1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Deadline Scheduling Class (SCHED_DEADLINE)
4   *
5   * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6   *
7   * Tasks that periodically executes their instances for less than their
8   * runtime won't miss any of their deadlines.
9   * Tasks that are not periodic or sporadic or that tries to execute more
10   * than their reserved bandwidth will be slowed down (and may potentially
11   * miss some of their deadlines), and won't affect any other task.
12   *
13   * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14   *                    Juri Lelli <juri.lelli@gmail.com>,
15   *                    Michael Trimarchi <michael@amarulasolutions.com>,
16   *                    Fabio Checconi <fchecconi@gmail.com>
17   */
18  
19  #include <linux/cpuset.h>
20  
21  /*
22   * Default limits for DL period; on the top end we guard against small util
23   * tasks still getting ridiculously long effective runtimes, on the bottom end we
24   * guard against timer DoS.
25   */
26  static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27  static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
28  #ifdef CONFIG_SYSCTL
29  static struct ctl_table sched_dl_sysctls[] = {
30  	{
31  		.procname       = "sched_deadline_period_max_us",
32  		.data           = &sysctl_sched_dl_period_max,
33  		.maxlen         = sizeof(unsigned int),
34  		.mode           = 0644,
35  		.proc_handler   = proc_douintvec_minmax,
36  		.extra1         = (void *)&sysctl_sched_dl_period_min,
37  	},
38  	{
39  		.procname       = "sched_deadline_period_min_us",
40  		.data           = &sysctl_sched_dl_period_min,
41  		.maxlen         = sizeof(unsigned int),
42  		.mode           = 0644,
43  		.proc_handler   = proc_douintvec_minmax,
44  		.extra2         = (void *)&sysctl_sched_dl_period_max,
45  	},
46  };
47  
sched_dl_sysctl_init(void)48  static int __init sched_dl_sysctl_init(void)
49  {
50  	register_sysctl_init("kernel", sched_dl_sysctls);
51  	return 0;
52  }
53  late_initcall(sched_dl_sysctl_init);
54  #endif
55  
dl_server(struct sched_dl_entity * dl_se)56  static bool dl_server(struct sched_dl_entity *dl_se)
57  {
58  	return dl_se->dl_server;
59  }
60  
dl_task_of(struct sched_dl_entity * dl_se)61  static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
62  {
63  	BUG_ON(dl_server(dl_se));
64  	return container_of(dl_se, struct task_struct, dl);
65  }
66  
rq_of_dl_rq(struct dl_rq * dl_rq)67  static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
68  {
69  	return container_of(dl_rq, struct rq, dl);
70  }
71  
rq_of_dl_se(struct sched_dl_entity * dl_se)72  static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
73  {
74  	struct rq *rq = dl_se->rq;
75  
76  	if (!dl_server(dl_se))
77  		rq = task_rq(dl_task_of(dl_se));
78  
79  	return rq;
80  }
81  
dl_rq_of_se(struct sched_dl_entity * dl_se)82  static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
83  {
84  	return &rq_of_dl_se(dl_se)->dl;
85  }
86  
on_dl_rq(struct sched_dl_entity * dl_se)87  static inline int on_dl_rq(struct sched_dl_entity *dl_se)
88  {
89  	return !RB_EMPTY_NODE(&dl_se->rb_node);
90  }
91  
92  #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)93  static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
94  {
95  	return dl_se->pi_se;
96  }
97  
is_dl_boosted(struct sched_dl_entity * dl_se)98  static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
99  {
100  	return pi_of(dl_se) != dl_se;
101  }
102  #else
pi_of(struct sched_dl_entity * dl_se)103  static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
104  {
105  	return dl_se;
106  }
107  
is_dl_boosted(struct sched_dl_entity * dl_se)108  static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
109  {
110  	return false;
111  }
112  #endif
113  
114  #ifdef CONFIG_SMP
dl_bw_of(int i)115  static inline struct dl_bw *dl_bw_of(int i)
116  {
117  	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
118  			 "sched RCU must be held");
119  	return &cpu_rq(i)->rd->dl_bw;
120  }
121  
dl_bw_cpus(int i)122  static inline int dl_bw_cpus(int i)
123  {
124  	struct root_domain *rd = cpu_rq(i)->rd;
125  	int cpus;
126  
127  	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
128  			 "sched RCU must be held");
129  
130  	if (cpumask_subset(rd->span, cpu_active_mask))
131  		return cpumask_weight(rd->span);
132  
133  	cpus = 0;
134  
135  	for_each_cpu_and(i, rd->span, cpu_active_mask)
136  		cpus++;
137  
138  	return cpus;
139  }
140  
__dl_bw_capacity(const struct cpumask * mask)141  static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
142  {
143  	unsigned long cap = 0;
144  	int i;
145  
146  	for_each_cpu_and(i, mask, cpu_active_mask)
147  		cap += arch_scale_cpu_capacity(i);
148  
149  	return cap;
150  }
151  
152  /*
153   * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
154   * of the CPU the task is running on rather rd's \Sum CPU capacity.
155   */
dl_bw_capacity(int i)156  static inline unsigned long dl_bw_capacity(int i)
157  {
158  	if (!sched_asym_cpucap_active() &&
159  	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
160  		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
161  	} else {
162  		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
163  				 "sched RCU must be held");
164  
165  		return __dl_bw_capacity(cpu_rq(i)->rd->span);
166  	}
167  }
168  
dl_bw_visited(int cpu,u64 gen)169  static inline bool dl_bw_visited(int cpu, u64 gen)
170  {
171  	struct root_domain *rd = cpu_rq(cpu)->rd;
172  
173  	if (rd->visit_gen == gen)
174  		return true;
175  
176  	rd->visit_gen = gen;
177  	return false;
178  }
179  
180  static inline
__dl_update(struct dl_bw * dl_b,s64 bw)181  void __dl_update(struct dl_bw *dl_b, s64 bw)
182  {
183  	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
184  	int i;
185  
186  	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
187  			 "sched RCU must be held");
188  	for_each_cpu_and(i, rd->span, cpu_active_mask) {
189  		struct rq *rq = cpu_rq(i);
190  
191  		rq->dl.extra_bw += bw;
192  	}
193  }
194  #else
dl_bw_of(int i)195  static inline struct dl_bw *dl_bw_of(int i)
196  {
197  	return &cpu_rq(i)->dl.dl_bw;
198  }
199  
dl_bw_cpus(int i)200  static inline int dl_bw_cpus(int i)
201  {
202  	return 1;
203  }
204  
dl_bw_capacity(int i)205  static inline unsigned long dl_bw_capacity(int i)
206  {
207  	return SCHED_CAPACITY_SCALE;
208  }
209  
dl_bw_visited(int cpu,u64 gen)210  static inline bool dl_bw_visited(int cpu, u64 gen)
211  {
212  	return false;
213  }
214  
215  static inline
__dl_update(struct dl_bw * dl_b,s64 bw)216  void __dl_update(struct dl_bw *dl_b, s64 bw)
217  {
218  	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
219  
220  	dl->extra_bw += bw;
221  }
222  #endif
223  
224  static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)225  void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
226  {
227  	dl_b->total_bw -= tsk_bw;
228  	__dl_update(dl_b, (s32)tsk_bw / cpus);
229  }
230  
231  static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)232  void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
233  {
234  	dl_b->total_bw += tsk_bw;
235  	__dl_update(dl_b, -((s32)tsk_bw / cpus));
236  }
237  
238  static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)239  __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
240  {
241  	return dl_b->bw != -1 &&
242  	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
243  }
244  
245  static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)246  void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
247  {
248  	u64 old = dl_rq->running_bw;
249  
250  	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
251  	dl_rq->running_bw += dl_bw;
252  	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
253  	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
254  	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
255  	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
256  }
257  
258  static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)259  void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
260  {
261  	u64 old = dl_rq->running_bw;
262  
263  	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
264  	dl_rq->running_bw -= dl_bw;
265  	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
266  	if (dl_rq->running_bw > old)
267  		dl_rq->running_bw = 0;
268  	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
269  	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
270  }
271  
272  static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)273  void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
274  {
275  	u64 old = dl_rq->this_bw;
276  
277  	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
278  	dl_rq->this_bw += dl_bw;
279  	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
280  }
281  
282  static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)283  void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
284  {
285  	u64 old = dl_rq->this_bw;
286  
287  	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
288  	dl_rq->this_bw -= dl_bw;
289  	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
290  	if (dl_rq->this_bw > old)
291  		dl_rq->this_bw = 0;
292  	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
293  }
294  
295  static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)296  void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297  {
298  	if (!dl_entity_is_special(dl_se))
299  		__add_rq_bw(dl_se->dl_bw, dl_rq);
300  }
301  
302  static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)303  void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
304  {
305  	if (!dl_entity_is_special(dl_se))
306  		__sub_rq_bw(dl_se->dl_bw, dl_rq);
307  }
308  
309  static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)310  void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311  {
312  	if (!dl_entity_is_special(dl_se))
313  		__add_running_bw(dl_se->dl_bw, dl_rq);
314  }
315  
316  static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)317  void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
318  {
319  	if (!dl_entity_is_special(dl_se))
320  		__sub_running_bw(dl_se->dl_bw, dl_rq);
321  }
322  
dl_rq_change_utilization(struct rq * rq,struct sched_dl_entity * dl_se,u64 new_bw)323  static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
324  {
325  	if (dl_se->dl_non_contending) {
326  		sub_running_bw(dl_se, &rq->dl);
327  		dl_se->dl_non_contending = 0;
328  
329  		/*
330  		 * If the timer handler is currently running and the
331  		 * timer cannot be canceled, inactive_task_timer()
332  		 * will see that dl_not_contending is not set, and
333  		 * will not touch the rq's active utilization,
334  		 * so we are still safe.
335  		 */
336  		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
337  			if (!dl_server(dl_se))
338  				put_task_struct(dl_task_of(dl_se));
339  		}
340  	}
341  	__sub_rq_bw(dl_se->dl_bw, &rq->dl);
342  	__add_rq_bw(new_bw, &rq->dl);
343  }
344  
dl_change_utilization(struct task_struct * p,u64 new_bw)345  static void dl_change_utilization(struct task_struct *p, u64 new_bw)
346  {
347  	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
348  
349  	if (task_on_rq_queued(p))
350  		return;
351  
352  	dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
353  }
354  
355  static void __dl_clear_params(struct sched_dl_entity *dl_se);
356  
357  /*
358   * The utilization of a task cannot be immediately removed from
359   * the rq active utilization (running_bw) when the task blocks.
360   * Instead, we have to wait for the so called "0-lag time".
361   *
362   * If a task blocks before the "0-lag time", a timer (the inactive
363   * timer) is armed, and running_bw is decreased when the timer
364   * fires.
365   *
366   * If the task wakes up again before the inactive timer fires,
367   * the timer is canceled, whereas if the task wakes up after the
368   * inactive timer fired (and running_bw has been decreased) the
369   * task's utilization has to be added to running_bw again.
370   * A flag in the deadline scheduling entity (dl_non_contending)
371   * is used to avoid race conditions between the inactive timer handler
372   * and task wakeups.
373   *
374   * The following diagram shows how running_bw is updated. A task is
375   * "ACTIVE" when its utilization contributes to running_bw; an
376   * "ACTIVE contending" task is in the TASK_RUNNING state, while an
377   * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
378   * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
379   * time already passed, which does not contribute to running_bw anymore.
380   *                              +------------------+
381   *             wakeup           |    ACTIVE        |
382   *          +------------------>+   contending     |
383   *          | add_running_bw    |                  |
384   *          |                   +----+------+------+
385   *          |                        |      ^
386   *          |                dequeue |      |
387   * +--------+-------+                |      |
388   * |                |   t >= 0-lag   |      | wakeup
389   * |    INACTIVE    |<---------------+      |
390   * |                | sub_running_bw |      |
391   * +--------+-------+                |      |
392   *          ^                        |      |
393   *          |              t < 0-lag |      |
394   *          |                        |      |
395   *          |                        V      |
396   *          |                   +----+------+------+
397   *          | sub_running_bw    |    ACTIVE        |
398   *          +-------------------+                  |
399   *            inactive timer    |  non contending  |
400   *            fired             +------------------+
401   *
402   * The task_non_contending() function is invoked when a task
403   * blocks, and checks if the 0-lag time already passed or
404   * not (in the first case, it directly updates running_bw;
405   * in the second case, it arms the inactive timer).
406   *
407   * The task_contending() function is invoked when a task wakes
408   * up, and checks if the task is still in the "ACTIVE non contending"
409   * state or not (in the second case, it updates running_bw).
410   */
task_non_contending(struct sched_dl_entity * dl_se)411  static void task_non_contending(struct sched_dl_entity *dl_se)
412  {
413  	struct hrtimer *timer = &dl_se->inactive_timer;
414  	struct rq *rq = rq_of_dl_se(dl_se);
415  	struct dl_rq *dl_rq = &rq->dl;
416  	s64 zerolag_time;
417  
418  	/*
419  	 * If this is a non-deadline task that has been boosted,
420  	 * do nothing
421  	 */
422  	if (dl_se->dl_runtime == 0)
423  		return;
424  
425  	if (dl_entity_is_special(dl_se))
426  		return;
427  
428  	WARN_ON(dl_se->dl_non_contending);
429  
430  	zerolag_time = dl_se->deadline -
431  		 div64_long((dl_se->runtime * dl_se->dl_period),
432  			dl_se->dl_runtime);
433  
434  	/*
435  	 * Using relative times instead of the absolute "0-lag time"
436  	 * allows to simplify the code
437  	 */
438  	zerolag_time -= rq_clock(rq);
439  
440  	/*
441  	 * If the "0-lag time" already passed, decrease the active
442  	 * utilization now, instead of starting a timer
443  	 */
444  	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
445  		if (dl_server(dl_se)) {
446  			sub_running_bw(dl_se, dl_rq);
447  		} else {
448  			struct task_struct *p = dl_task_of(dl_se);
449  
450  			if (dl_task(p))
451  				sub_running_bw(dl_se, dl_rq);
452  
453  			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
454  				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
455  
456  				if (READ_ONCE(p->__state) == TASK_DEAD)
457  					sub_rq_bw(dl_se, &rq->dl);
458  				raw_spin_lock(&dl_b->lock);
459  				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
460  				raw_spin_unlock(&dl_b->lock);
461  				__dl_clear_params(dl_se);
462  			}
463  		}
464  
465  		return;
466  	}
467  
468  	dl_se->dl_non_contending = 1;
469  	if (!dl_server(dl_se))
470  		get_task_struct(dl_task_of(dl_se));
471  
472  	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
473  }
474  
task_contending(struct sched_dl_entity * dl_se,int flags)475  static void task_contending(struct sched_dl_entity *dl_se, int flags)
476  {
477  	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
478  
479  	/*
480  	 * If this is a non-deadline task that has been boosted,
481  	 * do nothing
482  	 */
483  	if (dl_se->dl_runtime == 0)
484  		return;
485  
486  	if (flags & ENQUEUE_MIGRATED)
487  		add_rq_bw(dl_se, dl_rq);
488  
489  	if (dl_se->dl_non_contending) {
490  		dl_se->dl_non_contending = 0;
491  		/*
492  		 * If the timer handler is currently running and the
493  		 * timer cannot be canceled, inactive_task_timer()
494  		 * will see that dl_not_contending is not set, and
495  		 * will not touch the rq's active utilization,
496  		 * so we are still safe.
497  		 */
498  		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
499  			if (!dl_server(dl_se))
500  				put_task_struct(dl_task_of(dl_se));
501  		}
502  	} else {
503  		/*
504  		 * Since "dl_non_contending" is not set, the
505  		 * task's utilization has already been removed from
506  		 * active utilization (either when the task blocked,
507  		 * when the "inactive timer" fired).
508  		 * So, add it back.
509  		 */
510  		add_running_bw(dl_se, dl_rq);
511  	}
512  }
513  
is_leftmost(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)514  static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
515  {
516  	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
517  }
518  
519  static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
520  
init_dl_bw(struct dl_bw * dl_b)521  void init_dl_bw(struct dl_bw *dl_b)
522  {
523  	raw_spin_lock_init(&dl_b->lock);
524  	if (global_rt_runtime() == RUNTIME_INF)
525  		dl_b->bw = -1;
526  	else
527  		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
528  	dl_b->total_bw = 0;
529  }
530  
init_dl_rq(struct dl_rq * dl_rq)531  void init_dl_rq(struct dl_rq *dl_rq)
532  {
533  	dl_rq->root = RB_ROOT_CACHED;
534  
535  #ifdef CONFIG_SMP
536  	/* zero means no -deadline tasks */
537  	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
538  
539  	dl_rq->overloaded = 0;
540  	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
541  #else
542  	init_dl_bw(&dl_rq->dl_bw);
543  #endif
544  
545  	dl_rq->running_bw = 0;
546  	dl_rq->this_bw = 0;
547  	init_dl_rq_bw_ratio(dl_rq);
548  }
549  
550  #ifdef CONFIG_SMP
551  
dl_overloaded(struct rq * rq)552  static inline int dl_overloaded(struct rq *rq)
553  {
554  	return atomic_read(&rq->rd->dlo_count);
555  }
556  
dl_set_overload(struct rq * rq)557  static inline void dl_set_overload(struct rq *rq)
558  {
559  	if (!rq->online)
560  		return;
561  
562  	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
563  	/*
564  	 * Must be visible before the overload count is
565  	 * set (as in sched_rt.c).
566  	 *
567  	 * Matched by the barrier in pull_dl_task().
568  	 */
569  	smp_wmb();
570  	atomic_inc(&rq->rd->dlo_count);
571  }
572  
dl_clear_overload(struct rq * rq)573  static inline void dl_clear_overload(struct rq *rq)
574  {
575  	if (!rq->online)
576  		return;
577  
578  	atomic_dec(&rq->rd->dlo_count);
579  	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
580  }
581  
582  #define __node_2_pdl(node) \
583  	rb_entry((node), struct task_struct, pushable_dl_tasks)
584  
__pushable_less(struct rb_node * a,const struct rb_node * b)585  static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
586  {
587  	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
588  }
589  
has_pushable_dl_tasks(struct rq * rq)590  static inline int has_pushable_dl_tasks(struct rq *rq)
591  {
592  	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
593  }
594  
595  /*
596   * The list of pushable -deadline task is not a plist, like in
597   * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
598   */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)599  static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
600  {
601  	struct rb_node *leftmost;
602  
603  	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
604  
605  	leftmost = rb_add_cached(&p->pushable_dl_tasks,
606  				 &rq->dl.pushable_dl_tasks_root,
607  				 __pushable_less);
608  	if (leftmost)
609  		rq->dl.earliest_dl.next = p->dl.deadline;
610  
611  	if (!rq->dl.overloaded) {
612  		dl_set_overload(rq);
613  		rq->dl.overloaded = 1;
614  	}
615  }
616  
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)617  static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
618  {
619  	struct dl_rq *dl_rq = &rq->dl;
620  	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
621  	struct rb_node *leftmost;
622  
623  	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
624  		return;
625  
626  	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
627  	if (leftmost)
628  		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
629  
630  	RB_CLEAR_NODE(&p->pushable_dl_tasks);
631  
632  	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
633  		dl_clear_overload(rq);
634  		rq->dl.overloaded = 0;
635  	}
636  }
637  
638  static int push_dl_task(struct rq *rq);
639  
need_pull_dl_task(struct rq * rq,struct task_struct * prev)640  static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
641  {
642  	return rq->online && dl_task(prev);
643  }
644  
645  static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
646  static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
647  
648  static void push_dl_tasks(struct rq *);
649  static void pull_dl_task(struct rq *);
650  
deadline_queue_push_tasks(struct rq * rq)651  static inline void deadline_queue_push_tasks(struct rq *rq)
652  {
653  	if (!has_pushable_dl_tasks(rq))
654  		return;
655  
656  	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
657  }
658  
deadline_queue_pull_task(struct rq * rq)659  static inline void deadline_queue_pull_task(struct rq *rq)
660  {
661  	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
662  }
663  
664  static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
665  
dl_task_offline_migration(struct rq * rq,struct task_struct * p)666  static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
667  {
668  	struct rq *later_rq = NULL;
669  	struct dl_bw *dl_b;
670  
671  	later_rq = find_lock_later_rq(p, rq);
672  	if (!later_rq) {
673  		int cpu;
674  
675  		/*
676  		 * If we cannot preempt any rq, fall back to pick any
677  		 * online CPU:
678  		 */
679  		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
680  		if (cpu >= nr_cpu_ids) {
681  			/*
682  			 * Failed to find any suitable CPU.
683  			 * The task will never come back!
684  			 */
685  			WARN_ON_ONCE(dl_bandwidth_enabled());
686  
687  			/*
688  			 * If admission control is disabled we
689  			 * try a little harder to let the task
690  			 * run.
691  			 */
692  			cpu = cpumask_any(cpu_active_mask);
693  		}
694  		later_rq = cpu_rq(cpu);
695  		double_lock_balance(rq, later_rq);
696  	}
697  
698  	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
699  		/*
700  		 * Inactive timer is armed (or callback is running, but
701  		 * waiting for us to release rq locks). In any case, when it
702  		 * will fire (or continue), it will see running_bw of this
703  		 * task migrated to later_rq (and correctly handle it).
704  		 */
705  		sub_running_bw(&p->dl, &rq->dl);
706  		sub_rq_bw(&p->dl, &rq->dl);
707  
708  		add_rq_bw(&p->dl, &later_rq->dl);
709  		add_running_bw(&p->dl, &later_rq->dl);
710  	} else {
711  		sub_rq_bw(&p->dl, &rq->dl);
712  		add_rq_bw(&p->dl, &later_rq->dl);
713  	}
714  
715  	/*
716  	 * And we finally need to fix up root_domain(s) bandwidth accounting,
717  	 * since p is still hanging out in the old (now moved to default) root
718  	 * domain.
719  	 */
720  	dl_b = &rq->rd->dl_bw;
721  	raw_spin_lock(&dl_b->lock);
722  	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
723  	raw_spin_unlock(&dl_b->lock);
724  
725  	dl_b = &later_rq->rd->dl_bw;
726  	raw_spin_lock(&dl_b->lock);
727  	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
728  	raw_spin_unlock(&dl_b->lock);
729  
730  	set_task_cpu(p, later_rq->cpu);
731  	double_unlock_balance(later_rq, rq);
732  
733  	return later_rq;
734  }
735  
736  #else
737  
738  static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)739  void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
740  {
741  }
742  
743  static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)744  void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
745  {
746  }
747  
748  static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)749  void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
750  {
751  }
752  
753  static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)754  void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
755  {
756  }
757  
deadline_queue_push_tasks(struct rq * rq)758  static inline void deadline_queue_push_tasks(struct rq *rq)
759  {
760  }
761  
deadline_queue_pull_task(struct rq * rq)762  static inline void deadline_queue_pull_task(struct rq *rq)
763  {
764  }
765  #endif /* CONFIG_SMP */
766  
767  static void
768  enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
769  static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
770  static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
771  static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
772  
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)773  static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
774  					    struct rq *rq)
775  {
776  	/* for non-boosted task, pi_of(dl_se) == dl_se */
777  	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
778  	dl_se->runtime = pi_of(dl_se)->dl_runtime;
779  
780  	/*
781  	 * If it is a deferred reservation, and the server
782  	 * is not handling an starvation case, defer it.
783  	 */
784  	if (dl_se->dl_defer & !dl_se->dl_defer_running) {
785  		dl_se->dl_throttled = 1;
786  		dl_se->dl_defer_armed = 1;
787  	}
788  }
789  
790  /*
791   * We are being explicitly informed that a new instance is starting,
792   * and this means that:
793   *  - the absolute deadline of the entity has to be placed at
794   *    current time + relative deadline;
795   *  - the runtime of the entity has to be set to the maximum value.
796   *
797   * The capability of specifying such event is useful whenever a -deadline
798   * entity wants to (try to!) synchronize its behaviour with the scheduler's
799   * one, and to (try to!) reconcile itself with its own scheduling
800   * parameters.
801   */
setup_new_dl_entity(struct sched_dl_entity * dl_se)802  static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
803  {
804  	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
805  	struct rq *rq = rq_of_dl_rq(dl_rq);
806  
807  	WARN_ON(is_dl_boosted(dl_se));
808  	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
809  
810  	/*
811  	 * We are racing with the deadline timer. So, do nothing because
812  	 * the deadline timer handler will take care of properly recharging
813  	 * the runtime and postponing the deadline
814  	 */
815  	if (dl_se->dl_throttled)
816  		return;
817  
818  	/*
819  	 * We use the regular wall clock time to set deadlines in the
820  	 * future; in fact, we must consider execution overheads (time
821  	 * spent on hardirq context, etc.).
822  	 */
823  	replenish_dl_new_period(dl_se, rq);
824  }
825  
826  static int start_dl_timer(struct sched_dl_entity *dl_se);
827  static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
828  
829  /*
830   * Pure Earliest Deadline First (EDF) scheduling does not deal with the
831   * possibility of a entity lasting more than what it declared, and thus
832   * exhausting its runtime.
833   *
834   * Here we are interested in making runtime overrun possible, but we do
835   * not want a entity which is misbehaving to affect the scheduling of all
836   * other entities.
837   * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
838   * is used, in order to confine each entity within its own bandwidth.
839   *
840   * This function deals exactly with that, and ensures that when the runtime
841   * of a entity is replenished, its deadline is also postponed. That ensures
842   * the overrunning entity can't interfere with other entity in the system and
843   * can't make them miss their deadlines. Reasons why this kind of overruns
844   * could happen are, typically, a entity voluntarily trying to overcome its
845   * runtime, or it just underestimated it during sched_setattr().
846   */
replenish_dl_entity(struct sched_dl_entity * dl_se)847  static void replenish_dl_entity(struct sched_dl_entity *dl_se)
848  {
849  	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
850  	struct rq *rq = rq_of_dl_rq(dl_rq);
851  
852  	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
853  
854  	/*
855  	 * This could be the case for a !-dl task that is boosted.
856  	 * Just go with full inherited parameters.
857  	 *
858  	 * Or, it could be the case of a deferred reservation that
859  	 * was not able to consume its runtime in background and
860  	 * reached this point with current u > U.
861  	 *
862  	 * In both cases, set a new period.
863  	 */
864  	if (dl_se->dl_deadline == 0 ||
865  	    (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
866  		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
867  		dl_se->runtime = pi_of(dl_se)->dl_runtime;
868  	}
869  
870  	if (dl_se->dl_yielded && dl_se->runtime > 0)
871  		dl_se->runtime = 0;
872  
873  	/*
874  	 * We keep moving the deadline away until we get some
875  	 * available runtime for the entity. This ensures correct
876  	 * handling of situations where the runtime overrun is
877  	 * arbitrary large.
878  	 */
879  	while (dl_se->runtime <= 0) {
880  		dl_se->deadline += pi_of(dl_se)->dl_period;
881  		dl_se->runtime += pi_of(dl_se)->dl_runtime;
882  	}
883  
884  	/*
885  	 * At this point, the deadline really should be "in
886  	 * the future" with respect to rq->clock. If it's
887  	 * not, we are, for some reason, lagging too much!
888  	 * Anyway, after having warn userspace abut that,
889  	 * we still try to keep the things running by
890  	 * resetting the deadline and the budget of the
891  	 * entity.
892  	 */
893  	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
894  		printk_deferred_once("sched: DL replenish lagged too much\n");
895  		replenish_dl_new_period(dl_se, rq);
896  	}
897  
898  	if (dl_se->dl_yielded)
899  		dl_se->dl_yielded = 0;
900  	if (dl_se->dl_throttled)
901  		dl_se->dl_throttled = 0;
902  
903  	/*
904  	 * If this is the replenishment of a deferred reservation,
905  	 * clear the flag and return.
906  	 */
907  	if (dl_se->dl_defer_armed) {
908  		dl_se->dl_defer_armed = 0;
909  		return;
910  	}
911  
912  	/*
913  	 * A this point, if the deferred server is not armed, and the deadline
914  	 * is in the future, if it is not running already, throttle the server
915  	 * and arm the defer timer.
916  	 */
917  	if (dl_se->dl_defer && !dl_se->dl_defer_running &&
918  	    dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
919  		if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
920  
921  			/*
922  			 * Set dl_se->dl_defer_armed and dl_throttled variables to
923  			 * inform the start_dl_timer() that this is a deferred
924  			 * activation.
925  			 */
926  			dl_se->dl_defer_armed = 1;
927  			dl_se->dl_throttled = 1;
928  			if (!start_dl_timer(dl_se)) {
929  				/*
930  				 * If for whatever reason (delays), a previous timer was
931  				 * queued but not serviced, cancel it and clean the
932  				 * deferrable server variables intended for start_dl_timer().
933  				 */
934  				hrtimer_try_to_cancel(&dl_se->dl_timer);
935  				dl_se->dl_defer_armed = 0;
936  				dl_se->dl_throttled = 0;
937  			}
938  		}
939  	}
940  }
941  
942  /*
943   * Here we check if --at time t-- an entity (which is probably being
944   * [re]activated or, in general, enqueued) can use its remaining runtime
945   * and its current deadline _without_ exceeding the bandwidth it is
946   * assigned (function returns true if it can't). We are in fact applying
947   * one of the CBS rules: when a task wakes up, if the residual runtime
948   * over residual deadline fits within the allocated bandwidth, then we
949   * can keep the current (absolute) deadline and residual budget without
950   * disrupting the schedulability of the system. Otherwise, we should
951   * refill the runtime and set the deadline a period in the future,
952   * because keeping the current (absolute) deadline of the task would
953   * result in breaking guarantees promised to other tasks (refer to
954   * Documentation/scheduler/sched-deadline.rst for more information).
955   *
956   * This function returns true if:
957   *
958   *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
959   *
960   * IOW we can't recycle current parameters.
961   *
962   * Notice that the bandwidth check is done against the deadline. For
963   * task with deadline equal to period this is the same of using
964   * dl_period instead of dl_deadline in the equation above.
965   */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)966  static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
967  {
968  	u64 left, right;
969  
970  	/*
971  	 * left and right are the two sides of the equation above,
972  	 * after a bit of shuffling to use multiplications instead
973  	 * of divisions.
974  	 *
975  	 * Note that none of the time values involved in the two
976  	 * multiplications are absolute: dl_deadline and dl_runtime
977  	 * are the relative deadline and the maximum runtime of each
978  	 * instance, runtime is the runtime left for the last instance
979  	 * and (deadline - t), since t is rq->clock, is the time left
980  	 * to the (absolute) deadline. Even if overflowing the u64 type
981  	 * is very unlikely to occur in both cases, here we scale down
982  	 * as we want to avoid that risk at all. Scaling down by 10
983  	 * means that we reduce granularity to 1us. We are fine with it,
984  	 * since this is only a true/false check and, anyway, thinking
985  	 * of anything below microseconds resolution is actually fiction
986  	 * (but still we want to give the user that illusion >;).
987  	 */
988  	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
989  	right = ((dl_se->deadline - t) >> DL_SCALE) *
990  		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
991  
992  	return dl_time_before(right, left);
993  }
994  
995  /*
996   * Revised wakeup rule [1]: For self-suspending tasks, rather then
997   * re-initializing task's runtime and deadline, the revised wakeup
998   * rule adjusts the task's runtime to avoid the task to overrun its
999   * density.
1000   *
1001   * Reasoning: a task may overrun the density if:
1002   *    runtime / (deadline - t) > dl_runtime / dl_deadline
1003   *
1004   * Therefore, runtime can be adjusted to:
1005   *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
1006   *
1007   * In such way that runtime will be equal to the maximum density
1008   * the task can use without breaking any rule.
1009   *
1010   * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
1011   * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
1012   */
1013  static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)1014  update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
1015  {
1016  	u64 laxity = dl_se->deadline - rq_clock(rq);
1017  
1018  	/*
1019  	 * If the task has deadline < period, and the deadline is in the past,
1020  	 * it should already be throttled before this check.
1021  	 *
1022  	 * See update_dl_entity() comments for further details.
1023  	 */
1024  	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
1025  
1026  	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
1027  }
1028  
1029  /*
1030   * Regarding the deadline, a task with implicit deadline has a relative
1031   * deadline == relative period. A task with constrained deadline has a
1032   * relative deadline <= relative period.
1033   *
1034   * We support constrained deadline tasks. However, there are some restrictions
1035   * applied only for tasks which do not have an implicit deadline. See
1036   * update_dl_entity() to know more about such restrictions.
1037   *
1038   * The dl_is_implicit() returns true if the task has an implicit deadline.
1039   */
dl_is_implicit(struct sched_dl_entity * dl_se)1040  static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1041  {
1042  	return dl_se->dl_deadline == dl_se->dl_period;
1043  }
1044  
1045  /*
1046   * When a deadline entity is placed in the runqueue, its runtime and deadline
1047   * might need to be updated. This is done by a CBS wake up rule. There are two
1048   * different rules: 1) the original CBS; and 2) the Revisited CBS.
1049   *
1050   * When the task is starting a new period, the Original CBS is used. In this
1051   * case, the runtime is replenished and a new absolute deadline is set.
1052   *
1053   * When a task is queued before the begin of the next period, using the
1054   * remaining runtime and deadline could make the entity to overflow, see
1055   * dl_entity_overflow() to find more about runtime overflow. When such case
1056   * is detected, the runtime and deadline need to be updated.
1057   *
1058   * If the task has an implicit deadline, i.e., deadline == period, the Original
1059   * CBS is applied. The runtime is replenished and a new absolute deadline is
1060   * set, as in the previous cases.
1061   *
1062   * However, the Original CBS does not work properly for tasks with
1063   * deadline < period, which are said to have a constrained deadline. By
1064   * applying the Original CBS, a constrained deadline task would be able to run
1065   * runtime/deadline in a period. With deadline < period, the task would
1066   * overrun the runtime/period allowed bandwidth, breaking the admission test.
1067   *
1068   * In order to prevent this misbehave, the Revisited CBS is used for
1069   * constrained deadline tasks when a runtime overflow is detected. In the
1070   * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1071   * the remaining runtime of the task is reduced to avoid runtime overflow.
1072   * Please refer to the comments update_dl_revised_wakeup() function to find
1073   * more about the Revised CBS rule.
1074   */
update_dl_entity(struct sched_dl_entity * dl_se)1075  static void update_dl_entity(struct sched_dl_entity *dl_se)
1076  {
1077  	struct rq *rq = rq_of_dl_se(dl_se);
1078  
1079  	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1080  	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1081  
1082  		if (unlikely(!dl_is_implicit(dl_se) &&
1083  			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084  			     !is_dl_boosted(dl_se))) {
1085  			update_dl_revised_wakeup(dl_se, rq);
1086  			return;
1087  		}
1088  
1089  		replenish_dl_new_period(dl_se, rq);
1090  	} else if (dl_server(dl_se) && dl_se->dl_defer) {
1091  		/*
1092  		 * The server can still use its previous deadline, so check if
1093  		 * it left the dl_defer_running state.
1094  		 */
1095  		if (!dl_se->dl_defer_running) {
1096  			dl_se->dl_defer_armed = 1;
1097  			dl_se->dl_throttled = 1;
1098  		}
1099  	}
1100  }
1101  
dl_next_period(struct sched_dl_entity * dl_se)1102  static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1103  {
1104  	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1105  }
1106  
1107  /*
1108   * If the entity depleted all its runtime, and if we want it to sleep
1109   * while waiting for some new execution time to become available, we
1110   * set the bandwidth replenishment timer to the replenishment instant
1111   * and try to activate it.
1112   *
1113   * Notice that it is important for the caller to know if the timer
1114   * actually started or not (i.e., the replenishment instant is in
1115   * the future or in the past).
1116   */
start_dl_timer(struct sched_dl_entity * dl_se)1117  static int start_dl_timer(struct sched_dl_entity *dl_se)
1118  {
1119  	struct hrtimer *timer = &dl_se->dl_timer;
1120  	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1121  	struct rq *rq = rq_of_dl_rq(dl_rq);
1122  	ktime_t now, act;
1123  	s64 delta;
1124  
1125  	lockdep_assert_rq_held(rq);
1126  
1127  	/*
1128  	 * We want the timer to fire at the deadline, but considering
1129  	 * that it is actually coming from rq->clock and not from
1130  	 * hrtimer's time base reading.
1131  	 *
1132  	 * The deferred reservation will have its timer set to
1133  	 * (deadline - runtime). At that point, the CBS rule will decide
1134  	 * if the current deadline can be used, or if a replenishment is
1135  	 * required to avoid add too much pressure on the system
1136  	 * (current u > U).
1137  	 */
1138  	if (dl_se->dl_defer_armed) {
1139  		WARN_ON_ONCE(!dl_se->dl_throttled);
1140  		act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1141  	} else {
1142  		/* act = deadline - rel-deadline + period */
1143  		act = ns_to_ktime(dl_next_period(dl_se));
1144  	}
1145  
1146  	now = hrtimer_cb_get_time(timer);
1147  	delta = ktime_to_ns(now) - rq_clock(rq);
1148  	act = ktime_add_ns(act, delta);
1149  
1150  	/*
1151  	 * If the expiry time already passed, e.g., because the value
1152  	 * chosen as the deadline is too small, don't even try to
1153  	 * start the timer in the past!
1154  	 */
1155  	if (ktime_us_delta(act, now) < 0)
1156  		return 0;
1157  
1158  	/*
1159  	 * !enqueued will guarantee another callback; even if one is already in
1160  	 * progress. This ensures a balanced {get,put}_task_struct().
1161  	 *
1162  	 * The race against __run_timer() clearing the enqueued state is
1163  	 * harmless because we're holding task_rq()->lock, therefore the timer
1164  	 * expiring after we've done the check will wait on its task_rq_lock()
1165  	 * and observe our state.
1166  	 */
1167  	if (!hrtimer_is_queued(timer)) {
1168  		if (!dl_server(dl_se))
1169  			get_task_struct(dl_task_of(dl_se));
1170  		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1171  	}
1172  
1173  	return 1;
1174  }
1175  
__push_dl_task(struct rq * rq,struct rq_flags * rf)1176  static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1177  {
1178  #ifdef CONFIG_SMP
1179  	/*
1180  	 * Queueing this task back might have overloaded rq, check if we need
1181  	 * to kick someone away.
1182  	 */
1183  	if (has_pushable_dl_tasks(rq)) {
1184  		/*
1185  		 * Nothing relies on rq->lock after this, so its safe to drop
1186  		 * rq->lock.
1187  		 */
1188  		rq_unpin_lock(rq, rf);
1189  		push_dl_task(rq);
1190  		rq_repin_lock(rq, rf);
1191  	}
1192  #endif
1193  }
1194  
1195  /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1196  static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1197  
dl_server_timer(struct hrtimer * timer,struct sched_dl_entity * dl_se)1198  static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1199  {
1200  	struct rq *rq = rq_of_dl_se(dl_se);
1201  	u64 fw;
1202  
1203  	scoped_guard (rq_lock, rq) {
1204  		struct rq_flags *rf = &scope.rf;
1205  
1206  		if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1207  			return HRTIMER_NORESTART;
1208  
1209  		sched_clock_tick();
1210  		update_rq_clock(rq);
1211  
1212  		if (!dl_se->dl_runtime)
1213  			return HRTIMER_NORESTART;
1214  
1215  		if (!dl_se->server_has_tasks(dl_se)) {
1216  			replenish_dl_entity(dl_se);
1217  			return HRTIMER_NORESTART;
1218  		}
1219  
1220  		if (dl_se->dl_defer_armed) {
1221  			/*
1222  			 * First check if the server could consume runtime in background.
1223  			 * If so, it is possible to push the defer timer for this amount
1224  			 * of time. The dl_server_min_res serves as a limit to avoid
1225  			 * forwarding the timer for a too small amount of time.
1226  			 */
1227  			if (dl_time_before(rq_clock(dl_se->rq),
1228  					   (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1229  
1230  				/* reset the defer timer */
1231  				fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1232  
1233  				hrtimer_forward_now(timer, ns_to_ktime(fw));
1234  				return HRTIMER_RESTART;
1235  			}
1236  
1237  			dl_se->dl_defer_running = 1;
1238  		}
1239  
1240  		enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1241  
1242  		if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1243  			resched_curr(rq);
1244  
1245  		__push_dl_task(rq, rf);
1246  	}
1247  
1248  	return HRTIMER_NORESTART;
1249  }
1250  
1251  /*
1252   * This is the bandwidth enforcement timer callback. If here, we know
1253   * a task is not on its dl_rq, since the fact that the timer was running
1254   * means the task is throttled and needs a runtime replenishment.
1255   *
1256   * However, what we actually do depends on the fact the task is active,
1257   * (it is on its rq) or has been removed from there by a call to
1258   * dequeue_task_dl(). In the former case we must issue the runtime
1259   * replenishment and add the task back to the dl_rq; in the latter, we just
1260   * do nothing but clearing dl_throttled, so that runtime and deadline
1261   * updating (and the queueing back to dl_rq) will be done by the
1262   * next call to enqueue_task_dl().
1263   */
dl_task_timer(struct hrtimer * timer)1264  static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1265  {
1266  	struct sched_dl_entity *dl_se = container_of(timer,
1267  						     struct sched_dl_entity,
1268  						     dl_timer);
1269  	struct task_struct *p;
1270  	struct rq_flags rf;
1271  	struct rq *rq;
1272  
1273  	if (dl_server(dl_se))
1274  		return dl_server_timer(timer, dl_se);
1275  
1276  	p = dl_task_of(dl_se);
1277  	rq = task_rq_lock(p, &rf);
1278  
1279  	/*
1280  	 * The task might have changed its scheduling policy to something
1281  	 * different than SCHED_DEADLINE (through switched_from_dl()).
1282  	 */
1283  	if (!dl_task(p))
1284  		goto unlock;
1285  
1286  	/*
1287  	 * The task might have been boosted by someone else and might be in the
1288  	 * boosting/deboosting path, its not throttled.
1289  	 */
1290  	if (is_dl_boosted(dl_se))
1291  		goto unlock;
1292  
1293  	/*
1294  	 * Spurious timer due to start_dl_timer() race; or we already received
1295  	 * a replenishment from rt_mutex_setprio().
1296  	 */
1297  	if (!dl_se->dl_throttled)
1298  		goto unlock;
1299  
1300  	sched_clock_tick();
1301  	update_rq_clock(rq);
1302  
1303  	/*
1304  	 * If the throttle happened during sched-out; like:
1305  	 *
1306  	 *   schedule()
1307  	 *     deactivate_task()
1308  	 *       dequeue_task_dl()
1309  	 *         update_curr_dl()
1310  	 *           start_dl_timer()
1311  	 *         __dequeue_task_dl()
1312  	 *     prev->on_rq = 0;
1313  	 *
1314  	 * We can be both throttled and !queued. Replenish the counter
1315  	 * but do not enqueue -- wait for our wakeup to do that.
1316  	 */
1317  	if (!task_on_rq_queued(p)) {
1318  		replenish_dl_entity(dl_se);
1319  		goto unlock;
1320  	}
1321  
1322  #ifdef CONFIG_SMP
1323  	if (unlikely(!rq->online)) {
1324  		/*
1325  		 * If the runqueue is no longer available, migrate the
1326  		 * task elsewhere. This necessarily changes rq.
1327  		 */
1328  		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1329  		rq = dl_task_offline_migration(rq, p);
1330  		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1331  		update_rq_clock(rq);
1332  
1333  		/*
1334  		 * Now that the task has been migrated to the new RQ and we
1335  		 * have that locked, proceed as normal and enqueue the task
1336  		 * there.
1337  		 */
1338  	}
1339  #endif
1340  
1341  	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1342  	if (dl_task(rq->curr))
1343  		wakeup_preempt_dl(rq, p, 0);
1344  	else
1345  		resched_curr(rq);
1346  
1347  	__push_dl_task(rq, &rf);
1348  
1349  unlock:
1350  	task_rq_unlock(rq, p, &rf);
1351  
1352  	/*
1353  	 * This can free the task_struct, including this hrtimer, do not touch
1354  	 * anything related to that after this.
1355  	 */
1356  	put_task_struct(p);
1357  
1358  	return HRTIMER_NORESTART;
1359  }
1360  
init_dl_task_timer(struct sched_dl_entity * dl_se)1361  static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1362  {
1363  	struct hrtimer *timer = &dl_se->dl_timer;
1364  
1365  	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1366  	timer->function = dl_task_timer;
1367  }
1368  
1369  /*
1370   * During the activation, CBS checks if it can reuse the current task's
1371   * runtime and period. If the deadline of the task is in the past, CBS
1372   * cannot use the runtime, and so it replenishes the task. This rule
1373   * works fine for implicit deadline tasks (deadline == period), and the
1374   * CBS was designed for implicit deadline tasks. However, a task with
1375   * constrained deadline (deadline < period) might be awakened after the
1376   * deadline, but before the next period. In this case, replenishing the
1377   * task would allow it to run for runtime / deadline. As in this case
1378   * deadline < period, CBS enables a task to run for more than the
1379   * runtime / period. In a very loaded system, this can cause a domino
1380   * effect, making other tasks miss their deadlines.
1381   *
1382   * To avoid this problem, in the activation of a constrained deadline
1383   * task after the deadline but before the next period, throttle the
1384   * task and set the replenishing timer to the begin of the next period,
1385   * unless it is boosted.
1386   */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1387  static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1388  {
1389  	struct rq *rq = rq_of_dl_se(dl_se);
1390  
1391  	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1392  	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1393  		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1394  			return;
1395  		dl_se->dl_throttled = 1;
1396  		if (dl_se->runtime > 0)
1397  			dl_se->runtime = 0;
1398  	}
1399  }
1400  
1401  static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1402  int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1403  {
1404  	return (dl_se->runtime <= 0);
1405  }
1406  
1407  /*
1408   * This function implements the GRUB accounting rule. According to the
1409   * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1410   * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1411   * where u is the utilization of the task, Umax is the maximum reclaimable
1412   * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1413   * as the difference between the "total runqueue utilization" and the
1414   * "runqueue active utilization", and Uextra is the (per runqueue) extra
1415   * reclaimable utilization.
1416   * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1417   * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1418   * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1419   * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1420   * Since delta is a 64 bit variable, to have an overflow its value should be
1421   * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1422   * not an issue here.
1423   */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1424  static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1425  {
1426  	u64 u_act;
1427  	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1428  
1429  	/*
1430  	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1431  	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1432  	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1433  	 * negative leading to wrong results.
1434  	 */
1435  	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1436  		u_act = dl_se->dl_bw;
1437  	else
1438  		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1439  
1440  	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1441  	return (delta * u_act) >> BW_SHIFT;
1442  }
1443  
dl_scaled_delta_exec(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1444  s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1445  {
1446  	s64 scaled_delta_exec;
1447  
1448  	/*
1449  	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1450  	 * spare reclaimed bandwidth is used to clock down frequency.
1451  	 *
1452  	 * For the others, we still need to scale reservation parameters
1453  	 * according to current frequency and CPU maximum capacity.
1454  	 */
1455  	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1456  		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1457  	} else {
1458  		int cpu = cpu_of(rq);
1459  		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1460  		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1461  
1462  		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1463  		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1464  	}
1465  
1466  	return scaled_delta_exec;
1467  }
1468  
1469  static inline void
1470  update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1471  			int flags);
update_curr_dl_se(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1472  static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1473  {
1474  	s64 scaled_delta_exec;
1475  
1476  	if (unlikely(delta_exec <= 0)) {
1477  		if (unlikely(dl_se->dl_yielded))
1478  			goto throttle;
1479  		return;
1480  	}
1481  
1482  	if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1483  		return;
1484  
1485  	if (dl_entity_is_special(dl_se))
1486  		return;
1487  
1488  	scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1489  
1490  	dl_se->runtime -= scaled_delta_exec;
1491  
1492  	/*
1493  	 * The fair server can consume its runtime while throttled (not queued/
1494  	 * running as regular CFS).
1495  	 *
1496  	 * If the server consumes its entire runtime in this state. The server
1497  	 * is not required for the current period. Thus, reset the server by
1498  	 * starting a new period, pushing the activation.
1499  	 */
1500  	if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1501  		/*
1502  		 * If the server was previously activated - the starving condition
1503  		 * took place, it this point it went away because the fair scheduler
1504  		 * was able to get runtime in background. So return to the initial
1505  		 * state.
1506  		 */
1507  		dl_se->dl_defer_running = 0;
1508  
1509  		hrtimer_try_to_cancel(&dl_se->dl_timer);
1510  
1511  		replenish_dl_new_period(dl_se, dl_se->rq);
1512  
1513  		/*
1514  		 * Not being able to start the timer seems problematic. If it could not
1515  		 * be started for whatever reason, we need to "unthrottle" the DL server
1516  		 * and queue right away. Otherwise nothing might queue it. That's similar
1517  		 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1518  		 */
1519  		WARN_ON_ONCE(!start_dl_timer(dl_se));
1520  
1521  		return;
1522  	}
1523  
1524  throttle:
1525  	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1526  		dl_se->dl_throttled = 1;
1527  
1528  		/* If requested, inform the user about runtime overruns. */
1529  		if (dl_runtime_exceeded(dl_se) &&
1530  		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1531  			dl_se->dl_overrun = 1;
1532  
1533  		dequeue_dl_entity(dl_se, 0);
1534  		if (!dl_server(dl_se)) {
1535  			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1536  			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1537  		}
1538  
1539  		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1540  			if (dl_server(dl_se))
1541  				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1542  			else
1543  				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1544  		}
1545  
1546  		if (!is_leftmost(dl_se, &rq->dl))
1547  			resched_curr(rq);
1548  	}
1549  
1550  	/*
1551  	 * The fair server (sole dl_server) does not account for real-time
1552  	 * workload because it is running fair work.
1553  	 */
1554  	if (dl_se == &rq->fair_server)
1555  		return;
1556  
1557  #ifdef CONFIG_RT_GROUP_SCHED
1558  	/*
1559  	 * Because -- for now -- we share the rt bandwidth, we need to
1560  	 * account our runtime there too, otherwise actual rt tasks
1561  	 * would be able to exceed the shared quota.
1562  	 *
1563  	 * Account to the root rt group for now.
1564  	 *
1565  	 * The solution we're working towards is having the RT groups scheduled
1566  	 * using deadline servers -- however there's a few nasties to figure
1567  	 * out before that can happen.
1568  	 */
1569  	if (rt_bandwidth_enabled()) {
1570  		struct rt_rq *rt_rq = &rq->rt;
1571  
1572  		raw_spin_lock(&rt_rq->rt_runtime_lock);
1573  		/*
1574  		 * We'll let actual RT tasks worry about the overflow here, we
1575  		 * have our own CBS to keep us inline; only account when RT
1576  		 * bandwidth is relevant.
1577  		 */
1578  		if (sched_rt_bandwidth_account(rt_rq))
1579  			rt_rq->rt_time += delta_exec;
1580  		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1581  	}
1582  #endif
1583  }
1584  
1585  /*
1586   * In the non-defer mode, the idle time is not accounted, as the
1587   * server provides a guarantee.
1588   *
1589   * If the dl_server is in defer mode, the idle time is also considered
1590   * as time available for the fair server, avoiding a penalty for the
1591   * rt scheduler that did not consumed that time.
1592   */
dl_server_update_idle_time(struct rq * rq,struct task_struct * p)1593  void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1594  {
1595  	s64 delta_exec, scaled_delta_exec;
1596  
1597  	if (!rq->fair_server.dl_defer)
1598  		return;
1599  
1600  	/* no need to discount more */
1601  	if (rq->fair_server.runtime < 0)
1602  		return;
1603  
1604  	delta_exec = rq_clock_task(rq) - p->se.exec_start;
1605  	if (delta_exec < 0)
1606  		return;
1607  
1608  	scaled_delta_exec = dl_scaled_delta_exec(rq, &rq->fair_server, delta_exec);
1609  
1610  	rq->fair_server.runtime -= scaled_delta_exec;
1611  
1612  	if (rq->fair_server.runtime < 0) {
1613  		rq->fair_server.dl_defer_running = 0;
1614  		rq->fair_server.runtime = 0;
1615  	}
1616  
1617  	p->se.exec_start = rq_clock_task(rq);
1618  }
1619  
dl_server_update(struct sched_dl_entity * dl_se,s64 delta_exec)1620  void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1621  {
1622  	/* 0 runtime = fair server disabled */
1623  	if (dl_se->dl_runtime)
1624  		update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1625  }
1626  
dl_server_start(struct sched_dl_entity * dl_se)1627  void dl_server_start(struct sched_dl_entity *dl_se)
1628  {
1629  	struct rq *rq = dl_se->rq;
1630  
1631  	/*
1632  	 * XXX: the apply do not work fine at the init phase for the
1633  	 * fair server because things are not yet set. We need to improve
1634  	 * this before getting generic.
1635  	 */
1636  	if (!dl_server(dl_se)) {
1637  		u64 runtime =  50 * NSEC_PER_MSEC;
1638  		u64 period = 1000 * NSEC_PER_MSEC;
1639  
1640  		dl_server_apply_params(dl_se, runtime, period, 1);
1641  
1642  		dl_se->dl_server = 1;
1643  		dl_se->dl_defer = 1;
1644  		setup_new_dl_entity(dl_se);
1645  	}
1646  
1647  	if (!dl_se->dl_runtime)
1648  		return;
1649  
1650  	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1651  	if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1652  		resched_curr(dl_se->rq);
1653  }
1654  
dl_server_stop(struct sched_dl_entity * dl_se)1655  void dl_server_stop(struct sched_dl_entity *dl_se)
1656  {
1657  	if (!dl_se->dl_runtime)
1658  		return;
1659  
1660  	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1661  	hrtimer_try_to_cancel(&dl_se->dl_timer);
1662  	dl_se->dl_defer_armed = 0;
1663  	dl_se->dl_throttled = 0;
1664  }
1665  
dl_server_init(struct sched_dl_entity * dl_se,struct rq * rq,dl_server_has_tasks_f has_tasks,dl_server_pick_f pick_task)1666  void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1667  		    dl_server_has_tasks_f has_tasks,
1668  		    dl_server_pick_f pick_task)
1669  {
1670  	dl_se->rq = rq;
1671  	dl_se->server_has_tasks = has_tasks;
1672  	dl_se->server_pick_task = pick_task;
1673  }
1674  
__dl_server_attach_root(struct sched_dl_entity * dl_se,struct rq * rq)1675  void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1676  {
1677  	u64 new_bw = dl_se->dl_bw;
1678  	int cpu = cpu_of(rq);
1679  	struct dl_bw *dl_b;
1680  
1681  	dl_b = dl_bw_of(cpu_of(rq));
1682  	guard(raw_spinlock)(&dl_b->lock);
1683  
1684  	if (!dl_bw_cpus(cpu))
1685  		return;
1686  
1687  	__dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1688  }
1689  
dl_server_apply_params(struct sched_dl_entity * dl_se,u64 runtime,u64 period,bool init)1690  int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1691  {
1692  	u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1693  	u64 new_bw = to_ratio(period, runtime);
1694  	struct rq *rq = dl_se->rq;
1695  	int cpu = cpu_of(rq);
1696  	struct dl_bw *dl_b;
1697  	unsigned long cap;
1698  	int retval = 0;
1699  	int cpus;
1700  
1701  	dl_b = dl_bw_of(cpu);
1702  	guard(raw_spinlock)(&dl_b->lock);
1703  
1704  	cpus = dl_bw_cpus(cpu);
1705  	cap = dl_bw_capacity(cpu);
1706  
1707  	if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1708  		return -EBUSY;
1709  
1710  	if (init) {
1711  		__add_rq_bw(new_bw, &rq->dl);
1712  		__dl_add(dl_b, new_bw, cpus);
1713  	} else {
1714  		__dl_sub(dl_b, dl_se->dl_bw, cpus);
1715  		__dl_add(dl_b, new_bw, cpus);
1716  
1717  		dl_rq_change_utilization(rq, dl_se, new_bw);
1718  	}
1719  
1720  	dl_se->dl_runtime = runtime;
1721  	dl_se->dl_deadline = period;
1722  	dl_se->dl_period = period;
1723  
1724  	dl_se->runtime = 0;
1725  	dl_se->deadline = 0;
1726  
1727  	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1728  	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1729  
1730  	return retval;
1731  }
1732  
1733  /*
1734   * Update the current task's runtime statistics (provided it is still
1735   * a -deadline task and has not been removed from the dl_rq).
1736   */
update_curr_dl(struct rq * rq)1737  static void update_curr_dl(struct rq *rq)
1738  {
1739  	struct task_struct *curr = rq->curr;
1740  	struct sched_dl_entity *dl_se = &curr->dl;
1741  	s64 delta_exec;
1742  
1743  	if (!dl_task(curr) || !on_dl_rq(dl_se))
1744  		return;
1745  
1746  	/*
1747  	 * Consumed budget is computed considering the time as
1748  	 * observed by schedulable tasks (excluding time spent
1749  	 * in hardirq context, etc.). Deadlines are instead
1750  	 * computed using hard walltime. This seems to be the more
1751  	 * natural solution, but the full ramifications of this
1752  	 * approach need further study.
1753  	 */
1754  	delta_exec = update_curr_common(rq);
1755  	update_curr_dl_se(rq, dl_se, delta_exec);
1756  }
1757  
inactive_task_timer(struct hrtimer * timer)1758  static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1759  {
1760  	struct sched_dl_entity *dl_se = container_of(timer,
1761  						     struct sched_dl_entity,
1762  						     inactive_timer);
1763  	struct task_struct *p = NULL;
1764  	struct rq_flags rf;
1765  	struct rq *rq;
1766  
1767  	if (!dl_server(dl_se)) {
1768  		p = dl_task_of(dl_se);
1769  		rq = task_rq_lock(p, &rf);
1770  	} else {
1771  		rq = dl_se->rq;
1772  		rq_lock(rq, &rf);
1773  	}
1774  
1775  	sched_clock_tick();
1776  	update_rq_clock(rq);
1777  
1778  	if (dl_server(dl_se))
1779  		goto no_task;
1780  
1781  	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1782  		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1783  
1784  		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1785  			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1786  			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1787  			dl_se->dl_non_contending = 0;
1788  		}
1789  
1790  		raw_spin_lock(&dl_b->lock);
1791  		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1792  		raw_spin_unlock(&dl_b->lock);
1793  		__dl_clear_params(dl_se);
1794  
1795  		goto unlock;
1796  	}
1797  
1798  no_task:
1799  	if (dl_se->dl_non_contending == 0)
1800  		goto unlock;
1801  
1802  	sub_running_bw(dl_se, &rq->dl);
1803  	dl_se->dl_non_contending = 0;
1804  unlock:
1805  
1806  	if (!dl_server(dl_se)) {
1807  		task_rq_unlock(rq, p, &rf);
1808  		put_task_struct(p);
1809  	} else {
1810  		rq_unlock(rq, &rf);
1811  	}
1812  
1813  	return HRTIMER_NORESTART;
1814  }
1815  
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1816  static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1817  {
1818  	struct hrtimer *timer = &dl_se->inactive_timer;
1819  
1820  	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1821  	timer->function = inactive_task_timer;
1822  }
1823  
1824  #define __node_2_dle(node) \
1825  	rb_entry((node), struct sched_dl_entity, rb_node)
1826  
1827  #ifdef CONFIG_SMP
1828  
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1829  static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1830  {
1831  	struct rq *rq = rq_of_dl_rq(dl_rq);
1832  
1833  	if (dl_rq->earliest_dl.curr == 0 ||
1834  	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1835  		if (dl_rq->earliest_dl.curr == 0)
1836  			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1837  		dl_rq->earliest_dl.curr = deadline;
1838  		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1839  	}
1840  }
1841  
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1842  static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1843  {
1844  	struct rq *rq = rq_of_dl_rq(dl_rq);
1845  
1846  	/*
1847  	 * Since we may have removed our earliest (and/or next earliest)
1848  	 * task we must recompute them.
1849  	 */
1850  	if (!dl_rq->dl_nr_running) {
1851  		dl_rq->earliest_dl.curr = 0;
1852  		dl_rq->earliest_dl.next = 0;
1853  		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1854  		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1855  	} else {
1856  		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1857  		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1858  
1859  		dl_rq->earliest_dl.curr = entry->deadline;
1860  		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1861  	}
1862  }
1863  
1864  #else
1865  
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1866  static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1867  static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1868  
1869  #endif /* CONFIG_SMP */
1870  
1871  static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1872  void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1873  {
1874  	u64 deadline = dl_se->deadline;
1875  
1876  	dl_rq->dl_nr_running++;
1877  	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1878  
1879  	inc_dl_deadline(dl_rq, deadline);
1880  }
1881  
1882  static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1883  void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1884  {
1885  	WARN_ON(!dl_rq->dl_nr_running);
1886  	dl_rq->dl_nr_running--;
1887  	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1888  
1889  	dec_dl_deadline(dl_rq, dl_se->deadline);
1890  }
1891  
__dl_less(struct rb_node * a,const struct rb_node * b)1892  static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1893  {
1894  	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1895  }
1896  
1897  static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1898  __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1899  {
1900  	if (!schedstat_enabled())
1901  		return NULL;
1902  
1903  	if (dl_server(dl_se))
1904  		return NULL;
1905  
1906  	return &dl_task_of(dl_se)->stats;
1907  }
1908  
1909  static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1910  update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1911  {
1912  	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1913  	if (stats)
1914  		__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1915  }
1916  
1917  static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1918  update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1919  {
1920  	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1921  	if (stats)
1922  		__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1923  }
1924  
1925  static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1926  update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1927  {
1928  	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1929  	if (stats)
1930  		__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1931  }
1932  
1933  static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1934  update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1935  			int flags)
1936  {
1937  	if (!schedstat_enabled())
1938  		return;
1939  
1940  	if (flags & ENQUEUE_WAKEUP)
1941  		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1942  }
1943  
1944  static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1945  update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1946  			int flags)
1947  {
1948  	struct task_struct *p = dl_task_of(dl_se);
1949  
1950  	if (!schedstat_enabled())
1951  		return;
1952  
1953  	if ((flags & DEQUEUE_SLEEP)) {
1954  		unsigned int state;
1955  
1956  		state = READ_ONCE(p->__state);
1957  		if (state & TASK_INTERRUPTIBLE)
1958  			__schedstat_set(p->stats.sleep_start,
1959  					rq_clock(rq_of_dl_rq(dl_rq)));
1960  
1961  		if (state & TASK_UNINTERRUPTIBLE)
1962  			__schedstat_set(p->stats.block_start,
1963  					rq_clock(rq_of_dl_rq(dl_rq)));
1964  	}
1965  }
1966  
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1967  static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1968  {
1969  	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1970  
1971  	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1972  
1973  	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1974  
1975  	inc_dl_tasks(dl_se, dl_rq);
1976  }
1977  
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1978  static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1979  {
1980  	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1981  
1982  	if (RB_EMPTY_NODE(&dl_se->rb_node))
1983  		return;
1984  
1985  	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1986  
1987  	RB_CLEAR_NODE(&dl_se->rb_node);
1988  
1989  	dec_dl_tasks(dl_se, dl_rq);
1990  }
1991  
1992  static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1993  enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1994  {
1995  	WARN_ON_ONCE(on_dl_rq(dl_se));
1996  
1997  	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1998  
1999  	/*
2000  	 * Check if a constrained deadline task was activated
2001  	 * after the deadline but before the next period.
2002  	 * If that is the case, the task will be throttled and
2003  	 * the replenishment timer will be set to the next period.
2004  	 */
2005  	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
2006  		dl_check_constrained_dl(dl_se);
2007  
2008  	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
2009  		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2010  
2011  		add_rq_bw(dl_se, dl_rq);
2012  		add_running_bw(dl_se, dl_rq);
2013  	}
2014  
2015  	/*
2016  	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2017  	 * its budget it needs a replenishment and, since it now is on
2018  	 * its rq, the bandwidth timer callback (which clearly has not
2019  	 * run yet) will take care of this.
2020  	 * However, the active utilization does not depend on the fact
2021  	 * that the task is on the runqueue or not (but depends on the
2022  	 * task's state - in GRUB parlance, "inactive" vs "active contending").
2023  	 * In other words, even if a task is throttled its utilization must
2024  	 * be counted in the active utilization; hence, we need to call
2025  	 * add_running_bw().
2026  	 */
2027  	if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2028  		if (flags & ENQUEUE_WAKEUP)
2029  			task_contending(dl_se, flags);
2030  
2031  		return;
2032  	}
2033  
2034  	/*
2035  	 * If this is a wakeup or a new instance, the scheduling
2036  	 * parameters of the task might need updating. Otherwise,
2037  	 * we want a replenishment of its runtime.
2038  	 */
2039  	if (flags & ENQUEUE_WAKEUP) {
2040  		task_contending(dl_se, flags);
2041  		update_dl_entity(dl_se);
2042  	} else if (flags & ENQUEUE_REPLENISH) {
2043  		replenish_dl_entity(dl_se);
2044  	} else if ((flags & ENQUEUE_RESTORE) &&
2045  		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2046  		setup_new_dl_entity(dl_se);
2047  	}
2048  
2049  	/*
2050  	 * If the reservation is still throttled, e.g., it got replenished but is a
2051  	 * deferred task and still got to wait, don't enqueue.
2052  	 */
2053  	if (dl_se->dl_throttled && start_dl_timer(dl_se))
2054  		return;
2055  
2056  	/*
2057  	 * We're about to enqueue, make sure we're not ->dl_throttled!
2058  	 * In case the timer was not started, say because the defer time
2059  	 * has passed, mark as not throttled and mark unarmed.
2060  	 * Also cancel earlier timers, since letting those run is pointless.
2061  	 */
2062  	if (dl_se->dl_throttled) {
2063  		hrtimer_try_to_cancel(&dl_se->dl_timer);
2064  		dl_se->dl_defer_armed = 0;
2065  		dl_se->dl_throttled = 0;
2066  	}
2067  
2068  	__enqueue_dl_entity(dl_se);
2069  }
2070  
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)2071  static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2072  {
2073  	__dequeue_dl_entity(dl_se);
2074  
2075  	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2076  		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2077  
2078  		sub_running_bw(dl_se, dl_rq);
2079  		sub_rq_bw(dl_se, dl_rq);
2080  	}
2081  
2082  	/*
2083  	 * This check allows to start the inactive timer (or to immediately
2084  	 * decrease the active utilization, if needed) in two cases:
2085  	 * when the task blocks and when it is terminating
2086  	 * (p->state == TASK_DEAD). We can handle the two cases in the same
2087  	 * way, because from GRUB's point of view the same thing is happening
2088  	 * (the task moves from "active contending" to "active non contending"
2089  	 * or "inactive")
2090  	 */
2091  	if (flags & DEQUEUE_SLEEP)
2092  		task_non_contending(dl_se);
2093  }
2094  
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)2095  static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2096  {
2097  	if (is_dl_boosted(&p->dl)) {
2098  		/*
2099  		 * Because of delays in the detection of the overrun of a
2100  		 * thread's runtime, it might be the case that a thread
2101  		 * goes to sleep in a rt mutex with negative runtime. As
2102  		 * a consequence, the thread will be throttled.
2103  		 *
2104  		 * While waiting for the mutex, this thread can also be
2105  		 * boosted via PI, resulting in a thread that is throttled
2106  		 * and boosted at the same time.
2107  		 *
2108  		 * In this case, the boost overrides the throttle.
2109  		 */
2110  		if (p->dl.dl_throttled) {
2111  			/*
2112  			 * The replenish timer needs to be canceled. No
2113  			 * problem if it fires concurrently: boosted threads
2114  			 * are ignored in dl_task_timer().
2115  			 *
2116  			 * If the timer callback was running (hrtimer_try_to_cancel == -1),
2117  			 * it will eventually call put_task_struct().
2118  			 */
2119  			if (hrtimer_try_to_cancel(&p->dl.dl_timer) == 1 &&
2120  			    !dl_server(&p->dl))
2121  				put_task_struct(p);
2122  			p->dl.dl_throttled = 0;
2123  		}
2124  	} else if (!dl_prio(p->normal_prio)) {
2125  		/*
2126  		 * Special case in which we have a !SCHED_DEADLINE task that is going
2127  		 * to be deboosted, but exceeds its runtime while doing so. No point in
2128  		 * replenishing it, as it's going to return back to its original
2129  		 * scheduling class after this. If it has been throttled, we need to
2130  		 * clear the flag, otherwise the task may wake up as throttled after
2131  		 * being boosted again with no means to replenish the runtime and clear
2132  		 * the throttle.
2133  		 */
2134  		p->dl.dl_throttled = 0;
2135  		if (!(flags & ENQUEUE_REPLENISH))
2136  			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2137  					     task_pid_nr(p));
2138  
2139  		return;
2140  	}
2141  
2142  	check_schedstat_required();
2143  	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2144  
2145  	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2146  		flags |= ENQUEUE_MIGRATING;
2147  
2148  	enqueue_dl_entity(&p->dl, flags);
2149  
2150  	if (dl_server(&p->dl))
2151  		return;
2152  
2153  	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2154  		enqueue_pushable_dl_task(rq, p);
2155  }
2156  
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)2157  static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2158  {
2159  	update_curr_dl(rq);
2160  
2161  	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2162  		flags |= DEQUEUE_MIGRATING;
2163  
2164  	dequeue_dl_entity(&p->dl, flags);
2165  	if (!p->dl.dl_throttled && !dl_server(&p->dl))
2166  		dequeue_pushable_dl_task(rq, p);
2167  
2168  	return true;
2169  }
2170  
2171  /*
2172   * Yield task semantic for -deadline tasks is:
2173   *
2174   *   get off from the CPU until our next instance, with
2175   *   a new runtime. This is of little use now, since we
2176   *   don't have a bandwidth reclaiming mechanism. Anyway,
2177   *   bandwidth reclaiming is planned for the future, and
2178   *   yield_task_dl will indicate that some spare budget
2179   *   is available for other task instances to use it.
2180   */
yield_task_dl(struct rq * rq)2181  static void yield_task_dl(struct rq *rq)
2182  {
2183  	/*
2184  	 * We make the task go to sleep until its current deadline by
2185  	 * forcing its runtime to zero. This way, update_curr_dl() stops
2186  	 * it and the bandwidth timer will wake it up and will give it
2187  	 * new scheduling parameters (thanks to dl_yielded=1).
2188  	 */
2189  	rq->curr->dl.dl_yielded = 1;
2190  
2191  	update_rq_clock(rq);
2192  	update_curr_dl(rq);
2193  	/*
2194  	 * Tell update_rq_clock() that we've just updated,
2195  	 * so we don't do microscopic update in schedule()
2196  	 * and double the fastpath cost.
2197  	 */
2198  	rq_clock_skip_update(rq);
2199  }
2200  
2201  #ifdef CONFIG_SMP
2202  
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)2203  static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2204  						 struct rq *rq)
2205  {
2206  	return (!rq->dl.dl_nr_running ||
2207  		dl_time_before(p->dl.deadline,
2208  			       rq->dl.earliest_dl.curr));
2209  }
2210  
2211  static int find_later_rq(struct task_struct *task);
2212  
2213  static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)2214  select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2215  {
2216  	struct task_struct *curr;
2217  	bool select_rq;
2218  	struct rq *rq;
2219  
2220  	if (!(flags & WF_TTWU))
2221  		goto out;
2222  
2223  	rq = cpu_rq(cpu);
2224  
2225  	rcu_read_lock();
2226  	curr = READ_ONCE(rq->curr); /* unlocked access */
2227  
2228  	/*
2229  	 * If we are dealing with a -deadline task, we must
2230  	 * decide where to wake it up.
2231  	 * If it has a later deadline and the current task
2232  	 * on this rq can't move (provided the waking task
2233  	 * can!) we prefer to send it somewhere else. On the
2234  	 * other hand, if it has a shorter deadline, we
2235  	 * try to make it stay here, it might be important.
2236  	 */
2237  	select_rq = unlikely(dl_task(curr)) &&
2238  		    (curr->nr_cpus_allowed < 2 ||
2239  		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
2240  		    p->nr_cpus_allowed > 1;
2241  
2242  	/*
2243  	 * Take the capacity of the CPU into account to
2244  	 * ensure it fits the requirement of the task.
2245  	 */
2246  	if (sched_asym_cpucap_active())
2247  		select_rq |= !dl_task_fits_capacity(p, cpu);
2248  
2249  	if (select_rq) {
2250  		int target = find_later_rq(p);
2251  
2252  		if (target != -1 &&
2253  		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
2254  			cpu = target;
2255  	}
2256  	rcu_read_unlock();
2257  
2258  out:
2259  	return cpu;
2260  }
2261  
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)2262  static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2263  {
2264  	struct rq_flags rf;
2265  	struct rq *rq;
2266  
2267  	if (READ_ONCE(p->__state) != TASK_WAKING)
2268  		return;
2269  
2270  	rq = task_rq(p);
2271  	/*
2272  	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2273  	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2274  	 * rq->lock is not... So, lock it
2275  	 */
2276  	rq_lock(rq, &rf);
2277  	if (p->dl.dl_non_contending) {
2278  		update_rq_clock(rq);
2279  		sub_running_bw(&p->dl, &rq->dl);
2280  		p->dl.dl_non_contending = 0;
2281  		/*
2282  		 * If the timer handler is currently running and the
2283  		 * timer cannot be canceled, inactive_task_timer()
2284  		 * will see that dl_not_contending is not set, and
2285  		 * will not touch the rq's active utilization,
2286  		 * so we are still safe.
2287  		 */
2288  		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2289  			put_task_struct(p);
2290  	}
2291  	sub_rq_bw(&p->dl, &rq->dl);
2292  	rq_unlock(rq, &rf);
2293  }
2294  
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)2295  static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2296  {
2297  	/*
2298  	 * Current can't be migrated, useless to reschedule,
2299  	 * let's hope p can move out.
2300  	 */
2301  	if (rq->curr->nr_cpus_allowed == 1 ||
2302  	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
2303  		return;
2304  
2305  	/*
2306  	 * p is migratable, so let's not schedule it and
2307  	 * see if it is pushed or pulled somewhere else.
2308  	 */
2309  	if (p->nr_cpus_allowed != 1 &&
2310  	    cpudl_find(&rq->rd->cpudl, p, NULL))
2311  		return;
2312  
2313  	resched_curr(rq);
2314  }
2315  
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)2316  static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2317  {
2318  	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2319  		/*
2320  		 * This is OK, because current is on_cpu, which avoids it being
2321  		 * picked for load-balance and preemption/IRQs are still
2322  		 * disabled avoiding further scheduler activity on it and we've
2323  		 * not yet started the picking loop.
2324  		 */
2325  		rq_unpin_lock(rq, rf);
2326  		pull_dl_task(rq);
2327  		rq_repin_lock(rq, rf);
2328  	}
2329  
2330  	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2331  }
2332  #endif /* CONFIG_SMP */
2333  
2334  /*
2335   * Only called when both the current and waking task are -deadline
2336   * tasks.
2337   */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)2338  static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2339  				  int flags)
2340  {
2341  	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
2342  		resched_curr(rq);
2343  		return;
2344  	}
2345  
2346  #ifdef CONFIG_SMP
2347  	/*
2348  	 * In the unlikely case current and p have the same deadline
2349  	 * let us try to decide what's the best thing to do...
2350  	 */
2351  	if ((p->dl.deadline == rq->curr->dl.deadline) &&
2352  	    !test_tsk_need_resched(rq->curr))
2353  		check_preempt_equal_dl(rq, p);
2354  #endif /* CONFIG_SMP */
2355  }
2356  
2357  #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2358  static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2359  {
2360  	hrtick_start(rq, dl_se->runtime);
2361  }
2362  #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2363  static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2364  {
2365  }
2366  #endif
2367  
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)2368  static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2369  {
2370  	struct sched_dl_entity *dl_se = &p->dl;
2371  	struct dl_rq *dl_rq = &rq->dl;
2372  
2373  	p->se.exec_start = rq_clock_task(rq);
2374  	if (on_dl_rq(&p->dl))
2375  		update_stats_wait_end_dl(dl_rq, dl_se);
2376  
2377  	/* You can't push away the running task */
2378  	dequeue_pushable_dl_task(rq, p);
2379  
2380  	if (!first)
2381  		return;
2382  
2383  	if (rq->curr->sched_class != &dl_sched_class)
2384  		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2385  
2386  	deadline_queue_push_tasks(rq);
2387  
2388  	if (hrtick_enabled_dl(rq))
2389  		start_hrtick_dl(rq, &p->dl);
2390  }
2391  
pick_next_dl_entity(struct dl_rq * dl_rq)2392  static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2393  {
2394  	struct rb_node *left = rb_first_cached(&dl_rq->root);
2395  
2396  	if (!left)
2397  		return NULL;
2398  
2399  	return __node_2_dle(left);
2400  }
2401  
2402  /*
2403   * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2404   * @rq: The runqueue to pick the next task from.
2405   */
__pick_task_dl(struct rq * rq)2406  static struct task_struct *__pick_task_dl(struct rq *rq)
2407  {
2408  	struct sched_dl_entity *dl_se;
2409  	struct dl_rq *dl_rq = &rq->dl;
2410  	struct task_struct *p;
2411  
2412  again:
2413  	if (!sched_dl_runnable(rq))
2414  		return NULL;
2415  
2416  	dl_se = pick_next_dl_entity(dl_rq);
2417  	WARN_ON_ONCE(!dl_se);
2418  
2419  	if (dl_server(dl_se)) {
2420  		p = dl_se->server_pick_task(dl_se);
2421  		if (!p) {
2422  			dl_se->dl_yielded = 1;
2423  			update_curr_dl_se(rq, dl_se, 0);
2424  			goto again;
2425  		}
2426  		rq->dl_server = dl_se;
2427  	} else {
2428  		p = dl_task_of(dl_se);
2429  	}
2430  
2431  	return p;
2432  }
2433  
pick_task_dl(struct rq * rq)2434  static struct task_struct *pick_task_dl(struct rq *rq)
2435  {
2436  	return __pick_task_dl(rq);
2437  }
2438  
put_prev_task_dl(struct rq * rq,struct task_struct * p,struct task_struct * next)2439  static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2440  {
2441  	struct sched_dl_entity *dl_se = &p->dl;
2442  	struct dl_rq *dl_rq = &rq->dl;
2443  
2444  	if (on_dl_rq(&p->dl))
2445  		update_stats_wait_start_dl(dl_rq, dl_se);
2446  
2447  	update_curr_dl(rq);
2448  
2449  	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2450  	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2451  		enqueue_pushable_dl_task(rq, p);
2452  }
2453  
2454  /*
2455   * scheduler tick hitting a task of our scheduling class.
2456   *
2457   * NOTE: This function can be called remotely by the tick offload that
2458   * goes along full dynticks. Therefore no local assumption can be made
2459   * and everything must be accessed through the @rq and @curr passed in
2460   * parameters.
2461   */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2462  static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2463  {
2464  	update_curr_dl(rq);
2465  
2466  	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2467  	/*
2468  	 * Even when we have runtime, update_curr_dl() might have resulted in us
2469  	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2470  	 * be set and schedule() will start a new hrtick for the next task.
2471  	 */
2472  	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2473  	    is_leftmost(&p->dl, &rq->dl))
2474  		start_hrtick_dl(rq, &p->dl);
2475  }
2476  
task_fork_dl(struct task_struct * p)2477  static void task_fork_dl(struct task_struct *p)
2478  {
2479  	/*
2480  	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2481  	 * sched_fork()
2482  	 */
2483  }
2484  
2485  #ifdef CONFIG_SMP
2486  
2487  /* Only try algorithms three times */
2488  #define DL_MAX_TRIES 3
2489  
pick_dl_task(struct rq * rq,struct task_struct * p,int cpu)2490  static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2491  {
2492  	if (!task_on_cpu(rq, p) &&
2493  	    cpumask_test_cpu(cpu, &p->cpus_mask))
2494  		return 1;
2495  	return 0;
2496  }
2497  
2498  /*
2499   * Return the earliest pushable rq's task, which is suitable to be executed
2500   * on the CPU, NULL otherwise:
2501   */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2502  static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2503  {
2504  	struct task_struct *p = NULL;
2505  	struct rb_node *next_node;
2506  
2507  	if (!has_pushable_dl_tasks(rq))
2508  		return NULL;
2509  
2510  	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2511  
2512  next_node:
2513  	if (next_node) {
2514  		p = __node_2_pdl(next_node);
2515  
2516  		if (pick_dl_task(rq, p, cpu))
2517  			return p;
2518  
2519  		next_node = rb_next(next_node);
2520  		goto next_node;
2521  	}
2522  
2523  	return NULL;
2524  }
2525  
2526  static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2527  
find_later_rq(struct task_struct * task)2528  static int find_later_rq(struct task_struct *task)
2529  {
2530  	struct sched_domain *sd;
2531  	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2532  	int this_cpu = smp_processor_id();
2533  	int cpu = task_cpu(task);
2534  
2535  	/* Make sure the mask is initialized first */
2536  	if (unlikely(!later_mask))
2537  		return -1;
2538  
2539  	if (task->nr_cpus_allowed == 1)
2540  		return -1;
2541  
2542  	/*
2543  	 * We have to consider system topology and task affinity
2544  	 * first, then we can look for a suitable CPU.
2545  	 */
2546  	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2547  		return -1;
2548  
2549  	/*
2550  	 * If we are here, some targets have been found, including
2551  	 * the most suitable which is, among the runqueues where the
2552  	 * current tasks have later deadlines than the task's one, the
2553  	 * rq with the latest possible one.
2554  	 *
2555  	 * Now we check how well this matches with task's
2556  	 * affinity and system topology.
2557  	 *
2558  	 * The last CPU where the task run is our first
2559  	 * guess, since it is most likely cache-hot there.
2560  	 */
2561  	if (cpumask_test_cpu(cpu, later_mask))
2562  		return cpu;
2563  	/*
2564  	 * Check if this_cpu is to be skipped (i.e., it is
2565  	 * not in the mask) or not.
2566  	 */
2567  	if (!cpumask_test_cpu(this_cpu, later_mask))
2568  		this_cpu = -1;
2569  
2570  	rcu_read_lock();
2571  	for_each_domain(cpu, sd) {
2572  		if (sd->flags & SD_WAKE_AFFINE) {
2573  			int best_cpu;
2574  
2575  			/*
2576  			 * If possible, preempting this_cpu is
2577  			 * cheaper than migrating.
2578  			 */
2579  			if (this_cpu != -1 &&
2580  			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2581  				rcu_read_unlock();
2582  				return this_cpu;
2583  			}
2584  
2585  			best_cpu = cpumask_any_and_distribute(later_mask,
2586  							      sched_domain_span(sd));
2587  			/*
2588  			 * Last chance: if a CPU being in both later_mask
2589  			 * and current sd span is valid, that becomes our
2590  			 * choice. Of course, the latest possible CPU is
2591  			 * already under consideration through later_mask.
2592  			 */
2593  			if (best_cpu < nr_cpu_ids) {
2594  				rcu_read_unlock();
2595  				return best_cpu;
2596  			}
2597  		}
2598  	}
2599  	rcu_read_unlock();
2600  
2601  	/*
2602  	 * At this point, all our guesses failed, we just return
2603  	 * 'something', and let the caller sort the things out.
2604  	 */
2605  	if (this_cpu != -1)
2606  		return this_cpu;
2607  
2608  	cpu = cpumask_any_distribute(later_mask);
2609  	if (cpu < nr_cpu_ids)
2610  		return cpu;
2611  
2612  	return -1;
2613  }
2614  
2615  /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2616  static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2617  {
2618  	struct rq *later_rq = NULL;
2619  	int tries;
2620  	int cpu;
2621  
2622  	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2623  		cpu = find_later_rq(task);
2624  
2625  		if ((cpu == -1) || (cpu == rq->cpu))
2626  			break;
2627  
2628  		later_rq = cpu_rq(cpu);
2629  
2630  		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2631  			/*
2632  			 * Target rq has tasks of equal or earlier deadline,
2633  			 * retrying does not release any lock and is unlikely
2634  			 * to yield a different result.
2635  			 */
2636  			later_rq = NULL;
2637  			break;
2638  		}
2639  
2640  		/* Retry if something changed. */
2641  		if (double_lock_balance(rq, later_rq)) {
2642  			if (unlikely(task_rq(task) != rq ||
2643  				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2644  				     task_on_cpu(rq, task) ||
2645  				     !dl_task(task) ||
2646  				     is_migration_disabled(task) ||
2647  				     !task_on_rq_queued(task))) {
2648  				double_unlock_balance(rq, later_rq);
2649  				later_rq = NULL;
2650  				break;
2651  			}
2652  		}
2653  
2654  		/*
2655  		 * If the rq we found has no -deadline task, or
2656  		 * its earliest one has a later deadline than our
2657  		 * task, the rq is a good one.
2658  		 */
2659  		if (dl_task_is_earliest_deadline(task, later_rq))
2660  			break;
2661  
2662  		/* Otherwise we try again. */
2663  		double_unlock_balance(rq, later_rq);
2664  		later_rq = NULL;
2665  	}
2666  
2667  	return later_rq;
2668  }
2669  
pick_next_pushable_dl_task(struct rq * rq)2670  static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2671  {
2672  	struct task_struct *p;
2673  
2674  	if (!has_pushable_dl_tasks(rq))
2675  		return NULL;
2676  
2677  	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2678  
2679  	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2680  	WARN_ON_ONCE(task_current(rq, p));
2681  	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2682  
2683  	WARN_ON_ONCE(!task_on_rq_queued(p));
2684  	WARN_ON_ONCE(!dl_task(p));
2685  
2686  	return p;
2687  }
2688  
2689  /*
2690   * See if the non running -deadline tasks on this rq
2691   * can be sent to some other CPU where they can preempt
2692   * and start executing.
2693   */
push_dl_task(struct rq * rq)2694  static int push_dl_task(struct rq *rq)
2695  {
2696  	struct task_struct *next_task;
2697  	struct rq *later_rq;
2698  	int ret = 0;
2699  
2700  	next_task = pick_next_pushable_dl_task(rq);
2701  	if (!next_task)
2702  		return 0;
2703  
2704  retry:
2705  	/*
2706  	 * If next_task preempts rq->curr, and rq->curr
2707  	 * can move away, it makes sense to just reschedule
2708  	 * without going further in pushing next_task.
2709  	 */
2710  	if (dl_task(rq->curr) &&
2711  	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2712  	    rq->curr->nr_cpus_allowed > 1) {
2713  		resched_curr(rq);
2714  		return 0;
2715  	}
2716  
2717  	if (is_migration_disabled(next_task))
2718  		return 0;
2719  
2720  	if (WARN_ON(next_task == rq->curr))
2721  		return 0;
2722  
2723  	/* We might release rq lock */
2724  	get_task_struct(next_task);
2725  
2726  	/* Will lock the rq it'll find */
2727  	later_rq = find_lock_later_rq(next_task, rq);
2728  	if (!later_rq) {
2729  		struct task_struct *task;
2730  
2731  		/*
2732  		 * We must check all this again, since
2733  		 * find_lock_later_rq releases rq->lock and it is
2734  		 * then possible that next_task has migrated.
2735  		 */
2736  		task = pick_next_pushable_dl_task(rq);
2737  		if (task == next_task) {
2738  			/*
2739  			 * The task is still there. We don't try
2740  			 * again, some other CPU will pull it when ready.
2741  			 */
2742  			goto out;
2743  		}
2744  
2745  		if (!task)
2746  			/* No more tasks */
2747  			goto out;
2748  
2749  		put_task_struct(next_task);
2750  		next_task = task;
2751  		goto retry;
2752  	}
2753  
2754  	deactivate_task(rq, next_task, 0);
2755  	set_task_cpu(next_task, later_rq->cpu);
2756  	activate_task(later_rq, next_task, 0);
2757  	ret = 1;
2758  
2759  	resched_curr(later_rq);
2760  
2761  	double_unlock_balance(rq, later_rq);
2762  
2763  out:
2764  	put_task_struct(next_task);
2765  
2766  	return ret;
2767  }
2768  
push_dl_tasks(struct rq * rq)2769  static void push_dl_tasks(struct rq *rq)
2770  {
2771  	/* push_dl_task() will return true if it moved a -deadline task */
2772  	while (push_dl_task(rq))
2773  		;
2774  }
2775  
pull_dl_task(struct rq * this_rq)2776  static void pull_dl_task(struct rq *this_rq)
2777  {
2778  	int this_cpu = this_rq->cpu, cpu;
2779  	struct task_struct *p, *push_task;
2780  	bool resched = false;
2781  	struct rq *src_rq;
2782  	u64 dmin = LONG_MAX;
2783  
2784  	if (likely(!dl_overloaded(this_rq)))
2785  		return;
2786  
2787  	/*
2788  	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2789  	 * see overloaded we must also see the dlo_mask bit.
2790  	 */
2791  	smp_rmb();
2792  
2793  	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2794  		if (this_cpu == cpu)
2795  			continue;
2796  
2797  		src_rq = cpu_rq(cpu);
2798  
2799  		/*
2800  		 * It looks racy, and it is! However, as in sched_rt.c,
2801  		 * we are fine with this.
2802  		 */
2803  		if (this_rq->dl.dl_nr_running &&
2804  		    dl_time_before(this_rq->dl.earliest_dl.curr,
2805  				   src_rq->dl.earliest_dl.next))
2806  			continue;
2807  
2808  		/* Might drop this_rq->lock */
2809  		push_task = NULL;
2810  		double_lock_balance(this_rq, src_rq);
2811  
2812  		/*
2813  		 * If there are no more pullable tasks on the
2814  		 * rq, we're done with it.
2815  		 */
2816  		if (src_rq->dl.dl_nr_running <= 1)
2817  			goto skip;
2818  
2819  		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2820  
2821  		/*
2822  		 * We found a task to be pulled if:
2823  		 *  - it preempts our current (if there's one),
2824  		 *  - it will preempt the last one we pulled (if any).
2825  		 */
2826  		if (p && dl_time_before(p->dl.deadline, dmin) &&
2827  		    dl_task_is_earliest_deadline(p, this_rq)) {
2828  			WARN_ON(p == src_rq->curr);
2829  			WARN_ON(!task_on_rq_queued(p));
2830  
2831  			/*
2832  			 * Then we pull iff p has actually an earlier
2833  			 * deadline than the current task of its runqueue.
2834  			 */
2835  			if (dl_time_before(p->dl.deadline,
2836  					   src_rq->curr->dl.deadline))
2837  				goto skip;
2838  
2839  			if (is_migration_disabled(p)) {
2840  				push_task = get_push_task(src_rq);
2841  			} else {
2842  				deactivate_task(src_rq, p, 0);
2843  				set_task_cpu(p, this_cpu);
2844  				activate_task(this_rq, p, 0);
2845  				dmin = p->dl.deadline;
2846  				resched = true;
2847  			}
2848  
2849  			/* Is there any other task even earlier? */
2850  		}
2851  skip:
2852  		double_unlock_balance(this_rq, src_rq);
2853  
2854  		if (push_task) {
2855  			preempt_disable();
2856  			raw_spin_rq_unlock(this_rq);
2857  			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2858  					    push_task, &src_rq->push_work);
2859  			preempt_enable();
2860  			raw_spin_rq_lock(this_rq);
2861  		}
2862  	}
2863  
2864  	if (resched)
2865  		resched_curr(this_rq);
2866  }
2867  
2868  /*
2869   * Since the task is not running and a reschedule is not going to happen
2870   * anytime soon on its runqueue, we try pushing it away now.
2871   */
task_woken_dl(struct rq * rq,struct task_struct * p)2872  static void task_woken_dl(struct rq *rq, struct task_struct *p)
2873  {
2874  	if (!task_on_cpu(rq, p) &&
2875  	    !test_tsk_need_resched(rq->curr) &&
2876  	    p->nr_cpus_allowed > 1 &&
2877  	    dl_task(rq->curr) &&
2878  	    (rq->curr->nr_cpus_allowed < 2 ||
2879  	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2880  		push_dl_tasks(rq);
2881  	}
2882  }
2883  
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)2884  static void set_cpus_allowed_dl(struct task_struct *p,
2885  				struct affinity_context *ctx)
2886  {
2887  	struct root_domain *src_rd;
2888  	struct rq *rq;
2889  
2890  	WARN_ON_ONCE(!dl_task(p));
2891  
2892  	rq = task_rq(p);
2893  	src_rd = rq->rd;
2894  	/*
2895  	 * Migrating a SCHED_DEADLINE task between exclusive
2896  	 * cpusets (different root_domains) entails a bandwidth
2897  	 * update. We already made space for us in the destination
2898  	 * domain (see cpuset_can_attach()).
2899  	 */
2900  	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2901  		struct dl_bw *src_dl_b;
2902  
2903  		src_dl_b = dl_bw_of(cpu_of(rq));
2904  		/*
2905  		 * We now free resources of the root_domain we are migrating
2906  		 * off. In the worst case, sched_setattr() may temporary fail
2907  		 * until we complete the update.
2908  		 */
2909  		raw_spin_lock(&src_dl_b->lock);
2910  		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2911  		raw_spin_unlock(&src_dl_b->lock);
2912  	}
2913  
2914  	set_cpus_allowed_common(p, ctx);
2915  }
2916  
2917  /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2918  static void rq_online_dl(struct rq *rq)
2919  {
2920  	if (rq->dl.overloaded)
2921  		dl_set_overload(rq);
2922  
2923  	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2924  	if (rq->dl.dl_nr_running > 0)
2925  		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2926  }
2927  
2928  /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2929  static void rq_offline_dl(struct rq *rq)
2930  {
2931  	if (rq->dl.overloaded)
2932  		dl_clear_overload(rq);
2933  
2934  	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2935  	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2936  }
2937  
init_sched_dl_class(void)2938  void __init init_sched_dl_class(void)
2939  {
2940  	unsigned int i;
2941  
2942  	for_each_possible_cpu(i)
2943  		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2944  					GFP_KERNEL, cpu_to_node(i));
2945  }
2946  
dl_add_task_root_domain(struct task_struct * p)2947  void dl_add_task_root_domain(struct task_struct *p)
2948  {
2949  	struct rq_flags rf;
2950  	struct rq *rq;
2951  	struct dl_bw *dl_b;
2952  
2953  	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2954  	if (!dl_task(p)) {
2955  		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2956  		return;
2957  	}
2958  
2959  	rq = __task_rq_lock(p, &rf);
2960  
2961  	dl_b = &rq->rd->dl_bw;
2962  	raw_spin_lock(&dl_b->lock);
2963  
2964  	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2965  
2966  	raw_spin_unlock(&dl_b->lock);
2967  
2968  	task_rq_unlock(rq, p, &rf);
2969  }
2970  
dl_clear_root_domain(struct root_domain * rd)2971  void dl_clear_root_domain(struct root_domain *rd)
2972  {
2973  	unsigned long flags;
2974  
2975  	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2976  	rd->dl_bw.total_bw = 0;
2977  	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2978  }
2979  
2980  #endif /* CONFIG_SMP */
2981  
switched_from_dl(struct rq * rq,struct task_struct * p)2982  static void switched_from_dl(struct rq *rq, struct task_struct *p)
2983  {
2984  	/*
2985  	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2986  	 * time is in the future). If the task switches back to dl before
2987  	 * the "inactive timer" fires, it can continue to consume its current
2988  	 * runtime using its current deadline. If it stays outside of
2989  	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2990  	 * will reset the task parameters.
2991  	 */
2992  	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2993  		task_non_contending(&p->dl);
2994  
2995  	/*
2996  	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2997  	 * keep track of that on its cpuset (for correct bandwidth tracking).
2998  	 */
2999  	dec_dl_tasks_cs(p);
3000  
3001  	if (!task_on_rq_queued(p)) {
3002  		/*
3003  		 * Inactive timer is armed. However, p is leaving DEADLINE and
3004  		 * might migrate away from this rq while continuing to run on
3005  		 * some other class. We need to remove its contribution from
3006  		 * this rq running_bw now, or sub_rq_bw (below) will complain.
3007  		 */
3008  		if (p->dl.dl_non_contending)
3009  			sub_running_bw(&p->dl, &rq->dl);
3010  		sub_rq_bw(&p->dl, &rq->dl);
3011  	}
3012  
3013  	/*
3014  	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3015  	 * at the 0-lag time, because the task could have been migrated
3016  	 * while SCHED_OTHER in the meanwhile.
3017  	 */
3018  	if (p->dl.dl_non_contending)
3019  		p->dl.dl_non_contending = 0;
3020  
3021  	/*
3022  	 * Since this might be the only -deadline task on the rq,
3023  	 * this is the right place to try to pull some other one
3024  	 * from an overloaded CPU, if any.
3025  	 */
3026  	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3027  		return;
3028  
3029  	deadline_queue_pull_task(rq);
3030  }
3031  
3032  /*
3033   * When switching to -deadline, we may overload the rq, then
3034   * we try to push someone off, if possible.
3035   */
switched_to_dl(struct rq * rq,struct task_struct * p)3036  static void switched_to_dl(struct rq *rq, struct task_struct *p)
3037  {
3038  	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
3039  		put_task_struct(p);
3040  
3041  	/*
3042  	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3043  	 * track of that on its cpuset (for correct bandwidth tracking).
3044  	 */
3045  	inc_dl_tasks_cs(p);
3046  
3047  	/* If p is not queued we will update its parameters at next wakeup. */
3048  	if (!task_on_rq_queued(p)) {
3049  		add_rq_bw(&p->dl, &rq->dl);
3050  
3051  		return;
3052  	}
3053  
3054  	if (rq->curr != p) {
3055  #ifdef CONFIG_SMP
3056  		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3057  			deadline_queue_push_tasks(rq);
3058  #endif
3059  		if (dl_task(rq->curr))
3060  			wakeup_preempt_dl(rq, p, 0);
3061  		else
3062  			resched_curr(rq);
3063  	} else {
3064  		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3065  	}
3066  }
3067  
3068  /*
3069   * If the scheduling parameters of a -deadline task changed,
3070   * a push or pull operation might be needed.
3071   */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)3072  static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3073  			    int oldprio)
3074  {
3075  	if (!task_on_rq_queued(p))
3076  		return;
3077  
3078  #ifdef CONFIG_SMP
3079  	/*
3080  	 * This might be too much, but unfortunately
3081  	 * we don't have the old deadline value, and
3082  	 * we can't argue if the task is increasing
3083  	 * or lowering its prio, so...
3084  	 */
3085  	if (!rq->dl.overloaded)
3086  		deadline_queue_pull_task(rq);
3087  
3088  	if (task_current(rq, p)) {
3089  		/*
3090  		 * If we now have a earlier deadline task than p,
3091  		 * then reschedule, provided p is still on this
3092  		 * runqueue.
3093  		 */
3094  		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3095  			resched_curr(rq);
3096  	} else {
3097  		/*
3098  		 * Current may not be deadline in case p was throttled but we
3099  		 * have just replenished it (e.g. rt_mutex_setprio()).
3100  		 *
3101  		 * Otherwise, if p was given an earlier deadline, reschedule.
3102  		 */
3103  		if (!dl_task(rq->curr) ||
3104  		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3105  			resched_curr(rq);
3106  	}
3107  #else
3108  	/*
3109  	 * We don't know if p has a earlier or later deadline, so let's blindly
3110  	 * set a (maybe not needed) rescheduling point.
3111  	 */
3112  	resched_curr(rq);
3113  #endif
3114  }
3115  
3116  #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)3117  static int task_is_throttled_dl(struct task_struct *p, int cpu)
3118  {
3119  	return p->dl.dl_throttled;
3120  }
3121  #endif
3122  
3123  DEFINE_SCHED_CLASS(dl) = {
3124  
3125  	.enqueue_task		= enqueue_task_dl,
3126  	.dequeue_task		= dequeue_task_dl,
3127  	.yield_task		= yield_task_dl,
3128  
3129  	.wakeup_preempt		= wakeup_preempt_dl,
3130  
3131  	.pick_task		= pick_task_dl,
3132  	.put_prev_task		= put_prev_task_dl,
3133  	.set_next_task		= set_next_task_dl,
3134  
3135  #ifdef CONFIG_SMP
3136  	.balance		= balance_dl,
3137  	.select_task_rq		= select_task_rq_dl,
3138  	.migrate_task_rq	= migrate_task_rq_dl,
3139  	.set_cpus_allowed       = set_cpus_allowed_dl,
3140  	.rq_online              = rq_online_dl,
3141  	.rq_offline             = rq_offline_dl,
3142  	.task_woken		= task_woken_dl,
3143  	.find_lock_rq		= find_lock_later_rq,
3144  #endif
3145  
3146  	.task_tick		= task_tick_dl,
3147  	.task_fork              = task_fork_dl,
3148  
3149  	.prio_changed           = prio_changed_dl,
3150  	.switched_from		= switched_from_dl,
3151  	.switched_to		= switched_to_dl,
3152  
3153  	.update_curr		= update_curr_dl,
3154  #ifdef CONFIG_SCHED_CORE
3155  	.task_is_throttled	= task_is_throttled_dl,
3156  #endif
3157  };
3158  
3159  /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
3160  static u64 dl_generation;
3161  
sched_dl_global_validate(void)3162  int sched_dl_global_validate(void)
3163  {
3164  	u64 runtime = global_rt_runtime();
3165  	u64 period = global_rt_period();
3166  	u64 new_bw = to_ratio(period, runtime);
3167  	u64 gen = ++dl_generation;
3168  	struct dl_bw *dl_b;
3169  	int cpu, cpus, ret = 0;
3170  	unsigned long flags;
3171  
3172  	/*
3173  	 * Here we want to check the bandwidth not being set to some
3174  	 * value smaller than the currently allocated bandwidth in
3175  	 * any of the root_domains.
3176  	 */
3177  	for_each_possible_cpu(cpu) {
3178  		rcu_read_lock_sched();
3179  
3180  		if (dl_bw_visited(cpu, gen))
3181  			goto next;
3182  
3183  		dl_b = dl_bw_of(cpu);
3184  		cpus = dl_bw_cpus(cpu);
3185  
3186  		raw_spin_lock_irqsave(&dl_b->lock, flags);
3187  		if (new_bw * cpus < dl_b->total_bw)
3188  			ret = -EBUSY;
3189  		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3190  
3191  next:
3192  		rcu_read_unlock_sched();
3193  
3194  		if (ret)
3195  			break;
3196  	}
3197  
3198  	return ret;
3199  }
3200  
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)3201  static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3202  {
3203  	if (global_rt_runtime() == RUNTIME_INF) {
3204  		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3205  		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3206  	} else {
3207  		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3208  			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3209  		dl_rq->max_bw = dl_rq->extra_bw =
3210  			to_ratio(global_rt_period(), global_rt_runtime());
3211  	}
3212  }
3213  
sched_dl_do_global(void)3214  void sched_dl_do_global(void)
3215  {
3216  	u64 new_bw = -1;
3217  	u64 gen = ++dl_generation;
3218  	struct dl_bw *dl_b;
3219  	int cpu;
3220  	unsigned long flags;
3221  
3222  	if (global_rt_runtime() != RUNTIME_INF)
3223  		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3224  
3225  	for_each_possible_cpu(cpu) {
3226  		rcu_read_lock_sched();
3227  
3228  		if (dl_bw_visited(cpu, gen)) {
3229  			rcu_read_unlock_sched();
3230  			continue;
3231  		}
3232  
3233  		dl_b = dl_bw_of(cpu);
3234  
3235  		raw_spin_lock_irqsave(&dl_b->lock, flags);
3236  		dl_b->bw = new_bw;
3237  		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3238  
3239  		rcu_read_unlock_sched();
3240  		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3241  	}
3242  }
3243  
3244  /*
3245   * We must be sure that accepting a new task (or allowing changing the
3246   * parameters of an existing one) is consistent with the bandwidth
3247   * constraints. If yes, this function also accordingly updates the currently
3248   * allocated bandwidth to reflect the new situation.
3249   *
3250   * This function is called while holding p's rq->lock.
3251   */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)3252  int sched_dl_overflow(struct task_struct *p, int policy,
3253  		      const struct sched_attr *attr)
3254  {
3255  	u64 period = attr->sched_period ?: attr->sched_deadline;
3256  	u64 runtime = attr->sched_runtime;
3257  	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3258  	int cpus, err = -1, cpu = task_cpu(p);
3259  	struct dl_bw *dl_b = dl_bw_of(cpu);
3260  	unsigned long cap;
3261  
3262  	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3263  		return 0;
3264  
3265  	/* !deadline task may carry old deadline bandwidth */
3266  	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3267  		return 0;
3268  
3269  	/*
3270  	 * Either if a task, enters, leave, or stays -deadline but changes
3271  	 * its parameters, we may need to update accordingly the total
3272  	 * allocated bandwidth of the container.
3273  	 */
3274  	raw_spin_lock(&dl_b->lock);
3275  	cpus = dl_bw_cpus(cpu);
3276  	cap = dl_bw_capacity(cpu);
3277  
3278  	if (dl_policy(policy) && !task_has_dl_policy(p) &&
3279  	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
3280  		if (hrtimer_active(&p->dl.inactive_timer))
3281  			__dl_sub(dl_b, p->dl.dl_bw, cpus);
3282  		__dl_add(dl_b, new_bw, cpus);
3283  		err = 0;
3284  	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
3285  		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3286  		/*
3287  		 * XXX this is slightly incorrect: when the task
3288  		 * utilization decreases, we should delay the total
3289  		 * utilization change until the task's 0-lag point.
3290  		 * But this would require to set the task's "inactive
3291  		 * timer" when the task is not inactive.
3292  		 */
3293  		__dl_sub(dl_b, p->dl.dl_bw, cpus);
3294  		__dl_add(dl_b, new_bw, cpus);
3295  		dl_change_utilization(p, new_bw);
3296  		err = 0;
3297  	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3298  		/*
3299  		 * Do not decrease the total deadline utilization here,
3300  		 * switched_from_dl() will take care to do it at the correct
3301  		 * (0-lag) time.
3302  		 */
3303  		err = 0;
3304  	}
3305  	raw_spin_unlock(&dl_b->lock);
3306  
3307  	return err;
3308  }
3309  
3310  /*
3311   * This function initializes the sched_dl_entity of a newly becoming
3312   * SCHED_DEADLINE task.
3313   *
3314   * Only the static values are considered here, the actual runtime and the
3315   * absolute deadline will be properly calculated when the task is enqueued
3316   * for the first time with its new policy.
3317   */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3318  void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3319  {
3320  	struct sched_dl_entity *dl_se = &p->dl;
3321  
3322  	dl_se->dl_runtime = attr->sched_runtime;
3323  	dl_se->dl_deadline = attr->sched_deadline;
3324  	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3325  	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3326  	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3327  	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3328  }
3329  
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3330  void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3331  {
3332  	struct sched_dl_entity *dl_se = &p->dl;
3333  
3334  	attr->sched_priority = p->rt_priority;
3335  	attr->sched_runtime = dl_se->dl_runtime;
3336  	attr->sched_deadline = dl_se->dl_deadline;
3337  	attr->sched_period = dl_se->dl_period;
3338  	attr->sched_flags &= ~SCHED_DL_FLAGS;
3339  	attr->sched_flags |= dl_se->flags;
3340  }
3341  
3342  /*
3343   * This function validates the new parameters of a -deadline task.
3344   * We ask for the deadline not being zero, and greater or equal
3345   * than the runtime, as well as the period of being zero or
3346   * greater than deadline. Furthermore, we have to be sure that
3347   * user parameters are above the internal resolution of 1us (we
3348   * check sched_runtime only since it is always the smaller one) and
3349   * below 2^63 ns (we have to check both sched_deadline and
3350   * sched_period, as the latter can be zero).
3351   */
__checkparam_dl(const struct sched_attr * attr)3352  bool __checkparam_dl(const struct sched_attr *attr)
3353  {
3354  	u64 period, max, min;
3355  
3356  	/* special dl tasks don't actually use any parameter */
3357  	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3358  		return true;
3359  
3360  	/* deadline != 0 */
3361  	if (attr->sched_deadline == 0)
3362  		return false;
3363  
3364  	/*
3365  	 * Since we truncate DL_SCALE bits, make sure we're at least
3366  	 * that big.
3367  	 */
3368  	if (attr->sched_runtime < (1ULL << DL_SCALE))
3369  		return false;
3370  
3371  	/*
3372  	 * Since we use the MSB for wrap-around and sign issues, make
3373  	 * sure it's not set (mind that period can be equal to zero).
3374  	 */
3375  	if (attr->sched_deadline & (1ULL << 63) ||
3376  	    attr->sched_period & (1ULL << 63))
3377  		return false;
3378  
3379  	period = attr->sched_period;
3380  	if (!period)
3381  		period = attr->sched_deadline;
3382  
3383  	/* runtime <= deadline <= period (if period != 0) */
3384  	if (period < attr->sched_deadline ||
3385  	    attr->sched_deadline < attr->sched_runtime)
3386  		return false;
3387  
3388  	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3389  	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3390  
3391  	if (period < min || period > max)
3392  		return false;
3393  
3394  	return true;
3395  }
3396  
3397  /*
3398   * This function clears the sched_dl_entity static params.
3399   */
__dl_clear_params(struct sched_dl_entity * dl_se)3400  static void __dl_clear_params(struct sched_dl_entity *dl_se)
3401  {
3402  	dl_se->dl_runtime		= 0;
3403  	dl_se->dl_deadline		= 0;
3404  	dl_se->dl_period		= 0;
3405  	dl_se->flags			= 0;
3406  	dl_se->dl_bw			= 0;
3407  	dl_se->dl_density		= 0;
3408  
3409  	dl_se->dl_throttled		= 0;
3410  	dl_se->dl_yielded		= 0;
3411  	dl_se->dl_non_contending	= 0;
3412  	dl_se->dl_overrun		= 0;
3413  	dl_se->dl_server		= 0;
3414  
3415  #ifdef CONFIG_RT_MUTEXES
3416  	dl_se->pi_se			= dl_se;
3417  #endif
3418  }
3419  
init_dl_entity(struct sched_dl_entity * dl_se)3420  void init_dl_entity(struct sched_dl_entity *dl_se)
3421  {
3422  	RB_CLEAR_NODE(&dl_se->rb_node);
3423  	init_dl_task_timer(dl_se);
3424  	init_dl_inactive_task_timer(dl_se);
3425  	__dl_clear_params(dl_se);
3426  }
3427  
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3428  bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3429  {
3430  	struct sched_dl_entity *dl_se = &p->dl;
3431  
3432  	if (dl_se->dl_runtime != attr->sched_runtime ||
3433  	    dl_se->dl_deadline != attr->sched_deadline ||
3434  	    dl_se->dl_period != attr->sched_period ||
3435  	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3436  		return true;
3437  
3438  	return false;
3439  }
3440  
3441  #ifdef CONFIG_SMP
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3442  int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3443  				 const struct cpumask *trial)
3444  {
3445  	unsigned long flags, cap;
3446  	struct dl_bw *cur_dl_b;
3447  	int ret = 1;
3448  
3449  	rcu_read_lock_sched();
3450  	cur_dl_b = dl_bw_of(cpumask_any(cur));
3451  	cap = __dl_bw_capacity(trial);
3452  	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3453  	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3454  		ret = 0;
3455  	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3456  	rcu_read_unlock_sched();
3457  
3458  	return ret;
3459  }
3460  
3461  enum dl_bw_request {
3462  	dl_bw_req_check_overflow = 0,
3463  	dl_bw_req_alloc,
3464  	dl_bw_req_free
3465  };
3466  
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3467  static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3468  {
3469  	unsigned long flags;
3470  	struct dl_bw *dl_b;
3471  	bool overflow = 0;
3472  
3473  	rcu_read_lock_sched();
3474  	dl_b = dl_bw_of(cpu);
3475  	raw_spin_lock_irqsave(&dl_b->lock, flags);
3476  
3477  	if (req == dl_bw_req_free) {
3478  		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3479  	} else {
3480  		unsigned long cap = dl_bw_capacity(cpu);
3481  
3482  		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3483  
3484  		if (req == dl_bw_req_alloc && !overflow) {
3485  			/*
3486  			 * We reserve space in the destination
3487  			 * root_domain, as we can't fail after this point.
3488  			 * We will free resources in the source root_domain
3489  			 * later on (see set_cpus_allowed_dl()).
3490  			 */
3491  			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3492  		}
3493  	}
3494  
3495  	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3496  	rcu_read_unlock_sched();
3497  
3498  	return overflow ? -EBUSY : 0;
3499  }
3500  
dl_bw_check_overflow(int cpu)3501  int dl_bw_check_overflow(int cpu)
3502  {
3503  	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3504  }
3505  
dl_bw_alloc(int cpu,u64 dl_bw)3506  int dl_bw_alloc(int cpu, u64 dl_bw)
3507  {
3508  	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3509  }
3510  
dl_bw_free(int cpu,u64 dl_bw)3511  void dl_bw_free(int cpu, u64 dl_bw)
3512  {
3513  	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3514  }
3515  #endif
3516  
3517  #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)3518  void print_dl_stats(struct seq_file *m, int cpu)
3519  {
3520  	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3521  }
3522  #endif /* CONFIG_SCHED_DEBUG */
3523