1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2011 Red Hat, Inc.
4   *
5   * This file is released under the GPL.
6   */
7  
8  #include "dm-btree-internal.h"
9  #include "dm-space-map.h"
10  #include "dm-transaction-manager.h"
11  
12  #include <linux/export.h>
13  #include <linux/device-mapper.h>
14  
15  #define DM_MSG_PREFIX "btree"
16  
17  /*
18   *--------------------------------------------------------------
19   * Array manipulation
20   *--------------------------------------------------------------
21   */
memcpy_disk(void * dest,const void * src,size_t len)22  static void memcpy_disk(void *dest, const void *src, size_t len)
23  	__dm_written_to_disk(src)
24  {
25  	memcpy(dest, src, len);
26  	__dm_unbless_for_disk(src);
27  }
28  
array_insert(void * base,size_t elt_size,unsigned int nr_elts,unsigned int index,void * elt)29  static void array_insert(void *base, size_t elt_size, unsigned int nr_elts,
30  			 unsigned int index, void *elt)
31  	__dm_written_to_disk(elt)
32  {
33  	if (index < nr_elts)
34  		memmove(base + (elt_size * (index + 1)),
35  			base + (elt_size * index),
36  			(nr_elts - index) * elt_size);
37  
38  	memcpy_disk(base + (elt_size * index), elt, elt_size);
39  }
40  
41  /*----------------------------------------------------------------*/
42  
43  /* makes the assumption that no two keys are the same. */
bsearch(struct btree_node * n,uint64_t key,int want_hi)44  static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
45  {
46  	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
47  
48  	while (hi - lo > 1) {
49  		int mid = lo + ((hi - lo) / 2);
50  		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
51  
52  		if (mid_key == key)
53  			return mid;
54  
55  		if (mid_key < key)
56  			lo = mid;
57  		else
58  			hi = mid;
59  	}
60  
61  	return want_hi ? hi : lo;
62  }
63  
lower_bound(struct btree_node * n,uint64_t key)64  int lower_bound(struct btree_node *n, uint64_t key)
65  {
66  	return bsearch(n, key, 0);
67  }
68  
upper_bound(struct btree_node * n,uint64_t key)69  static int upper_bound(struct btree_node *n, uint64_t key)
70  {
71  	return bsearch(n, key, 1);
72  }
73  
inc_children(struct dm_transaction_manager * tm,struct btree_node * n,struct dm_btree_value_type * vt)74  void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
75  		  struct dm_btree_value_type *vt)
76  {
77  	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
78  
79  	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
80  		dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);
81  
82  	else if (vt->inc)
83  		vt->inc(vt->context, value_ptr(n, 0), nr_entries);
84  }
85  
insert_at(size_t value_size,struct btree_node * node,unsigned int index,uint64_t key,void * value)86  static int insert_at(size_t value_size, struct btree_node *node, unsigned int index,
87  		     uint64_t key, void *value)
88  	__dm_written_to_disk(value)
89  {
90  	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
91  	uint32_t max_entries = le32_to_cpu(node->header.max_entries);
92  	__le64 key_le = cpu_to_le64(key);
93  
94  	if (index > nr_entries ||
95  	    index >= max_entries ||
96  	    nr_entries >= max_entries) {
97  		DMERR("too many entries in btree node for insert");
98  		__dm_unbless_for_disk(value);
99  		return -ENOMEM;
100  	}
101  
102  	__dm_bless_for_disk(&key_le);
103  
104  	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
105  	array_insert(value_base(node), value_size, nr_entries, index, value);
106  	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
107  
108  	return 0;
109  }
110  
111  /*----------------------------------------------------------------*/
112  
113  /*
114   * We want 3n entries (for some n).  This works more nicely for repeated
115   * insert remove loops than (2n + 1).
116   */
calc_max_entries(size_t value_size,size_t block_size)117  static uint32_t calc_max_entries(size_t value_size, size_t block_size)
118  {
119  	uint32_t total, n;
120  	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
121  
122  	block_size -= sizeof(struct node_header);
123  	total = block_size / elt_size;
124  	n = total / 3;		/* rounds down */
125  
126  	return 3 * n;
127  }
128  
dm_btree_empty(struct dm_btree_info * info,dm_block_t * root)129  int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
130  {
131  	int r;
132  	struct dm_block *b;
133  	struct btree_node *n;
134  	size_t block_size;
135  	uint32_t max_entries;
136  
137  	r = new_block(info, &b);
138  	if (r < 0)
139  		return r;
140  
141  	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
142  	max_entries = calc_max_entries(info->value_type.size, block_size);
143  
144  	n = dm_block_data(b);
145  	memset(n, 0, block_size);
146  	n->header.flags = cpu_to_le32(LEAF_NODE);
147  	n->header.nr_entries = cpu_to_le32(0);
148  	n->header.max_entries = cpu_to_le32(max_entries);
149  	n->header.value_size = cpu_to_le32(info->value_type.size);
150  
151  	*root = dm_block_location(b);
152  	unlock_block(info, b);
153  
154  	return 0;
155  }
156  EXPORT_SYMBOL_GPL(dm_btree_empty);
157  
158  /*----------------------------------------------------------------*/
159  
160  /*
161   * Deletion uses a recursive algorithm, since we have limited stack space
162   * we explicitly manage our own stack on the heap.
163   */
164  #define MAX_SPINE_DEPTH 64
165  struct frame {
166  	struct dm_block *b;
167  	struct btree_node *n;
168  	unsigned int level;
169  	unsigned int nr_children;
170  	unsigned int current_child;
171  };
172  
173  struct del_stack {
174  	struct dm_btree_info *info;
175  	struct dm_transaction_manager *tm;
176  	int top;
177  	struct frame spine[MAX_SPINE_DEPTH];
178  };
179  
top_frame(struct del_stack * s,struct frame ** f)180  static int top_frame(struct del_stack *s, struct frame **f)
181  {
182  	if (s->top < 0) {
183  		DMERR("btree deletion stack empty");
184  		return -EINVAL;
185  	}
186  
187  	*f = s->spine + s->top;
188  
189  	return 0;
190  }
191  
unprocessed_frames(struct del_stack * s)192  static int unprocessed_frames(struct del_stack *s)
193  {
194  	return s->top >= 0;
195  }
196  
prefetch_children(struct del_stack * s,struct frame * f)197  static void prefetch_children(struct del_stack *s, struct frame *f)
198  {
199  	unsigned int i;
200  	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
201  
202  	for (i = 0; i < f->nr_children; i++)
203  		dm_bm_prefetch(bm, value64(f->n, i));
204  }
205  
is_internal_level(struct dm_btree_info * info,struct frame * f)206  static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
207  {
208  	return f->level < (info->levels - 1);
209  }
210  
push_frame(struct del_stack * s,dm_block_t b,unsigned int level)211  static int push_frame(struct del_stack *s, dm_block_t b, unsigned int level)
212  {
213  	int r;
214  	uint32_t ref_count;
215  
216  	if (s->top >= MAX_SPINE_DEPTH - 1) {
217  		DMERR("btree deletion stack out of memory");
218  		return -ENOMEM;
219  	}
220  
221  	r = dm_tm_ref(s->tm, b, &ref_count);
222  	if (r)
223  		return r;
224  
225  	if (ref_count > 1)
226  		/*
227  		 * This is a shared node, so we can just decrement it's
228  		 * reference counter and leave the children.
229  		 */
230  		dm_tm_dec(s->tm, b);
231  
232  	else {
233  		uint32_t flags;
234  		struct frame *f = s->spine + ++s->top;
235  
236  		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
237  		if (r) {
238  			s->top--;
239  			return r;
240  		}
241  
242  		f->n = dm_block_data(f->b);
243  		f->level = level;
244  		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
245  		f->current_child = 0;
246  
247  		flags = le32_to_cpu(f->n->header.flags);
248  		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
249  			prefetch_children(s, f);
250  	}
251  
252  	return 0;
253  }
254  
pop_frame(struct del_stack * s)255  static void pop_frame(struct del_stack *s)
256  {
257  	struct frame *f = s->spine + s->top--;
258  
259  	dm_tm_dec(s->tm, dm_block_location(f->b));
260  	dm_tm_unlock(s->tm, f->b);
261  }
262  
unlock_all_frames(struct del_stack * s)263  static void unlock_all_frames(struct del_stack *s)
264  {
265  	struct frame *f;
266  
267  	while (unprocessed_frames(s)) {
268  		f = s->spine + s->top--;
269  		dm_tm_unlock(s->tm, f->b);
270  	}
271  }
272  
dm_btree_del(struct dm_btree_info * info,dm_block_t root)273  int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
274  {
275  	int r;
276  	struct del_stack *s;
277  
278  	/*
279  	 * dm_btree_del() is called via an ioctl, as such should be
280  	 * considered an FS op.  We can't recurse back into the FS, so we
281  	 * allocate GFP_NOFS.
282  	 */
283  	s = kmalloc(sizeof(*s), GFP_NOFS);
284  	if (!s)
285  		return -ENOMEM;
286  	s->info = info;
287  	s->tm = info->tm;
288  	s->top = -1;
289  
290  	r = push_frame(s, root, 0);
291  	if (r)
292  		goto out;
293  
294  	while (unprocessed_frames(s)) {
295  		uint32_t flags;
296  		struct frame *f;
297  		dm_block_t b;
298  
299  		r = top_frame(s, &f);
300  		if (r)
301  			goto out;
302  
303  		if (f->current_child >= f->nr_children) {
304  			pop_frame(s);
305  			continue;
306  		}
307  
308  		flags = le32_to_cpu(f->n->header.flags);
309  		if (flags & INTERNAL_NODE) {
310  			b = value64(f->n, f->current_child);
311  			f->current_child++;
312  			r = push_frame(s, b, f->level);
313  			if (r)
314  				goto out;
315  
316  		} else if (is_internal_level(info, f)) {
317  			b = value64(f->n, f->current_child);
318  			f->current_child++;
319  			r = push_frame(s, b, f->level + 1);
320  			if (r)
321  				goto out;
322  
323  		} else {
324  			if (info->value_type.dec)
325  				info->value_type.dec(info->value_type.context,
326  						     value_ptr(f->n, 0), f->nr_children);
327  			pop_frame(s);
328  		}
329  	}
330  out:
331  	if (r) {
332  		/* cleanup all frames of del_stack */
333  		unlock_all_frames(s);
334  	}
335  	kfree(s);
336  
337  	return r;
338  }
339  EXPORT_SYMBOL_GPL(dm_btree_del);
340  
341  /*----------------------------------------------------------------*/
342  
btree_lookup_raw(struct ro_spine * s,dm_block_t block,uint64_t key,int (* search_fn)(struct btree_node *,uint64_t),uint64_t * result_key,void * v,size_t value_size)343  static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
344  			    int (*search_fn)(struct btree_node *, uint64_t),
345  			    uint64_t *result_key, void *v, size_t value_size)
346  {
347  	int i, r;
348  	uint32_t flags, nr_entries;
349  
350  	do {
351  		r = ro_step(s, block);
352  		if (r < 0)
353  			return r;
354  
355  		i = search_fn(ro_node(s), key);
356  
357  		flags = le32_to_cpu(ro_node(s)->header.flags);
358  		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
359  		if (i < 0 || i >= nr_entries)
360  			return -ENODATA;
361  
362  		if (flags & INTERNAL_NODE)
363  			block = value64(ro_node(s), i);
364  
365  	} while (!(flags & LEAF_NODE));
366  
367  	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
368  	if (v)
369  		memcpy(v, value_ptr(ro_node(s), i), value_size);
370  
371  	return 0;
372  }
373  
dm_btree_lookup(struct dm_btree_info * info,dm_block_t root,uint64_t * keys,void * value_le)374  int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
375  		    uint64_t *keys, void *value_le)
376  {
377  	unsigned int level, last_level = info->levels - 1;
378  	int r = -ENODATA;
379  	uint64_t rkey;
380  	__le64 internal_value_le;
381  	struct ro_spine spine;
382  
383  	init_ro_spine(&spine, info);
384  	for (level = 0; level < info->levels; level++) {
385  		size_t size;
386  		void *value_p;
387  
388  		if (level == last_level) {
389  			value_p = value_le;
390  			size = info->value_type.size;
391  
392  		} else {
393  			value_p = &internal_value_le;
394  			size = sizeof(uint64_t);
395  		}
396  
397  		r = btree_lookup_raw(&spine, root, keys[level],
398  				     lower_bound, &rkey,
399  				     value_p, size);
400  
401  		if (!r) {
402  			if (rkey != keys[level]) {
403  				exit_ro_spine(&spine);
404  				return -ENODATA;
405  			}
406  		} else {
407  			exit_ro_spine(&spine);
408  			return r;
409  		}
410  
411  		root = le64_to_cpu(internal_value_le);
412  	}
413  	exit_ro_spine(&spine);
414  
415  	return r;
416  }
417  EXPORT_SYMBOL_GPL(dm_btree_lookup);
418  
dm_btree_lookup_next_single(struct dm_btree_info * info,dm_block_t root,uint64_t key,uint64_t * rkey,void * value_le)419  static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
420  				       uint64_t key, uint64_t *rkey, void *value_le)
421  {
422  	int r, i;
423  	uint32_t flags, nr_entries;
424  	struct dm_block *node;
425  	struct btree_node *n;
426  
427  	r = bn_read_lock(info, root, &node);
428  	if (r)
429  		return r;
430  
431  	n = dm_block_data(node);
432  	flags = le32_to_cpu(n->header.flags);
433  	nr_entries = le32_to_cpu(n->header.nr_entries);
434  
435  	if (flags & INTERNAL_NODE) {
436  		i = lower_bound(n, key);
437  		if (i < 0) {
438  			/*
439  			 * avoid early -ENODATA return when all entries are
440  			 * higher than the search @key.
441  			 */
442  			i = 0;
443  		}
444  		if (i >= nr_entries) {
445  			r = -ENODATA;
446  			goto out;
447  		}
448  
449  		r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
450  		if (r == -ENODATA && i < (nr_entries - 1)) {
451  			i++;
452  			r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
453  		}
454  
455  	} else {
456  		i = upper_bound(n, key);
457  		if (i < 0 || i >= nr_entries) {
458  			r = -ENODATA;
459  			goto out;
460  		}
461  
462  		*rkey = le64_to_cpu(n->keys[i]);
463  		memcpy(value_le, value_ptr(n, i), info->value_type.size);
464  	}
465  out:
466  	dm_tm_unlock(info->tm, node);
467  	return r;
468  }
469  
dm_btree_lookup_next(struct dm_btree_info * info,dm_block_t root,uint64_t * keys,uint64_t * rkey,void * value_le)470  int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
471  			 uint64_t *keys, uint64_t *rkey, void *value_le)
472  {
473  	unsigned int level;
474  	int r = -ENODATA;
475  	__le64 internal_value_le;
476  	struct ro_spine spine;
477  
478  	init_ro_spine(&spine, info);
479  	for (level = 0; level < info->levels - 1u; level++) {
480  		r = btree_lookup_raw(&spine, root, keys[level],
481  				     lower_bound, rkey,
482  				     &internal_value_le, sizeof(uint64_t));
483  		if (r)
484  			goto out;
485  
486  		if (*rkey != keys[level]) {
487  			r = -ENODATA;
488  			goto out;
489  		}
490  
491  		root = le64_to_cpu(internal_value_le);
492  	}
493  
494  	r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
495  out:
496  	exit_ro_spine(&spine);
497  	return r;
498  }
499  EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
500  
501  /*----------------------------------------------------------------*/
502  
503  /*
504   * Copies entries from one region of a btree node to another.  The regions
505   * must not overlap.
506   */
copy_entries(struct btree_node * dest,unsigned int dest_offset,struct btree_node * src,unsigned int src_offset,unsigned int count)507  static void copy_entries(struct btree_node *dest, unsigned int dest_offset,
508  			 struct btree_node *src, unsigned int src_offset,
509  			 unsigned int count)
510  {
511  	size_t value_size = le32_to_cpu(dest->header.value_size);
512  
513  	memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
514  	memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
515  }
516  
517  /*
518   * Moves entries from one region fo a btree node to another.  The regions
519   * may overlap.
520   */
move_entries(struct btree_node * dest,unsigned int dest_offset,struct btree_node * src,unsigned int src_offset,unsigned int count)521  static void move_entries(struct btree_node *dest, unsigned int dest_offset,
522  			 struct btree_node *src, unsigned int src_offset,
523  			 unsigned int count)
524  {
525  	size_t value_size = le32_to_cpu(dest->header.value_size);
526  
527  	memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
528  	memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
529  }
530  
531  /*
532   * Erases the first 'count' entries of a btree node, shifting following
533   * entries down into their place.
534   */
shift_down(struct btree_node * n,unsigned int count)535  static void shift_down(struct btree_node *n, unsigned int count)
536  {
537  	move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
538  }
539  
540  /*
541   * Moves entries in a btree node up 'count' places, making space for
542   * new entries at the start of the node.
543   */
shift_up(struct btree_node * n,unsigned int count)544  static void shift_up(struct btree_node *n, unsigned int count)
545  {
546  	move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
547  }
548  
549  /*
550   * Redistributes entries between two btree nodes to make them
551   * have similar numbers of entries.
552   */
redistribute2(struct btree_node * left,struct btree_node * right)553  static void redistribute2(struct btree_node *left, struct btree_node *right)
554  {
555  	unsigned int nr_left = le32_to_cpu(left->header.nr_entries);
556  	unsigned int nr_right = le32_to_cpu(right->header.nr_entries);
557  	unsigned int total = nr_left + nr_right;
558  	unsigned int target_left = total / 2;
559  	unsigned int target_right = total - target_left;
560  
561  	if (nr_left < target_left) {
562  		unsigned int delta = target_left - nr_left;
563  
564  		copy_entries(left, nr_left, right, 0, delta);
565  		shift_down(right, delta);
566  	} else if (nr_left > target_left) {
567  		unsigned int delta = nr_left - target_left;
568  
569  		if (nr_right)
570  			shift_up(right, delta);
571  		copy_entries(right, 0, left, target_left, delta);
572  	}
573  
574  	left->header.nr_entries = cpu_to_le32(target_left);
575  	right->header.nr_entries = cpu_to_le32(target_right);
576  }
577  
578  /*
579   * Redistribute entries between three nodes.  Assumes the central
580   * node is empty.
581   */
redistribute3(struct btree_node * left,struct btree_node * center,struct btree_node * right)582  static void redistribute3(struct btree_node *left, struct btree_node *center,
583  			  struct btree_node *right)
584  {
585  	unsigned int nr_left = le32_to_cpu(left->header.nr_entries);
586  	unsigned int nr_center = le32_to_cpu(center->header.nr_entries);
587  	unsigned int nr_right = le32_to_cpu(right->header.nr_entries);
588  	unsigned int total, target_left, target_center, target_right;
589  
590  	BUG_ON(nr_center);
591  
592  	total = nr_left + nr_right;
593  	target_left = total / 3;
594  	target_center = (total - target_left) / 2;
595  	target_right = (total - target_left - target_center);
596  
597  	if (nr_left < target_left) {
598  		unsigned int left_short = target_left - nr_left;
599  
600  		copy_entries(left, nr_left, right, 0, left_short);
601  		copy_entries(center, 0, right, left_short, target_center);
602  		shift_down(right, nr_right - target_right);
603  
604  	} else if (nr_left < (target_left + target_center)) {
605  		unsigned int left_to_center = nr_left - target_left;
606  
607  		copy_entries(center, 0, left, target_left, left_to_center);
608  		copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
609  		shift_down(right, nr_right - target_right);
610  
611  	} else {
612  		unsigned int right_short = target_right - nr_right;
613  
614  		shift_up(right, right_short);
615  		copy_entries(right, 0, left, nr_left - right_short, right_short);
616  		copy_entries(center, 0, left, target_left, nr_left - target_left);
617  	}
618  
619  	left->header.nr_entries = cpu_to_le32(target_left);
620  	center->header.nr_entries = cpu_to_le32(target_center);
621  	right->header.nr_entries = cpu_to_le32(target_right);
622  }
623  
624  /*
625   * Splits a node by creating a sibling node and shifting half the nodes
626   * contents across.  Assumes there is a parent node, and it has room for
627   * another child.
628   *
629   * Before:
630   *	  +--------+
631   *	  | Parent |
632   *	  +--------+
633   *	     |
634   *	     v
635   *	+----------+
636   *	| A ++++++ |
637   *	+----------+
638   *
639   *
640   * After:
641   *		+--------+
642   *		| Parent |
643   *		+--------+
644   *		  |	|
645   *		  v	+------+
646   *	    +---------+	       |
647   *	    | A* +++  |	       v
648   *	    +---------+	  +-------+
649   *			  | B +++ |
650   *			  +-------+
651   *
652   * Where A* is a shadow of A.
653   */
split_one_into_two(struct shadow_spine * s,unsigned int parent_index,struct dm_btree_value_type * vt,uint64_t key)654  static int split_one_into_two(struct shadow_spine *s, unsigned int parent_index,
655  			      struct dm_btree_value_type *vt, uint64_t key)
656  {
657  	int r;
658  	struct dm_block *left, *right, *parent;
659  	struct btree_node *ln, *rn, *pn;
660  	__le64 location;
661  
662  	left = shadow_current(s);
663  
664  	r = new_block(s->info, &right);
665  	if (r < 0)
666  		return r;
667  
668  	ln = dm_block_data(left);
669  	rn = dm_block_data(right);
670  
671  	rn->header.flags = ln->header.flags;
672  	rn->header.nr_entries = cpu_to_le32(0);
673  	rn->header.max_entries = ln->header.max_entries;
674  	rn->header.value_size = ln->header.value_size;
675  	redistribute2(ln, rn);
676  
677  	/* patch up the parent */
678  	parent = shadow_parent(s);
679  	pn = dm_block_data(parent);
680  
681  	location = cpu_to_le64(dm_block_location(right));
682  	__dm_bless_for_disk(&location);
683  	r = insert_at(sizeof(__le64), pn, parent_index + 1,
684  		      le64_to_cpu(rn->keys[0]), &location);
685  	if (r) {
686  		unlock_block(s->info, right);
687  		return r;
688  	}
689  
690  	/* patch up the spine */
691  	if (key < le64_to_cpu(rn->keys[0])) {
692  		unlock_block(s->info, right);
693  		s->nodes[1] = left;
694  	} else {
695  		unlock_block(s->info, left);
696  		s->nodes[1] = right;
697  	}
698  
699  	return 0;
700  }
701  
702  /*
703   * We often need to modify a sibling node.  This function shadows a particular
704   * child of the given parent node.  Making sure to update the parent to point
705   * to the new shadow.
706   */
shadow_child(struct dm_btree_info * info,struct dm_btree_value_type * vt,struct btree_node * parent,unsigned int index,struct dm_block ** result)707  static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
708  			struct btree_node *parent, unsigned int index,
709  			struct dm_block **result)
710  {
711  	int r, inc;
712  	dm_block_t root;
713  	struct btree_node *node;
714  
715  	root = value64(parent, index);
716  
717  	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
718  			       result, &inc);
719  	if (r)
720  		return r;
721  
722  	node = dm_block_data(*result);
723  
724  	if (inc)
725  		inc_children(info->tm, node, vt);
726  
727  	*((__le64 *) value_ptr(parent, index)) =
728  		cpu_to_le64(dm_block_location(*result));
729  
730  	return 0;
731  }
732  
733  /*
734   * Splits two nodes into three.  This is more work, but results in fuller
735   * nodes, so saves metadata space.
736   */
split_two_into_three(struct shadow_spine * s,unsigned int parent_index,struct dm_btree_value_type * vt,uint64_t key)737  static int split_two_into_three(struct shadow_spine *s, unsigned int parent_index,
738  				struct dm_btree_value_type *vt, uint64_t key)
739  {
740  	int r;
741  	unsigned int middle_index;
742  	struct dm_block *left, *middle, *right, *parent;
743  	struct btree_node *ln, *rn, *mn, *pn;
744  	__le64 location;
745  
746  	parent = shadow_parent(s);
747  	pn = dm_block_data(parent);
748  
749  	if (parent_index == 0) {
750  		middle_index = 1;
751  		left = shadow_current(s);
752  		r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
753  		if (r)
754  			return r;
755  	} else {
756  		middle_index = parent_index;
757  		right = shadow_current(s);
758  		r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
759  		if (r)
760  			return r;
761  	}
762  
763  	r = new_block(s->info, &middle);
764  	if (r < 0)
765  		return r;
766  
767  	ln = dm_block_data(left);
768  	mn = dm_block_data(middle);
769  	rn = dm_block_data(right);
770  
771  	mn->header.nr_entries = cpu_to_le32(0);
772  	mn->header.flags = ln->header.flags;
773  	mn->header.max_entries = ln->header.max_entries;
774  	mn->header.value_size = ln->header.value_size;
775  
776  	redistribute3(ln, mn, rn);
777  
778  	/* patch up the parent */
779  	pn->keys[middle_index] = rn->keys[0];
780  	location = cpu_to_le64(dm_block_location(middle));
781  	__dm_bless_for_disk(&location);
782  	r = insert_at(sizeof(__le64), pn, middle_index,
783  		      le64_to_cpu(mn->keys[0]), &location);
784  	if (r) {
785  		if (shadow_current(s) != left)
786  			unlock_block(s->info, left);
787  
788  		unlock_block(s->info, middle);
789  
790  		if (shadow_current(s) != right)
791  			unlock_block(s->info, right);
792  
793  		return r;
794  	}
795  
796  
797  	/* patch up the spine */
798  	if (key < le64_to_cpu(mn->keys[0])) {
799  		unlock_block(s->info, middle);
800  		unlock_block(s->info, right);
801  		s->nodes[1] = left;
802  	} else if (key < le64_to_cpu(rn->keys[0])) {
803  		unlock_block(s->info, left);
804  		unlock_block(s->info, right);
805  		s->nodes[1] = middle;
806  	} else {
807  		unlock_block(s->info, left);
808  		unlock_block(s->info, middle);
809  		s->nodes[1] = right;
810  	}
811  
812  	return 0;
813  }
814  
815  /*----------------------------------------------------------------*/
816  
817  /*
818   * Splits a node by creating two new children beneath the given node.
819   *
820   * Before:
821   *	  +----------+
822   *	  | A ++++++ |
823   *	  +----------+
824   *
825   *
826   * After:
827   *	+------------+
828   *	| A (shadow) |
829   *	+------------+
830   *	    |	|
831   *   +------+	+----+
832   *   |		     |
833   *   v		     v
834   * +-------+	 +-------+
835   * | B +++ |	 | C +++ |
836   * +-------+	 +-------+
837   */
btree_split_beneath(struct shadow_spine * s,uint64_t key)838  static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
839  {
840  	int r;
841  	size_t size;
842  	unsigned int nr_left, nr_right;
843  	struct dm_block *left, *right, *new_parent;
844  	struct btree_node *pn, *ln, *rn;
845  	__le64 val;
846  
847  	new_parent = shadow_current(s);
848  
849  	pn = dm_block_data(new_parent);
850  	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
851  		sizeof(__le64) : s->info->value_type.size;
852  
853  	/* create & init the left block */
854  	r = new_block(s->info, &left);
855  	if (r < 0)
856  		return r;
857  
858  	ln = dm_block_data(left);
859  	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
860  
861  	ln->header.flags = pn->header.flags;
862  	ln->header.nr_entries = cpu_to_le32(nr_left);
863  	ln->header.max_entries = pn->header.max_entries;
864  	ln->header.value_size = pn->header.value_size;
865  	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
866  	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
867  
868  	/* create & init the right block */
869  	r = new_block(s->info, &right);
870  	if (r < 0) {
871  		unlock_block(s->info, left);
872  		return r;
873  	}
874  
875  	rn = dm_block_data(right);
876  	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
877  
878  	rn->header.flags = pn->header.flags;
879  	rn->header.nr_entries = cpu_to_le32(nr_right);
880  	rn->header.max_entries = pn->header.max_entries;
881  	rn->header.value_size = pn->header.value_size;
882  	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
883  	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
884  	       nr_right * size);
885  
886  	/* new_parent should just point to l and r now */
887  	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
888  	pn->header.nr_entries = cpu_to_le32(2);
889  	pn->header.max_entries = cpu_to_le32(
890  		calc_max_entries(sizeof(__le64),
891  				 dm_bm_block_size(
892  					 dm_tm_get_bm(s->info->tm))));
893  	pn->header.value_size = cpu_to_le32(sizeof(__le64));
894  
895  	val = cpu_to_le64(dm_block_location(left));
896  	__dm_bless_for_disk(&val);
897  	pn->keys[0] = ln->keys[0];
898  	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
899  
900  	val = cpu_to_le64(dm_block_location(right));
901  	__dm_bless_for_disk(&val);
902  	pn->keys[1] = rn->keys[0];
903  	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
904  
905  	unlock_block(s->info, left);
906  	unlock_block(s->info, right);
907  	return 0;
908  }
909  
910  /*----------------------------------------------------------------*/
911  
912  /*
913   * Redistributes a node's entries with its left sibling.
914   */
rebalance_left(struct shadow_spine * s,struct dm_btree_value_type * vt,unsigned int parent_index,uint64_t key)915  static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
916  			  unsigned int parent_index, uint64_t key)
917  {
918  	int r;
919  	struct dm_block *sib;
920  	struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
921  
922  	r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
923  	if (r)
924  		return r;
925  
926  	left = dm_block_data(sib);
927  	right = dm_block_data(shadow_current(s));
928  	redistribute2(left, right);
929  	*key_ptr(parent, parent_index) = right->keys[0];
930  
931  	if (key < le64_to_cpu(right->keys[0])) {
932  		unlock_block(s->info, s->nodes[1]);
933  		s->nodes[1] = sib;
934  	} else {
935  		unlock_block(s->info, sib);
936  	}
937  
938  	return 0;
939  }
940  
941  /*
942   * Redistributes a nodes entries with its right sibling.
943   */
rebalance_right(struct shadow_spine * s,struct dm_btree_value_type * vt,unsigned int parent_index,uint64_t key)944  static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
945  			   unsigned int parent_index, uint64_t key)
946  {
947  	int r;
948  	struct dm_block *sib;
949  	struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
950  
951  	r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
952  	if (r)
953  		return r;
954  
955  	left = dm_block_data(shadow_current(s));
956  	right = dm_block_data(sib);
957  	redistribute2(left, right);
958  	*key_ptr(parent, parent_index + 1) = right->keys[0];
959  
960  	if (key < le64_to_cpu(right->keys[0])) {
961  		unlock_block(s->info, sib);
962  	} else {
963  		unlock_block(s->info, s->nodes[1]);
964  		s->nodes[1] = sib;
965  	}
966  
967  	return 0;
968  }
969  
970  /*
971   * Returns the number of spare entries in a node.
972   */
get_node_free_space(struct dm_btree_info * info,dm_block_t b,unsigned int * space)973  static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned int *space)
974  {
975  	int r;
976  	unsigned int nr_entries;
977  	struct dm_block *block;
978  	struct btree_node *node;
979  
980  	r = bn_read_lock(info, b, &block);
981  	if (r)
982  		return r;
983  
984  	node = dm_block_data(block);
985  	nr_entries = le32_to_cpu(node->header.nr_entries);
986  	*space = le32_to_cpu(node->header.max_entries) - nr_entries;
987  
988  	unlock_block(info, block);
989  	return 0;
990  }
991  
992  /*
993   * Make space in a node, either by moving some entries to a sibling,
994   * or creating a new sibling node.  SPACE_THRESHOLD defines the minimum
995   * number of free entries that must be in the sibling to make the move
996   * worth while.  If the siblings are shared (eg, part of a snapshot),
997   * then they are not touched, since this break sharing and so consume
998   * more space than we save.
999   */
1000  #define SPACE_THRESHOLD 8
rebalance_or_split(struct shadow_spine * s,struct dm_btree_value_type * vt,unsigned int parent_index,uint64_t key)1001  static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
1002  			      unsigned int parent_index, uint64_t key)
1003  {
1004  	int r;
1005  	struct btree_node *parent = dm_block_data(shadow_parent(s));
1006  	unsigned int nr_parent = le32_to_cpu(parent->header.nr_entries);
1007  	unsigned int free_space;
1008  	int left_shared = 0, right_shared = 0;
1009  
1010  	/* Should we move entries to the left sibling? */
1011  	if (parent_index > 0) {
1012  		dm_block_t left_b = value64(parent, parent_index - 1);
1013  
1014  		r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
1015  		if (r)
1016  			return r;
1017  
1018  		if (!left_shared) {
1019  			r = get_node_free_space(s->info, left_b, &free_space);
1020  			if (r)
1021  				return r;
1022  
1023  			if (free_space >= SPACE_THRESHOLD)
1024  				return rebalance_left(s, vt, parent_index, key);
1025  		}
1026  	}
1027  
1028  	/* Should we move entries to the right sibling? */
1029  	if (parent_index < (nr_parent - 1)) {
1030  		dm_block_t right_b = value64(parent, parent_index + 1);
1031  
1032  		r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
1033  		if (r)
1034  			return r;
1035  
1036  		if (!right_shared) {
1037  			r = get_node_free_space(s->info, right_b, &free_space);
1038  			if (r)
1039  				return r;
1040  
1041  			if (free_space >= SPACE_THRESHOLD)
1042  				return rebalance_right(s, vt, parent_index, key);
1043  		}
1044  	}
1045  
1046  	/*
1047  	 * We need to split the node, normally we split two nodes
1048  	 * into three.	But when inserting a sequence that is either
1049  	 * monotonically increasing or decreasing it's better to split
1050  	 * a single node into two.
1051  	 */
1052  	if (left_shared || right_shared || (nr_parent <= 2) ||
1053  	    (parent_index == 0) || (parent_index + 1 == nr_parent)) {
1054  		return split_one_into_two(s, parent_index, vt, key);
1055  	} else {
1056  		return split_two_into_three(s, parent_index, vt, key);
1057  	}
1058  }
1059  
1060  /*
1061   * Does the node contain a particular key?
1062   */
contains_key(struct btree_node * node,uint64_t key)1063  static bool contains_key(struct btree_node *node, uint64_t key)
1064  {
1065  	int i = lower_bound(node, key);
1066  
1067  	if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
1068  		return true;
1069  
1070  	return false;
1071  }
1072  
1073  /*
1074   * In general we preemptively make sure there's a free entry in every
1075   * node on the spine when doing an insert.  But we can avoid that with
1076   * leaf nodes if we know it's an overwrite.
1077   */
has_space_for_insert(struct btree_node * node,uint64_t key)1078  static bool has_space_for_insert(struct btree_node *node, uint64_t key)
1079  {
1080  	if (node->header.nr_entries == node->header.max_entries) {
1081  		if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1082  			/* we don't need space if it's an overwrite */
1083  			return contains_key(node, key);
1084  		}
1085  
1086  		return false;
1087  	}
1088  
1089  	return true;
1090  }
1091  
btree_insert_raw(struct shadow_spine * s,dm_block_t root,struct dm_btree_value_type * vt,uint64_t key,unsigned int * index)1092  static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
1093  			    struct dm_btree_value_type *vt,
1094  			    uint64_t key, unsigned int *index)
1095  {
1096  	int r, i = *index, top = 1;
1097  	struct btree_node *node;
1098  
1099  	for (;;) {
1100  		r = shadow_step(s, root, vt);
1101  		if (r < 0)
1102  			return r;
1103  
1104  		node = dm_block_data(shadow_current(s));
1105  
1106  		/*
1107  		 * We have to patch up the parent node, ugly, but I don't
1108  		 * see a way to do this automatically as part of the spine
1109  		 * op.
1110  		 */
1111  		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
1112  			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1113  
1114  			__dm_bless_for_disk(&location);
1115  			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1116  				    &location, sizeof(__le64));
1117  		}
1118  
1119  		node = dm_block_data(shadow_current(s));
1120  
1121  		if (!has_space_for_insert(node, key)) {
1122  			if (top)
1123  				r = btree_split_beneath(s, key);
1124  			else
1125  				r = rebalance_or_split(s, vt, i, key);
1126  
1127  			if (r < 0)
1128  				return r;
1129  
1130  			/* making space can cause the current node to change */
1131  			node = dm_block_data(shadow_current(s));
1132  		}
1133  
1134  		i = lower_bound(node, key);
1135  
1136  		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
1137  			break;
1138  
1139  		if (i < 0) {
1140  			/* change the bounds on the lowest key */
1141  			node->keys[0] = cpu_to_le64(key);
1142  			i = 0;
1143  		}
1144  
1145  		root = value64(node, i);
1146  		top = 0;
1147  	}
1148  
1149  	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
1150  		i++;
1151  
1152  	*index = i;
1153  	return 0;
1154  }
1155  
__btree_get_overwrite_leaf(struct shadow_spine * s,dm_block_t root,uint64_t key,int * index)1156  static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
1157  				      uint64_t key, int *index)
1158  {
1159  	int r, i = -1;
1160  	struct btree_node *node;
1161  
1162  	*index = 0;
1163  	for (;;) {
1164  		r = shadow_step(s, root, &s->info->value_type);
1165  		if (r < 0)
1166  			return r;
1167  
1168  		node = dm_block_data(shadow_current(s));
1169  
1170  		/*
1171  		 * We have to patch up the parent node, ugly, but I don't
1172  		 * see a way to do this automatically as part of the spine
1173  		 * op.
1174  		 */
1175  		if (shadow_has_parent(s) && i >= 0) {
1176  			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1177  
1178  			__dm_bless_for_disk(&location);
1179  			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1180  				    &location, sizeof(__le64));
1181  		}
1182  
1183  		node = dm_block_data(shadow_current(s));
1184  		i = lower_bound(node, key);
1185  
1186  		BUG_ON(i < 0);
1187  		BUG_ON(i >= le32_to_cpu(node->header.nr_entries));
1188  
1189  		if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1190  			if (key != le64_to_cpu(node->keys[i]))
1191  				return -EINVAL;
1192  			break;
1193  		}
1194  
1195  		root = value64(node, i);
1196  	}
1197  
1198  	*index = i;
1199  	return 0;
1200  }
1201  
btree_get_overwrite_leaf(struct dm_btree_info * info,dm_block_t root,uint64_t key,int * index,dm_block_t * new_root,struct dm_block ** leaf)1202  int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
1203  			     uint64_t key, int *index,
1204  			     dm_block_t *new_root, struct dm_block **leaf)
1205  {
1206  	int r;
1207  	struct shadow_spine spine;
1208  
1209  	BUG_ON(info->levels > 1);
1210  	init_shadow_spine(&spine, info);
1211  	r = __btree_get_overwrite_leaf(&spine, root, key, index);
1212  	if (!r) {
1213  		*new_root = shadow_root(&spine);
1214  		*leaf = shadow_current(&spine);
1215  
1216  		/*
1217  		 * Decrement the count so exit_shadow_spine() doesn't
1218  		 * unlock the leaf.
1219  		 */
1220  		spine.count--;
1221  	}
1222  	exit_shadow_spine(&spine);
1223  
1224  	return r;
1225  }
1226  
need_insert(struct btree_node * node,uint64_t * keys,unsigned int level,unsigned int index)1227  static bool need_insert(struct btree_node *node, uint64_t *keys,
1228  			unsigned int level, unsigned int index)
1229  {
1230  	return ((index >= le32_to_cpu(node->header.nr_entries)) ||
1231  		(le64_to_cpu(node->keys[index]) != keys[level]));
1232  }
1233  
insert(struct dm_btree_info * info,dm_block_t root,uint64_t * keys,void * value,dm_block_t * new_root,int * inserted)1234  static int insert(struct dm_btree_info *info, dm_block_t root,
1235  		  uint64_t *keys, void *value, dm_block_t *new_root,
1236  		  int *inserted)
1237  		  __dm_written_to_disk(value)
1238  {
1239  	int r;
1240  	unsigned int level, index = -1, last_level = info->levels - 1;
1241  	dm_block_t block = root;
1242  	struct shadow_spine spine;
1243  	struct btree_node *n;
1244  	struct dm_btree_value_type le64_type;
1245  
1246  	init_le64_type(info->tm, &le64_type);
1247  	init_shadow_spine(&spine, info);
1248  
1249  	for (level = 0; level < (info->levels - 1); level++) {
1250  		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
1251  		if (r < 0)
1252  			goto bad;
1253  
1254  		n = dm_block_data(shadow_current(&spine));
1255  
1256  		if (need_insert(n, keys, level, index)) {
1257  			dm_block_t new_tree;
1258  			__le64 new_le;
1259  
1260  			r = dm_btree_empty(info, &new_tree);
1261  			if (r < 0)
1262  				goto bad;
1263  
1264  			new_le = cpu_to_le64(new_tree);
1265  			__dm_bless_for_disk(&new_le);
1266  
1267  			r = insert_at(sizeof(uint64_t), n, index,
1268  				      keys[level], &new_le);
1269  			if (r)
1270  				goto bad;
1271  		}
1272  
1273  		if (level < last_level)
1274  			block = value64(n, index);
1275  	}
1276  
1277  	r = btree_insert_raw(&spine, block, &info->value_type,
1278  			     keys[level], &index);
1279  	if (r < 0)
1280  		goto bad;
1281  
1282  	n = dm_block_data(shadow_current(&spine));
1283  
1284  	if (need_insert(n, keys, level, index)) {
1285  		if (inserted)
1286  			*inserted = 1;
1287  
1288  		r = insert_at(info->value_type.size, n, index,
1289  			      keys[level], value);
1290  		if (r)
1291  			goto bad_unblessed;
1292  	} else {
1293  		if (inserted)
1294  			*inserted = 0;
1295  
1296  		if (info->value_type.dec &&
1297  		    (!info->value_type.equal ||
1298  		     !info->value_type.equal(
1299  			     info->value_type.context,
1300  			     value_ptr(n, index),
1301  			     value))) {
1302  			info->value_type.dec(info->value_type.context,
1303  					     value_ptr(n, index), 1);
1304  		}
1305  		memcpy_disk(value_ptr(n, index),
1306  			    value, info->value_type.size);
1307  	}
1308  
1309  	*new_root = shadow_root(&spine);
1310  	exit_shadow_spine(&spine);
1311  
1312  	return 0;
1313  
1314  bad:
1315  	__dm_unbless_for_disk(value);
1316  bad_unblessed:
1317  	exit_shadow_spine(&spine);
1318  	return r;
1319  }
1320  
dm_btree_insert(struct dm_btree_info * info,dm_block_t root,uint64_t * keys,void * value,dm_block_t * new_root)1321  int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
1322  		    uint64_t *keys, void *value, dm_block_t *new_root)
1323  	__dm_written_to_disk(value)
1324  {
1325  	return insert(info, root, keys, value, new_root, NULL);
1326  }
1327  EXPORT_SYMBOL_GPL(dm_btree_insert);
1328  
dm_btree_insert_notify(struct dm_btree_info * info,dm_block_t root,uint64_t * keys,void * value,dm_block_t * new_root,int * inserted)1329  int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
1330  			   uint64_t *keys, void *value, dm_block_t *new_root,
1331  			   int *inserted)
1332  	__dm_written_to_disk(value)
1333  {
1334  	return insert(info, root, keys, value, new_root, inserted);
1335  }
1336  EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
1337  
1338  /*----------------------------------------------------------------*/
1339  
find_key(struct ro_spine * s,dm_block_t block,bool find_highest,uint64_t * result_key,dm_block_t * next_block)1340  static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
1341  		    uint64_t *result_key, dm_block_t *next_block)
1342  {
1343  	int i, r;
1344  	uint32_t flags;
1345  
1346  	do {
1347  		r = ro_step(s, block);
1348  		if (r < 0)
1349  			return r;
1350  
1351  		flags = le32_to_cpu(ro_node(s)->header.flags);
1352  		i = le32_to_cpu(ro_node(s)->header.nr_entries);
1353  		if (!i)
1354  			return -ENODATA;
1355  
1356  		i--;
1357  
1358  		if (find_highest)
1359  			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
1360  		else
1361  			*result_key = le64_to_cpu(ro_node(s)->keys[0]);
1362  
1363  		if (next_block || flags & INTERNAL_NODE) {
1364  			if (find_highest)
1365  				block = value64(ro_node(s), i);
1366  			else
1367  				block = value64(ro_node(s), 0);
1368  		}
1369  
1370  	} while (flags & INTERNAL_NODE);
1371  
1372  	if (next_block)
1373  		*next_block = block;
1374  	return 0;
1375  }
1376  
dm_btree_find_key(struct dm_btree_info * info,dm_block_t root,bool find_highest,uint64_t * result_keys)1377  static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
1378  			     bool find_highest, uint64_t *result_keys)
1379  {
1380  	int r = 0, count = 0, level;
1381  	struct ro_spine spine;
1382  
1383  	init_ro_spine(&spine, info);
1384  	for (level = 0; level < info->levels; level++) {
1385  		r = find_key(&spine, root, find_highest, result_keys + level,
1386  			     level == info->levels - 1 ? NULL : &root);
1387  		if (r == -ENODATA) {
1388  			r = 0;
1389  			break;
1390  
1391  		} else if (r)
1392  			break;
1393  
1394  		count++;
1395  	}
1396  	exit_ro_spine(&spine);
1397  
1398  	return r ? r : count;
1399  }
1400  
dm_btree_find_highest_key(struct dm_btree_info * info,dm_block_t root,uint64_t * result_keys)1401  int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
1402  			      uint64_t *result_keys)
1403  {
1404  	return dm_btree_find_key(info, root, true, result_keys);
1405  }
1406  EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
1407  
dm_btree_find_lowest_key(struct dm_btree_info * info,dm_block_t root,uint64_t * result_keys)1408  int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
1409  			     uint64_t *result_keys)
1410  {
1411  	return dm_btree_find_key(info, root, false, result_keys);
1412  }
1413  EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
1414  
1415  /*----------------------------------------------------------------*/
1416  
1417  /*
1418   * FIXME: We shouldn't use a recursive algorithm when we have limited stack
1419   * space.  Also this only works for single level trees.
1420   */
walk_node(struct dm_btree_info * info,dm_block_t block,int (* fn)(void * context,uint64_t * keys,void * leaf),void * context)1421  static int walk_node(struct dm_btree_info *info, dm_block_t block,
1422  		     int (*fn)(void *context, uint64_t *keys, void *leaf),
1423  		     void *context)
1424  {
1425  	int r;
1426  	unsigned int i, nr;
1427  	struct dm_block *node;
1428  	struct btree_node *n;
1429  	uint64_t keys;
1430  
1431  	r = bn_read_lock(info, block, &node);
1432  	if (r)
1433  		return r;
1434  
1435  	n = dm_block_data(node);
1436  
1437  	nr = le32_to_cpu(n->header.nr_entries);
1438  	for (i = 0; i < nr; i++) {
1439  		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
1440  			r = walk_node(info, value64(n, i), fn, context);
1441  			if (r)
1442  				goto out;
1443  		} else {
1444  			keys = le64_to_cpu(*key_ptr(n, i));
1445  			r = fn(context, &keys, value_ptr(n, i));
1446  			if (r)
1447  				goto out;
1448  		}
1449  	}
1450  
1451  out:
1452  	dm_tm_unlock(info->tm, node);
1453  	return r;
1454  }
1455  
dm_btree_walk(struct dm_btree_info * info,dm_block_t root,int (* fn)(void * context,uint64_t * keys,void * leaf),void * context)1456  int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
1457  		  int (*fn)(void *context, uint64_t *keys, void *leaf),
1458  		  void *context)
1459  {
1460  	BUG_ON(info->levels > 1);
1461  	return walk_node(info, root, fn, context);
1462  }
1463  EXPORT_SYMBOL_GPL(dm_btree_walk);
1464  
1465  /*----------------------------------------------------------------*/
1466  
prefetch_values(struct dm_btree_cursor * c)1467  static void prefetch_values(struct dm_btree_cursor *c)
1468  {
1469  	unsigned int i, nr;
1470  	__le64 value_le;
1471  	struct cursor_node *n = c->nodes + c->depth - 1;
1472  	struct btree_node *bn = dm_block_data(n->b);
1473  	struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1474  
1475  	BUG_ON(c->info->value_type.size != sizeof(value_le));
1476  
1477  	nr = le32_to_cpu(bn->header.nr_entries);
1478  	for (i = 0; i < nr; i++) {
1479  		memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1480  		dm_bm_prefetch(bm, le64_to_cpu(value_le));
1481  	}
1482  }
1483  
leaf_node(struct dm_btree_cursor * c)1484  static bool leaf_node(struct dm_btree_cursor *c)
1485  {
1486  	struct cursor_node *n = c->nodes + c->depth - 1;
1487  	struct btree_node *bn = dm_block_data(n->b);
1488  
1489  	return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1490  }
1491  
push_node(struct dm_btree_cursor * c,dm_block_t b)1492  static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1493  {
1494  	int r;
1495  	struct cursor_node *n = c->nodes + c->depth;
1496  
1497  	if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1498  		DMERR("couldn't push cursor node, stack depth too high");
1499  		return -EINVAL;
1500  	}
1501  
1502  	r = bn_read_lock(c->info, b, &n->b);
1503  	if (r)
1504  		return r;
1505  
1506  	n->index = 0;
1507  	c->depth++;
1508  
1509  	if (c->prefetch_leaves || !leaf_node(c))
1510  		prefetch_values(c);
1511  
1512  	return 0;
1513  }
1514  
pop_node(struct dm_btree_cursor * c)1515  static void pop_node(struct dm_btree_cursor *c)
1516  {
1517  	c->depth--;
1518  	unlock_block(c->info, c->nodes[c->depth].b);
1519  }
1520  
inc_or_backtrack(struct dm_btree_cursor * c)1521  static int inc_or_backtrack(struct dm_btree_cursor *c)
1522  {
1523  	struct cursor_node *n;
1524  	struct btree_node *bn;
1525  
1526  	for (;;) {
1527  		if (!c->depth)
1528  			return -ENODATA;
1529  
1530  		n = c->nodes + c->depth - 1;
1531  		bn = dm_block_data(n->b);
1532  
1533  		n->index++;
1534  		if (n->index < le32_to_cpu(bn->header.nr_entries))
1535  			break;
1536  
1537  		pop_node(c);
1538  	}
1539  
1540  	return 0;
1541  }
1542  
find_leaf(struct dm_btree_cursor * c)1543  static int find_leaf(struct dm_btree_cursor *c)
1544  {
1545  	int r = 0;
1546  	struct cursor_node *n;
1547  	struct btree_node *bn;
1548  	__le64 value_le;
1549  
1550  	for (;;) {
1551  		n = c->nodes + c->depth - 1;
1552  		bn = dm_block_data(n->b);
1553  
1554  		if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1555  			break;
1556  
1557  		memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1558  		r = push_node(c, le64_to_cpu(value_le));
1559  		if (r) {
1560  			DMERR("push_node failed");
1561  			break;
1562  		}
1563  	}
1564  
1565  	if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1566  		return -ENODATA;
1567  
1568  	return r;
1569  }
1570  
dm_btree_cursor_begin(struct dm_btree_info * info,dm_block_t root,bool prefetch_leaves,struct dm_btree_cursor * c)1571  int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1572  			  bool prefetch_leaves, struct dm_btree_cursor *c)
1573  {
1574  	int r;
1575  
1576  	c->info = info;
1577  	c->root = root;
1578  	c->depth = 0;
1579  	c->prefetch_leaves = prefetch_leaves;
1580  
1581  	r = push_node(c, root);
1582  	if (r)
1583  		return r;
1584  
1585  	return find_leaf(c);
1586  }
1587  EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1588  
dm_btree_cursor_end(struct dm_btree_cursor * c)1589  void dm_btree_cursor_end(struct dm_btree_cursor *c)
1590  {
1591  	while (c->depth)
1592  		pop_node(c);
1593  }
1594  EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1595  
dm_btree_cursor_next(struct dm_btree_cursor * c)1596  int dm_btree_cursor_next(struct dm_btree_cursor *c)
1597  {
1598  	int r = inc_or_backtrack(c);
1599  
1600  	if (!r) {
1601  		r = find_leaf(c);
1602  		if (r)
1603  			DMERR("find_leaf failed");
1604  	}
1605  
1606  	return r;
1607  }
1608  EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1609  
dm_btree_cursor_skip(struct dm_btree_cursor * c,uint32_t count)1610  int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1611  {
1612  	int r = 0;
1613  
1614  	while (count-- && !r)
1615  		r = dm_btree_cursor_next(c);
1616  
1617  	return r;
1618  }
1619  EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1620  
dm_btree_cursor_get_value(struct dm_btree_cursor * c,uint64_t * key,void * value_le)1621  int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1622  {
1623  	if (c->depth) {
1624  		struct cursor_node *n = c->nodes + c->depth - 1;
1625  		struct btree_node *bn = dm_block_data(n->b);
1626  
1627  		if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1628  			return -EINVAL;
1629  
1630  		*key = le64_to_cpu(*key_ptr(bn, n->index));
1631  		memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1632  		return 0;
1633  
1634  	} else
1635  		return -ENODATA;
1636  }
1637  EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);
1638