158 	size_t numf;
159 	size_t frame_size;
160 	struct data_chunk sgl[];
161 };
162 
163 /**
164  * struct dma_vec - DMA vector
165  * @addr: Bus address of the start of the vector
166  * @len: Length in bytes of the DMA vector
167  */
168 struct dma_vec {
169 	dma_addr_t addr;
170 	size_t len;
171 };
172 
173 /**
174  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
175  *  control completion, and communicate status.
176  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
177  *  this transaction
178  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
179  *  acknowledges receipt, i.e. has a chance to establish any dependency
180  *  chains
181  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
182  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
183  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
184  *  sources that were the result of a previous operation, in the case of a PQ
185  *  operation it continues the calculation with new sources
186  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
187  *  on the result of this operation
188  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
189  *  cleared or freed
190  * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
191  *  data and the descriptor should be in different format from normal
192  *  data descriptors.
193  * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
194  *  repeated when it ends until a transaction is issued on the same channel
195  *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
196  *  interleaved transactions and is ignored for all other transaction types.
197  * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
198  *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
199  *  repeated transaction ends. Not setting this flag when the previously queued
200  *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
201  *  to never be processed and stay in the issued queue forever. The flag is
202  *  ignored if the previous transaction is not a repeated transaction.
203  */
204 enum dma_ctrl_flags {
205 	DMA_PREP_INTERRUPT = (1 << 0),
206 	DMA_CTRL_ACK = (1 << 1),
207 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
208 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
209 	DMA_PREP_CONTINUE = (1 << 4),
210 	DMA_PREP_FENCE = (1 << 5),
211 	DMA_CTRL_REUSE = (1 << 6),
212 	DMA_PREP_CMD = (1 << 7),
213 	DMA_PREP_REPEAT = (1 << 8),
214 	DMA_PREP_LOAD_EOT = (1 << 9),
215 };
216 
217 /**
218  * enum sum_check_bits - bit position of pq_check_flags
219  */
220 enum sum_check_bits {
221 	SUM_CHECK_P = 0,
222 	SUM_CHECK_Q = 1,
223 };
224 
225 /**
226  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
227  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
228  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
229  */
230 enum sum_check_flags {
231 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
232 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
233 };
234 
235 
236 /**
237  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
238  * See linux/cpumask.h
239  */
240 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
241 
242 /**
243  * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
244  * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
245  *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
246  *  helper) to the descriptor.
247  *
248  * Client drivers interested to use this mode can follow:
249  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
250  *   1. prepare the descriptor (dmaengine_prep_*)
251  *	construct the metadata in the client's buffer
252  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
253  *	descriptor
254  *   3. submit the transfer
255  * - DMA_DEV_TO_MEM:
256  *   1. prepare the descriptor (dmaengine_prep_*)
257  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
258  *	descriptor
259  *   3. submit the transfer
260  *   4. when the transfer is completed, the metadata should be available in the
261  *	attached buffer
262  *
263  * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
264  *  driver. The client driver can ask for the pointer, maximum size and the
265  *  currently used size of the metadata and can directly update or read it.
266  *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
267  *  provided as helper functions.
268  *
269  *  Note: the metadata area for the descriptor is no longer valid after the
270  *  transfer has been completed (valid up to the point when the completion
271  *  callback returns if used).
272  *
273  * Client drivers interested to use this mode can follow:
274  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
275  *   1. prepare the descriptor (dmaengine_prep_*)
276  *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
277  *	metadata area
278  *   3. update the metadata at the pointer
279  *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
280  *	of data the client has placed into the metadata buffer
281  *   5. submit the transfer
282  * - DMA_DEV_TO_MEM:
283  *   1. prepare the descriptor (dmaengine_prep_*)
284  *   2. submit the transfer
285  *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
286  *	pointer to the engine's metadata area
287  *   4. Read out the metadata from the pointer
288  *
289  * Note: the two mode is not compatible and clients must use one mode for a
290  * descriptor.
291  */
292 enum dma_desc_metadata_mode {
293 	DESC_METADATA_NONE = 0,
294 	DESC_METADATA_CLIENT = BIT(0),
295 	DESC_METADATA_ENGINE = BIT(1),
296 };
297 
298 /**
299  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
300  * @memcpy_count: transaction counter
301  * @bytes_transferred: byte counter
302  */
303 struct dma_chan_percpu {
304 	/* stats */
305 	unsigned long memcpy_count;
306 	unsigned long bytes_transferred;
307 };
308 
309 /**
310  * struct dma_router - DMA router structure
311  * @dev: pointer to the DMA router device
312  * @route_free: function to be called when the route can be disconnected
313  */
314 struct dma_router {
315 	struct device *dev;
316 	void (*route_free)(struct device *dev, void *route_data);
317 };
318 
319 /**
320  * struct dma_chan - devices supply DMA channels, clients use them
321  * @device: ptr to the dma device who supplies this channel, always !%NULL
322  * @slave: ptr to the device using this channel
323  * @cookie: last cookie value returned to client
324  * @completed_cookie: last completed cookie for this channel
325  * @chan_id: channel ID for sysfs
326  * @dev: class device for sysfs
327  * @name: backlink name for sysfs
328  * @dbg_client_name: slave name for debugfs in format:
329  *	dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
330  * @device_node: used to add this to the device chan list
331  * @local: per-cpu pointer to a struct dma_chan_percpu
332  * @client_count: how many clients are using this channel
333  * @table_count: number of appearances in the mem-to-mem allocation table
334  * @router: pointer to the DMA router structure
335  * @route_data: channel specific data for the router
336  * @private: private data for certain client-channel associations
337  */
338 struct dma_chan {
339 	struct dma_device *device;
340 	struct device *slave;
341 	dma_cookie_t cookie;
342 	dma_cookie_t completed_cookie;
343 
344 	/* sysfs */
345 	int chan_id;
346 	struct dma_chan_dev *dev;
347 	const char *name;
348 #ifdef CONFIG_DEBUG_FS
349 	char *dbg_client_name;
350 #endif
351 
352 	struct list_head device_node;
353 	struct dma_chan_percpu __percpu *local;
354 	int client_count;
355 	int table_count;
356 
357 	/* DMA router */
358 	struct dma_router *router;
359 	void *route_data;
360 
361 	void *private;
362 };
363 
364 /**
365  * struct dma_chan_dev - relate sysfs device node to backing channel device
366  * @chan: driver channel device
367  * @device: sysfs device
368  * @dev_id: parent dma_device dev_id
369  * @chan_dma_dev: The channel is using custom/different dma-mapping
370  * compared to the parent dma_device
371  */
372 struct dma_chan_dev {
373 	struct dma_chan *chan;
374 	struct device device;
375 	int dev_id;
376 	bool chan_dma_dev;
377 };
378 
379 /**
380  * enum dma_slave_buswidth - defines bus width of the DMA slave
381  * device, source or target buses
382  */
383 enum dma_slave_buswidth {
384 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
385 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
386 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
387 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
388 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
389 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
390 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
391 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
392 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
393 	DMA_SLAVE_BUSWIDTH_128_BYTES = 128,
394 };
395 
396 /**
397  * struct dma_slave_config - dma slave channel runtime config
398  * @direction: whether the data shall go in or out on this slave
399  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
400  * legal values. DEPRECATED, drivers should use the direction argument
401  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
402  * the dir field in the dma_interleaved_template structure.
403  * @src_addr: this is the physical address where DMA slave data
404  * should be read (RX), if the source is memory this argument is
405  * ignored.
406  * @dst_addr: this is the physical address where DMA slave data
407  * should be written (TX), if the destination is memory this argument
408  * is ignored.
409  * @src_addr_width: this is the width in bytes of the source (RX)
410  * register where DMA data shall be read. If the source
411  * is memory this may be ignored depending on architecture.
412  * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128.
413  * @dst_addr_width: same as src_addr_width but for destination
414  * target (TX) mutatis mutandis.
415  * @src_maxburst: the maximum number of words (note: words, as in
416  * units of the src_addr_width member, not bytes) that can be sent
417  * in one burst to the device. Typically something like half the
418  * FIFO depth on I/O peripherals so you don't overflow it. This
419  * may or may not be applicable on memory sources.
420  * @dst_maxburst: same as src_maxburst but for destination target
421  * mutatis mutandis.
422  * @src_port_window_size: The length of the register area in words the data need
423  * to be accessed on the device side. It is only used for devices which is using
424  * an area instead of a single register to receive the data. Typically the DMA
425  * loops in this area in order to transfer the data.
426  * @dst_port_window_size: same as src_port_window_size but for the destination
427  * port.
428  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
429  * with 'true' if peripheral should be flow controller. Direction will be
430  * selected at Runtime.
431  * @peripheral_config: peripheral configuration for programming peripheral
432  * for dmaengine transfer
433  * @peripheral_size: peripheral configuration buffer size
434  *
435  * This struct is passed in as configuration data to a DMA engine
436  * in order to set up a certain channel for DMA transport at runtime.
437  * The DMA device/engine has to provide support for an additional
438  * callback in the dma_device structure, device_config and this struct
439  * will then be passed in as an argument to the function.
440  *
441  * The rationale for adding configuration information to this struct is as
442  * follows: if it is likely that more than one DMA slave controllers in
443  * the world will support the configuration option, then make it generic.
444  * If not: if it is fixed so that it be sent in static from the platform
445  * data, then prefer to do that.
446  */
447 struct dma_slave_config {
448 	enum dma_transfer_direction direction;
449 	phys_addr_t src_addr;
450 	phys_addr_t dst_addr;
451 	enum dma_slave_buswidth src_addr_width;
452 	enum dma_slave_buswidth dst_addr_width;
453 	u32 src_maxburst;
454 	u32 dst_maxburst;
455 	u32 src_port_window_size;
456 	u32 dst_port_window_size;
457 	bool device_fc;
458 	void *peripheral_config;
459 	size_t peripheral_size;
460 };
461 
462 /**
463  * enum dma_residue_granularity - Granularity of the reported transfer residue
464  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
465  *  DMA channel is only able to tell whether a descriptor has been completed or
466  *  not, which means residue reporting is not supported by this channel. The
467  *  residue field of the dma_tx_state field will always be 0.
468  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
469  *  completed segment of the transfer (For cyclic transfers this is after each
470  *  period). This is typically implemented by having the hardware generate an
471  *  interrupt after each transferred segment and then the drivers updates the
472  *  outstanding residue by the size of the segment. Another possibility is if
473  *  the hardware supports scatter-gather and the segment descriptor has a field
474  *  which gets set after the segment has been completed. The driver then counts
475  *  the number of segments without the flag set to compute the residue.
476  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
477  *  burst. This is typically only supported if the hardware has a progress
478  *  register of some sort (E.g. a register with the current read/write address
479  *  or a register with the amount of bursts/beats/bytes that have been
480  *  transferred or still need to be transferred).
481  */
482 enum dma_residue_granularity {
483 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
484 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
485 	DMA_RESIDUE_GRANULARITY_BURST = 2,
486 };
487 
488 /**
489  * struct dma_slave_caps - expose capabilities of a slave channel only
490  * @src_addr_widths: bit mask of src addr widths the channel supports.
491  *	Width is specified in bytes, e.g. for a channel supporting
492  *	a width of 4 the mask should have BIT(4) set.
493  * @dst_addr_widths: bit mask of dst addr widths the channel supports
494  * @directions: bit mask of slave directions the channel supports.
495  *	Since the enum dma_transfer_direction is not defined as bit flag for
496  *	each type, the dma controller should set BIT(<TYPE>) and same
497  *	should be checked by controller as well
498  * @min_burst: min burst capability per-transfer
499  * @max_burst: max burst capability per-transfer
500  * @max_sg_burst: max number of SG list entries executed in a single burst
501  *	DMA tansaction with no software intervention for reinitialization.
502  *	Zero value means unlimited number of entries.
503  * @cmd_pause: true, if pause is supported (i.e. for reading residue or
504  *	       for resume later)
505  * @cmd_resume: true, if resume is supported
506  * @cmd_terminate: true, if terminate cmd is supported
507  * @residue_granularity: granularity of the reported transfer residue
508  * @descriptor_reuse: if a descriptor can be reused by client and
509  * resubmitted multiple times
510  */
511 struct dma_slave_caps {
512 	u32 src_addr_widths;
513 	u32 dst_addr_widths;
514 	u32 directions;
515 	u32 min_burst;
516 	u32 max_burst;
517 	u32 max_sg_burst;
518 	bool cmd_pause;
519 	bool cmd_resume;
520 	bool cmd_terminate;
521 	enum dma_residue_granularity residue_granularity;
522 	bool descriptor_reuse;
523 };
524 
dma_chan_name(struct dma_chan * chan)525 static inline const char *dma_chan_name(struct dma_chan *chan)
526 {
527 	return dev_name(&chan->dev->device);
528 }
529 
530 /**
531  * typedef dma_filter_fn - callback filter for dma_request_channel
532  * @chan: channel to be reviewed
533  * @filter_param: opaque parameter passed through dma_request_channel
534  *
535  * When this optional parameter is specified in a call to dma_request_channel a
536  * suitable channel is passed to this routine for further dispositioning before
537  * being returned.  Where 'suitable' indicates a non-busy channel that
538  * satisfies the given capability mask.  It returns 'true' to indicate that the
539  * channel is suitable.
540  */
541 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
542 
543 typedef void (*dma_async_tx_callback)(void *dma_async_param);
544 
545 enum dmaengine_tx_result {
546 	DMA_TRANS_NOERROR = 0,		/* SUCCESS */
547 	DMA_TRANS_READ_FAILED,		/* Source DMA read failed */
548 	DMA_TRANS_WRITE_FAILED,		/* Destination DMA write failed */
549 	DMA_TRANS_ABORTED,		/* Op never submitted / aborted */
550 };
551 
552 struct dmaengine_result {
553 	enum dmaengine_tx_result result;
554 	u32 residue;
555 };
556 
557 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
558 				const struct dmaengine_result *result);
559 
560 struct dmaengine_unmap_data {
561 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
562 	u16 map_cnt;
563 #else
564 	u8 map_cnt;
565 #endif
566 	u8 to_cnt;
567 	u8 from_cnt;
568 	u8 bidi_cnt;
569 	struct device *dev;
570 	struct kref kref;
571 	size_t len;
572 	dma_addr_t addr[];
573 };
574 
575 struct dma_async_tx_descriptor;
576 
577 struct dma_descriptor_metadata_ops {
578 	int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
579 		      size_t len);
580 
581 	void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
582 			 size_t *payload_len, size_t *max_len);
583 	int (*set_len)(struct dma_async_tx_descriptor *desc,
584 		       size_t payload_len);
585 };
586 
587 /**
588  * struct dma_async_tx_descriptor - async transaction descriptor
589  * ---dma generic offload fields---
590  * @cookie: tracking cookie for this transaction, set to -EBUSY if
591  *	this tx is sitting on a dependency list
592  * @flags: flags to augment operation preparation, control completion, and
593  *	communicate status
594  * @phys: physical address of the descriptor
595  * @chan: target channel for this operation
596  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
597  * descriptor pending. To be pushed on .issue_pending() call
598  * @callback: routine to call after this operation is complete
599  * @callback_param: general parameter to pass to the callback routine
600  * @desc_metadata_mode: core managed metadata mode to protect mixed use of
601  *	DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
602  *	DESC_METADATA_NONE
603  * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
604  *	DMA driver if metadata mode is supported with the descriptor
605  * ---async_tx api specific fields---
606  * @next: at completion submit this descriptor
607  * @parent: pointer to the next level up in the dependency chain
608  * @lock: protect the parent and next pointers
609  */
610 struct dma_async_tx_descriptor {
611 	dma_cookie_t cookie;
612 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
613 	dma_addr_t phys;
614 	struct dma_chan *chan;
615 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
616 	int (*desc_free)(struct dma_async_tx_descriptor *tx);
617 	dma_async_tx_callback callback;
618 	dma_async_tx_callback_result callback_result;
619 	void *callback_param;
620 	struct dmaengine_unmap_data *unmap;
621 	enum dma_desc_metadata_mode desc_metadata_mode;
622 	struct dma_descriptor_metadata_ops *metadata_ops;
623 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
624 	struct dma_async_tx_descriptor *next;
625 	struct dma_async_tx_descriptor *parent;
626 	spinlock_t lock;
627 #endif
628 };
629 
630 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)631 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
632 				 struct dmaengine_unmap_data *unmap)
633 {
634 	kref_get(&unmap->kref);
635 	tx->unmap = unmap;
636 }
637 
638 struct dmaengine_unmap_data *
639 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
640 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
641 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)642 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
643 				 struct dmaengine_unmap_data *unmap)
644 {
645 }
646 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)647 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
648 {
649 	return NULL;
650 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)651 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
652 {
653 }
654 #endif
655 
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)656 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
657 {
658 	if (!tx->unmap)
659 		return;
660 
661 	dmaengine_unmap_put(tx->unmap);
662 	tx->unmap = NULL;
663 }
664 
665 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)666 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
667 {
668 }
txd_unlock(struct dma_async_tx_descriptor * txd)669 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
670 {
671 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)672 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
673 {
674 	BUG();
675 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)676 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
677 {
678 }
txd_clear_next(struct dma_async_tx_descriptor * txd)679 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
680 {
681 }
txd_next(struct dma_async_tx_descriptor * txd)682 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
683 {
684 	return NULL;
685 }
txd_parent(struct dma_async_tx_descriptor * txd)686 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
687 {
688 	return NULL;
689 }
690 
691 #else
txd_lock(struct dma_async_tx_descriptor * txd)692 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
693 {
694 	spin_lock_bh(&txd->lock);
695 }
txd_unlock(struct dma_async_tx_descriptor * txd)696 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
697 {
698 	spin_unlock_bh(&txd->lock);
699 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)700 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
701 {
702 	txd->next = next;
703 	next->parent = txd;
704 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)705 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
706 {
707 	txd->parent = NULL;
708 }
txd_clear_next(struct dma_async_tx_descriptor * txd)709 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
710 {
711 	txd->next = NULL;
712 }
txd_parent(struct dma_async_tx_descriptor * txd)713 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
714 {
715 	return txd->parent;
716 }
txd_next(struct dma_async_tx_descriptor * txd)717 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
718 {
719 	return txd->next;
720 }
721 #endif
722 
723 /**
724  * struct dma_tx_state - filled in to report the status of
725  * a transfer.
726  * @last: last completed DMA cookie
727  * @used: last issued DMA cookie (i.e. the one in progress)
728  * @residue: the remaining number of bytes left to transmit
729  *	on the selected transfer for states DMA_IN_PROGRESS and
730  *	DMA_PAUSED if this is implemented in the driver, else 0
731  * @in_flight_bytes: amount of data in bytes cached by the DMA.
732  */
733 struct dma_tx_state {
734 	dma_cookie_t last;
735 	dma_cookie_t used;
736 	u32 residue;
737 	u32 in_flight_bytes;
738 };
739 
740 /**
741  * enum dmaengine_alignment - defines alignment of the DMA async tx
742  * buffers
743  */
744 enum dmaengine_alignment {
745 	DMAENGINE_ALIGN_1_BYTE = 0,
746 	DMAENGINE_ALIGN_2_BYTES = 1,
747 	DMAENGINE_ALIGN_4_BYTES = 2,
748 	DMAENGINE_ALIGN_8_BYTES = 3,
749 	DMAENGINE_ALIGN_16_BYTES = 4,
750 	DMAENGINE_ALIGN_32_BYTES = 5,
751 	DMAENGINE_ALIGN_64_BYTES = 6,
752 	DMAENGINE_ALIGN_128_BYTES = 7,
753 	DMAENGINE_ALIGN_256_BYTES = 8,
754 };
755 
756 /**
757  * struct dma_slave_map - associates slave device and it's slave channel with
758  * parameter to be used by a filter function
759  * @devname: name of the device
760  * @slave: slave channel name
761  * @param: opaque parameter to pass to struct dma_filter.fn
762  */
763 struct dma_slave_map {
764 	const char *devname;
765 	const char *slave;
766 	void *param;
767 };
768 
769 /**
770  * struct dma_filter - information for slave device/channel to filter_fn/param
771  * mapping
772  * @fn: filter function callback
773  * @mapcnt: number of slave device/channel in the map
774  * @map: array of channel to filter mapping data
775  */
776 struct dma_filter {
777 	dma_filter_fn fn;
778 	int mapcnt;
779 	const struct dma_slave_map *map;
780 };
781 
782 /**
783  * struct dma_device - info on the entity supplying DMA services
784  * @ref: reference is taken and put every time a channel is allocated or freed
785  * @chancnt: how many DMA channels are supported
786  * @privatecnt: how many DMA channels are requested by dma_request_channel
787  * @channels: the list of struct dma_chan
788  * @global_node: list_head for global dma_device_list
789  * @filter: information for device/slave to filter function/param mapping
790  * @cap_mask: one or more dma_capability flags
791  * @desc_metadata_modes: supported metadata modes by the DMA device
792  * @max_xor: maximum number of xor sources, 0 if no capability
793  * @max_pq: maximum number of PQ sources and PQ-continue capability
794  * @copy_align: alignment shift for memcpy operations
795  * @xor_align: alignment shift for xor operations
796  * @pq_align: alignment shift for pq operations
797  * @fill_align: alignment shift for memset operations
798  * @dev_id: unique device ID
799  * @dev: struct device reference for dma mapping api
800  * @owner: owner module (automatically set based on the provided dev)
801  * @chan_ida: unique channel ID
802  * @src_addr_widths: bit mask of src addr widths the device supports
803  *	Width is specified in bytes, e.g. for a device supporting
804  *	a width of 4 the mask should have BIT(4) set.
805  * @dst_addr_widths: bit mask of dst addr widths the device supports
806  * @directions: bit mask of slave directions the device supports.
807  *	Since the enum dma_transfer_direction is not defined as bit flag for
808  *	each type, the dma controller should set BIT(<TYPE>) and same
809  *	should be checked by controller as well
810  * @min_burst: min burst capability per-transfer
811  * @max_burst: max burst capability per-transfer
812  * @max_sg_burst: max number of SG list entries executed in a single burst
813  *	DMA tansaction with no software intervention for reinitialization.
814  *	Zero value means unlimited number of entries.
815  * @descriptor_reuse: a submitted transfer can be resubmitted after completion
816  * @residue_granularity: granularity of the transfer residue reported
817  *	by tx_status
818  * @device_alloc_chan_resources: allocate resources and return the
819  *	number of allocated descriptors
820  * @device_router_config: optional callback for DMA router configuration
821  * @device_free_chan_resources: release DMA channel's resources
822  * @device_prep_dma_memcpy: prepares a memcpy operation
823  * @device_prep_dma_xor: prepares a xor operation
824  * @device_prep_dma_xor_val: prepares a xor validation operation
825  * @device_prep_dma_pq: prepares a pq operation
826  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
827  * @device_prep_dma_memset: prepares a memset operation
828  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
829  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
830  * @device_prep_slave_sg: prepares a slave dma operation
831  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
832  *	The function takes a buffer of size buf_len. The callback function will
833  *	be called after period_len bytes have been transferred.
834  * @device_prep_interleaved_dma: Transfer expression in a generic way.
835  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
836  * @device_caps: May be used to override the generic DMA slave capabilities
837  *	with per-channel specific ones
838  * @device_config: Pushes a new configuration to a channel, return 0 or an error
839  *	code
840  * @device_pause: Pauses any transfer happening on a channel. Returns
841  *	0 or an error code
842  * @device_resume: Resumes any transfer on a channel previously
843  *	paused. Returns 0 or an error code
844  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
845  *	or an error code
846  * @device_synchronize: Synchronizes the termination of a transfers to the
847  *  current context.
848  * @device_tx_status: poll for transaction completion, the optional
849  *	txstate parameter can be supplied with a pointer to get a
850  *	struct with auxiliary transfer status information, otherwise the call
851  *	will just return a simple status code
852  * @device_issue_pending: push pending transactions to hardware
853  * @device_release: called sometime atfer dma_async_device_unregister() is
854  *     called and there are no further references to this structure. This
855  *     must be implemented to free resources however many existing drivers
856  *     do not and are therefore not safe to unbind while in use.
857  * @dbg_summary_show: optional routine to show contents in debugfs; default code
858  *     will be used when this is omitted, but custom code can show extra,
859  *     controller specific information.
860  * @dbg_dev_root: the root folder in debugfs for this device
861  */
862 struct dma_device {
863 	struct kref ref;
864 	unsigned int chancnt;
865 	unsigned int privatecnt;
866 	struct list_head channels;
867 	struct list_head global_node;
868 	struct dma_filter filter;
869 	dma_cap_mask_t cap_mask;
870 	enum dma_desc_metadata_mode desc_metadata_modes;
871 	unsigned short max_xor;
872 	unsigned short max_pq;
873 	enum dmaengine_alignment copy_align;
874 	enum dmaengine_alignment xor_align;
875 	enum dmaengine_alignment pq_align;
876 	enum dmaengine_alignment fill_align;
877 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
878 
879 	int dev_id;
880 	struct device *dev;
881 	struct module *owner;
882 	struct ida chan_ida;
883 
884 	u32 src_addr_widths;
885 	u32 dst_addr_widths;
886 	u32 directions;
887 	u32 min_burst;
888 	u32 max_burst;
889 	u32 max_sg_burst;
890 	bool descriptor_reuse;
891 	enum dma_residue_granularity residue_granularity;
892 
893 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
894 	int (*device_router_config)(struct dma_chan *chan);
895 	void (*device_free_chan_resources)(struct dma_chan *chan);
896 
897 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
898 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
899 		size_t len, unsigned long flags);
900 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
901 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
902 		unsigned int src_cnt, size_t len, unsigned long flags);
903 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
904 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
905 		size_t len, enum sum_check_flags *result, unsigned long flags);
906 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
907 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
908 		unsigned int src_cnt, const unsigned char *scf,
909 		size_t len, unsigned long flags);
910 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
911 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
912 		unsigned int src_cnt, const unsigned char *scf, size_t len,
913 		enum sum_check_flags *pqres, unsigned long flags);
914 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
915 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
916 		unsigned long flags);
917 	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
918 		struct dma_chan *chan, struct scatterlist *sg,
919 		unsigned int nents, int value, unsigned long flags);
920 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
921 		struct dma_chan *chan, unsigned long flags);
922 
923 	struct dma_async_tx_descriptor *(*device_prep_peripheral_dma_vec)(
924 		struct dma_chan *chan, const struct dma_vec *vecs,
925 		size_t nents, enum dma_transfer_direction direction,
926 		unsigned long flags);
927 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
928 		struct dma_chan *chan, struct scatterlist *sgl,
929 		unsigned int sg_len, enum dma_transfer_direction direction,
930 		unsigned long flags, void *context);
931 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
932 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
933 		size_t period_len, enum dma_transfer_direction direction,
934 		unsigned long flags);
935 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
936 		struct dma_chan *chan, struct dma_interleaved_template *xt,
937 		unsigned long flags);
938 	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
939 		struct dma_chan *chan, dma_addr_t dst, u64 data,
940 		unsigned long flags);
941 
942 	void (*device_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
943 	int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config);
944 	int (*device_pause)(struct dma_chan *chan);
945 	int (*device_resume)(struct dma_chan *chan);
946 	int (*device_terminate_all)(struct dma_chan *chan);
947 	void (*device_synchronize)(struct dma_chan *chan);
948 
949 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
950 					    dma_cookie_t cookie,
951 					    struct dma_tx_state *txstate);
952 	void (*device_issue_pending)(struct dma_chan *chan);
953 	void (*device_release)(struct dma_device *dev);
954 	/* debugfs support */
955 	void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
956 	struct dentry *dbg_dev_root;
957 };
958 
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)959 static inline int dmaengine_slave_config(struct dma_chan *chan,
960 					  struct dma_slave_config *config)
961 {
962 	if (chan->device->device_config)
963 		return chan->device->device_config(chan, config);
964 
965 	return -ENOSYS;
966 }
967 
is_slave_direction(enum dma_transfer_direction direction)968 static inline bool is_slave_direction(enum dma_transfer_direction direction)
969 {
970 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM) ||
971 	       (direction == DMA_DEV_TO_DEV);
972 }
973 
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)974 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
975 	struct dma_chan *chan, dma_addr_t buf, size_t len,
976 	enum dma_transfer_direction dir, unsigned long flags)
977 {
978 	struct scatterlist sg;
979 	sg_init_table(&sg, 1);
980 	sg_dma_address(&sg) = buf;
981 	sg_dma_len(&sg) = len;
982 
983 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
984 		return NULL;
985 
986 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
987 						  dir, flags, NULL);
988 }
989 
990 /**
991  * dmaengine_prep_peripheral_dma_vec() - Prepare a DMA scatter-gather descriptor
992  * @chan: The channel to be used for this descriptor
993  * @vecs: The array of DMA vectors that should be transferred
994  * @nents: The number of DMA vectors in the array
995  * @dir: Specifies the direction of the data transfer
996  * @flags: DMA engine flags
997  */
dmaengine_prep_peripheral_dma_vec(struct dma_chan * chan,const struct dma_vec * vecs,size_t nents,enum dma_transfer_direction dir,unsigned long flags)998 static inline struct dma_async_tx_descriptor *dmaengine_prep_peripheral_dma_vec(
999 	struct dma_chan *chan, const struct dma_vec *vecs, size_t nents,
1000 	enum dma_transfer_direction dir, unsigned long flags)
1001 {
1002 	if (!chan || !chan->device || !chan->device->device_prep_peripheral_dma_vec)
1003 		return NULL;
1004 
1005 	return chan->device->device_prep_peripheral_dma_vec(chan, vecs, nents,
1006 							    dir, flags);
1007 }
1008 
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)1009 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
1010 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
1011 	enum dma_transfer_direction dir, unsigned long flags)
1012 {
1013 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1014 		return NULL;
1015 
1016 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1017 						  dir, flags, NULL);
1018 }
1019 
1020 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1021 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)1022 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
1023 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
1024 	enum dma_transfer_direction dir, unsigned long flags,
1025 	struct rio_dma_ext *rio_ext)
1026 {
1027 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1028 		return NULL;
1029 
1030 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1031 						  dir, flags, rio_ext);
1032 }
1033 #endif
1034 
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)1035 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1036 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1037 		size_t period_len, enum dma_transfer_direction dir,
1038 		unsigned long flags)
1039 {
1040 	if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1041 		return NULL;
1042 
1043 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1044 						period_len, dir, flags);
1045 }
1046 
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)1047 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1048 		struct dma_chan *chan, struct dma_interleaved_template *xt,
1049 		unsigned long flags)
1050 {
1051 	if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1052 		return NULL;
1053 	if (flags & DMA_PREP_REPEAT &&
1054 	    !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1055 		return NULL;
1056 
1057 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1058 }
1059 
1060 /**
1061  * dmaengine_prep_dma_memset() - Prepare a DMA memset descriptor.
1062  * @chan: The channel to be used for this descriptor
1063  * @dest: Address of buffer to be set
1064  * @value: Treated as a single byte value that fills the destination buffer
1065  * @len: The total size of dest
1066  * @flags: DMA engine flags
1067  */
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1068 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1069 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1070 		unsigned long flags)
1071 {
1072 	if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1073 		return NULL;
1074 
1075 	return chan->device->device_prep_dma_memset(chan, dest, value,
1076 						    len, flags);
1077 }
1078 
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1079 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1080 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1081 		size_t len, unsigned long flags)
1082 {
1083 	if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1084 		return NULL;
1085 
1086 	return chan->device->device_prep_dma_memcpy(chan, dest, src,
1087 						    len, flags);
1088 }
1089 
dmaengine_is_metadata_mode_supported(struct dma_chan * chan,enum dma_desc_metadata_mode mode)1090 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1091 		enum dma_desc_metadata_mode mode)
1092 {
1093 	if (!chan)
1094 		return false;
1095 
1096 	return !!(chan->device->desc_metadata_modes & mode);
1097 }
1098 
1099 #ifdef CONFIG_DMA_ENGINE
1100 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1101 				   void *data, size_t len);
1102 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1103 				      size_t *payload_len, size_t *max_len);
1104 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1105 				    size_t payload_len);
1106 #else /* CONFIG_DMA_ENGINE */
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1107 static inline int dmaengine_desc_attach_metadata(
1108 		struct dma_async_tx_descriptor *desc, void *data, size_t len)
1109 {
1110 	return -EINVAL;
1111 }
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1112 static inline void *dmaengine_desc_get_metadata_ptr(
1113 		struct dma_async_tx_descriptor *desc, size_t *payload_len,
1114 		size_t *max_len)
1115 {
1116 	return NULL;
1117 }
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1118 static inline int dmaengine_desc_set_metadata_len(
1119 		struct dma_async_tx_descriptor *desc, size_t payload_len)
1120 {
1121 	return -EINVAL;
1122 }
1123 #endif /* CONFIG_DMA_ENGINE */
1124 
1125 /**
1126  * dmaengine_terminate_all() - Terminate all active DMA transfers
1127  * @chan: The channel for which to terminate the transfers
1128  *
1129  * This function is DEPRECATED use either dmaengine_terminate_sync() or
1130  * dmaengine_terminate_async() instead.
1131  */
dmaengine_terminate_all(struct dma_chan * chan)1132 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1133 {
1134 	if (chan->device->device_terminate_all)
1135 		return chan->device->device_terminate_all(chan);
1136 
1137 	return -ENOSYS;
1138 }
1139 
1140 /**
1141  * dmaengine_terminate_async() - Terminate all active DMA transfers
1142  * @chan: The channel for which to terminate the transfers
1143  *
1144  * Calling this function will terminate all active and pending descriptors
1145  * that have previously been submitted to the channel. It is not guaranteed
1146  * though that the transfer for the active descriptor has stopped when the
1147  * function returns. Furthermore it is possible the complete callback of a
1148  * submitted transfer is still running when this function returns.
1149  *
1150  * dmaengine_synchronize() needs to be called before it is safe to free
1151  * any memory that is accessed by previously submitted descriptors or before
1152  * freeing any resources accessed from within the completion callback of any
1153  * previously submitted descriptors.
1154  *
1155  * This function can be called from atomic context as well as from within a
1156  * complete callback of a descriptor submitted on the same channel.
1157  *
1158  * If none of the two conditions above apply consider using
1159  * dmaengine_terminate_sync() instead.
1160  */
dmaengine_terminate_async(struct dma_chan * chan)1161 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1162 {
1163 	if (chan->device->device_terminate_all)
1164 		return chan->device->device_terminate_all(chan);
1165 
1166 	return -EINVAL;
1167 }
1168 
1169 /**
1170  * dmaengine_synchronize() - Synchronize DMA channel termination
1171  * @chan: The channel to synchronize
1172  *
1173  * Synchronizes to the DMA channel termination to the current context. When this
1174  * function returns it is guaranteed that all transfers for previously issued
1175  * descriptors have stopped and it is safe to free the memory associated
1176  * with them. Furthermore it is guaranteed that all complete callback functions
1177  * for a previously submitted descriptor have finished running and it is safe to
1178  * free resources accessed from within the complete callbacks.
1179  *
1180  * The behavior of this function is undefined if dma_async_issue_pending() has
1181  * been called between dmaengine_terminate_async() and this function.
1182  *
1183  * This function must only be called from non-atomic context and must not be
1184  * called from within a complete callback of a descriptor submitted on the same
1185  * channel.
1186  */
dmaengine_synchronize(struct dma_chan * chan)1187 static inline void dmaengine_synchronize(struct dma_chan *chan)
1188 {
1189 	might_sleep();
1190 
1191 	if (chan->device->device_synchronize)
1192 		chan->device->device_synchronize(chan);
1193 }
1194 
1195 /**
1196  * dmaengine_terminate_sync() - Terminate all active DMA transfers
1197  * @chan: The channel for which to terminate the transfers
1198  *
1199  * Calling this function will terminate all active and pending transfers
1200  * that have previously been submitted to the channel. It is similar to
1201  * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1202  * stopped and that all complete callbacks have finished running when the
1203  * function returns.
1204  *
1205  * This function must only be called from non-atomic context and must not be
1206  * called from within a complete callback of a descriptor submitted on the same
1207  * channel.
1208  */
dmaengine_terminate_sync(struct dma_chan * chan)1209 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1210 {
1211 	int ret;
1212 
1213 	ret = dmaengine_terminate_async(chan);
1214 	if (ret)
1215 		return ret;
1216 
1217 	dmaengine_synchronize(chan);
1218 
1219 	return 0;
1220 }
1221 
dmaengine_pause(struct dma_chan * chan)1222 static inline int dmaengine_pause(struct dma_chan *chan)
1223 {
1224 	if (chan->device->device_pause)
1225 		return chan->device->device_pause(chan);
1226 
1227 	return -ENOSYS;
1228 }
1229 
dmaengine_resume(struct dma_chan * chan)1230 static inline int dmaengine_resume(struct dma_chan *chan)
1231 {
1232 	if (chan->device->device_resume)
1233 		return chan->device->device_resume(chan);
1234 
1235 	return -ENOSYS;
1236 }
1237 
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1238 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1239 	dma_cookie_t cookie, struct dma_tx_state *state)
1240 {
1241 	return chan->device->device_tx_status(chan, cookie, state);
1242 }
1243 
dmaengine_submit(struct dma_async_tx_descriptor * desc)1244 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1245 {
1246 	return desc->tx_submit(desc);
1247 }
1248 
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1249 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1250 					 size_t off1, size_t off2, size_t len)
1251 {
1252 	return !(((1 << align) - 1) & (off1 | off2 | len));
1253 }
1254 
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1255 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1256 				       size_t off2, size_t len)
1257 {
1258 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
1259 }
1260 
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1261 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1262 				      size_t off2, size_t len)
1263 {
1264 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
1265 }
1266 
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1267 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1268 				     size_t off2, size_t len)
1269 {
1270 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
1271 }
1272 
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1273 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1274 				       size_t off2, size_t len)
1275 {
1276 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
1277 }
1278 
1279 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1280 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1281 {
1282 	dma->max_pq = maxpq;
1283 	if (has_pq_continue)
1284 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1285 }
1286 
dmaf_continue(enum dma_ctrl_flags flags)1287 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1288 {
1289 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1290 }
1291 
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1292 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1293 {
1294 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1295 
1296 	return (flags & mask) == mask;
1297 }
1298 
dma_dev_has_pq_continue(struct dma_device * dma)1299 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1300 {
1301 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1302 }
1303 
dma_dev_to_maxpq(struct dma_device * dma)1304 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1305 {
1306 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1307 }
1308 
1309 /* dma_maxpq - reduce maxpq in the face of continued operations
1310  * @dma - dma device with PQ capability
1311  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1312  *
1313  * When an engine does not support native continuation we need 3 extra
1314  * source slots to reuse P and Q with the following coefficients:
1315  * 1/ {00} * P : remove P from Q', but use it as a source for P'
1316  * 2/ {01} * Q : use Q to continue Q' calculation
1317  * 3/ {00} * Q : subtract Q from P' to cancel (2)
1318  *
1319  * In the case where P is disabled we only need 1 extra source:
1320  * 1/ {01} * Q : use Q to continue Q' calculation
1321  */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1322 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1323 {
1324 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1325 		return dma_dev_to_maxpq(dma);
1326 	if (dmaf_p_disabled_continue(flags))
1327 		return dma_dev_to_maxpq(dma) - 1;
1328 	if (dmaf_continue(flags))
1329 		return dma_dev_to_maxpq(dma) - 3;
1330 	BUG();
1331 }
1332 
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1333 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1334 				      size_t dir_icg)
1335 {
1336 	if (inc) {
1337 		if (dir_icg)
1338 			return dir_icg;
1339 		if (sgl)
1340 			return icg;
1341 	}
1342 
1343 	return 0;
1344 }
1345 
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1346 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1347 					   struct data_chunk *chunk)
1348 {
1349 	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1350 				 chunk->icg, chunk->dst_icg);
1351 }
1352 
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1353 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1354 					   struct data_chunk *chunk)
1355 {
1356 	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1357 				 chunk->icg, chunk->src_icg);
1358 }
1359 
1360 /* --- public DMA engine API --- */
1361 
1362 #ifdef CONFIG_DMA_ENGINE
1363 void dmaengine_get(void);
1364 void dmaengine_put(void);
1365 #else
dmaengine_get(void)1366 static inline void dmaengine_get(void)
1367 {
1368 }
dmaengine_put(void)1369 static inline void dmaengine_put(void)
1370 {
1371 }
1372 #endif
1373 
1374 #ifdef CONFIG_ASYNC_TX_DMA
1375 #define async_dmaengine_get()	dmaengine_get()
1376 #define async_dmaengine_put()	dmaengine_put()
1377 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1378 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1379 #else
1380 #define async_dma_find_channel(type) dma_find_channel(type)
1381 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1382 #else
async_dmaengine_get(void)1383 static inline void async_dmaengine_get(void)
1384 {
1385 }
async_dmaengine_put(void)1386 static inline void async_dmaengine_put(void)
1387 {
1388 }
1389 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1390 async_dma_find_channel(enum dma_transaction_type type)
1391 {
1392 	return NULL;
1393 }
1394 #endif /* CONFIG_ASYNC_TX_DMA */
1395 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1396 				  struct dma_chan *chan);
1397 
async_tx_ack(struct dma_async_tx_descriptor * tx)1398 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1399 {
1400 	tx->flags |= DMA_CTRL_ACK;
1401 }
1402 
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1403 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1404 {
1405 	tx->flags &= ~DMA_CTRL_ACK;
1406 }
1407 
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1408 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1409 {
1410 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1411 }
1412 
1413 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1414 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1415 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1416 {
1417 	set_bit(tx_type, dstp->bits);
1418 }
1419 
1420 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1421 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1422 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1423 {
1424 	clear_bit(tx_type, dstp->bits);
1425 }
1426 
1427 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1428 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1429 {
1430 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1431 }
1432 
1433 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1434 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1435 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1436 {
1437 	return test_bit(tx_type, srcp->bits);
1438 }
1439 
1440 #define for_each_dma_cap_mask(cap, mask) \
1441 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1442 
1443 /**
1444  * dma_async_issue_pending - flush pending transactions to HW
1445  * @chan: target DMA channel
1446  *
1447  * This allows drivers to push copies to HW in batches,
1448  * reducing MMIO writes where possible.
1449  */
dma_async_issue_pending(struct dma_chan * chan)1450 static inline void dma_async_issue_pending(struct dma_chan *chan)
1451 {
1452 	chan->device->device_issue_pending(chan);
1453 }
1454 
1455 /**
1456  * dma_async_is_tx_complete - poll for transaction completion
1457  * @chan: DMA channel
1458  * @cookie: transaction identifier to check status of
1459  * @last: returns last completed cookie, can be NULL
1460  * @used: returns last issued cookie, can be NULL
1461  *
1462  * If @last and @used are passed in, upon return they reflect the driver
1463  * internal state and can be used with dma_async_is_complete() to check
1464  * the status of multiple cookies without re-checking hardware state.
1465  */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1466 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1467 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1468 {
1469 	struct dma_tx_state state;
1470 	enum dma_status status;
1471 
1472 	status = chan->device->device_tx_status(chan, cookie, &state);
1473 	if (last)
1474 		*last = state.last;
1475 	if (used)
1476 		*used = state.used;
1477 	return status;
1478 }
1479 
1480 /**
1481  * dma_async_is_complete - test a cookie against chan state
1482  * @cookie: transaction identifier to test status of
1483  * @last_complete: last know completed transaction
1484  * @last_used: last cookie value handed out
1485  *
1486  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1487  * the test logic is separated for lightweight testing of multiple cookies
1488  */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1489 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1490 			dma_cookie_t last_complete, dma_cookie_t last_used)
1491 {
1492 	if (last_complete <= last_used) {
1493 		if ((cookie <= last_complete) || (cookie > last_used))
1494 			return DMA_COMPLETE;
1495 	} else {
1496 		if ((cookie <= last_complete) && (cookie > last_used))
1497 			return DMA_COMPLETE;
1498 	}
1499 	return DMA_IN_PROGRESS;
1500 }
1501 
1502 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1503 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1504 {
1505 	if (!st)
1506 		return;
1507 
1508 	st->last = last;
1509 	st->used = used;
1510 	st->residue = residue;
1511 }
1512 
1513 #ifdef CONFIG_DMA_ENGINE
1514 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1515 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1516 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1517 void dma_issue_pending_all(void);
1518 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1519 				       dma_filter_fn fn, void *fn_param,
1520 				       struct device_node *np);
1521 
1522 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1523 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1524 
1525 void dma_release_channel(struct dma_chan *chan);
1526 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1527 #else
dma_find_channel(enum dma_transaction_type tx_type)1528 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1529 {
1530 	return NULL;
1531 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1532 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1533 {
1534 	return DMA_COMPLETE;
1535 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1536 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1537 {
1538 	return DMA_COMPLETE;
1539 }
dma_issue_pending_all(void)1540 static inline void dma_issue_pending_all(void)
1541 {
1542 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1543 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1544 						     dma_filter_fn fn,
1545 						     void *fn_param,
1546 						     struct device_node *np)
1547 {
1548 	return NULL;
1549 }
dma_request_chan(struct device * dev,const char * name)1550 static inline struct dma_chan *dma_request_chan(struct device *dev,
1551 						const char *name)
1552 {
1553 	return ERR_PTR(-ENODEV);
1554 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1555 static inline struct dma_chan *dma_request_chan_by_mask(
1556 						const dma_cap_mask_t *mask)
1557 {
1558 	return ERR_PTR(-ENODEV);
1559 }
dma_release_channel(struct dma_chan * chan)1560 static inline void dma_release_channel(struct dma_chan *chan)
1561 {
1562 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1563 static inline int dma_get_slave_caps(struct dma_chan *chan,
1564 				     struct dma_slave_caps *caps)
1565 {
1566 	return -ENXIO;
1567 }
1568 #endif
1569 
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1570 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1571 {
1572 	struct dma_slave_caps caps;
1573 	int ret;
1574 
1575 	ret = dma_get_slave_caps(tx->chan, &caps);
1576 	if (ret)
1577 		return ret;
1578 
1579 	if (!caps.descriptor_reuse)
1580 		return -EPERM;
1581 
1582 	tx->flags |= DMA_CTRL_REUSE;
1583 	return 0;
1584 }
1585 
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1586 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1587 {
1588 	tx->flags &= ~DMA_CTRL_REUSE;
1589 }
1590 
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1591 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1592 {
1593 	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1594 }
1595 
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1596 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1597 {
1598 	/* this is supported for reusable desc, so check that */
1599 	if (!dmaengine_desc_test_reuse(desc))
1600 		return -EPERM;
1601 
1602 	return desc->desc_free(desc);
1603 }
1604 
1605 /* --- DMA device --- */
1606 
1607 int dma_async_device_register(struct dma_device *device);
1608 int dmaenginem_async_device_register(struct dma_device *device);
1609 void dma_async_device_unregister(struct dma_device *device);
1610 int dma_async_device_channel_register(struct dma_device *device,
1611 				      struct dma_chan *chan,
1612 				      const char *name);
1613 void dma_async_device_channel_unregister(struct dma_device *device,
1614 					 struct dma_chan *chan);
1615 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1616 #define dma_request_channel(mask, x, y) \
1617 	__dma_request_channel(&(mask), x, y, NULL)
1618 
1619 /* Deprecated, please use dma_request_chan() directly */
1620 static inline struct dma_chan * __deprecated
dma_request_slave_channel(struct device * dev,const char * name)1621 dma_request_slave_channel(struct device *dev, const char *name)
1622 {
1623 	struct dma_chan *ch = dma_request_chan(dev, name);
1624 
1625 	return IS_ERR(ch) ? NULL : ch;
1626 }
1627 
1628 static inline struct dma_chan
dma_request_slave_channel_compat(const dma_cap_mask_t mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1629 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1630 				  dma_filter_fn fn, void *fn_param,
1631 				  struct device *dev, const char *name)
1632 {
1633 	struct dma_chan *chan;
1634 
1635 	chan = dma_request_slave_channel(dev, name);
1636 	if (chan)
1637 		return chan;
1638 
1639 	if (!fn || !fn_param)
1640 		return NULL;
1641 
1642 	return __dma_request_channel(&mask, fn, fn_param, NULL);
1643 }
1644 
1645 static inline char *
dmaengine_get_direction_text(enum dma_transfer_direction dir)1646 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1647 {
1648 	switch (dir) {
1649 	case DMA_DEV_TO_MEM:
1650 		return "DEV_TO_MEM";
1651 	case DMA_MEM_TO_DEV:
1652 		return "MEM_TO_DEV";
1653 	case DMA_MEM_TO_MEM:
1654 		return "MEM_TO_MEM";
1655 	case DMA_DEV_TO_DEV:
1656 		return "DEV_TO_DEV";
1657 	default:
1658 		return "invalid";
1659 	}
1660 }
1661 
dmaengine_get_dma_device(struct dma_chan * chan)1662 static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1663 {
1664 	if (chan->dev->chan_dma_dev)
1665 		return &chan->dev->device;
1666 
1667 	return chan->device->dev;
1668 }
1669 
1670 #endif /* DMAENGINE_H */
1671