1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Generic hugetlb support.
4   * (C) Nadia Yvette Chambers, April 2004
5   */
6  #include <linux/list.h>
7  #include <linux/init.h>
8  #include <linux/mm.h>
9  #include <linux/seq_file.h>
10  #include <linux/sysctl.h>
11  #include <linux/highmem.h>
12  #include <linux/mmu_notifier.h>
13  #include <linux/nodemask.h>
14  #include <linux/pagemap.h>
15  #include <linux/mempolicy.h>
16  #include <linux/compiler.h>
17  #include <linux/cpuset.h>
18  #include <linux/mutex.h>
19  #include <linux/memblock.h>
20  #include <linux/sysfs.h>
21  #include <linux/slab.h>
22  #include <linux/sched/mm.h>
23  #include <linux/mmdebug.h>
24  #include <linux/sched/signal.h>
25  #include <linux/rmap.h>
26  #include <linux/string_helpers.h>
27  #include <linux/swap.h>
28  #include <linux/swapops.h>
29  #include <linux/jhash.h>
30  #include <linux/numa.h>
31  #include <linux/llist.h>
32  #include <linux/cma.h>
33  #include <linux/migrate.h>
34  #include <linux/nospec.h>
35  #include <linux/delayacct.h>
36  #include <linux/memory.h>
37  #include <linux/mm_inline.h>
38  #include <linux/padata.h>
39  
40  #include <asm/page.h>
41  #include <asm/pgalloc.h>
42  #include <asm/tlb.h>
43  
44  #include <linux/io.h>
45  #include <linux/hugetlb.h>
46  #include <linux/hugetlb_cgroup.h>
47  #include <linux/node.h>
48  #include <linux/page_owner.h>
49  #include "internal.h"
50  #include "hugetlb_vmemmap.h"
51  
52  int hugetlb_max_hstate __read_mostly;
53  unsigned int default_hstate_idx;
54  struct hstate hstates[HUGE_MAX_HSTATE];
55  
56  #ifdef CONFIG_CMA
57  static struct cma *hugetlb_cma[MAX_NUMNODES];
58  static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59  #endif
60  static unsigned long hugetlb_cma_size __initdata;
61  
62  __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
63  
64  /* for command line parsing */
65  static struct hstate * __initdata parsed_hstate;
66  static unsigned long __initdata default_hstate_max_huge_pages;
67  static bool __initdata parsed_valid_hugepagesz = true;
68  static bool __initdata parsed_default_hugepagesz;
69  static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
70  
71  /*
72   * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
73   * free_huge_pages, and surplus_huge_pages.
74   */
75  __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
76  
77  /*
78   * Serializes faults on the same logical page.  This is used to
79   * prevent spurious OOMs when the hugepage pool is fully utilized.
80   */
81  static int num_fault_mutexes __ro_after_init;
82  struct mutex *hugetlb_fault_mutex_table __ro_after_init;
83  
84  /* Forward declaration */
85  static int hugetlb_acct_memory(struct hstate *h, long delta);
86  static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
87  static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
88  static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
89  static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
90  		unsigned long start, unsigned long end);
91  static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
92  
hugetlb_free_folio(struct folio * folio)93  static void hugetlb_free_folio(struct folio *folio)
94  {
95  #ifdef CONFIG_CMA
96  	int nid = folio_nid(folio);
97  
98  	if (cma_free_folio(hugetlb_cma[nid], folio))
99  		return;
100  #endif
101  	folio_put(folio);
102  }
103  
subpool_is_free(struct hugepage_subpool * spool)104  static inline bool subpool_is_free(struct hugepage_subpool *spool)
105  {
106  	if (spool->count)
107  		return false;
108  	if (spool->max_hpages != -1)
109  		return spool->used_hpages == 0;
110  	if (spool->min_hpages != -1)
111  		return spool->rsv_hpages == spool->min_hpages;
112  
113  	return true;
114  }
115  
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)116  static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
117  						unsigned long irq_flags)
118  {
119  	spin_unlock_irqrestore(&spool->lock, irq_flags);
120  
121  	/* If no pages are used, and no other handles to the subpool
122  	 * remain, give up any reservations based on minimum size and
123  	 * free the subpool */
124  	if (subpool_is_free(spool)) {
125  		if (spool->min_hpages != -1)
126  			hugetlb_acct_memory(spool->hstate,
127  						-spool->min_hpages);
128  		kfree(spool);
129  	}
130  }
131  
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)132  struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
133  						long min_hpages)
134  {
135  	struct hugepage_subpool *spool;
136  
137  	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
138  	if (!spool)
139  		return NULL;
140  
141  	spin_lock_init(&spool->lock);
142  	spool->count = 1;
143  	spool->max_hpages = max_hpages;
144  	spool->hstate = h;
145  	spool->min_hpages = min_hpages;
146  
147  	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
148  		kfree(spool);
149  		return NULL;
150  	}
151  	spool->rsv_hpages = min_hpages;
152  
153  	return spool;
154  }
155  
hugepage_put_subpool(struct hugepage_subpool * spool)156  void hugepage_put_subpool(struct hugepage_subpool *spool)
157  {
158  	unsigned long flags;
159  
160  	spin_lock_irqsave(&spool->lock, flags);
161  	BUG_ON(!spool->count);
162  	spool->count--;
163  	unlock_or_release_subpool(spool, flags);
164  }
165  
166  /*
167   * Subpool accounting for allocating and reserving pages.
168   * Return -ENOMEM if there are not enough resources to satisfy the
169   * request.  Otherwise, return the number of pages by which the
170   * global pools must be adjusted (upward).  The returned value may
171   * only be different than the passed value (delta) in the case where
172   * a subpool minimum size must be maintained.
173   */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)174  static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
175  				      long delta)
176  {
177  	long ret = delta;
178  
179  	if (!spool)
180  		return ret;
181  
182  	spin_lock_irq(&spool->lock);
183  
184  	if (spool->max_hpages != -1) {		/* maximum size accounting */
185  		if ((spool->used_hpages + delta) <= spool->max_hpages)
186  			spool->used_hpages += delta;
187  		else {
188  			ret = -ENOMEM;
189  			goto unlock_ret;
190  		}
191  	}
192  
193  	/* minimum size accounting */
194  	if (spool->min_hpages != -1 && spool->rsv_hpages) {
195  		if (delta > spool->rsv_hpages) {
196  			/*
197  			 * Asking for more reserves than those already taken on
198  			 * behalf of subpool.  Return difference.
199  			 */
200  			ret = delta - spool->rsv_hpages;
201  			spool->rsv_hpages = 0;
202  		} else {
203  			ret = 0;	/* reserves already accounted for */
204  			spool->rsv_hpages -= delta;
205  		}
206  	}
207  
208  unlock_ret:
209  	spin_unlock_irq(&spool->lock);
210  	return ret;
211  }
212  
213  /*
214   * Subpool accounting for freeing and unreserving pages.
215   * Return the number of global page reservations that must be dropped.
216   * The return value may only be different than the passed value (delta)
217   * in the case where a subpool minimum size must be maintained.
218   */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)219  static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
220  				       long delta)
221  {
222  	long ret = delta;
223  	unsigned long flags;
224  
225  	if (!spool)
226  		return delta;
227  
228  	spin_lock_irqsave(&spool->lock, flags);
229  
230  	if (spool->max_hpages != -1)		/* maximum size accounting */
231  		spool->used_hpages -= delta;
232  
233  	 /* minimum size accounting */
234  	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
235  		if (spool->rsv_hpages + delta <= spool->min_hpages)
236  			ret = 0;
237  		else
238  			ret = spool->rsv_hpages + delta - spool->min_hpages;
239  
240  		spool->rsv_hpages += delta;
241  		if (spool->rsv_hpages > spool->min_hpages)
242  			spool->rsv_hpages = spool->min_hpages;
243  	}
244  
245  	/*
246  	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
247  	 * quota reference, free it now.
248  	 */
249  	unlock_or_release_subpool(spool, flags);
250  
251  	return ret;
252  }
253  
subpool_inode(struct inode * inode)254  static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
255  {
256  	return HUGETLBFS_SB(inode->i_sb)->spool;
257  }
258  
subpool_vma(struct vm_area_struct * vma)259  static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
260  {
261  	return subpool_inode(file_inode(vma->vm_file));
262  }
263  
264  /*
265   * hugetlb vma_lock helper routines
266   */
hugetlb_vma_lock_read(struct vm_area_struct * vma)267  void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268  {
269  	if (__vma_shareable_lock(vma)) {
270  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271  
272  		down_read(&vma_lock->rw_sema);
273  	} else if (__vma_private_lock(vma)) {
274  		struct resv_map *resv_map = vma_resv_map(vma);
275  
276  		down_read(&resv_map->rw_sema);
277  	}
278  }
279  
hugetlb_vma_unlock_read(struct vm_area_struct * vma)280  void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
281  {
282  	if (__vma_shareable_lock(vma)) {
283  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
284  
285  		up_read(&vma_lock->rw_sema);
286  	} else if (__vma_private_lock(vma)) {
287  		struct resv_map *resv_map = vma_resv_map(vma);
288  
289  		up_read(&resv_map->rw_sema);
290  	}
291  }
292  
hugetlb_vma_lock_write(struct vm_area_struct * vma)293  void hugetlb_vma_lock_write(struct vm_area_struct *vma)
294  {
295  	if (__vma_shareable_lock(vma)) {
296  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
297  
298  		down_write(&vma_lock->rw_sema);
299  	} else if (__vma_private_lock(vma)) {
300  		struct resv_map *resv_map = vma_resv_map(vma);
301  
302  		down_write(&resv_map->rw_sema);
303  	}
304  }
305  
hugetlb_vma_unlock_write(struct vm_area_struct * vma)306  void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
307  {
308  	if (__vma_shareable_lock(vma)) {
309  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
310  
311  		up_write(&vma_lock->rw_sema);
312  	} else if (__vma_private_lock(vma)) {
313  		struct resv_map *resv_map = vma_resv_map(vma);
314  
315  		up_write(&resv_map->rw_sema);
316  	}
317  }
318  
hugetlb_vma_trylock_write(struct vm_area_struct * vma)319  int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
320  {
321  
322  	if (__vma_shareable_lock(vma)) {
323  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
324  
325  		return down_write_trylock(&vma_lock->rw_sema);
326  	} else if (__vma_private_lock(vma)) {
327  		struct resv_map *resv_map = vma_resv_map(vma);
328  
329  		return down_write_trylock(&resv_map->rw_sema);
330  	}
331  
332  	return 1;
333  }
334  
hugetlb_vma_assert_locked(struct vm_area_struct * vma)335  void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
336  {
337  	if (__vma_shareable_lock(vma)) {
338  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339  
340  		lockdep_assert_held(&vma_lock->rw_sema);
341  	} else if (__vma_private_lock(vma)) {
342  		struct resv_map *resv_map = vma_resv_map(vma);
343  
344  		lockdep_assert_held(&resv_map->rw_sema);
345  	}
346  }
347  
hugetlb_vma_lock_release(struct kref * kref)348  void hugetlb_vma_lock_release(struct kref *kref)
349  {
350  	struct hugetlb_vma_lock *vma_lock = container_of(kref,
351  			struct hugetlb_vma_lock, refs);
352  
353  	kfree(vma_lock);
354  }
355  
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)356  static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
357  {
358  	struct vm_area_struct *vma = vma_lock->vma;
359  
360  	/*
361  	 * vma_lock structure may or not be released as a result of put,
362  	 * it certainly will no longer be attached to vma so clear pointer.
363  	 * Semaphore synchronizes access to vma_lock->vma field.
364  	 */
365  	vma_lock->vma = NULL;
366  	vma->vm_private_data = NULL;
367  	up_write(&vma_lock->rw_sema);
368  	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
369  }
370  
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)371  static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
372  {
373  	if (__vma_shareable_lock(vma)) {
374  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
375  
376  		__hugetlb_vma_unlock_write_put(vma_lock);
377  	} else if (__vma_private_lock(vma)) {
378  		struct resv_map *resv_map = vma_resv_map(vma);
379  
380  		/* no free for anon vmas, but still need to unlock */
381  		up_write(&resv_map->rw_sema);
382  	}
383  }
384  
hugetlb_vma_lock_free(struct vm_area_struct * vma)385  static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
386  {
387  	/*
388  	 * Only present in sharable vmas.
389  	 */
390  	if (!vma || !__vma_shareable_lock(vma))
391  		return;
392  
393  	if (vma->vm_private_data) {
394  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
395  
396  		down_write(&vma_lock->rw_sema);
397  		__hugetlb_vma_unlock_write_put(vma_lock);
398  	}
399  }
400  
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)401  static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
402  {
403  	struct hugetlb_vma_lock *vma_lock;
404  
405  	/* Only establish in (flags) sharable vmas */
406  	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
407  		return;
408  
409  	/* Should never get here with non-NULL vm_private_data */
410  	if (vma->vm_private_data)
411  		return;
412  
413  	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
414  	if (!vma_lock) {
415  		/*
416  		 * If we can not allocate structure, then vma can not
417  		 * participate in pmd sharing.  This is only a possible
418  		 * performance enhancement and memory saving issue.
419  		 * However, the lock is also used to synchronize page
420  		 * faults with truncation.  If the lock is not present,
421  		 * unlikely races could leave pages in a file past i_size
422  		 * until the file is removed.  Warn in the unlikely case of
423  		 * allocation failure.
424  		 */
425  		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
426  		return;
427  	}
428  
429  	kref_init(&vma_lock->refs);
430  	init_rwsem(&vma_lock->rw_sema);
431  	vma_lock->vma = vma;
432  	vma->vm_private_data = vma_lock;
433  }
434  
435  /* Helper that removes a struct file_region from the resv_map cache and returns
436   * it for use.
437   */
438  static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)439  get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
440  {
441  	struct file_region *nrg;
442  
443  	VM_BUG_ON(resv->region_cache_count <= 0);
444  
445  	resv->region_cache_count--;
446  	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
447  	list_del(&nrg->link);
448  
449  	nrg->from = from;
450  	nrg->to = to;
451  
452  	return nrg;
453  }
454  
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)455  static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
456  					      struct file_region *rg)
457  {
458  #ifdef CONFIG_CGROUP_HUGETLB
459  	nrg->reservation_counter = rg->reservation_counter;
460  	nrg->css = rg->css;
461  	if (rg->css)
462  		css_get(rg->css);
463  #endif
464  }
465  
466  /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)467  static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
468  						struct hstate *h,
469  						struct resv_map *resv,
470  						struct file_region *nrg)
471  {
472  #ifdef CONFIG_CGROUP_HUGETLB
473  	if (h_cg) {
474  		nrg->reservation_counter =
475  			&h_cg->rsvd_hugepage[hstate_index(h)];
476  		nrg->css = &h_cg->css;
477  		/*
478  		 * The caller will hold exactly one h_cg->css reference for the
479  		 * whole contiguous reservation region. But this area might be
480  		 * scattered when there are already some file_regions reside in
481  		 * it. As a result, many file_regions may share only one css
482  		 * reference. In order to ensure that one file_region must hold
483  		 * exactly one h_cg->css reference, we should do css_get for
484  		 * each file_region and leave the reference held by caller
485  		 * untouched.
486  		 */
487  		css_get(&h_cg->css);
488  		if (!resv->pages_per_hpage)
489  			resv->pages_per_hpage = pages_per_huge_page(h);
490  		/* pages_per_hpage should be the same for all entries in
491  		 * a resv_map.
492  		 */
493  		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
494  	} else {
495  		nrg->reservation_counter = NULL;
496  		nrg->css = NULL;
497  	}
498  #endif
499  }
500  
put_uncharge_info(struct file_region * rg)501  static void put_uncharge_info(struct file_region *rg)
502  {
503  #ifdef CONFIG_CGROUP_HUGETLB
504  	if (rg->css)
505  		css_put(rg->css);
506  #endif
507  }
508  
has_same_uncharge_info(struct file_region * rg,struct file_region * org)509  static bool has_same_uncharge_info(struct file_region *rg,
510  				   struct file_region *org)
511  {
512  #ifdef CONFIG_CGROUP_HUGETLB
513  	return rg->reservation_counter == org->reservation_counter &&
514  	       rg->css == org->css;
515  
516  #else
517  	return true;
518  #endif
519  }
520  
coalesce_file_region(struct resv_map * resv,struct file_region * rg)521  static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
522  {
523  	struct file_region *nrg, *prg;
524  
525  	prg = list_prev_entry(rg, link);
526  	if (&prg->link != &resv->regions && prg->to == rg->from &&
527  	    has_same_uncharge_info(prg, rg)) {
528  		prg->to = rg->to;
529  
530  		list_del(&rg->link);
531  		put_uncharge_info(rg);
532  		kfree(rg);
533  
534  		rg = prg;
535  	}
536  
537  	nrg = list_next_entry(rg, link);
538  	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
539  	    has_same_uncharge_info(nrg, rg)) {
540  		nrg->from = rg->from;
541  
542  		list_del(&rg->link);
543  		put_uncharge_info(rg);
544  		kfree(rg);
545  	}
546  }
547  
548  static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)549  hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
550  		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
551  		     long *regions_needed)
552  {
553  	struct file_region *nrg;
554  
555  	if (!regions_needed) {
556  		nrg = get_file_region_entry_from_cache(map, from, to);
557  		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
558  		list_add(&nrg->link, rg);
559  		coalesce_file_region(map, nrg);
560  	} else
561  		*regions_needed += 1;
562  
563  	return to - from;
564  }
565  
566  /*
567   * Must be called with resv->lock held.
568   *
569   * Calling this with regions_needed != NULL will count the number of pages
570   * to be added but will not modify the linked list. And regions_needed will
571   * indicate the number of file_regions needed in the cache to carry out to add
572   * the regions for this range.
573   */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)574  static long add_reservation_in_range(struct resv_map *resv, long f, long t,
575  				     struct hugetlb_cgroup *h_cg,
576  				     struct hstate *h, long *regions_needed)
577  {
578  	long add = 0;
579  	struct list_head *head = &resv->regions;
580  	long last_accounted_offset = f;
581  	struct file_region *iter, *trg = NULL;
582  	struct list_head *rg = NULL;
583  
584  	if (regions_needed)
585  		*regions_needed = 0;
586  
587  	/* In this loop, we essentially handle an entry for the range
588  	 * [last_accounted_offset, iter->from), at every iteration, with some
589  	 * bounds checking.
590  	 */
591  	list_for_each_entry_safe(iter, trg, head, link) {
592  		/* Skip irrelevant regions that start before our range. */
593  		if (iter->from < f) {
594  			/* If this region ends after the last accounted offset,
595  			 * then we need to update last_accounted_offset.
596  			 */
597  			if (iter->to > last_accounted_offset)
598  				last_accounted_offset = iter->to;
599  			continue;
600  		}
601  
602  		/* When we find a region that starts beyond our range, we've
603  		 * finished.
604  		 */
605  		if (iter->from >= t) {
606  			rg = iter->link.prev;
607  			break;
608  		}
609  
610  		/* Add an entry for last_accounted_offset -> iter->from, and
611  		 * update last_accounted_offset.
612  		 */
613  		if (iter->from > last_accounted_offset)
614  			add += hugetlb_resv_map_add(resv, iter->link.prev,
615  						    last_accounted_offset,
616  						    iter->from, h, h_cg,
617  						    regions_needed);
618  
619  		last_accounted_offset = iter->to;
620  	}
621  
622  	/* Handle the case where our range extends beyond
623  	 * last_accounted_offset.
624  	 */
625  	if (!rg)
626  		rg = head->prev;
627  	if (last_accounted_offset < t)
628  		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
629  					    t, h, h_cg, regions_needed);
630  
631  	return add;
632  }
633  
634  /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
635   */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)636  static int allocate_file_region_entries(struct resv_map *resv,
637  					int regions_needed)
638  	__must_hold(&resv->lock)
639  {
640  	LIST_HEAD(allocated_regions);
641  	int to_allocate = 0, i = 0;
642  	struct file_region *trg = NULL, *rg = NULL;
643  
644  	VM_BUG_ON(regions_needed < 0);
645  
646  	/*
647  	 * Check for sufficient descriptors in the cache to accommodate
648  	 * the number of in progress add operations plus regions_needed.
649  	 *
650  	 * This is a while loop because when we drop the lock, some other call
651  	 * to region_add or region_del may have consumed some region_entries,
652  	 * so we keep looping here until we finally have enough entries for
653  	 * (adds_in_progress + regions_needed).
654  	 */
655  	while (resv->region_cache_count <
656  	       (resv->adds_in_progress + regions_needed)) {
657  		to_allocate = resv->adds_in_progress + regions_needed -
658  			      resv->region_cache_count;
659  
660  		/* At this point, we should have enough entries in the cache
661  		 * for all the existing adds_in_progress. We should only be
662  		 * needing to allocate for regions_needed.
663  		 */
664  		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
665  
666  		spin_unlock(&resv->lock);
667  		for (i = 0; i < to_allocate; i++) {
668  			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
669  			if (!trg)
670  				goto out_of_memory;
671  			list_add(&trg->link, &allocated_regions);
672  		}
673  
674  		spin_lock(&resv->lock);
675  
676  		list_splice(&allocated_regions, &resv->region_cache);
677  		resv->region_cache_count += to_allocate;
678  	}
679  
680  	return 0;
681  
682  out_of_memory:
683  	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
684  		list_del(&rg->link);
685  		kfree(rg);
686  	}
687  	return -ENOMEM;
688  }
689  
690  /*
691   * Add the huge page range represented by [f, t) to the reserve
692   * map.  Regions will be taken from the cache to fill in this range.
693   * Sufficient regions should exist in the cache due to the previous
694   * call to region_chg with the same range, but in some cases the cache will not
695   * have sufficient entries due to races with other code doing region_add or
696   * region_del.  The extra needed entries will be allocated.
697   *
698   * regions_needed is the out value provided by a previous call to region_chg.
699   *
700   * Return the number of new huge pages added to the map.  This number is greater
701   * than or equal to zero.  If file_region entries needed to be allocated for
702   * this operation and we were not able to allocate, it returns -ENOMEM.
703   * region_add of regions of length 1 never allocate file_regions and cannot
704   * fail; region_chg will always allocate at least 1 entry and a region_add for
705   * 1 page will only require at most 1 entry.
706   */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)707  static long region_add(struct resv_map *resv, long f, long t,
708  		       long in_regions_needed, struct hstate *h,
709  		       struct hugetlb_cgroup *h_cg)
710  {
711  	long add = 0, actual_regions_needed = 0;
712  
713  	spin_lock(&resv->lock);
714  retry:
715  
716  	/* Count how many regions are actually needed to execute this add. */
717  	add_reservation_in_range(resv, f, t, NULL, NULL,
718  				 &actual_regions_needed);
719  
720  	/*
721  	 * Check for sufficient descriptors in the cache to accommodate
722  	 * this add operation. Note that actual_regions_needed may be greater
723  	 * than in_regions_needed, as the resv_map may have been modified since
724  	 * the region_chg call. In this case, we need to make sure that we
725  	 * allocate extra entries, such that we have enough for all the
726  	 * existing adds_in_progress, plus the excess needed for this
727  	 * operation.
728  	 */
729  	if (actual_regions_needed > in_regions_needed &&
730  	    resv->region_cache_count <
731  		    resv->adds_in_progress +
732  			    (actual_regions_needed - in_regions_needed)) {
733  		/* region_add operation of range 1 should never need to
734  		 * allocate file_region entries.
735  		 */
736  		VM_BUG_ON(t - f <= 1);
737  
738  		if (allocate_file_region_entries(
739  			    resv, actual_regions_needed - in_regions_needed)) {
740  			return -ENOMEM;
741  		}
742  
743  		goto retry;
744  	}
745  
746  	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
747  
748  	resv->adds_in_progress -= in_regions_needed;
749  
750  	spin_unlock(&resv->lock);
751  	return add;
752  }
753  
754  /*
755   * Examine the existing reserve map and determine how many
756   * huge pages in the specified range [f, t) are NOT currently
757   * represented.  This routine is called before a subsequent
758   * call to region_add that will actually modify the reserve
759   * map to add the specified range [f, t).  region_chg does
760   * not change the number of huge pages represented by the
761   * map.  A number of new file_region structures is added to the cache as a
762   * placeholder, for the subsequent region_add call to use. At least 1
763   * file_region structure is added.
764   *
765   * out_regions_needed is the number of regions added to the
766   * resv->adds_in_progress.  This value needs to be provided to a follow up call
767   * to region_add or region_abort for proper accounting.
768   *
769   * Returns the number of huge pages that need to be added to the existing
770   * reservation map for the range [f, t).  This number is greater or equal to
771   * zero.  -ENOMEM is returned if a new file_region structure or cache entry
772   * is needed and can not be allocated.
773   */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)774  static long region_chg(struct resv_map *resv, long f, long t,
775  		       long *out_regions_needed)
776  {
777  	long chg = 0;
778  
779  	spin_lock(&resv->lock);
780  
781  	/* Count how many hugepages in this range are NOT represented. */
782  	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
783  				       out_regions_needed);
784  
785  	if (*out_regions_needed == 0)
786  		*out_regions_needed = 1;
787  
788  	if (allocate_file_region_entries(resv, *out_regions_needed))
789  		return -ENOMEM;
790  
791  	resv->adds_in_progress += *out_regions_needed;
792  
793  	spin_unlock(&resv->lock);
794  	return chg;
795  }
796  
797  /*
798   * Abort the in progress add operation.  The adds_in_progress field
799   * of the resv_map keeps track of the operations in progress between
800   * calls to region_chg and region_add.  Operations are sometimes
801   * aborted after the call to region_chg.  In such cases, region_abort
802   * is called to decrement the adds_in_progress counter. regions_needed
803   * is the value returned by the region_chg call, it is used to decrement
804   * the adds_in_progress counter.
805   *
806   * NOTE: The range arguments [f, t) are not needed or used in this
807   * routine.  They are kept to make reading the calling code easier as
808   * arguments will match the associated region_chg call.
809   */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)810  static void region_abort(struct resv_map *resv, long f, long t,
811  			 long regions_needed)
812  {
813  	spin_lock(&resv->lock);
814  	VM_BUG_ON(!resv->region_cache_count);
815  	resv->adds_in_progress -= regions_needed;
816  	spin_unlock(&resv->lock);
817  }
818  
819  /*
820   * Delete the specified range [f, t) from the reserve map.  If the
821   * t parameter is LONG_MAX, this indicates that ALL regions after f
822   * should be deleted.  Locate the regions which intersect [f, t)
823   * and either trim, delete or split the existing regions.
824   *
825   * Returns the number of huge pages deleted from the reserve map.
826   * In the normal case, the return value is zero or more.  In the
827   * case where a region must be split, a new region descriptor must
828   * be allocated.  If the allocation fails, -ENOMEM will be returned.
829   * NOTE: If the parameter t == LONG_MAX, then we will never split
830   * a region and possibly return -ENOMEM.  Callers specifying
831   * t == LONG_MAX do not need to check for -ENOMEM error.
832   */
region_del(struct resv_map * resv,long f,long t)833  static long region_del(struct resv_map *resv, long f, long t)
834  {
835  	struct list_head *head = &resv->regions;
836  	struct file_region *rg, *trg;
837  	struct file_region *nrg = NULL;
838  	long del = 0;
839  
840  retry:
841  	spin_lock(&resv->lock);
842  	list_for_each_entry_safe(rg, trg, head, link) {
843  		/*
844  		 * Skip regions before the range to be deleted.  file_region
845  		 * ranges are normally of the form [from, to).  However, there
846  		 * may be a "placeholder" entry in the map which is of the form
847  		 * (from, to) with from == to.  Check for placeholder entries
848  		 * at the beginning of the range to be deleted.
849  		 */
850  		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
851  			continue;
852  
853  		if (rg->from >= t)
854  			break;
855  
856  		if (f > rg->from && t < rg->to) { /* Must split region */
857  			/*
858  			 * Check for an entry in the cache before dropping
859  			 * lock and attempting allocation.
860  			 */
861  			if (!nrg &&
862  			    resv->region_cache_count > resv->adds_in_progress) {
863  				nrg = list_first_entry(&resv->region_cache,
864  							struct file_region,
865  							link);
866  				list_del(&nrg->link);
867  				resv->region_cache_count--;
868  			}
869  
870  			if (!nrg) {
871  				spin_unlock(&resv->lock);
872  				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
873  				if (!nrg)
874  					return -ENOMEM;
875  				goto retry;
876  			}
877  
878  			del += t - f;
879  			hugetlb_cgroup_uncharge_file_region(
880  				resv, rg, t - f, false);
881  
882  			/* New entry for end of split region */
883  			nrg->from = t;
884  			nrg->to = rg->to;
885  
886  			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
887  
888  			INIT_LIST_HEAD(&nrg->link);
889  
890  			/* Original entry is trimmed */
891  			rg->to = f;
892  
893  			list_add(&nrg->link, &rg->link);
894  			nrg = NULL;
895  			break;
896  		}
897  
898  		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
899  			del += rg->to - rg->from;
900  			hugetlb_cgroup_uncharge_file_region(resv, rg,
901  							    rg->to - rg->from, true);
902  			list_del(&rg->link);
903  			kfree(rg);
904  			continue;
905  		}
906  
907  		if (f <= rg->from) {	/* Trim beginning of region */
908  			hugetlb_cgroup_uncharge_file_region(resv, rg,
909  							    t - rg->from, false);
910  
911  			del += t - rg->from;
912  			rg->from = t;
913  		} else {		/* Trim end of region */
914  			hugetlb_cgroup_uncharge_file_region(resv, rg,
915  							    rg->to - f, false);
916  
917  			del += rg->to - f;
918  			rg->to = f;
919  		}
920  	}
921  
922  	spin_unlock(&resv->lock);
923  	kfree(nrg);
924  	return del;
925  }
926  
927  /*
928   * A rare out of memory error was encountered which prevented removal of
929   * the reserve map region for a page.  The huge page itself was free'ed
930   * and removed from the page cache.  This routine will adjust the subpool
931   * usage count, and the global reserve count if needed.  By incrementing
932   * these counts, the reserve map entry which could not be deleted will
933   * appear as a "reserved" entry instead of simply dangling with incorrect
934   * counts.
935   */
hugetlb_fix_reserve_counts(struct inode * inode)936  void hugetlb_fix_reserve_counts(struct inode *inode)
937  {
938  	struct hugepage_subpool *spool = subpool_inode(inode);
939  	long rsv_adjust;
940  	bool reserved = false;
941  
942  	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
943  	if (rsv_adjust > 0) {
944  		struct hstate *h = hstate_inode(inode);
945  
946  		if (!hugetlb_acct_memory(h, 1))
947  			reserved = true;
948  	} else if (!rsv_adjust) {
949  		reserved = true;
950  	}
951  
952  	if (!reserved)
953  		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
954  }
955  
956  /*
957   * Count and return the number of huge pages in the reserve map
958   * that intersect with the range [f, t).
959   */
region_count(struct resv_map * resv,long f,long t)960  static long region_count(struct resv_map *resv, long f, long t)
961  {
962  	struct list_head *head = &resv->regions;
963  	struct file_region *rg;
964  	long chg = 0;
965  
966  	spin_lock(&resv->lock);
967  	/* Locate each segment we overlap with, and count that overlap. */
968  	list_for_each_entry(rg, head, link) {
969  		long seg_from;
970  		long seg_to;
971  
972  		if (rg->to <= f)
973  			continue;
974  		if (rg->from >= t)
975  			break;
976  
977  		seg_from = max(rg->from, f);
978  		seg_to = min(rg->to, t);
979  
980  		chg += seg_to - seg_from;
981  	}
982  	spin_unlock(&resv->lock);
983  
984  	return chg;
985  }
986  
987  /*
988   * Convert the address within this vma to the page offset within
989   * the mapping, huge page units here.
990   */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)991  static pgoff_t vma_hugecache_offset(struct hstate *h,
992  			struct vm_area_struct *vma, unsigned long address)
993  {
994  	return ((address - vma->vm_start) >> huge_page_shift(h)) +
995  			(vma->vm_pgoff >> huge_page_order(h));
996  }
997  
998  /**
999   * vma_kernel_pagesize - Page size granularity for this VMA.
1000   * @vma: The user mapping.
1001   *
1002   * Folios in this VMA will be aligned to, and at least the size of the
1003   * number of bytes returned by this function.
1004   *
1005   * Return: The default size of the folios allocated when backing a VMA.
1006   */
vma_kernel_pagesize(struct vm_area_struct * vma)1007  unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1008  {
1009  	if (vma->vm_ops && vma->vm_ops->pagesize)
1010  		return vma->vm_ops->pagesize(vma);
1011  	return PAGE_SIZE;
1012  }
1013  EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1014  
1015  /*
1016   * Return the page size being used by the MMU to back a VMA. In the majority
1017   * of cases, the page size used by the kernel matches the MMU size. On
1018   * architectures where it differs, an architecture-specific 'strong'
1019   * version of this symbol is required.
1020   */
vma_mmu_pagesize(struct vm_area_struct * vma)1021  __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1022  {
1023  	return vma_kernel_pagesize(vma);
1024  }
1025  
1026  /*
1027   * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1028   * bits of the reservation map pointer, which are always clear due to
1029   * alignment.
1030   */
1031  #define HPAGE_RESV_OWNER    (1UL << 0)
1032  #define HPAGE_RESV_UNMAPPED (1UL << 1)
1033  #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1034  
1035  /*
1036   * These helpers are used to track how many pages are reserved for
1037   * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1038   * is guaranteed to have their future faults succeed.
1039   *
1040   * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1041   * the reserve counters are updated with the hugetlb_lock held. It is safe
1042   * to reset the VMA at fork() time as it is not in use yet and there is no
1043   * chance of the global counters getting corrupted as a result of the values.
1044   *
1045   * The private mapping reservation is represented in a subtly different
1046   * manner to a shared mapping.  A shared mapping has a region map associated
1047   * with the underlying file, this region map represents the backing file
1048   * pages which have ever had a reservation assigned which this persists even
1049   * after the page is instantiated.  A private mapping has a region map
1050   * associated with the original mmap which is attached to all VMAs which
1051   * reference it, this region map represents those offsets which have consumed
1052   * reservation ie. where pages have been instantiated.
1053   */
get_vma_private_data(struct vm_area_struct * vma)1054  static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1055  {
1056  	return (unsigned long)vma->vm_private_data;
1057  }
1058  
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1059  static void set_vma_private_data(struct vm_area_struct *vma,
1060  							unsigned long value)
1061  {
1062  	vma->vm_private_data = (void *)value;
1063  }
1064  
1065  static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1066  resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1067  					  struct hugetlb_cgroup *h_cg,
1068  					  struct hstate *h)
1069  {
1070  #ifdef CONFIG_CGROUP_HUGETLB
1071  	if (!h_cg || !h) {
1072  		resv_map->reservation_counter = NULL;
1073  		resv_map->pages_per_hpage = 0;
1074  		resv_map->css = NULL;
1075  	} else {
1076  		resv_map->reservation_counter =
1077  			&h_cg->rsvd_hugepage[hstate_index(h)];
1078  		resv_map->pages_per_hpage = pages_per_huge_page(h);
1079  		resv_map->css = &h_cg->css;
1080  	}
1081  #endif
1082  }
1083  
resv_map_alloc(void)1084  struct resv_map *resv_map_alloc(void)
1085  {
1086  	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1087  	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1088  
1089  	if (!resv_map || !rg) {
1090  		kfree(resv_map);
1091  		kfree(rg);
1092  		return NULL;
1093  	}
1094  
1095  	kref_init(&resv_map->refs);
1096  	spin_lock_init(&resv_map->lock);
1097  	INIT_LIST_HEAD(&resv_map->regions);
1098  	init_rwsem(&resv_map->rw_sema);
1099  
1100  	resv_map->adds_in_progress = 0;
1101  	/*
1102  	 * Initialize these to 0. On shared mappings, 0's here indicate these
1103  	 * fields don't do cgroup accounting. On private mappings, these will be
1104  	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1105  	 * reservations are to be un-charged from here.
1106  	 */
1107  	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1108  
1109  	INIT_LIST_HEAD(&resv_map->region_cache);
1110  	list_add(&rg->link, &resv_map->region_cache);
1111  	resv_map->region_cache_count = 1;
1112  
1113  	return resv_map;
1114  }
1115  
resv_map_release(struct kref * ref)1116  void resv_map_release(struct kref *ref)
1117  {
1118  	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1119  	struct list_head *head = &resv_map->region_cache;
1120  	struct file_region *rg, *trg;
1121  
1122  	/* Clear out any active regions before we release the map. */
1123  	region_del(resv_map, 0, LONG_MAX);
1124  
1125  	/* ... and any entries left in the cache */
1126  	list_for_each_entry_safe(rg, trg, head, link) {
1127  		list_del(&rg->link);
1128  		kfree(rg);
1129  	}
1130  
1131  	VM_BUG_ON(resv_map->adds_in_progress);
1132  
1133  	kfree(resv_map);
1134  }
1135  
inode_resv_map(struct inode * inode)1136  static inline struct resv_map *inode_resv_map(struct inode *inode)
1137  {
1138  	/*
1139  	 * At inode evict time, i_mapping may not point to the original
1140  	 * address space within the inode.  This original address space
1141  	 * contains the pointer to the resv_map.  So, always use the
1142  	 * address space embedded within the inode.
1143  	 * The VERY common case is inode->mapping == &inode->i_data but,
1144  	 * this may not be true for device special inodes.
1145  	 */
1146  	return (struct resv_map *)(&inode->i_data)->i_private_data;
1147  }
1148  
vma_resv_map(struct vm_area_struct * vma)1149  static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1150  {
1151  	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1152  	if (vma->vm_flags & VM_MAYSHARE) {
1153  		struct address_space *mapping = vma->vm_file->f_mapping;
1154  		struct inode *inode = mapping->host;
1155  
1156  		return inode_resv_map(inode);
1157  
1158  	} else {
1159  		return (struct resv_map *)(get_vma_private_data(vma) &
1160  							~HPAGE_RESV_MASK);
1161  	}
1162  }
1163  
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1164  static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1165  {
1166  	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1167  	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1168  
1169  	set_vma_private_data(vma, (unsigned long)map);
1170  }
1171  
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1172  static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1173  {
1174  	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1175  	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1176  
1177  	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1178  }
1179  
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1180  static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1181  {
1182  	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1183  
1184  	return (get_vma_private_data(vma) & flag) != 0;
1185  }
1186  
__vma_private_lock(struct vm_area_struct * vma)1187  bool __vma_private_lock(struct vm_area_struct *vma)
1188  {
1189  	return !(vma->vm_flags & VM_MAYSHARE) &&
1190  		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1191  		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1192  }
1193  
hugetlb_dup_vma_private(struct vm_area_struct * vma)1194  void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1195  {
1196  	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1197  	/*
1198  	 * Clear vm_private_data
1199  	 * - For shared mappings this is a per-vma semaphore that may be
1200  	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1201  	 *   Before clearing, make sure pointer is not associated with vma
1202  	 *   as this will leak the structure.  This is the case when called
1203  	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1204  	 *   been called to allocate a new structure.
1205  	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1206  	 *   not apply to children.  Faults generated by the children are
1207  	 *   not guaranteed to succeed, even if read-only.
1208  	 */
1209  	if (vma->vm_flags & VM_MAYSHARE) {
1210  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1211  
1212  		if (vma_lock && vma_lock->vma != vma)
1213  			vma->vm_private_data = NULL;
1214  	} else
1215  		vma->vm_private_data = NULL;
1216  }
1217  
1218  /*
1219   * Reset and decrement one ref on hugepage private reservation.
1220   * Called with mm->mmap_lock writer semaphore held.
1221   * This function should be only used by move_vma() and operate on
1222   * same sized vma. It should never come here with last ref on the
1223   * reservation.
1224   */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1225  void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1226  {
1227  	/*
1228  	 * Clear the old hugetlb private page reservation.
1229  	 * It has already been transferred to new_vma.
1230  	 *
1231  	 * During a mremap() operation of a hugetlb vma we call move_vma()
1232  	 * which copies vma into new_vma and unmaps vma. After the copy
1233  	 * operation both new_vma and vma share a reference to the resv_map
1234  	 * struct, and at that point vma is about to be unmapped. We don't
1235  	 * want to return the reservation to the pool at unmap of vma because
1236  	 * the reservation still lives on in new_vma, so simply decrement the
1237  	 * ref here and remove the resv_map reference from this vma.
1238  	 */
1239  	struct resv_map *reservations = vma_resv_map(vma);
1240  
1241  	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1242  		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1243  		kref_put(&reservations->refs, resv_map_release);
1244  	}
1245  
1246  	hugetlb_dup_vma_private(vma);
1247  }
1248  
1249  /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1250  static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1251  {
1252  	if (vma->vm_flags & VM_NORESERVE) {
1253  		/*
1254  		 * This address is already reserved by other process(chg == 0),
1255  		 * so, we should decrement reserved count. Without decrementing,
1256  		 * reserve count remains after releasing inode, because this
1257  		 * allocated page will go into page cache and is regarded as
1258  		 * coming from reserved pool in releasing step.  Currently, we
1259  		 * don't have any other solution to deal with this situation
1260  		 * properly, so add work-around here.
1261  		 */
1262  		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1263  			return true;
1264  		else
1265  			return false;
1266  	}
1267  
1268  	/* Shared mappings always use reserves */
1269  	if (vma->vm_flags & VM_MAYSHARE) {
1270  		/*
1271  		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1272  		 * be a region map for all pages.  The only situation where
1273  		 * there is no region map is if a hole was punched via
1274  		 * fallocate.  In this case, there really are no reserves to
1275  		 * use.  This situation is indicated if chg != 0.
1276  		 */
1277  		if (chg)
1278  			return false;
1279  		else
1280  			return true;
1281  	}
1282  
1283  	/*
1284  	 * Only the process that called mmap() has reserves for
1285  	 * private mappings.
1286  	 */
1287  	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1288  		/*
1289  		 * Like the shared case above, a hole punch or truncate
1290  		 * could have been performed on the private mapping.
1291  		 * Examine the value of chg to determine if reserves
1292  		 * actually exist or were previously consumed.
1293  		 * Very Subtle - The value of chg comes from a previous
1294  		 * call to vma_needs_reserves().  The reserve map for
1295  		 * private mappings has different (opposite) semantics
1296  		 * than that of shared mappings.  vma_needs_reserves()
1297  		 * has already taken this difference in semantics into
1298  		 * account.  Therefore, the meaning of chg is the same
1299  		 * as in the shared case above.  Code could easily be
1300  		 * combined, but keeping it separate draws attention to
1301  		 * subtle differences.
1302  		 */
1303  		if (chg)
1304  			return false;
1305  		else
1306  			return true;
1307  	}
1308  
1309  	return false;
1310  }
1311  
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1312  static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1313  {
1314  	int nid = folio_nid(folio);
1315  
1316  	lockdep_assert_held(&hugetlb_lock);
1317  	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1318  
1319  	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1320  	h->free_huge_pages++;
1321  	h->free_huge_pages_node[nid]++;
1322  	folio_set_hugetlb_freed(folio);
1323  }
1324  
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1325  static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1326  								int nid)
1327  {
1328  	struct folio *folio;
1329  	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1330  
1331  	lockdep_assert_held(&hugetlb_lock);
1332  	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1333  		if (pin && !folio_is_longterm_pinnable(folio))
1334  			continue;
1335  
1336  		if (folio_test_hwpoison(folio))
1337  			continue;
1338  
1339  		list_move(&folio->lru, &h->hugepage_activelist);
1340  		folio_ref_unfreeze(folio, 1);
1341  		folio_clear_hugetlb_freed(folio);
1342  		h->free_huge_pages--;
1343  		h->free_huge_pages_node[nid]--;
1344  		return folio;
1345  	}
1346  
1347  	return NULL;
1348  }
1349  
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1350  static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1351  							int nid, nodemask_t *nmask)
1352  {
1353  	unsigned int cpuset_mems_cookie;
1354  	struct zonelist *zonelist;
1355  	struct zone *zone;
1356  	struct zoneref *z;
1357  	int node = NUMA_NO_NODE;
1358  
1359  	/* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1360  	if (nid == NUMA_NO_NODE)
1361  		nid = numa_node_id();
1362  
1363  	zonelist = node_zonelist(nid, gfp_mask);
1364  
1365  retry_cpuset:
1366  	cpuset_mems_cookie = read_mems_allowed_begin();
1367  	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1368  		struct folio *folio;
1369  
1370  		if (!cpuset_zone_allowed(zone, gfp_mask))
1371  			continue;
1372  		/*
1373  		 * no need to ask again on the same node. Pool is node rather than
1374  		 * zone aware
1375  		 */
1376  		if (zone_to_nid(zone) == node)
1377  			continue;
1378  		node = zone_to_nid(zone);
1379  
1380  		folio = dequeue_hugetlb_folio_node_exact(h, node);
1381  		if (folio)
1382  			return folio;
1383  	}
1384  	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1385  		goto retry_cpuset;
1386  
1387  	return NULL;
1388  }
1389  
available_huge_pages(struct hstate * h)1390  static unsigned long available_huge_pages(struct hstate *h)
1391  {
1392  	return h->free_huge_pages - h->resv_huge_pages;
1393  }
1394  
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1395  static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1396  				struct vm_area_struct *vma,
1397  				unsigned long address, int avoid_reserve,
1398  				long chg)
1399  {
1400  	struct folio *folio = NULL;
1401  	struct mempolicy *mpol;
1402  	gfp_t gfp_mask;
1403  	nodemask_t *nodemask;
1404  	int nid;
1405  
1406  	/*
1407  	 * A child process with MAP_PRIVATE mappings created by their parent
1408  	 * have no page reserves. This check ensures that reservations are
1409  	 * not "stolen". The child may still get SIGKILLed
1410  	 */
1411  	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1412  		goto err;
1413  
1414  	/* If reserves cannot be used, ensure enough pages are in the pool */
1415  	if (avoid_reserve && !available_huge_pages(h))
1416  		goto err;
1417  
1418  	gfp_mask = htlb_alloc_mask(h);
1419  	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1420  
1421  	if (mpol_is_preferred_many(mpol)) {
1422  		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1423  							nid, nodemask);
1424  
1425  		/* Fallback to all nodes if page==NULL */
1426  		nodemask = NULL;
1427  	}
1428  
1429  	if (!folio)
1430  		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1431  							nid, nodemask);
1432  
1433  	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1434  		folio_set_hugetlb_restore_reserve(folio);
1435  		h->resv_huge_pages--;
1436  	}
1437  
1438  	mpol_cond_put(mpol);
1439  	return folio;
1440  
1441  err:
1442  	return NULL;
1443  }
1444  
1445  /*
1446   * common helper functions for hstate_next_node_to_{alloc|free}.
1447   * We may have allocated or freed a huge page based on a different
1448   * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1449   * be outside of *nodes_allowed.  Ensure that we use an allowed
1450   * node for alloc or free.
1451   */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1452  static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1453  {
1454  	nid = next_node_in(nid, *nodes_allowed);
1455  	VM_BUG_ON(nid >= MAX_NUMNODES);
1456  
1457  	return nid;
1458  }
1459  
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1460  static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1461  {
1462  	if (!node_isset(nid, *nodes_allowed))
1463  		nid = next_node_allowed(nid, nodes_allowed);
1464  	return nid;
1465  }
1466  
1467  /*
1468   * returns the previously saved node ["this node"] from which to
1469   * allocate a persistent huge page for the pool and advance the
1470   * next node from which to allocate, handling wrap at end of node
1471   * mask.
1472   */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1473  static int hstate_next_node_to_alloc(int *next_node,
1474  					nodemask_t *nodes_allowed)
1475  {
1476  	int nid;
1477  
1478  	VM_BUG_ON(!nodes_allowed);
1479  
1480  	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1481  	*next_node = next_node_allowed(nid, nodes_allowed);
1482  
1483  	return nid;
1484  }
1485  
1486  /*
1487   * helper for remove_pool_hugetlb_folio() - return the previously saved
1488   * node ["this node"] from which to free a huge page.  Advance the
1489   * next node id whether or not we find a free huge page to free so
1490   * that the next attempt to free addresses the next node.
1491   */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1492  static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1493  {
1494  	int nid;
1495  
1496  	VM_BUG_ON(!nodes_allowed);
1497  
1498  	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1499  	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1500  
1501  	return nid;
1502  }
1503  
1504  #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1505  	for (nr_nodes = nodes_weight(*mask);				\
1506  		nr_nodes > 0 &&						\
1507  		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1508  		nr_nodes--)
1509  
1510  #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1511  	for (nr_nodes = nodes_weight(*mask);				\
1512  		nr_nodes > 0 &&						\
1513  		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1514  		nr_nodes--)
1515  
1516  #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1517  #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1518  static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1519  		int nid, nodemask_t *nodemask)
1520  {
1521  	struct folio *folio;
1522  	int order = huge_page_order(h);
1523  	bool retried = false;
1524  
1525  	if (nid == NUMA_NO_NODE)
1526  		nid = numa_mem_id();
1527  retry:
1528  	folio = NULL;
1529  #ifdef CONFIG_CMA
1530  	{
1531  		int node;
1532  
1533  		if (hugetlb_cma[nid])
1534  			folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask);
1535  
1536  		if (!folio && !(gfp_mask & __GFP_THISNODE)) {
1537  			for_each_node_mask(node, *nodemask) {
1538  				if (node == nid || !hugetlb_cma[node])
1539  					continue;
1540  
1541  				folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask);
1542  				if (folio)
1543  					break;
1544  			}
1545  		}
1546  	}
1547  #endif
1548  	if (!folio) {
1549  		folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1550  		if (!folio)
1551  			return NULL;
1552  	}
1553  
1554  	if (folio_ref_freeze(folio, 1))
1555  		return folio;
1556  
1557  	pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1558  	hugetlb_free_folio(folio);
1559  	if (!retried) {
1560  		retried = true;
1561  		goto retry;
1562  	}
1563  	return NULL;
1564  }
1565  
1566  #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1567  static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1568  					int nid, nodemask_t *nodemask)
1569  {
1570  	return NULL;
1571  }
1572  #endif /* CONFIG_CONTIG_ALLOC */
1573  
1574  #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1575  static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1576  					int nid, nodemask_t *nodemask)
1577  {
1578  	return NULL;
1579  }
1580  #endif
1581  
1582  /*
1583   * Remove hugetlb folio from lists.
1584   * If vmemmap exists for the folio, clear the hugetlb flag so that the
1585   * folio appears as just a compound page.  Otherwise, wait until after
1586   * allocating vmemmap to clear the flag.
1587   *
1588   * Must be called with hugetlb lock held.
1589   */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1590  static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1591  							bool adjust_surplus)
1592  {
1593  	int nid = folio_nid(folio);
1594  
1595  	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1596  	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1597  
1598  	lockdep_assert_held(&hugetlb_lock);
1599  	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1600  		return;
1601  
1602  	list_del(&folio->lru);
1603  
1604  	if (folio_test_hugetlb_freed(folio)) {
1605  		folio_clear_hugetlb_freed(folio);
1606  		h->free_huge_pages--;
1607  		h->free_huge_pages_node[nid]--;
1608  	}
1609  	if (adjust_surplus) {
1610  		h->surplus_huge_pages--;
1611  		h->surplus_huge_pages_node[nid]--;
1612  	}
1613  
1614  	/*
1615  	 * We can only clear the hugetlb flag after allocating vmemmap
1616  	 * pages.  Otherwise, someone (memory error handling) may try to write
1617  	 * to tail struct pages.
1618  	 */
1619  	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1620  		__folio_clear_hugetlb(folio);
1621  
1622  	h->nr_huge_pages--;
1623  	h->nr_huge_pages_node[nid]--;
1624  }
1625  
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1626  static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1627  			     bool adjust_surplus)
1628  {
1629  	int nid = folio_nid(folio);
1630  
1631  	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1632  
1633  	lockdep_assert_held(&hugetlb_lock);
1634  
1635  	INIT_LIST_HEAD(&folio->lru);
1636  	h->nr_huge_pages++;
1637  	h->nr_huge_pages_node[nid]++;
1638  
1639  	if (adjust_surplus) {
1640  		h->surplus_huge_pages++;
1641  		h->surplus_huge_pages_node[nid]++;
1642  	}
1643  
1644  	__folio_set_hugetlb(folio);
1645  	folio_change_private(folio, NULL);
1646  	/*
1647  	 * We have to set hugetlb_vmemmap_optimized again as above
1648  	 * folio_change_private(folio, NULL) cleared it.
1649  	 */
1650  	folio_set_hugetlb_vmemmap_optimized(folio);
1651  
1652  	arch_clear_hugetlb_flags(folio);
1653  	enqueue_hugetlb_folio(h, folio);
1654  }
1655  
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1656  static void __update_and_free_hugetlb_folio(struct hstate *h,
1657  						struct folio *folio)
1658  {
1659  	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1660  
1661  	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1662  		return;
1663  
1664  	/*
1665  	 * If we don't know which subpages are hwpoisoned, we can't free
1666  	 * the hugepage, so it's leaked intentionally.
1667  	 */
1668  	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1669  		return;
1670  
1671  	/*
1672  	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1673  	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1674  	 * can only be passed hugetlb pages and will BUG otherwise.
1675  	 */
1676  	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1677  		spin_lock_irq(&hugetlb_lock);
1678  		/*
1679  		 * If we cannot allocate vmemmap pages, just refuse to free the
1680  		 * page and put the page back on the hugetlb free list and treat
1681  		 * as a surplus page.
1682  		 */
1683  		add_hugetlb_folio(h, folio, true);
1684  		spin_unlock_irq(&hugetlb_lock);
1685  		return;
1686  	}
1687  
1688  	/*
1689  	 * If vmemmap pages were allocated above, then we need to clear the
1690  	 * hugetlb flag under the hugetlb lock.
1691  	 */
1692  	if (folio_test_hugetlb(folio)) {
1693  		spin_lock_irq(&hugetlb_lock);
1694  		__folio_clear_hugetlb(folio);
1695  		spin_unlock_irq(&hugetlb_lock);
1696  	}
1697  
1698  	/*
1699  	 * Move PageHWPoison flag from head page to the raw error pages,
1700  	 * which makes any healthy subpages reusable.
1701  	 */
1702  	if (unlikely(folio_test_hwpoison(folio)))
1703  		folio_clear_hugetlb_hwpoison(folio);
1704  
1705  	folio_ref_unfreeze(folio, 1);
1706  
1707  	INIT_LIST_HEAD(&folio->_deferred_list);
1708  	hugetlb_free_folio(folio);
1709  }
1710  
1711  /*
1712   * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1713   * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1714   * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1715   * the vmemmap pages.
1716   *
1717   * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1718   * freed and frees them one-by-one. As the page->mapping pointer is going
1719   * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1720   * structure of a lockless linked list of huge pages to be freed.
1721   */
1722  static LLIST_HEAD(hpage_freelist);
1723  
free_hpage_workfn(struct work_struct * work)1724  static void free_hpage_workfn(struct work_struct *work)
1725  {
1726  	struct llist_node *node;
1727  
1728  	node = llist_del_all(&hpage_freelist);
1729  
1730  	while (node) {
1731  		struct folio *folio;
1732  		struct hstate *h;
1733  
1734  		folio = container_of((struct address_space **)node,
1735  				     struct folio, mapping);
1736  		node = node->next;
1737  		folio->mapping = NULL;
1738  		/*
1739  		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1740  		 * folio_hstate() is going to trigger because a previous call to
1741  		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1742  		 * not use folio_hstate() directly.
1743  		 */
1744  		h = size_to_hstate(folio_size(folio));
1745  
1746  		__update_and_free_hugetlb_folio(h, folio);
1747  
1748  		cond_resched();
1749  	}
1750  }
1751  static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1752  
flush_free_hpage_work(struct hstate * h)1753  static inline void flush_free_hpage_work(struct hstate *h)
1754  {
1755  	if (hugetlb_vmemmap_optimizable(h))
1756  		flush_work(&free_hpage_work);
1757  }
1758  
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1759  static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1760  				 bool atomic)
1761  {
1762  	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1763  		__update_and_free_hugetlb_folio(h, folio);
1764  		return;
1765  	}
1766  
1767  	/*
1768  	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1769  	 *
1770  	 * Only call schedule_work() if hpage_freelist is previously
1771  	 * empty. Otherwise, schedule_work() had been called but the workfn
1772  	 * hasn't retrieved the list yet.
1773  	 */
1774  	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1775  		schedule_work(&free_hpage_work);
1776  }
1777  
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1778  static void bulk_vmemmap_restore_error(struct hstate *h,
1779  					struct list_head *folio_list,
1780  					struct list_head *non_hvo_folios)
1781  {
1782  	struct folio *folio, *t_folio;
1783  
1784  	if (!list_empty(non_hvo_folios)) {
1785  		/*
1786  		 * Free any restored hugetlb pages so that restore of the
1787  		 * entire list can be retried.
1788  		 * The idea is that in the common case of ENOMEM errors freeing
1789  		 * hugetlb pages with vmemmap we will free up memory so that we
1790  		 * can allocate vmemmap for more hugetlb pages.
1791  		 */
1792  		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1793  			list_del(&folio->lru);
1794  			spin_lock_irq(&hugetlb_lock);
1795  			__folio_clear_hugetlb(folio);
1796  			spin_unlock_irq(&hugetlb_lock);
1797  			update_and_free_hugetlb_folio(h, folio, false);
1798  			cond_resched();
1799  		}
1800  	} else {
1801  		/*
1802  		 * In the case where there are no folios which can be
1803  		 * immediately freed, we loop through the list trying to restore
1804  		 * vmemmap individually in the hope that someone elsewhere may
1805  		 * have done something to cause success (such as freeing some
1806  		 * memory).  If unable to restore a hugetlb page, the hugetlb
1807  		 * page is made a surplus page and removed from the list.
1808  		 * If are able to restore vmemmap and free one hugetlb page, we
1809  		 * quit processing the list to retry the bulk operation.
1810  		 */
1811  		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1812  			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1813  				list_del(&folio->lru);
1814  				spin_lock_irq(&hugetlb_lock);
1815  				add_hugetlb_folio(h, folio, true);
1816  				spin_unlock_irq(&hugetlb_lock);
1817  			} else {
1818  				list_del(&folio->lru);
1819  				spin_lock_irq(&hugetlb_lock);
1820  				__folio_clear_hugetlb(folio);
1821  				spin_unlock_irq(&hugetlb_lock);
1822  				update_and_free_hugetlb_folio(h, folio, false);
1823  				cond_resched();
1824  				break;
1825  			}
1826  	}
1827  }
1828  
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1829  static void update_and_free_pages_bulk(struct hstate *h,
1830  						struct list_head *folio_list)
1831  {
1832  	long ret;
1833  	struct folio *folio, *t_folio;
1834  	LIST_HEAD(non_hvo_folios);
1835  
1836  	/*
1837  	 * First allocate required vmemmmap (if necessary) for all folios.
1838  	 * Carefully handle errors and free up any available hugetlb pages
1839  	 * in an effort to make forward progress.
1840  	 */
1841  retry:
1842  	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1843  	if (ret < 0) {
1844  		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1845  		goto retry;
1846  	}
1847  
1848  	/*
1849  	 * At this point, list should be empty, ret should be >= 0 and there
1850  	 * should only be pages on the non_hvo_folios list.
1851  	 * Do note that the non_hvo_folios list could be empty.
1852  	 * Without HVO enabled, ret will be 0 and there is no need to call
1853  	 * __folio_clear_hugetlb as this was done previously.
1854  	 */
1855  	VM_WARN_ON(!list_empty(folio_list));
1856  	VM_WARN_ON(ret < 0);
1857  	if (!list_empty(&non_hvo_folios) && ret) {
1858  		spin_lock_irq(&hugetlb_lock);
1859  		list_for_each_entry(folio, &non_hvo_folios, lru)
1860  			__folio_clear_hugetlb(folio);
1861  		spin_unlock_irq(&hugetlb_lock);
1862  	}
1863  
1864  	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1865  		update_and_free_hugetlb_folio(h, folio, false);
1866  		cond_resched();
1867  	}
1868  }
1869  
size_to_hstate(unsigned long size)1870  struct hstate *size_to_hstate(unsigned long size)
1871  {
1872  	struct hstate *h;
1873  
1874  	for_each_hstate(h) {
1875  		if (huge_page_size(h) == size)
1876  			return h;
1877  	}
1878  	return NULL;
1879  }
1880  
free_huge_folio(struct folio * folio)1881  void free_huge_folio(struct folio *folio)
1882  {
1883  	/*
1884  	 * Can't pass hstate in here because it is called from the
1885  	 * generic mm code.
1886  	 */
1887  	struct hstate *h = folio_hstate(folio);
1888  	int nid = folio_nid(folio);
1889  	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1890  	bool restore_reserve;
1891  	unsigned long flags;
1892  
1893  	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1894  	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1895  
1896  	hugetlb_set_folio_subpool(folio, NULL);
1897  	if (folio_test_anon(folio))
1898  		__ClearPageAnonExclusive(&folio->page);
1899  	folio->mapping = NULL;
1900  	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1901  	folio_clear_hugetlb_restore_reserve(folio);
1902  
1903  	/*
1904  	 * If HPageRestoreReserve was set on page, page allocation consumed a
1905  	 * reservation.  If the page was associated with a subpool, there
1906  	 * would have been a page reserved in the subpool before allocation
1907  	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1908  	 * reservation, do not call hugepage_subpool_put_pages() as this will
1909  	 * remove the reserved page from the subpool.
1910  	 */
1911  	if (!restore_reserve) {
1912  		/*
1913  		 * A return code of zero implies that the subpool will be
1914  		 * under its minimum size if the reservation is not restored
1915  		 * after page is free.  Therefore, force restore_reserve
1916  		 * operation.
1917  		 */
1918  		if (hugepage_subpool_put_pages(spool, 1) == 0)
1919  			restore_reserve = true;
1920  	}
1921  
1922  	spin_lock_irqsave(&hugetlb_lock, flags);
1923  	folio_clear_hugetlb_migratable(folio);
1924  	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1925  				     pages_per_huge_page(h), folio);
1926  	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1927  					  pages_per_huge_page(h), folio);
1928  	mem_cgroup_uncharge(folio);
1929  	if (restore_reserve)
1930  		h->resv_huge_pages++;
1931  
1932  	if (folio_test_hugetlb_temporary(folio)) {
1933  		remove_hugetlb_folio(h, folio, false);
1934  		spin_unlock_irqrestore(&hugetlb_lock, flags);
1935  		update_and_free_hugetlb_folio(h, folio, true);
1936  	} else if (h->surplus_huge_pages_node[nid]) {
1937  		/* remove the page from active list */
1938  		remove_hugetlb_folio(h, folio, true);
1939  		spin_unlock_irqrestore(&hugetlb_lock, flags);
1940  		update_and_free_hugetlb_folio(h, folio, true);
1941  	} else {
1942  		arch_clear_hugetlb_flags(folio);
1943  		enqueue_hugetlb_folio(h, folio);
1944  		spin_unlock_irqrestore(&hugetlb_lock, flags);
1945  	}
1946  }
1947  
1948  /*
1949   * Must be called with the hugetlb lock held
1950   */
__prep_account_new_huge_page(struct hstate * h,int nid)1951  static void __prep_account_new_huge_page(struct hstate *h, int nid)
1952  {
1953  	lockdep_assert_held(&hugetlb_lock);
1954  	h->nr_huge_pages++;
1955  	h->nr_huge_pages_node[nid]++;
1956  }
1957  
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)1958  static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1959  {
1960  	__folio_set_hugetlb(folio);
1961  	INIT_LIST_HEAD(&folio->lru);
1962  	hugetlb_set_folio_subpool(folio, NULL);
1963  	set_hugetlb_cgroup(folio, NULL);
1964  	set_hugetlb_cgroup_rsvd(folio, NULL);
1965  }
1966  
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1967  static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1968  {
1969  	init_new_hugetlb_folio(h, folio);
1970  	hugetlb_vmemmap_optimize_folio(h, folio);
1971  }
1972  
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1973  static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1974  {
1975  	__prep_new_hugetlb_folio(h, folio);
1976  	spin_lock_irq(&hugetlb_lock);
1977  	__prep_account_new_huge_page(h, nid);
1978  	spin_unlock_irq(&hugetlb_lock);
1979  }
1980  
1981  /*
1982   * Find and lock address space (mapping) in write mode.
1983   *
1984   * Upon entry, the folio is locked which means that folio_mapping() is
1985   * stable.  Due to locking order, we can only trylock_write.  If we can
1986   * not get the lock, simply return NULL to caller.
1987   */
hugetlb_folio_mapping_lock_write(struct folio * folio)1988  struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1989  {
1990  	struct address_space *mapping = folio_mapping(folio);
1991  
1992  	if (!mapping)
1993  		return mapping;
1994  
1995  	if (i_mmap_trylock_write(mapping))
1996  		return mapping;
1997  
1998  	return NULL;
1999  }
2000  
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2001  static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2002  		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2003  		nodemask_t *node_alloc_noretry)
2004  {
2005  	int order = huge_page_order(h);
2006  	struct folio *folio;
2007  	bool alloc_try_hard = true;
2008  	bool retry = true;
2009  
2010  	/*
2011  	 * By default we always try hard to allocate the folio with
2012  	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
2013  	 * a loop (to adjust global huge page counts) and previous allocation
2014  	 * failed, do not continue to try hard on the same node.  Use the
2015  	 * node_alloc_noretry bitmap to manage this state information.
2016  	 */
2017  	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2018  		alloc_try_hard = false;
2019  	if (alloc_try_hard)
2020  		gfp_mask |= __GFP_RETRY_MAYFAIL;
2021  	if (nid == NUMA_NO_NODE)
2022  		nid = numa_mem_id();
2023  retry:
2024  	folio = __folio_alloc(gfp_mask, order, nid, nmask);
2025  	/* Ensure hugetlb folio won't have large_rmappable flag set. */
2026  	if (folio)
2027  		folio_clear_large_rmappable(folio);
2028  
2029  	if (folio && !folio_ref_freeze(folio, 1)) {
2030  		folio_put(folio);
2031  		if (retry) {	/* retry once */
2032  			retry = false;
2033  			goto retry;
2034  		}
2035  		/* WOW!  twice in a row. */
2036  		pr_warn("HugeTLB unexpected inflated folio ref count\n");
2037  		folio = NULL;
2038  	}
2039  
2040  	/*
2041  	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2042  	 * folio this indicates an overall state change.  Clear bit so
2043  	 * that we resume normal 'try hard' allocations.
2044  	 */
2045  	if (node_alloc_noretry && folio && !alloc_try_hard)
2046  		node_clear(nid, *node_alloc_noretry);
2047  
2048  	/*
2049  	 * If we tried hard to get a folio but failed, set bit so that
2050  	 * subsequent attempts will not try as hard until there is an
2051  	 * overall state change.
2052  	 */
2053  	if (node_alloc_noretry && !folio && alloc_try_hard)
2054  		node_set(nid, *node_alloc_noretry);
2055  
2056  	if (!folio) {
2057  		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2058  		return NULL;
2059  	}
2060  
2061  	__count_vm_event(HTLB_BUDDY_PGALLOC);
2062  	return folio;
2063  }
2064  
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2065  static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2066  		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2067  		nodemask_t *node_alloc_noretry)
2068  {
2069  	struct folio *folio;
2070  
2071  	if (hstate_is_gigantic(h))
2072  		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2073  	else
2074  		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2075  	if (folio)
2076  		init_new_hugetlb_folio(h, folio);
2077  	return folio;
2078  }
2079  
2080  /*
2081   * Common helper to allocate a fresh hugetlb page. All specific allocators
2082   * should use this function to get new hugetlb pages
2083   *
2084   * Note that returned page is 'frozen':  ref count of head page and all tail
2085   * pages is zero.
2086   */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2087  static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2088  		gfp_t gfp_mask, int nid, nodemask_t *nmask)
2089  {
2090  	struct folio *folio;
2091  
2092  	if (hstate_is_gigantic(h))
2093  		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2094  	else
2095  		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2096  	if (!folio)
2097  		return NULL;
2098  
2099  	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2100  	return folio;
2101  }
2102  
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2103  static void prep_and_add_allocated_folios(struct hstate *h,
2104  					struct list_head *folio_list)
2105  {
2106  	unsigned long flags;
2107  	struct folio *folio, *tmp_f;
2108  
2109  	/* Send list for bulk vmemmap optimization processing */
2110  	hugetlb_vmemmap_optimize_folios(h, folio_list);
2111  
2112  	/* Add all new pool pages to free lists in one lock cycle */
2113  	spin_lock_irqsave(&hugetlb_lock, flags);
2114  	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2115  		__prep_account_new_huge_page(h, folio_nid(folio));
2116  		enqueue_hugetlb_folio(h, folio);
2117  	}
2118  	spin_unlock_irqrestore(&hugetlb_lock, flags);
2119  }
2120  
2121  /*
2122   * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2123   * will later be added to the appropriate hugetlb pool.
2124   */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2125  static struct folio *alloc_pool_huge_folio(struct hstate *h,
2126  					nodemask_t *nodes_allowed,
2127  					nodemask_t *node_alloc_noretry,
2128  					int *next_node)
2129  {
2130  	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2131  	int nr_nodes, node;
2132  
2133  	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2134  		struct folio *folio;
2135  
2136  		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2137  					nodes_allowed, node_alloc_noretry);
2138  		if (folio)
2139  			return folio;
2140  	}
2141  
2142  	return NULL;
2143  }
2144  
2145  /*
2146   * Remove huge page from pool from next node to free.  Attempt to keep
2147   * persistent huge pages more or less balanced over allowed nodes.
2148   * This routine only 'removes' the hugetlb page.  The caller must make
2149   * an additional call to free the page to low level allocators.
2150   * Called with hugetlb_lock locked.
2151   */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2152  static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2153  		nodemask_t *nodes_allowed, bool acct_surplus)
2154  {
2155  	int nr_nodes, node;
2156  	struct folio *folio = NULL;
2157  
2158  	lockdep_assert_held(&hugetlb_lock);
2159  	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2160  		/*
2161  		 * If we're returning unused surplus pages, only examine
2162  		 * nodes with surplus pages.
2163  		 */
2164  		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2165  		    !list_empty(&h->hugepage_freelists[node])) {
2166  			folio = list_entry(h->hugepage_freelists[node].next,
2167  					  struct folio, lru);
2168  			remove_hugetlb_folio(h, folio, acct_surplus);
2169  			break;
2170  		}
2171  	}
2172  
2173  	return folio;
2174  }
2175  
2176  /*
2177   * Dissolve a given free hugetlb folio into free buddy pages. This function
2178   * does nothing for in-use hugetlb folios and non-hugetlb folios.
2179   * This function returns values like below:
2180   *
2181   *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2182   *           when the system is under memory pressure and the feature of
2183   *           freeing unused vmemmap pages associated with each hugetlb page
2184   *           is enabled.
2185   *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2186   *           (allocated or reserved.)
2187   *       0:  successfully dissolved free hugepages or the page is not a
2188   *           hugepage (considered as already dissolved)
2189   */
dissolve_free_hugetlb_folio(struct folio * folio)2190  int dissolve_free_hugetlb_folio(struct folio *folio)
2191  {
2192  	int rc = -EBUSY;
2193  
2194  retry:
2195  	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2196  	if (!folio_test_hugetlb(folio))
2197  		return 0;
2198  
2199  	spin_lock_irq(&hugetlb_lock);
2200  	if (!folio_test_hugetlb(folio)) {
2201  		rc = 0;
2202  		goto out;
2203  	}
2204  
2205  	if (!folio_ref_count(folio)) {
2206  		struct hstate *h = folio_hstate(folio);
2207  		if (!available_huge_pages(h))
2208  			goto out;
2209  
2210  		/*
2211  		 * We should make sure that the page is already on the free list
2212  		 * when it is dissolved.
2213  		 */
2214  		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2215  			spin_unlock_irq(&hugetlb_lock);
2216  			cond_resched();
2217  
2218  			/*
2219  			 * Theoretically, we should return -EBUSY when we
2220  			 * encounter this race. In fact, we have a chance
2221  			 * to successfully dissolve the page if we do a
2222  			 * retry. Because the race window is quite small.
2223  			 * If we seize this opportunity, it is an optimization
2224  			 * for increasing the success rate of dissolving page.
2225  			 */
2226  			goto retry;
2227  		}
2228  
2229  		remove_hugetlb_folio(h, folio, false);
2230  		h->max_huge_pages--;
2231  		spin_unlock_irq(&hugetlb_lock);
2232  
2233  		/*
2234  		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2235  		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2236  		 * free the page if it can not allocate required vmemmap.  We
2237  		 * need to adjust max_huge_pages if the page is not freed.
2238  		 * Attempt to allocate vmemmmap here so that we can take
2239  		 * appropriate action on failure.
2240  		 *
2241  		 * The folio_test_hugetlb check here is because
2242  		 * remove_hugetlb_folio will clear hugetlb folio flag for
2243  		 * non-vmemmap optimized hugetlb folios.
2244  		 */
2245  		if (folio_test_hugetlb(folio)) {
2246  			rc = hugetlb_vmemmap_restore_folio(h, folio);
2247  			if (rc) {
2248  				spin_lock_irq(&hugetlb_lock);
2249  				add_hugetlb_folio(h, folio, false);
2250  				h->max_huge_pages++;
2251  				goto out;
2252  			}
2253  		} else
2254  			rc = 0;
2255  
2256  		update_and_free_hugetlb_folio(h, folio, false);
2257  		return rc;
2258  	}
2259  out:
2260  	spin_unlock_irq(&hugetlb_lock);
2261  	return rc;
2262  }
2263  
2264  /*
2265   * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2266   * make specified memory blocks removable from the system.
2267   * Note that this will dissolve a free gigantic hugepage completely, if any
2268   * part of it lies within the given range.
2269   * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2270   * free hugetlb folios that were dissolved before that error are lost.
2271   */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2272  int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2273  {
2274  	unsigned long pfn;
2275  	struct folio *folio;
2276  	int rc = 0;
2277  	unsigned int order;
2278  	struct hstate *h;
2279  
2280  	if (!hugepages_supported())
2281  		return rc;
2282  
2283  	order = huge_page_order(&default_hstate);
2284  	for_each_hstate(h)
2285  		order = min(order, huge_page_order(h));
2286  
2287  	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2288  		folio = pfn_folio(pfn);
2289  		rc = dissolve_free_hugetlb_folio(folio);
2290  		if (rc)
2291  			break;
2292  	}
2293  
2294  	return rc;
2295  }
2296  
2297  /*
2298   * Allocates a fresh surplus page from the page allocator.
2299   */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2300  static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2301  				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2302  {
2303  	struct folio *folio = NULL;
2304  
2305  	if (hstate_is_gigantic(h))
2306  		return NULL;
2307  
2308  	spin_lock_irq(&hugetlb_lock);
2309  	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2310  		goto out_unlock;
2311  	spin_unlock_irq(&hugetlb_lock);
2312  
2313  	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2314  	if (!folio)
2315  		return NULL;
2316  
2317  	spin_lock_irq(&hugetlb_lock);
2318  	/*
2319  	 * We could have raced with the pool size change.
2320  	 * Double check that and simply deallocate the new page
2321  	 * if we would end up overcommiting the surpluses. Abuse
2322  	 * temporary page to workaround the nasty free_huge_folio
2323  	 * codeflow
2324  	 */
2325  	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2326  		folio_set_hugetlb_temporary(folio);
2327  		spin_unlock_irq(&hugetlb_lock);
2328  		free_huge_folio(folio);
2329  		return NULL;
2330  	}
2331  
2332  	h->surplus_huge_pages++;
2333  	h->surplus_huge_pages_node[folio_nid(folio)]++;
2334  
2335  out_unlock:
2336  	spin_unlock_irq(&hugetlb_lock);
2337  
2338  	return folio;
2339  }
2340  
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2341  static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2342  				     int nid, nodemask_t *nmask)
2343  {
2344  	struct folio *folio;
2345  
2346  	if (hstate_is_gigantic(h))
2347  		return NULL;
2348  
2349  	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2350  	if (!folio)
2351  		return NULL;
2352  
2353  	/* fresh huge pages are frozen */
2354  	folio_ref_unfreeze(folio, 1);
2355  	/*
2356  	 * We do not account these pages as surplus because they are only
2357  	 * temporary and will be released properly on the last reference
2358  	 */
2359  	folio_set_hugetlb_temporary(folio);
2360  
2361  	return folio;
2362  }
2363  
2364  /*
2365   * Use the VMA's mpolicy to allocate a huge page from the buddy.
2366   */
2367  static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2368  struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2369  		struct vm_area_struct *vma, unsigned long addr)
2370  {
2371  	struct folio *folio = NULL;
2372  	struct mempolicy *mpol;
2373  	gfp_t gfp_mask = htlb_alloc_mask(h);
2374  	int nid;
2375  	nodemask_t *nodemask;
2376  
2377  	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2378  	if (mpol_is_preferred_many(mpol)) {
2379  		gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2380  
2381  		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2382  
2383  		/* Fallback to all nodes if page==NULL */
2384  		nodemask = NULL;
2385  	}
2386  
2387  	if (!folio)
2388  		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2389  	mpol_cond_put(mpol);
2390  	return folio;
2391  }
2392  
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2393  struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2394  		nodemask_t *nmask, gfp_t gfp_mask)
2395  {
2396  	struct folio *folio;
2397  
2398  	spin_lock_irq(&hugetlb_lock);
2399  	folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2400  					       nmask);
2401  	if (folio) {
2402  		VM_BUG_ON(!h->resv_huge_pages);
2403  		h->resv_huge_pages--;
2404  	}
2405  
2406  	spin_unlock_irq(&hugetlb_lock);
2407  	return folio;
2408  }
2409  
2410  /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2411  struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2412  		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2413  {
2414  	spin_lock_irq(&hugetlb_lock);
2415  	if (available_huge_pages(h)) {
2416  		struct folio *folio;
2417  
2418  		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2419  						preferred_nid, nmask);
2420  		if (folio) {
2421  			spin_unlock_irq(&hugetlb_lock);
2422  			return folio;
2423  		}
2424  	}
2425  	spin_unlock_irq(&hugetlb_lock);
2426  
2427  	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2428  	if (!allow_alloc_fallback)
2429  		gfp_mask |= __GFP_THISNODE;
2430  
2431  	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2432  }
2433  
policy_mbind_nodemask(gfp_t gfp)2434  static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2435  {
2436  #ifdef CONFIG_NUMA
2437  	struct mempolicy *mpol = get_task_policy(current);
2438  
2439  	/*
2440  	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2441  	 * (from policy_nodemask) specifically for hugetlb case
2442  	 */
2443  	if (mpol->mode == MPOL_BIND &&
2444  		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
2445  		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2446  		return &mpol->nodes;
2447  #endif
2448  	return NULL;
2449  }
2450  
2451  /*
2452   * Increase the hugetlb pool such that it can accommodate a reservation
2453   * of size 'delta'.
2454   */
gather_surplus_pages(struct hstate * h,long delta)2455  static int gather_surplus_pages(struct hstate *h, long delta)
2456  	__must_hold(&hugetlb_lock)
2457  {
2458  	LIST_HEAD(surplus_list);
2459  	struct folio *folio, *tmp;
2460  	int ret;
2461  	long i;
2462  	long needed, allocated;
2463  	bool alloc_ok = true;
2464  	int node;
2465  	nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2466  
2467  	lockdep_assert_held(&hugetlb_lock);
2468  	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2469  	if (needed <= 0) {
2470  		h->resv_huge_pages += delta;
2471  		return 0;
2472  	}
2473  
2474  	allocated = 0;
2475  
2476  	ret = -ENOMEM;
2477  retry:
2478  	spin_unlock_irq(&hugetlb_lock);
2479  	for (i = 0; i < needed; i++) {
2480  		folio = NULL;
2481  		for_each_node_mask(node, cpuset_current_mems_allowed) {
2482  			if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2483  				folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2484  						node, NULL);
2485  				if (folio)
2486  					break;
2487  			}
2488  		}
2489  		if (!folio) {
2490  			alloc_ok = false;
2491  			break;
2492  		}
2493  		list_add(&folio->lru, &surplus_list);
2494  		cond_resched();
2495  	}
2496  	allocated += i;
2497  
2498  	/*
2499  	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2500  	 * because either resv_huge_pages or free_huge_pages may have changed.
2501  	 */
2502  	spin_lock_irq(&hugetlb_lock);
2503  	needed = (h->resv_huge_pages + delta) -
2504  			(h->free_huge_pages + allocated);
2505  	if (needed > 0) {
2506  		if (alloc_ok)
2507  			goto retry;
2508  		/*
2509  		 * We were not able to allocate enough pages to
2510  		 * satisfy the entire reservation so we free what
2511  		 * we've allocated so far.
2512  		 */
2513  		goto free;
2514  	}
2515  	/*
2516  	 * The surplus_list now contains _at_least_ the number of extra pages
2517  	 * needed to accommodate the reservation.  Add the appropriate number
2518  	 * of pages to the hugetlb pool and free the extras back to the buddy
2519  	 * allocator.  Commit the entire reservation here to prevent another
2520  	 * process from stealing the pages as they are added to the pool but
2521  	 * before they are reserved.
2522  	 */
2523  	needed += allocated;
2524  	h->resv_huge_pages += delta;
2525  	ret = 0;
2526  
2527  	/* Free the needed pages to the hugetlb pool */
2528  	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2529  		if ((--needed) < 0)
2530  			break;
2531  		/* Add the page to the hugetlb allocator */
2532  		enqueue_hugetlb_folio(h, folio);
2533  	}
2534  free:
2535  	spin_unlock_irq(&hugetlb_lock);
2536  
2537  	/*
2538  	 * Free unnecessary surplus pages to the buddy allocator.
2539  	 * Pages have no ref count, call free_huge_folio directly.
2540  	 */
2541  	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2542  		free_huge_folio(folio);
2543  	spin_lock_irq(&hugetlb_lock);
2544  
2545  	return ret;
2546  }
2547  
2548  /*
2549   * This routine has two main purposes:
2550   * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2551   *    in unused_resv_pages.  This corresponds to the prior adjustments made
2552   *    to the associated reservation map.
2553   * 2) Free any unused surplus pages that may have been allocated to satisfy
2554   *    the reservation.  As many as unused_resv_pages may be freed.
2555   */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2556  static void return_unused_surplus_pages(struct hstate *h,
2557  					unsigned long unused_resv_pages)
2558  {
2559  	unsigned long nr_pages;
2560  	LIST_HEAD(page_list);
2561  
2562  	lockdep_assert_held(&hugetlb_lock);
2563  	/* Uncommit the reservation */
2564  	h->resv_huge_pages -= unused_resv_pages;
2565  
2566  	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2567  		goto out;
2568  
2569  	/*
2570  	 * Part (or even all) of the reservation could have been backed
2571  	 * by pre-allocated pages. Only free surplus pages.
2572  	 */
2573  	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2574  
2575  	/*
2576  	 * We want to release as many surplus pages as possible, spread
2577  	 * evenly across all nodes with memory. Iterate across these nodes
2578  	 * until we can no longer free unreserved surplus pages. This occurs
2579  	 * when the nodes with surplus pages have no free pages.
2580  	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2581  	 * on-line nodes with memory and will handle the hstate accounting.
2582  	 */
2583  	while (nr_pages--) {
2584  		struct folio *folio;
2585  
2586  		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2587  		if (!folio)
2588  			goto out;
2589  
2590  		list_add(&folio->lru, &page_list);
2591  	}
2592  
2593  out:
2594  	spin_unlock_irq(&hugetlb_lock);
2595  	update_and_free_pages_bulk(h, &page_list);
2596  	spin_lock_irq(&hugetlb_lock);
2597  }
2598  
2599  
2600  /*
2601   * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2602   * are used by the huge page allocation routines to manage reservations.
2603   *
2604   * vma_needs_reservation is called to determine if the huge page at addr
2605   * within the vma has an associated reservation.  If a reservation is
2606   * needed, the value 1 is returned.  The caller is then responsible for
2607   * managing the global reservation and subpool usage counts.  After
2608   * the huge page has been allocated, vma_commit_reservation is called
2609   * to add the page to the reservation map.  If the page allocation fails,
2610   * the reservation must be ended instead of committed.  vma_end_reservation
2611   * is called in such cases.
2612   *
2613   * In the normal case, vma_commit_reservation returns the same value
2614   * as the preceding vma_needs_reservation call.  The only time this
2615   * is not the case is if a reserve map was changed between calls.  It
2616   * is the responsibility of the caller to notice the difference and
2617   * take appropriate action.
2618   *
2619   * vma_add_reservation is used in error paths where a reservation must
2620   * be restored when a newly allocated huge page must be freed.  It is
2621   * to be called after calling vma_needs_reservation to determine if a
2622   * reservation exists.
2623   *
2624   * vma_del_reservation is used in error paths where an entry in the reserve
2625   * map was created during huge page allocation and must be removed.  It is to
2626   * be called after calling vma_needs_reservation to determine if a reservation
2627   * exists.
2628   */
2629  enum vma_resv_mode {
2630  	VMA_NEEDS_RESV,
2631  	VMA_COMMIT_RESV,
2632  	VMA_END_RESV,
2633  	VMA_ADD_RESV,
2634  	VMA_DEL_RESV,
2635  };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2636  static long __vma_reservation_common(struct hstate *h,
2637  				struct vm_area_struct *vma, unsigned long addr,
2638  				enum vma_resv_mode mode)
2639  {
2640  	struct resv_map *resv;
2641  	pgoff_t idx;
2642  	long ret;
2643  	long dummy_out_regions_needed;
2644  
2645  	resv = vma_resv_map(vma);
2646  	if (!resv)
2647  		return 1;
2648  
2649  	idx = vma_hugecache_offset(h, vma, addr);
2650  	switch (mode) {
2651  	case VMA_NEEDS_RESV:
2652  		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2653  		/* We assume that vma_reservation_* routines always operate on
2654  		 * 1 page, and that adding to resv map a 1 page entry can only
2655  		 * ever require 1 region.
2656  		 */
2657  		VM_BUG_ON(dummy_out_regions_needed != 1);
2658  		break;
2659  	case VMA_COMMIT_RESV:
2660  		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2661  		/* region_add calls of range 1 should never fail. */
2662  		VM_BUG_ON(ret < 0);
2663  		break;
2664  	case VMA_END_RESV:
2665  		region_abort(resv, idx, idx + 1, 1);
2666  		ret = 0;
2667  		break;
2668  	case VMA_ADD_RESV:
2669  		if (vma->vm_flags & VM_MAYSHARE) {
2670  			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2671  			/* region_add calls of range 1 should never fail. */
2672  			VM_BUG_ON(ret < 0);
2673  		} else {
2674  			region_abort(resv, idx, idx + 1, 1);
2675  			ret = region_del(resv, idx, idx + 1);
2676  		}
2677  		break;
2678  	case VMA_DEL_RESV:
2679  		if (vma->vm_flags & VM_MAYSHARE) {
2680  			region_abort(resv, idx, idx + 1, 1);
2681  			ret = region_del(resv, idx, idx + 1);
2682  		} else {
2683  			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2684  			/* region_add calls of range 1 should never fail. */
2685  			VM_BUG_ON(ret < 0);
2686  		}
2687  		break;
2688  	default:
2689  		BUG();
2690  	}
2691  
2692  	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2693  		return ret;
2694  	/*
2695  	 * We know private mapping must have HPAGE_RESV_OWNER set.
2696  	 *
2697  	 * In most cases, reserves always exist for private mappings.
2698  	 * However, a file associated with mapping could have been
2699  	 * hole punched or truncated after reserves were consumed.
2700  	 * As subsequent fault on such a range will not use reserves.
2701  	 * Subtle - The reserve map for private mappings has the
2702  	 * opposite meaning than that of shared mappings.  If NO
2703  	 * entry is in the reserve map, it means a reservation exists.
2704  	 * If an entry exists in the reserve map, it means the
2705  	 * reservation has already been consumed.  As a result, the
2706  	 * return value of this routine is the opposite of the
2707  	 * value returned from reserve map manipulation routines above.
2708  	 */
2709  	if (ret > 0)
2710  		return 0;
2711  	if (ret == 0)
2712  		return 1;
2713  	return ret;
2714  }
2715  
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2716  static long vma_needs_reservation(struct hstate *h,
2717  			struct vm_area_struct *vma, unsigned long addr)
2718  {
2719  	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2720  }
2721  
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2722  static long vma_commit_reservation(struct hstate *h,
2723  			struct vm_area_struct *vma, unsigned long addr)
2724  {
2725  	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2726  }
2727  
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2728  static void vma_end_reservation(struct hstate *h,
2729  			struct vm_area_struct *vma, unsigned long addr)
2730  {
2731  	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2732  }
2733  
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2734  static long vma_add_reservation(struct hstate *h,
2735  			struct vm_area_struct *vma, unsigned long addr)
2736  {
2737  	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2738  }
2739  
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2740  static long vma_del_reservation(struct hstate *h,
2741  			struct vm_area_struct *vma, unsigned long addr)
2742  {
2743  	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2744  }
2745  
2746  /*
2747   * This routine is called to restore reservation information on error paths.
2748   * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2749   * and the hugetlb mutex should remain held when calling this routine.
2750   *
2751   * It handles two specific cases:
2752   * 1) A reservation was in place and the folio consumed the reservation.
2753   *    hugetlb_restore_reserve is set in the folio.
2754   * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2755   *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2756   *
2757   * In case 1, free_huge_folio later in the error path will increment the
2758   * global reserve count.  But, free_huge_folio does not have enough context
2759   * to adjust the reservation map.  This case deals primarily with private
2760   * mappings.  Adjust the reserve map here to be consistent with global
2761   * reserve count adjustments to be made by free_huge_folio.  Make sure the
2762   * reserve map indicates there is a reservation present.
2763   *
2764   * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2765   */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2766  void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2767  			unsigned long address, struct folio *folio)
2768  {
2769  	long rc = vma_needs_reservation(h, vma, address);
2770  
2771  	if (folio_test_hugetlb_restore_reserve(folio)) {
2772  		if (unlikely(rc < 0))
2773  			/*
2774  			 * Rare out of memory condition in reserve map
2775  			 * manipulation.  Clear hugetlb_restore_reserve so
2776  			 * that global reserve count will not be incremented
2777  			 * by free_huge_folio.  This will make it appear
2778  			 * as though the reservation for this folio was
2779  			 * consumed.  This may prevent the task from
2780  			 * faulting in the folio at a later time.  This
2781  			 * is better than inconsistent global huge page
2782  			 * accounting of reserve counts.
2783  			 */
2784  			folio_clear_hugetlb_restore_reserve(folio);
2785  		else if (rc)
2786  			(void)vma_add_reservation(h, vma, address);
2787  		else
2788  			vma_end_reservation(h, vma, address);
2789  	} else {
2790  		if (!rc) {
2791  			/*
2792  			 * This indicates there is an entry in the reserve map
2793  			 * not added by alloc_hugetlb_folio.  We know it was added
2794  			 * before the alloc_hugetlb_folio call, otherwise
2795  			 * hugetlb_restore_reserve would be set on the folio.
2796  			 * Remove the entry so that a subsequent allocation
2797  			 * does not consume a reservation.
2798  			 */
2799  			rc = vma_del_reservation(h, vma, address);
2800  			if (rc < 0)
2801  				/*
2802  				 * VERY rare out of memory condition.  Since
2803  				 * we can not delete the entry, set
2804  				 * hugetlb_restore_reserve so that the reserve
2805  				 * count will be incremented when the folio
2806  				 * is freed.  This reserve will be consumed
2807  				 * on a subsequent allocation.
2808  				 */
2809  				folio_set_hugetlb_restore_reserve(folio);
2810  		} else if (rc < 0) {
2811  			/*
2812  			 * Rare out of memory condition from
2813  			 * vma_needs_reservation call.  Memory allocation is
2814  			 * only attempted if a new entry is needed.  Therefore,
2815  			 * this implies there is not an entry in the
2816  			 * reserve map.
2817  			 *
2818  			 * For shared mappings, no entry in the map indicates
2819  			 * no reservation.  We are done.
2820  			 */
2821  			if (!(vma->vm_flags & VM_MAYSHARE))
2822  				/*
2823  				 * For private mappings, no entry indicates
2824  				 * a reservation is present.  Since we can
2825  				 * not add an entry, set hugetlb_restore_reserve
2826  				 * on the folio so reserve count will be
2827  				 * incremented when freed.  This reserve will
2828  				 * be consumed on a subsequent allocation.
2829  				 */
2830  				folio_set_hugetlb_restore_reserve(folio);
2831  		} else
2832  			/*
2833  			 * No reservation present, do nothing
2834  			 */
2835  			 vma_end_reservation(h, vma, address);
2836  	}
2837  }
2838  
2839  /*
2840   * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2841   * the old one
2842   * @h: struct hstate old page belongs to
2843   * @old_folio: Old folio to dissolve
2844   * @list: List to isolate the page in case we need to
2845   * Returns 0 on success, otherwise negated error.
2846   */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)2847  static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2848  			struct folio *old_folio, struct list_head *list)
2849  {
2850  	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2851  	int nid = folio_nid(old_folio);
2852  	struct folio *new_folio = NULL;
2853  	int ret = 0;
2854  
2855  retry:
2856  	spin_lock_irq(&hugetlb_lock);
2857  	if (!folio_test_hugetlb(old_folio)) {
2858  		/*
2859  		 * Freed from under us. Drop new_folio too.
2860  		 */
2861  		goto free_new;
2862  	} else if (folio_ref_count(old_folio)) {
2863  		bool isolated;
2864  
2865  		/*
2866  		 * Someone has grabbed the folio, try to isolate it here.
2867  		 * Fail with -EBUSY if not possible.
2868  		 */
2869  		spin_unlock_irq(&hugetlb_lock);
2870  		isolated = isolate_hugetlb(old_folio, list);
2871  		ret = isolated ? 0 : -EBUSY;
2872  		spin_lock_irq(&hugetlb_lock);
2873  		goto free_new;
2874  	} else if (!folio_test_hugetlb_freed(old_folio)) {
2875  		/*
2876  		 * Folio's refcount is 0 but it has not been enqueued in the
2877  		 * freelist yet. Race window is small, so we can succeed here if
2878  		 * we retry.
2879  		 */
2880  		spin_unlock_irq(&hugetlb_lock);
2881  		cond_resched();
2882  		goto retry;
2883  	} else {
2884  		if (!new_folio) {
2885  			spin_unlock_irq(&hugetlb_lock);
2886  			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2887  							      NULL, NULL);
2888  			if (!new_folio)
2889  				return -ENOMEM;
2890  			__prep_new_hugetlb_folio(h, new_folio);
2891  			goto retry;
2892  		}
2893  
2894  		/*
2895  		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2896  		 * the freelist and decrease the counters. These will be
2897  		 * incremented again when calling __prep_account_new_huge_page()
2898  		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2899  		 * remain stable since this happens under the lock.
2900  		 */
2901  		remove_hugetlb_folio(h, old_folio, false);
2902  
2903  		/*
2904  		 * Ref count on new_folio is already zero as it was dropped
2905  		 * earlier.  It can be directly added to the pool free list.
2906  		 */
2907  		__prep_account_new_huge_page(h, nid);
2908  		enqueue_hugetlb_folio(h, new_folio);
2909  
2910  		/*
2911  		 * Folio has been replaced, we can safely free the old one.
2912  		 */
2913  		spin_unlock_irq(&hugetlb_lock);
2914  		update_and_free_hugetlb_folio(h, old_folio, false);
2915  	}
2916  
2917  	return ret;
2918  
2919  free_new:
2920  	spin_unlock_irq(&hugetlb_lock);
2921  	if (new_folio)
2922  		update_and_free_hugetlb_folio(h, new_folio, false);
2923  
2924  	return ret;
2925  }
2926  
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)2927  int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2928  {
2929  	struct hstate *h;
2930  	struct folio *folio = page_folio(page);
2931  	int ret = -EBUSY;
2932  
2933  	/*
2934  	 * The page might have been dissolved from under our feet, so make sure
2935  	 * to carefully check the state under the lock.
2936  	 * Return success when racing as if we dissolved the page ourselves.
2937  	 */
2938  	spin_lock_irq(&hugetlb_lock);
2939  	if (folio_test_hugetlb(folio)) {
2940  		h = folio_hstate(folio);
2941  	} else {
2942  		spin_unlock_irq(&hugetlb_lock);
2943  		return 0;
2944  	}
2945  	spin_unlock_irq(&hugetlb_lock);
2946  
2947  	/*
2948  	 * Fence off gigantic pages as there is a cyclic dependency between
2949  	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2950  	 * of bailing out right away without further retrying.
2951  	 */
2952  	if (hstate_is_gigantic(h))
2953  		return -ENOMEM;
2954  
2955  	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
2956  		ret = 0;
2957  	else if (!folio_ref_count(folio))
2958  		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2959  
2960  	return ret;
2961  }
2962  
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2963  struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2964  				    unsigned long addr, int avoid_reserve)
2965  {
2966  	struct hugepage_subpool *spool = subpool_vma(vma);
2967  	struct hstate *h = hstate_vma(vma);
2968  	struct folio *folio;
2969  	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
2970  	long gbl_chg;
2971  	int memcg_charge_ret, ret, idx;
2972  	struct hugetlb_cgroup *h_cg = NULL;
2973  	struct mem_cgroup *memcg;
2974  	bool deferred_reserve;
2975  	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2976  
2977  	memcg = get_mem_cgroup_from_current();
2978  	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
2979  	if (memcg_charge_ret == -ENOMEM) {
2980  		mem_cgroup_put(memcg);
2981  		return ERR_PTR(-ENOMEM);
2982  	}
2983  
2984  	idx = hstate_index(h);
2985  	/*
2986  	 * Examine the region/reserve map to determine if the process
2987  	 * has a reservation for the page to be allocated.  A return
2988  	 * code of zero indicates a reservation exists (no change).
2989  	 */
2990  	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2991  	if (map_chg < 0) {
2992  		if (!memcg_charge_ret)
2993  			mem_cgroup_cancel_charge(memcg, nr_pages);
2994  		mem_cgroup_put(memcg);
2995  		return ERR_PTR(-ENOMEM);
2996  	}
2997  
2998  	/*
2999  	 * Processes that did not create the mapping will have no
3000  	 * reserves as indicated by the region/reserve map. Check
3001  	 * that the allocation will not exceed the subpool limit.
3002  	 * Allocations for MAP_NORESERVE mappings also need to be
3003  	 * checked against any subpool limit.
3004  	 */
3005  	if (map_chg || avoid_reserve) {
3006  		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3007  		if (gbl_chg < 0)
3008  			goto out_end_reservation;
3009  
3010  		/*
3011  		 * Even though there was no reservation in the region/reserve
3012  		 * map, there could be reservations associated with the
3013  		 * subpool that can be used.  This would be indicated if the
3014  		 * return value of hugepage_subpool_get_pages() is zero.
3015  		 * However, if avoid_reserve is specified we still avoid even
3016  		 * the subpool reservations.
3017  		 */
3018  		if (avoid_reserve)
3019  			gbl_chg = 1;
3020  	}
3021  
3022  	/* If this allocation is not consuming a reservation, charge it now.
3023  	 */
3024  	deferred_reserve = map_chg || avoid_reserve;
3025  	if (deferred_reserve) {
3026  		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3027  			idx, pages_per_huge_page(h), &h_cg);
3028  		if (ret)
3029  			goto out_subpool_put;
3030  	}
3031  
3032  	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3033  	if (ret)
3034  		goto out_uncharge_cgroup_reservation;
3035  
3036  	spin_lock_irq(&hugetlb_lock);
3037  	/*
3038  	 * glb_chg is passed to indicate whether or not a page must be taken
3039  	 * from the global free pool (global change).  gbl_chg == 0 indicates
3040  	 * a reservation exists for the allocation.
3041  	 */
3042  	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3043  	if (!folio) {
3044  		spin_unlock_irq(&hugetlb_lock);
3045  		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3046  		if (!folio)
3047  			goto out_uncharge_cgroup;
3048  		spin_lock_irq(&hugetlb_lock);
3049  		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3050  			folio_set_hugetlb_restore_reserve(folio);
3051  			h->resv_huge_pages--;
3052  		}
3053  		list_add(&folio->lru, &h->hugepage_activelist);
3054  		folio_ref_unfreeze(folio, 1);
3055  		/* Fall through */
3056  	}
3057  
3058  	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3059  	/* If allocation is not consuming a reservation, also store the
3060  	 * hugetlb_cgroup pointer on the page.
3061  	 */
3062  	if (deferred_reserve) {
3063  		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3064  						  h_cg, folio);
3065  	}
3066  
3067  	spin_unlock_irq(&hugetlb_lock);
3068  
3069  	hugetlb_set_folio_subpool(folio, spool);
3070  
3071  	map_commit = vma_commit_reservation(h, vma, addr);
3072  	if (unlikely(map_chg > map_commit)) {
3073  		/*
3074  		 * The page was added to the reservation map between
3075  		 * vma_needs_reservation and vma_commit_reservation.
3076  		 * This indicates a race with hugetlb_reserve_pages.
3077  		 * Adjust for the subpool count incremented above AND
3078  		 * in hugetlb_reserve_pages for the same page.  Also,
3079  		 * the reservation count added in hugetlb_reserve_pages
3080  		 * no longer applies.
3081  		 */
3082  		long rsv_adjust;
3083  
3084  		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3085  		hugetlb_acct_memory(h, -rsv_adjust);
3086  		if (deferred_reserve) {
3087  			spin_lock_irq(&hugetlb_lock);
3088  			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3089  					pages_per_huge_page(h), folio);
3090  			spin_unlock_irq(&hugetlb_lock);
3091  		}
3092  	}
3093  
3094  	if (!memcg_charge_ret)
3095  		mem_cgroup_commit_charge(folio, memcg);
3096  	mem_cgroup_put(memcg);
3097  
3098  	return folio;
3099  
3100  out_uncharge_cgroup:
3101  	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3102  out_uncharge_cgroup_reservation:
3103  	if (deferred_reserve)
3104  		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3105  						    h_cg);
3106  out_subpool_put:
3107  	if (map_chg || avoid_reserve)
3108  		hugepage_subpool_put_pages(spool, 1);
3109  out_end_reservation:
3110  	vma_end_reservation(h, vma, addr);
3111  	if (!memcg_charge_ret)
3112  		mem_cgroup_cancel_charge(memcg, nr_pages);
3113  	mem_cgroup_put(memcg);
3114  	return ERR_PTR(-ENOSPC);
3115  }
3116  
3117  int alloc_bootmem_huge_page(struct hstate *h, int nid)
3118  	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3119  int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3120  {
3121  	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3122  	int nr_nodes, node = nid;
3123  
3124  	/* do node specific alloc */
3125  	if (nid != NUMA_NO_NODE) {
3126  		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3127  				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3128  		if (!m)
3129  			return 0;
3130  		goto found;
3131  	}
3132  	/* allocate from next node when distributing huge pages */
3133  	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3134  		m = memblock_alloc_try_nid_raw(
3135  				huge_page_size(h), huge_page_size(h),
3136  				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3137  		/*
3138  		 * Use the beginning of the huge page to store the
3139  		 * huge_bootmem_page struct (until gather_bootmem
3140  		 * puts them into the mem_map).
3141  		 */
3142  		if (!m)
3143  			return 0;
3144  		goto found;
3145  	}
3146  
3147  found:
3148  
3149  	/*
3150  	 * Only initialize the head struct page in memmap_init_reserved_pages,
3151  	 * rest of the struct pages will be initialized by the HugeTLB
3152  	 * subsystem itself.
3153  	 * The head struct page is used to get folio information by the HugeTLB
3154  	 * subsystem like zone id and node id.
3155  	 */
3156  	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3157  		huge_page_size(h) - PAGE_SIZE);
3158  	/* Put them into a private list first because mem_map is not up yet */
3159  	INIT_LIST_HEAD(&m->list);
3160  	list_add(&m->list, &huge_boot_pages[node]);
3161  	m->hstate = h;
3162  	return 1;
3163  }
3164  
3165  /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3166  static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3167  					unsigned long start_page_number,
3168  					unsigned long end_page_number)
3169  {
3170  	enum zone_type zone = zone_idx(folio_zone(folio));
3171  	int nid = folio_nid(folio);
3172  	unsigned long head_pfn = folio_pfn(folio);
3173  	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3174  	int ret;
3175  
3176  	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3177  		struct page *page = pfn_to_page(pfn);
3178  
3179  		__ClearPageReserved(folio_page(folio, pfn - head_pfn));
3180  		__init_single_page(page, pfn, zone, nid);
3181  		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3182  		ret = page_ref_freeze(page, 1);
3183  		VM_BUG_ON(!ret);
3184  	}
3185  }
3186  
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3187  static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3188  					      struct hstate *h,
3189  					      unsigned long nr_pages)
3190  {
3191  	int ret;
3192  
3193  	/* Prepare folio head */
3194  	__folio_clear_reserved(folio);
3195  	__folio_set_head(folio);
3196  	ret = folio_ref_freeze(folio, 1);
3197  	VM_BUG_ON(!ret);
3198  	/* Initialize the necessary tail struct pages */
3199  	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3200  	prep_compound_head((struct page *)folio, huge_page_order(h));
3201  }
3202  
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3203  static void __init prep_and_add_bootmem_folios(struct hstate *h,
3204  					struct list_head *folio_list)
3205  {
3206  	unsigned long flags;
3207  	struct folio *folio, *tmp_f;
3208  
3209  	/* Send list for bulk vmemmap optimization processing */
3210  	hugetlb_vmemmap_optimize_folios(h, folio_list);
3211  
3212  	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3213  		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3214  			/*
3215  			 * If HVO fails, initialize all tail struct pages
3216  			 * We do not worry about potential long lock hold
3217  			 * time as this is early in boot and there should
3218  			 * be no contention.
3219  			 */
3220  			hugetlb_folio_init_tail_vmemmap(folio,
3221  					HUGETLB_VMEMMAP_RESERVE_PAGES,
3222  					pages_per_huge_page(h));
3223  		}
3224  		/* Subdivide locks to achieve better parallel performance */
3225  		spin_lock_irqsave(&hugetlb_lock, flags);
3226  		__prep_account_new_huge_page(h, folio_nid(folio));
3227  		enqueue_hugetlb_folio(h, folio);
3228  		spin_unlock_irqrestore(&hugetlb_lock, flags);
3229  	}
3230  }
3231  
3232  /*
3233   * Put bootmem huge pages into the standard lists after mem_map is up.
3234   * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3235   */
gather_bootmem_prealloc_node(unsigned long nid)3236  static void __init gather_bootmem_prealloc_node(unsigned long nid)
3237  {
3238  	LIST_HEAD(folio_list);
3239  	struct huge_bootmem_page *m;
3240  	struct hstate *h = NULL, *prev_h = NULL;
3241  
3242  	list_for_each_entry(m, &huge_boot_pages[nid], list) {
3243  		struct page *page = virt_to_page(m);
3244  		struct folio *folio = (void *)page;
3245  
3246  		h = m->hstate;
3247  		/*
3248  		 * It is possible to have multiple huge page sizes (hstates)
3249  		 * in this list.  If so, process each size separately.
3250  		 */
3251  		if (h != prev_h && prev_h != NULL)
3252  			prep_and_add_bootmem_folios(prev_h, &folio_list);
3253  		prev_h = h;
3254  
3255  		VM_BUG_ON(!hstate_is_gigantic(h));
3256  		WARN_ON(folio_ref_count(folio) != 1);
3257  
3258  		hugetlb_folio_init_vmemmap(folio, h,
3259  					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3260  		init_new_hugetlb_folio(h, folio);
3261  		list_add(&folio->lru, &folio_list);
3262  
3263  		/*
3264  		 * We need to restore the 'stolen' pages to totalram_pages
3265  		 * in order to fix confusing memory reports from free(1) and
3266  		 * other side-effects, like CommitLimit going negative.
3267  		 */
3268  		adjust_managed_page_count(page, pages_per_huge_page(h));
3269  		cond_resched();
3270  	}
3271  
3272  	prep_and_add_bootmem_folios(h, &folio_list);
3273  }
3274  
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3275  static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3276  						    unsigned long end, void *arg)
3277  {
3278  	int nid;
3279  
3280  	for (nid = start; nid < end; nid++)
3281  		gather_bootmem_prealloc_node(nid);
3282  }
3283  
gather_bootmem_prealloc(void)3284  static void __init gather_bootmem_prealloc(void)
3285  {
3286  	struct padata_mt_job job = {
3287  		.thread_fn	= gather_bootmem_prealloc_parallel,
3288  		.fn_arg		= NULL,
3289  		.start		= 0,
3290  		.size		= num_node_state(N_MEMORY),
3291  		.align		= 1,
3292  		.min_chunk	= 1,
3293  		.max_threads	= num_node_state(N_MEMORY),
3294  		.numa_aware	= true,
3295  	};
3296  
3297  	padata_do_multithreaded(&job);
3298  }
3299  
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3300  static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3301  {
3302  	unsigned long i;
3303  	char buf[32];
3304  
3305  	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3306  		if (hstate_is_gigantic(h)) {
3307  			if (!alloc_bootmem_huge_page(h, nid))
3308  				break;
3309  		} else {
3310  			struct folio *folio;
3311  			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3312  
3313  			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3314  					&node_states[N_MEMORY]);
3315  			if (!folio)
3316  				break;
3317  			free_huge_folio(folio); /* free it into the hugepage allocator */
3318  		}
3319  		cond_resched();
3320  	}
3321  	if (i == h->max_huge_pages_node[nid])
3322  		return;
3323  
3324  	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3325  	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3326  		h->max_huge_pages_node[nid], buf, nid, i);
3327  	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3328  	h->max_huge_pages_node[nid] = i;
3329  }
3330  
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3331  static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3332  {
3333  	int i;
3334  	bool node_specific_alloc = false;
3335  
3336  	for_each_online_node(i) {
3337  		if (h->max_huge_pages_node[i] > 0) {
3338  			hugetlb_hstate_alloc_pages_onenode(h, i);
3339  			node_specific_alloc = true;
3340  		}
3341  	}
3342  
3343  	return node_specific_alloc;
3344  }
3345  
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3346  static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3347  {
3348  	if (allocated < h->max_huge_pages) {
3349  		char buf[32];
3350  
3351  		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3352  		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3353  			h->max_huge_pages, buf, allocated);
3354  		h->max_huge_pages = allocated;
3355  	}
3356  }
3357  
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3358  static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3359  {
3360  	struct hstate *h = (struct hstate *)arg;
3361  	int i, num = end - start;
3362  	nodemask_t node_alloc_noretry;
3363  	LIST_HEAD(folio_list);
3364  	int next_node = first_online_node;
3365  
3366  	/* Bit mask controlling how hard we retry per-node allocations.*/
3367  	nodes_clear(node_alloc_noretry);
3368  
3369  	for (i = 0; i < num; ++i) {
3370  		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3371  						&node_alloc_noretry, &next_node);
3372  		if (!folio)
3373  			break;
3374  
3375  		list_move(&folio->lru, &folio_list);
3376  		cond_resched();
3377  	}
3378  
3379  	prep_and_add_allocated_folios(h, &folio_list);
3380  }
3381  
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3382  static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3383  {
3384  	unsigned long i;
3385  
3386  	for (i = 0; i < h->max_huge_pages; ++i) {
3387  		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3388  			break;
3389  		cond_resched();
3390  	}
3391  
3392  	return i;
3393  }
3394  
hugetlb_pages_alloc_boot(struct hstate * h)3395  static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3396  {
3397  	struct padata_mt_job job = {
3398  		.fn_arg		= h,
3399  		.align		= 1,
3400  		.numa_aware	= true
3401  	};
3402  
3403  	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3404  	job.start	= 0;
3405  	job.size	= h->max_huge_pages;
3406  
3407  	/*
3408  	 * job.max_threads is twice the num_node_state(N_MEMORY),
3409  	 *
3410  	 * Tests below indicate that a multiplier of 2 significantly improves
3411  	 * performance, and although larger values also provide improvements,
3412  	 * the gains are marginal.
3413  	 *
3414  	 * Therefore, choosing 2 as the multiplier strikes a good balance between
3415  	 * enhancing parallel processing capabilities and maintaining efficient
3416  	 * resource management.
3417  	 *
3418  	 * +------------+-------+-------+-------+-------+-------+
3419  	 * | multiplier |   1   |   2   |   3   |   4   |   5   |
3420  	 * +------------+-------+-------+-------+-------+-------+
3421  	 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3422  	 * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3423  	 * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3424  	 * +------------+-------+-------+-------+-------+-------+
3425  	 */
3426  	job.max_threads	= num_node_state(N_MEMORY) * 2;
3427  	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3428  	padata_do_multithreaded(&job);
3429  
3430  	return h->nr_huge_pages;
3431  }
3432  
3433  /*
3434   * NOTE: this routine is called in different contexts for gigantic and
3435   * non-gigantic pages.
3436   * - For gigantic pages, this is called early in the boot process and
3437   *   pages are allocated from memblock allocated or something similar.
3438   *   Gigantic pages are actually added to pools later with the routine
3439   *   gather_bootmem_prealloc.
3440   * - For non-gigantic pages, this is called later in the boot process after
3441   *   all of mm is up and functional.  Pages are allocated from buddy and
3442   *   then added to hugetlb pools.
3443   */
hugetlb_hstate_alloc_pages(struct hstate * h)3444  static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3445  {
3446  	unsigned long allocated;
3447  	static bool initialized __initdata;
3448  
3449  	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3450  	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3451  		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3452  		return;
3453  	}
3454  
3455  	/* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3456  	if (!initialized) {
3457  		int i = 0;
3458  
3459  		for (i = 0; i < MAX_NUMNODES; i++)
3460  			INIT_LIST_HEAD(&huge_boot_pages[i]);
3461  		initialized = true;
3462  	}
3463  
3464  	/* do node specific alloc */
3465  	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3466  		return;
3467  
3468  	/* below will do all node balanced alloc */
3469  	if (hstate_is_gigantic(h))
3470  		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3471  	else
3472  		allocated = hugetlb_pages_alloc_boot(h);
3473  
3474  	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3475  }
3476  
hugetlb_init_hstates(void)3477  static void __init hugetlb_init_hstates(void)
3478  {
3479  	struct hstate *h, *h2;
3480  
3481  	for_each_hstate(h) {
3482  		/* oversize hugepages were init'ed in early boot */
3483  		if (!hstate_is_gigantic(h))
3484  			hugetlb_hstate_alloc_pages(h);
3485  
3486  		/*
3487  		 * Set demote order for each hstate.  Note that
3488  		 * h->demote_order is initially 0.
3489  		 * - We can not demote gigantic pages if runtime freeing
3490  		 *   is not supported, so skip this.
3491  		 * - If CMA allocation is possible, we can not demote
3492  		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3493  		 */
3494  		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3495  			continue;
3496  		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3497  			continue;
3498  		for_each_hstate(h2) {
3499  			if (h2 == h)
3500  				continue;
3501  			if (h2->order < h->order &&
3502  			    h2->order > h->demote_order)
3503  				h->demote_order = h2->order;
3504  		}
3505  	}
3506  }
3507  
report_hugepages(void)3508  static void __init report_hugepages(void)
3509  {
3510  	struct hstate *h;
3511  
3512  	for_each_hstate(h) {
3513  		char buf[32];
3514  
3515  		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3516  		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3517  			buf, h->free_huge_pages);
3518  		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3519  			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3520  	}
3521  }
3522  
3523  #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3524  static void try_to_free_low(struct hstate *h, unsigned long count,
3525  						nodemask_t *nodes_allowed)
3526  {
3527  	int i;
3528  	LIST_HEAD(page_list);
3529  
3530  	lockdep_assert_held(&hugetlb_lock);
3531  	if (hstate_is_gigantic(h))
3532  		return;
3533  
3534  	/*
3535  	 * Collect pages to be freed on a list, and free after dropping lock
3536  	 */
3537  	for_each_node_mask(i, *nodes_allowed) {
3538  		struct folio *folio, *next;
3539  		struct list_head *freel = &h->hugepage_freelists[i];
3540  		list_for_each_entry_safe(folio, next, freel, lru) {
3541  			if (count >= h->nr_huge_pages)
3542  				goto out;
3543  			if (folio_test_highmem(folio))
3544  				continue;
3545  			remove_hugetlb_folio(h, folio, false);
3546  			list_add(&folio->lru, &page_list);
3547  		}
3548  	}
3549  
3550  out:
3551  	spin_unlock_irq(&hugetlb_lock);
3552  	update_and_free_pages_bulk(h, &page_list);
3553  	spin_lock_irq(&hugetlb_lock);
3554  }
3555  #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3556  static inline void try_to_free_low(struct hstate *h, unsigned long count,
3557  						nodemask_t *nodes_allowed)
3558  {
3559  }
3560  #endif
3561  
3562  /*
3563   * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3564   * balanced by operating on them in a round-robin fashion.
3565   * Returns 1 if an adjustment was made.
3566   */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3567  static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3568  				int delta)
3569  {
3570  	int nr_nodes, node;
3571  
3572  	lockdep_assert_held(&hugetlb_lock);
3573  	VM_BUG_ON(delta != -1 && delta != 1);
3574  
3575  	if (delta < 0) {
3576  		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3577  			if (h->surplus_huge_pages_node[node])
3578  				goto found;
3579  		}
3580  	} else {
3581  		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3582  			if (h->surplus_huge_pages_node[node] <
3583  					h->nr_huge_pages_node[node])
3584  				goto found;
3585  		}
3586  	}
3587  	return 0;
3588  
3589  found:
3590  	h->surplus_huge_pages += delta;
3591  	h->surplus_huge_pages_node[node] += delta;
3592  	return 1;
3593  }
3594  
3595  #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3596  static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3597  			      nodemask_t *nodes_allowed)
3598  {
3599  	unsigned long min_count;
3600  	unsigned long allocated;
3601  	struct folio *folio;
3602  	LIST_HEAD(page_list);
3603  	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3604  
3605  	/*
3606  	 * Bit mask controlling how hard we retry per-node allocations.
3607  	 * If we can not allocate the bit mask, do not attempt to allocate
3608  	 * the requested huge pages.
3609  	 */
3610  	if (node_alloc_noretry)
3611  		nodes_clear(*node_alloc_noretry);
3612  	else
3613  		return -ENOMEM;
3614  
3615  	/*
3616  	 * resize_lock mutex prevents concurrent adjustments to number of
3617  	 * pages in hstate via the proc/sysfs interfaces.
3618  	 */
3619  	mutex_lock(&h->resize_lock);
3620  	flush_free_hpage_work(h);
3621  	spin_lock_irq(&hugetlb_lock);
3622  
3623  	/*
3624  	 * Check for a node specific request.
3625  	 * Changing node specific huge page count may require a corresponding
3626  	 * change to the global count.  In any case, the passed node mask
3627  	 * (nodes_allowed) will restrict alloc/free to the specified node.
3628  	 */
3629  	if (nid != NUMA_NO_NODE) {
3630  		unsigned long old_count = count;
3631  
3632  		count += persistent_huge_pages(h) -
3633  			 (h->nr_huge_pages_node[nid] -
3634  			  h->surplus_huge_pages_node[nid]);
3635  		/*
3636  		 * User may have specified a large count value which caused the
3637  		 * above calculation to overflow.  In this case, they wanted
3638  		 * to allocate as many huge pages as possible.  Set count to
3639  		 * largest possible value to align with their intention.
3640  		 */
3641  		if (count < old_count)
3642  			count = ULONG_MAX;
3643  	}
3644  
3645  	/*
3646  	 * Gigantic pages runtime allocation depend on the capability for large
3647  	 * page range allocation.
3648  	 * If the system does not provide this feature, return an error when
3649  	 * the user tries to allocate gigantic pages but let the user free the
3650  	 * boottime allocated gigantic pages.
3651  	 */
3652  	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3653  		if (count > persistent_huge_pages(h)) {
3654  			spin_unlock_irq(&hugetlb_lock);
3655  			mutex_unlock(&h->resize_lock);
3656  			NODEMASK_FREE(node_alloc_noretry);
3657  			return -EINVAL;
3658  		}
3659  		/* Fall through to decrease pool */
3660  	}
3661  
3662  	/*
3663  	 * Increase the pool size
3664  	 * First take pages out of surplus state.  Then make up the
3665  	 * remaining difference by allocating fresh huge pages.
3666  	 *
3667  	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3668  	 * to convert a surplus huge page to a normal huge page. That is
3669  	 * not critical, though, it just means the overall size of the
3670  	 * pool might be one hugepage larger than it needs to be, but
3671  	 * within all the constraints specified by the sysctls.
3672  	 */
3673  	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3674  		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3675  			break;
3676  	}
3677  
3678  	allocated = 0;
3679  	while (count > (persistent_huge_pages(h) + allocated)) {
3680  		/*
3681  		 * If this allocation races such that we no longer need the
3682  		 * page, free_huge_folio will handle it by freeing the page
3683  		 * and reducing the surplus.
3684  		 */
3685  		spin_unlock_irq(&hugetlb_lock);
3686  
3687  		/* yield cpu to avoid soft lockup */
3688  		cond_resched();
3689  
3690  		folio = alloc_pool_huge_folio(h, nodes_allowed,
3691  						node_alloc_noretry,
3692  						&h->next_nid_to_alloc);
3693  		if (!folio) {
3694  			prep_and_add_allocated_folios(h, &page_list);
3695  			spin_lock_irq(&hugetlb_lock);
3696  			goto out;
3697  		}
3698  
3699  		list_add(&folio->lru, &page_list);
3700  		allocated++;
3701  
3702  		/* Bail for signals. Probably ctrl-c from user */
3703  		if (signal_pending(current)) {
3704  			prep_and_add_allocated_folios(h, &page_list);
3705  			spin_lock_irq(&hugetlb_lock);
3706  			goto out;
3707  		}
3708  
3709  		spin_lock_irq(&hugetlb_lock);
3710  	}
3711  
3712  	/* Add allocated pages to the pool */
3713  	if (!list_empty(&page_list)) {
3714  		spin_unlock_irq(&hugetlb_lock);
3715  		prep_and_add_allocated_folios(h, &page_list);
3716  		spin_lock_irq(&hugetlb_lock);
3717  	}
3718  
3719  	/*
3720  	 * Decrease the pool size
3721  	 * First return free pages to the buddy allocator (being careful
3722  	 * to keep enough around to satisfy reservations).  Then place
3723  	 * pages into surplus state as needed so the pool will shrink
3724  	 * to the desired size as pages become free.
3725  	 *
3726  	 * By placing pages into the surplus state independent of the
3727  	 * overcommit value, we are allowing the surplus pool size to
3728  	 * exceed overcommit. There are few sane options here. Since
3729  	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3730  	 * though, we'll note that we're not allowed to exceed surplus
3731  	 * and won't grow the pool anywhere else. Not until one of the
3732  	 * sysctls are changed, or the surplus pages go out of use.
3733  	 */
3734  	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3735  	min_count = max(count, min_count);
3736  	try_to_free_low(h, min_count, nodes_allowed);
3737  
3738  	/*
3739  	 * Collect pages to be removed on list without dropping lock
3740  	 */
3741  	while (min_count < persistent_huge_pages(h)) {
3742  		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3743  		if (!folio)
3744  			break;
3745  
3746  		list_add(&folio->lru, &page_list);
3747  	}
3748  	/* free the pages after dropping lock */
3749  	spin_unlock_irq(&hugetlb_lock);
3750  	update_and_free_pages_bulk(h, &page_list);
3751  	flush_free_hpage_work(h);
3752  	spin_lock_irq(&hugetlb_lock);
3753  
3754  	while (count < persistent_huge_pages(h)) {
3755  		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3756  			break;
3757  	}
3758  out:
3759  	h->max_huge_pages = persistent_huge_pages(h);
3760  	spin_unlock_irq(&hugetlb_lock);
3761  	mutex_unlock(&h->resize_lock);
3762  
3763  	NODEMASK_FREE(node_alloc_noretry);
3764  
3765  	return 0;
3766  }
3767  
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)3768  static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3769  				       struct list_head *src_list)
3770  {
3771  	long rc;
3772  	struct folio *folio, *next;
3773  	LIST_HEAD(dst_list);
3774  	LIST_HEAD(ret_list);
3775  
3776  	rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3777  	list_splice_init(&ret_list, src_list);
3778  
3779  	/*
3780  	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3781  	 * Without the mutex, pages added to target hstate could be marked
3782  	 * as surplus.
3783  	 *
3784  	 * Note that we already hold src->resize_lock.  To prevent deadlock,
3785  	 * use the convention of always taking larger size hstate mutex first.
3786  	 */
3787  	mutex_lock(&dst->resize_lock);
3788  
3789  	list_for_each_entry_safe(folio, next, src_list, lru) {
3790  		int i;
3791  
3792  		if (folio_test_hugetlb_vmemmap_optimized(folio))
3793  			continue;
3794  
3795  		list_del(&folio->lru);
3796  
3797  		split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
3798  		pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
3799  
3800  		for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3801  			struct page *page = folio_page(folio, i);
3802  
3803  			page->mapping = NULL;
3804  			clear_compound_head(page);
3805  			prep_compound_page(page, dst->order);
3806  
3807  			init_new_hugetlb_folio(dst, page_folio(page));
3808  			list_add(&page->lru, &dst_list);
3809  		}
3810  	}
3811  
3812  	prep_and_add_allocated_folios(dst, &dst_list);
3813  
3814  	mutex_unlock(&dst->resize_lock);
3815  
3816  	return rc;
3817  }
3818  
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)3819  static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
3820  				  unsigned long nr_to_demote)
3821  	__must_hold(&hugetlb_lock)
3822  {
3823  	int nr_nodes, node;
3824  	struct hstate *dst;
3825  	long rc = 0;
3826  	long nr_demoted = 0;
3827  
3828  	lockdep_assert_held(&hugetlb_lock);
3829  
3830  	/* We should never get here if no demote order */
3831  	if (!src->demote_order) {
3832  		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3833  		return -EINVAL;		/* internal error */
3834  	}
3835  	dst = size_to_hstate(PAGE_SIZE << src->demote_order);
3836  
3837  	for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
3838  		LIST_HEAD(list);
3839  		struct folio *folio, *next;
3840  
3841  		list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
3842  			if (folio_test_hwpoison(folio))
3843  				continue;
3844  
3845  			remove_hugetlb_folio(src, folio, false);
3846  			list_add(&folio->lru, &list);
3847  
3848  			if (++nr_demoted == nr_to_demote)
3849  				break;
3850  		}
3851  
3852  		spin_unlock_irq(&hugetlb_lock);
3853  
3854  		rc = demote_free_hugetlb_folios(src, dst, &list);
3855  
3856  		spin_lock_irq(&hugetlb_lock);
3857  
3858  		list_for_each_entry_safe(folio, next, &list, lru) {
3859  			list_del(&folio->lru);
3860  			add_hugetlb_folio(src, folio, false);
3861  
3862  			nr_demoted--;
3863  		}
3864  
3865  		if (rc < 0 || nr_demoted == nr_to_demote)
3866  			break;
3867  	}
3868  
3869  	/*
3870  	 * Not absolutely necessary, but for consistency update max_huge_pages
3871  	 * based on pool changes for the demoted page.
3872  	 */
3873  	src->max_huge_pages -= nr_demoted;
3874  	dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
3875  
3876  	if (rc < 0)
3877  		return rc;
3878  
3879  	if (nr_demoted)
3880  		return nr_demoted;
3881  	/*
3882  	 * Only way to get here is if all pages on free lists are poisoned.
3883  	 * Return -EBUSY so that caller will not retry.
3884  	 */
3885  	return -EBUSY;
3886  }
3887  
3888  #define HSTATE_ATTR_RO(_name) \
3889  	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3890  
3891  #define HSTATE_ATTR_WO(_name) \
3892  	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3893  
3894  #define HSTATE_ATTR(_name) \
3895  	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3896  
3897  static struct kobject *hugepages_kobj;
3898  static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3899  
3900  static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3901  
kobj_to_hstate(struct kobject * kobj,int * nidp)3902  static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3903  {
3904  	int i;
3905  
3906  	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3907  		if (hstate_kobjs[i] == kobj) {
3908  			if (nidp)
3909  				*nidp = NUMA_NO_NODE;
3910  			return &hstates[i];
3911  		}
3912  
3913  	return kobj_to_node_hstate(kobj, nidp);
3914  }
3915  
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3916  static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3917  					struct kobj_attribute *attr, char *buf)
3918  {
3919  	struct hstate *h;
3920  	unsigned long nr_huge_pages;
3921  	int nid;
3922  
3923  	h = kobj_to_hstate(kobj, &nid);
3924  	if (nid == NUMA_NO_NODE)
3925  		nr_huge_pages = h->nr_huge_pages;
3926  	else
3927  		nr_huge_pages = h->nr_huge_pages_node[nid];
3928  
3929  	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3930  }
3931  
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3932  static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3933  					   struct hstate *h, int nid,
3934  					   unsigned long count, size_t len)
3935  {
3936  	int err;
3937  	nodemask_t nodes_allowed, *n_mask;
3938  
3939  	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3940  		return -EINVAL;
3941  
3942  	if (nid == NUMA_NO_NODE) {
3943  		/*
3944  		 * global hstate attribute
3945  		 */
3946  		if (!(obey_mempolicy &&
3947  				init_nodemask_of_mempolicy(&nodes_allowed)))
3948  			n_mask = &node_states[N_MEMORY];
3949  		else
3950  			n_mask = &nodes_allowed;
3951  	} else {
3952  		/*
3953  		 * Node specific request.  count adjustment happens in
3954  		 * set_max_huge_pages() after acquiring hugetlb_lock.
3955  		 */
3956  		init_nodemask_of_node(&nodes_allowed, nid);
3957  		n_mask = &nodes_allowed;
3958  	}
3959  
3960  	err = set_max_huge_pages(h, count, nid, n_mask);
3961  
3962  	return err ? err : len;
3963  }
3964  
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)3965  static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3966  					 struct kobject *kobj, const char *buf,
3967  					 size_t len)
3968  {
3969  	struct hstate *h;
3970  	unsigned long count;
3971  	int nid;
3972  	int err;
3973  
3974  	err = kstrtoul(buf, 10, &count);
3975  	if (err)
3976  		return err;
3977  
3978  	h = kobj_to_hstate(kobj, &nid);
3979  	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3980  }
3981  
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3982  static ssize_t nr_hugepages_show(struct kobject *kobj,
3983  				       struct kobj_attribute *attr, char *buf)
3984  {
3985  	return nr_hugepages_show_common(kobj, attr, buf);
3986  }
3987  
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3988  static ssize_t nr_hugepages_store(struct kobject *kobj,
3989  	       struct kobj_attribute *attr, const char *buf, size_t len)
3990  {
3991  	return nr_hugepages_store_common(false, kobj, buf, len);
3992  }
3993  HSTATE_ATTR(nr_hugepages);
3994  
3995  #ifdef CONFIG_NUMA
3996  
3997  /*
3998   * hstate attribute for optionally mempolicy-based constraint on persistent
3999   * huge page alloc/free.
4000   */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4001  static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4002  					   struct kobj_attribute *attr,
4003  					   char *buf)
4004  {
4005  	return nr_hugepages_show_common(kobj, attr, buf);
4006  }
4007  
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4008  static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4009  	       struct kobj_attribute *attr, const char *buf, size_t len)
4010  {
4011  	return nr_hugepages_store_common(true, kobj, buf, len);
4012  }
4013  HSTATE_ATTR(nr_hugepages_mempolicy);
4014  #endif
4015  
4016  
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4017  static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4018  					struct kobj_attribute *attr, char *buf)
4019  {
4020  	struct hstate *h = kobj_to_hstate(kobj, NULL);
4021  	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4022  }
4023  
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4024  static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4025  		struct kobj_attribute *attr, const char *buf, size_t count)
4026  {
4027  	int err;
4028  	unsigned long input;
4029  	struct hstate *h = kobj_to_hstate(kobj, NULL);
4030  
4031  	if (hstate_is_gigantic(h))
4032  		return -EINVAL;
4033  
4034  	err = kstrtoul(buf, 10, &input);
4035  	if (err)
4036  		return err;
4037  
4038  	spin_lock_irq(&hugetlb_lock);
4039  	h->nr_overcommit_huge_pages = input;
4040  	spin_unlock_irq(&hugetlb_lock);
4041  
4042  	return count;
4043  }
4044  HSTATE_ATTR(nr_overcommit_hugepages);
4045  
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4046  static ssize_t free_hugepages_show(struct kobject *kobj,
4047  					struct kobj_attribute *attr, char *buf)
4048  {
4049  	struct hstate *h;
4050  	unsigned long free_huge_pages;
4051  	int nid;
4052  
4053  	h = kobj_to_hstate(kobj, &nid);
4054  	if (nid == NUMA_NO_NODE)
4055  		free_huge_pages = h->free_huge_pages;
4056  	else
4057  		free_huge_pages = h->free_huge_pages_node[nid];
4058  
4059  	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4060  }
4061  HSTATE_ATTR_RO(free_hugepages);
4062  
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4063  static ssize_t resv_hugepages_show(struct kobject *kobj,
4064  					struct kobj_attribute *attr, char *buf)
4065  {
4066  	struct hstate *h = kobj_to_hstate(kobj, NULL);
4067  	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4068  }
4069  HSTATE_ATTR_RO(resv_hugepages);
4070  
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4071  static ssize_t surplus_hugepages_show(struct kobject *kobj,
4072  					struct kobj_attribute *attr, char *buf)
4073  {
4074  	struct hstate *h;
4075  	unsigned long surplus_huge_pages;
4076  	int nid;
4077  
4078  	h = kobj_to_hstate(kobj, &nid);
4079  	if (nid == NUMA_NO_NODE)
4080  		surplus_huge_pages = h->surplus_huge_pages;
4081  	else
4082  		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4083  
4084  	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4085  }
4086  HSTATE_ATTR_RO(surplus_hugepages);
4087  
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4088  static ssize_t demote_store(struct kobject *kobj,
4089  	       struct kobj_attribute *attr, const char *buf, size_t len)
4090  {
4091  	unsigned long nr_demote;
4092  	unsigned long nr_available;
4093  	nodemask_t nodes_allowed, *n_mask;
4094  	struct hstate *h;
4095  	int err;
4096  	int nid;
4097  
4098  	err = kstrtoul(buf, 10, &nr_demote);
4099  	if (err)
4100  		return err;
4101  	h = kobj_to_hstate(kobj, &nid);
4102  
4103  	if (nid != NUMA_NO_NODE) {
4104  		init_nodemask_of_node(&nodes_allowed, nid);
4105  		n_mask = &nodes_allowed;
4106  	} else {
4107  		n_mask = &node_states[N_MEMORY];
4108  	}
4109  
4110  	/* Synchronize with other sysfs operations modifying huge pages */
4111  	mutex_lock(&h->resize_lock);
4112  	spin_lock_irq(&hugetlb_lock);
4113  
4114  	while (nr_demote) {
4115  		long rc;
4116  
4117  		/*
4118  		 * Check for available pages to demote each time thorough the
4119  		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4120  		 */
4121  		if (nid != NUMA_NO_NODE)
4122  			nr_available = h->free_huge_pages_node[nid];
4123  		else
4124  			nr_available = h->free_huge_pages;
4125  		nr_available -= h->resv_huge_pages;
4126  		if (!nr_available)
4127  			break;
4128  
4129  		rc = demote_pool_huge_page(h, n_mask, nr_demote);
4130  		if (rc < 0) {
4131  			err = rc;
4132  			break;
4133  		}
4134  
4135  		nr_demote -= rc;
4136  	}
4137  
4138  	spin_unlock_irq(&hugetlb_lock);
4139  	mutex_unlock(&h->resize_lock);
4140  
4141  	if (err)
4142  		return err;
4143  	return len;
4144  }
4145  HSTATE_ATTR_WO(demote);
4146  
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4147  static ssize_t demote_size_show(struct kobject *kobj,
4148  					struct kobj_attribute *attr, char *buf)
4149  {
4150  	struct hstate *h = kobj_to_hstate(kobj, NULL);
4151  	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4152  
4153  	return sysfs_emit(buf, "%lukB\n", demote_size);
4154  }
4155  
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4156  static ssize_t demote_size_store(struct kobject *kobj,
4157  					struct kobj_attribute *attr,
4158  					const char *buf, size_t count)
4159  {
4160  	struct hstate *h, *demote_hstate;
4161  	unsigned long demote_size;
4162  	unsigned int demote_order;
4163  
4164  	demote_size = (unsigned long)memparse(buf, NULL);
4165  
4166  	demote_hstate = size_to_hstate(demote_size);
4167  	if (!demote_hstate)
4168  		return -EINVAL;
4169  	demote_order = demote_hstate->order;
4170  	if (demote_order < HUGETLB_PAGE_ORDER)
4171  		return -EINVAL;
4172  
4173  	/* demote order must be smaller than hstate order */
4174  	h = kobj_to_hstate(kobj, NULL);
4175  	if (demote_order >= h->order)
4176  		return -EINVAL;
4177  
4178  	/* resize_lock synchronizes access to demote size and writes */
4179  	mutex_lock(&h->resize_lock);
4180  	h->demote_order = demote_order;
4181  	mutex_unlock(&h->resize_lock);
4182  
4183  	return count;
4184  }
4185  HSTATE_ATTR(demote_size);
4186  
4187  static struct attribute *hstate_attrs[] = {
4188  	&nr_hugepages_attr.attr,
4189  	&nr_overcommit_hugepages_attr.attr,
4190  	&free_hugepages_attr.attr,
4191  	&resv_hugepages_attr.attr,
4192  	&surplus_hugepages_attr.attr,
4193  #ifdef CONFIG_NUMA
4194  	&nr_hugepages_mempolicy_attr.attr,
4195  #endif
4196  	NULL,
4197  };
4198  
4199  static const struct attribute_group hstate_attr_group = {
4200  	.attrs = hstate_attrs,
4201  };
4202  
4203  static struct attribute *hstate_demote_attrs[] = {
4204  	&demote_size_attr.attr,
4205  	&demote_attr.attr,
4206  	NULL,
4207  };
4208  
4209  static const struct attribute_group hstate_demote_attr_group = {
4210  	.attrs = hstate_demote_attrs,
4211  };
4212  
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4213  static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4214  				    struct kobject **hstate_kobjs,
4215  				    const struct attribute_group *hstate_attr_group)
4216  {
4217  	int retval;
4218  	int hi = hstate_index(h);
4219  
4220  	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4221  	if (!hstate_kobjs[hi])
4222  		return -ENOMEM;
4223  
4224  	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4225  	if (retval) {
4226  		kobject_put(hstate_kobjs[hi]);
4227  		hstate_kobjs[hi] = NULL;
4228  		return retval;
4229  	}
4230  
4231  	if (h->demote_order) {
4232  		retval = sysfs_create_group(hstate_kobjs[hi],
4233  					    &hstate_demote_attr_group);
4234  		if (retval) {
4235  			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4236  			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4237  			kobject_put(hstate_kobjs[hi]);
4238  			hstate_kobjs[hi] = NULL;
4239  			return retval;
4240  		}
4241  	}
4242  
4243  	return 0;
4244  }
4245  
4246  #ifdef CONFIG_NUMA
4247  static bool hugetlb_sysfs_initialized __ro_after_init;
4248  
4249  /*
4250   * node_hstate/s - associate per node hstate attributes, via their kobjects,
4251   * with node devices in node_devices[] using a parallel array.  The array
4252   * index of a node device or _hstate == node id.
4253   * This is here to avoid any static dependency of the node device driver, in
4254   * the base kernel, on the hugetlb module.
4255   */
4256  struct node_hstate {
4257  	struct kobject		*hugepages_kobj;
4258  	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4259  };
4260  static struct node_hstate node_hstates[MAX_NUMNODES];
4261  
4262  /*
4263   * A subset of global hstate attributes for node devices
4264   */
4265  static struct attribute *per_node_hstate_attrs[] = {
4266  	&nr_hugepages_attr.attr,
4267  	&free_hugepages_attr.attr,
4268  	&surplus_hugepages_attr.attr,
4269  	NULL,
4270  };
4271  
4272  static const struct attribute_group per_node_hstate_attr_group = {
4273  	.attrs = per_node_hstate_attrs,
4274  };
4275  
4276  /*
4277   * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4278   * Returns node id via non-NULL nidp.
4279   */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4280  static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4281  {
4282  	int nid;
4283  
4284  	for (nid = 0; nid < nr_node_ids; nid++) {
4285  		struct node_hstate *nhs = &node_hstates[nid];
4286  		int i;
4287  		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4288  			if (nhs->hstate_kobjs[i] == kobj) {
4289  				if (nidp)
4290  					*nidp = nid;
4291  				return &hstates[i];
4292  			}
4293  	}
4294  
4295  	BUG();
4296  	return NULL;
4297  }
4298  
4299  /*
4300   * Unregister hstate attributes from a single node device.
4301   * No-op if no hstate attributes attached.
4302   */
hugetlb_unregister_node(struct node * node)4303  void hugetlb_unregister_node(struct node *node)
4304  {
4305  	struct hstate *h;
4306  	struct node_hstate *nhs = &node_hstates[node->dev.id];
4307  
4308  	if (!nhs->hugepages_kobj)
4309  		return;		/* no hstate attributes */
4310  
4311  	for_each_hstate(h) {
4312  		int idx = hstate_index(h);
4313  		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4314  
4315  		if (!hstate_kobj)
4316  			continue;
4317  		if (h->demote_order)
4318  			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4319  		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4320  		kobject_put(hstate_kobj);
4321  		nhs->hstate_kobjs[idx] = NULL;
4322  	}
4323  
4324  	kobject_put(nhs->hugepages_kobj);
4325  	nhs->hugepages_kobj = NULL;
4326  }
4327  
4328  
4329  /*
4330   * Register hstate attributes for a single node device.
4331   * No-op if attributes already registered.
4332   */
hugetlb_register_node(struct node * node)4333  void hugetlb_register_node(struct node *node)
4334  {
4335  	struct hstate *h;
4336  	struct node_hstate *nhs = &node_hstates[node->dev.id];
4337  	int err;
4338  
4339  	if (!hugetlb_sysfs_initialized)
4340  		return;
4341  
4342  	if (nhs->hugepages_kobj)
4343  		return;		/* already allocated */
4344  
4345  	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4346  							&node->dev.kobj);
4347  	if (!nhs->hugepages_kobj)
4348  		return;
4349  
4350  	for_each_hstate(h) {
4351  		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4352  						nhs->hstate_kobjs,
4353  						&per_node_hstate_attr_group);
4354  		if (err) {
4355  			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4356  				h->name, node->dev.id);
4357  			hugetlb_unregister_node(node);
4358  			break;
4359  		}
4360  	}
4361  }
4362  
4363  /*
4364   * hugetlb init time:  register hstate attributes for all registered node
4365   * devices of nodes that have memory.  All on-line nodes should have
4366   * registered their associated device by this time.
4367   */
hugetlb_register_all_nodes(void)4368  static void __init hugetlb_register_all_nodes(void)
4369  {
4370  	int nid;
4371  
4372  	for_each_online_node(nid)
4373  		hugetlb_register_node(node_devices[nid]);
4374  }
4375  #else	/* !CONFIG_NUMA */
4376  
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4377  static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4378  {
4379  	BUG();
4380  	if (nidp)
4381  		*nidp = -1;
4382  	return NULL;
4383  }
4384  
hugetlb_register_all_nodes(void)4385  static void hugetlb_register_all_nodes(void) { }
4386  
4387  #endif
4388  
4389  #ifdef CONFIG_CMA
4390  static void __init hugetlb_cma_check(void);
4391  #else
hugetlb_cma_check(void)4392  static inline __init void hugetlb_cma_check(void)
4393  {
4394  }
4395  #endif
4396  
hugetlb_sysfs_init(void)4397  static void __init hugetlb_sysfs_init(void)
4398  {
4399  	struct hstate *h;
4400  	int err;
4401  
4402  	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4403  	if (!hugepages_kobj)
4404  		return;
4405  
4406  	for_each_hstate(h) {
4407  		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4408  					 hstate_kobjs, &hstate_attr_group);
4409  		if (err)
4410  			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4411  	}
4412  
4413  #ifdef CONFIG_NUMA
4414  	hugetlb_sysfs_initialized = true;
4415  #endif
4416  	hugetlb_register_all_nodes();
4417  }
4418  
4419  #ifdef CONFIG_SYSCTL
4420  static void hugetlb_sysctl_init(void);
4421  #else
hugetlb_sysctl_init(void)4422  static inline void hugetlb_sysctl_init(void) { }
4423  #endif
4424  
hugetlb_init(void)4425  static int __init hugetlb_init(void)
4426  {
4427  	int i;
4428  
4429  	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4430  			__NR_HPAGEFLAGS);
4431  
4432  	if (!hugepages_supported()) {
4433  		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4434  			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4435  		return 0;
4436  	}
4437  
4438  	/*
4439  	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4440  	 * architectures depend on setup being done here.
4441  	 */
4442  	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4443  	if (!parsed_default_hugepagesz) {
4444  		/*
4445  		 * If we did not parse a default huge page size, set
4446  		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4447  		 * number of huge pages for this default size was implicitly
4448  		 * specified, set that here as well.
4449  		 * Note that the implicit setting will overwrite an explicit
4450  		 * setting.  A warning will be printed in this case.
4451  		 */
4452  		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4453  		if (default_hstate_max_huge_pages) {
4454  			if (default_hstate.max_huge_pages) {
4455  				char buf[32];
4456  
4457  				string_get_size(huge_page_size(&default_hstate),
4458  					1, STRING_UNITS_2, buf, 32);
4459  				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4460  					default_hstate.max_huge_pages, buf);
4461  				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4462  					default_hstate_max_huge_pages);
4463  			}
4464  			default_hstate.max_huge_pages =
4465  				default_hstate_max_huge_pages;
4466  
4467  			for_each_online_node(i)
4468  				default_hstate.max_huge_pages_node[i] =
4469  					default_hugepages_in_node[i];
4470  		}
4471  	}
4472  
4473  	hugetlb_cma_check();
4474  	hugetlb_init_hstates();
4475  	gather_bootmem_prealloc();
4476  	report_hugepages();
4477  
4478  	hugetlb_sysfs_init();
4479  	hugetlb_cgroup_file_init();
4480  	hugetlb_sysctl_init();
4481  
4482  #ifdef CONFIG_SMP
4483  	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4484  #else
4485  	num_fault_mutexes = 1;
4486  #endif
4487  	hugetlb_fault_mutex_table =
4488  		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4489  			      GFP_KERNEL);
4490  	BUG_ON(!hugetlb_fault_mutex_table);
4491  
4492  	for (i = 0; i < num_fault_mutexes; i++)
4493  		mutex_init(&hugetlb_fault_mutex_table[i]);
4494  	return 0;
4495  }
4496  subsys_initcall(hugetlb_init);
4497  
4498  /* Overwritten by architectures with more huge page sizes */
__init(weak)4499  bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4500  {
4501  	return size == HPAGE_SIZE;
4502  }
4503  
hugetlb_add_hstate(unsigned int order)4504  void __init hugetlb_add_hstate(unsigned int order)
4505  {
4506  	struct hstate *h;
4507  	unsigned long i;
4508  
4509  	if (size_to_hstate(PAGE_SIZE << order)) {
4510  		return;
4511  	}
4512  	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4513  	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4514  	h = &hstates[hugetlb_max_hstate++];
4515  	__mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4516  	h->order = order;
4517  	h->mask = ~(huge_page_size(h) - 1);
4518  	for (i = 0; i < MAX_NUMNODES; ++i)
4519  		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4520  	INIT_LIST_HEAD(&h->hugepage_activelist);
4521  	h->next_nid_to_alloc = first_memory_node;
4522  	h->next_nid_to_free = first_memory_node;
4523  	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4524  					huge_page_size(h)/SZ_1K);
4525  
4526  	parsed_hstate = h;
4527  }
4528  
hugetlb_node_alloc_supported(void)4529  bool __init __weak hugetlb_node_alloc_supported(void)
4530  {
4531  	return true;
4532  }
4533  
hugepages_clear_pages_in_node(void)4534  static void __init hugepages_clear_pages_in_node(void)
4535  {
4536  	if (!hugetlb_max_hstate) {
4537  		default_hstate_max_huge_pages = 0;
4538  		memset(default_hugepages_in_node, 0,
4539  			sizeof(default_hugepages_in_node));
4540  	} else {
4541  		parsed_hstate->max_huge_pages = 0;
4542  		memset(parsed_hstate->max_huge_pages_node, 0,
4543  			sizeof(parsed_hstate->max_huge_pages_node));
4544  	}
4545  }
4546  
4547  /*
4548   * hugepages command line processing
4549   * hugepages normally follows a valid hugepagsz or default_hugepagsz
4550   * specification.  If not, ignore the hugepages value.  hugepages can also
4551   * be the first huge page command line  option in which case it implicitly
4552   * specifies the number of huge pages for the default size.
4553   */
hugepages_setup(char * s)4554  static int __init hugepages_setup(char *s)
4555  {
4556  	unsigned long *mhp;
4557  	static unsigned long *last_mhp;
4558  	int node = NUMA_NO_NODE;
4559  	int count;
4560  	unsigned long tmp;
4561  	char *p = s;
4562  
4563  	if (!parsed_valid_hugepagesz) {
4564  		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4565  		parsed_valid_hugepagesz = true;
4566  		return 1;
4567  	}
4568  
4569  	/*
4570  	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4571  	 * yet, so this hugepages= parameter goes to the "default hstate".
4572  	 * Otherwise, it goes with the previously parsed hugepagesz or
4573  	 * default_hugepagesz.
4574  	 */
4575  	else if (!hugetlb_max_hstate)
4576  		mhp = &default_hstate_max_huge_pages;
4577  	else
4578  		mhp = &parsed_hstate->max_huge_pages;
4579  
4580  	if (mhp == last_mhp) {
4581  		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4582  		return 1;
4583  	}
4584  
4585  	while (*p) {
4586  		count = 0;
4587  		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4588  			goto invalid;
4589  		/* Parameter is node format */
4590  		if (p[count] == ':') {
4591  			if (!hugetlb_node_alloc_supported()) {
4592  				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4593  				return 1;
4594  			}
4595  			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4596  				goto invalid;
4597  			node = array_index_nospec(tmp, MAX_NUMNODES);
4598  			p += count + 1;
4599  			/* Parse hugepages */
4600  			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4601  				goto invalid;
4602  			if (!hugetlb_max_hstate)
4603  				default_hugepages_in_node[node] = tmp;
4604  			else
4605  				parsed_hstate->max_huge_pages_node[node] = tmp;
4606  			*mhp += tmp;
4607  			/* Go to parse next node*/
4608  			if (p[count] == ',')
4609  				p += count + 1;
4610  			else
4611  				break;
4612  		} else {
4613  			if (p != s)
4614  				goto invalid;
4615  			*mhp = tmp;
4616  			break;
4617  		}
4618  	}
4619  
4620  	/*
4621  	 * Global state is always initialized later in hugetlb_init.
4622  	 * But we need to allocate gigantic hstates here early to still
4623  	 * use the bootmem allocator.
4624  	 */
4625  	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4626  		hugetlb_hstate_alloc_pages(parsed_hstate);
4627  
4628  	last_mhp = mhp;
4629  
4630  	return 1;
4631  
4632  invalid:
4633  	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4634  	hugepages_clear_pages_in_node();
4635  	return 1;
4636  }
4637  __setup("hugepages=", hugepages_setup);
4638  
4639  /*
4640   * hugepagesz command line processing
4641   * A specific huge page size can only be specified once with hugepagesz.
4642   * hugepagesz is followed by hugepages on the command line.  The global
4643   * variable 'parsed_valid_hugepagesz' is used to determine if prior
4644   * hugepagesz argument was valid.
4645   */
hugepagesz_setup(char * s)4646  static int __init hugepagesz_setup(char *s)
4647  {
4648  	unsigned long size;
4649  	struct hstate *h;
4650  
4651  	parsed_valid_hugepagesz = false;
4652  	size = (unsigned long)memparse(s, NULL);
4653  
4654  	if (!arch_hugetlb_valid_size(size)) {
4655  		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4656  		return 1;
4657  	}
4658  
4659  	h = size_to_hstate(size);
4660  	if (h) {
4661  		/*
4662  		 * hstate for this size already exists.  This is normally
4663  		 * an error, but is allowed if the existing hstate is the
4664  		 * default hstate.  More specifically, it is only allowed if
4665  		 * the number of huge pages for the default hstate was not
4666  		 * previously specified.
4667  		 */
4668  		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4669  		    default_hstate.max_huge_pages) {
4670  			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4671  			return 1;
4672  		}
4673  
4674  		/*
4675  		 * No need to call hugetlb_add_hstate() as hstate already
4676  		 * exists.  But, do set parsed_hstate so that a following
4677  		 * hugepages= parameter will be applied to this hstate.
4678  		 */
4679  		parsed_hstate = h;
4680  		parsed_valid_hugepagesz = true;
4681  		return 1;
4682  	}
4683  
4684  	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4685  	parsed_valid_hugepagesz = true;
4686  	return 1;
4687  }
4688  __setup("hugepagesz=", hugepagesz_setup);
4689  
4690  /*
4691   * default_hugepagesz command line input
4692   * Only one instance of default_hugepagesz allowed on command line.
4693   */
default_hugepagesz_setup(char * s)4694  static int __init default_hugepagesz_setup(char *s)
4695  {
4696  	unsigned long size;
4697  	int i;
4698  
4699  	parsed_valid_hugepagesz = false;
4700  	if (parsed_default_hugepagesz) {
4701  		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4702  		return 1;
4703  	}
4704  
4705  	size = (unsigned long)memparse(s, NULL);
4706  
4707  	if (!arch_hugetlb_valid_size(size)) {
4708  		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4709  		return 1;
4710  	}
4711  
4712  	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4713  	parsed_valid_hugepagesz = true;
4714  	parsed_default_hugepagesz = true;
4715  	default_hstate_idx = hstate_index(size_to_hstate(size));
4716  
4717  	/*
4718  	 * The number of default huge pages (for this size) could have been
4719  	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4720  	 * then default_hstate_max_huge_pages is set.  If the default huge
4721  	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4722  	 * allocated here from bootmem allocator.
4723  	 */
4724  	if (default_hstate_max_huge_pages) {
4725  		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4726  		for_each_online_node(i)
4727  			default_hstate.max_huge_pages_node[i] =
4728  				default_hugepages_in_node[i];
4729  		if (hstate_is_gigantic(&default_hstate))
4730  			hugetlb_hstate_alloc_pages(&default_hstate);
4731  		default_hstate_max_huge_pages = 0;
4732  	}
4733  
4734  	return 1;
4735  }
4736  __setup("default_hugepagesz=", default_hugepagesz_setup);
4737  
allowed_mems_nr(struct hstate * h)4738  static unsigned int allowed_mems_nr(struct hstate *h)
4739  {
4740  	int node;
4741  	unsigned int nr = 0;
4742  	nodemask_t *mbind_nodemask;
4743  	unsigned int *array = h->free_huge_pages_node;
4744  	gfp_t gfp_mask = htlb_alloc_mask(h);
4745  
4746  	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4747  	for_each_node_mask(node, cpuset_current_mems_allowed) {
4748  		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4749  			nr += array[node];
4750  	}
4751  
4752  	return nr;
4753  }
4754  
4755  #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)4756  static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4757  					  void *buffer, size_t *length,
4758  					  loff_t *ppos, unsigned long *out)
4759  {
4760  	struct ctl_table dup_table;
4761  
4762  	/*
4763  	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4764  	 * can duplicate the @table and alter the duplicate of it.
4765  	 */
4766  	dup_table = *table;
4767  	dup_table.data = out;
4768  
4769  	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4770  }
4771  
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4772  static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4773  			 const struct ctl_table *table, int write,
4774  			 void *buffer, size_t *length, loff_t *ppos)
4775  {
4776  	struct hstate *h = &default_hstate;
4777  	unsigned long tmp = h->max_huge_pages;
4778  	int ret;
4779  
4780  	if (!hugepages_supported())
4781  		return -EOPNOTSUPP;
4782  
4783  	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4784  					     &tmp);
4785  	if (ret)
4786  		goto out;
4787  
4788  	if (write)
4789  		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4790  						  NUMA_NO_NODE, tmp, *length);
4791  out:
4792  	return ret;
4793  }
4794  
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4795  static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4796  			  void *buffer, size_t *length, loff_t *ppos)
4797  {
4798  
4799  	return hugetlb_sysctl_handler_common(false, table, write,
4800  							buffer, length, ppos);
4801  }
4802  
4803  #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4804  static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4805  			  void *buffer, size_t *length, loff_t *ppos)
4806  {
4807  	return hugetlb_sysctl_handler_common(true, table, write,
4808  							buffer, length, ppos);
4809  }
4810  #endif /* CONFIG_NUMA */
4811  
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4812  static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4813  		void *buffer, size_t *length, loff_t *ppos)
4814  {
4815  	struct hstate *h = &default_hstate;
4816  	unsigned long tmp;
4817  	int ret;
4818  
4819  	if (!hugepages_supported())
4820  		return -EOPNOTSUPP;
4821  
4822  	tmp = h->nr_overcommit_huge_pages;
4823  
4824  	if (write && hstate_is_gigantic(h))
4825  		return -EINVAL;
4826  
4827  	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4828  					     &tmp);
4829  	if (ret)
4830  		goto out;
4831  
4832  	if (write) {
4833  		spin_lock_irq(&hugetlb_lock);
4834  		h->nr_overcommit_huge_pages = tmp;
4835  		spin_unlock_irq(&hugetlb_lock);
4836  	}
4837  out:
4838  	return ret;
4839  }
4840  
4841  static struct ctl_table hugetlb_table[] = {
4842  	{
4843  		.procname	= "nr_hugepages",
4844  		.data		= NULL,
4845  		.maxlen		= sizeof(unsigned long),
4846  		.mode		= 0644,
4847  		.proc_handler	= hugetlb_sysctl_handler,
4848  	},
4849  #ifdef CONFIG_NUMA
4850  	{
4851  		.procname       = "nr_hugepages_mempolicy",
4852  		.data           = NULL,
4853  		.maxlen         = sizeof(unsigned long),
4854  		.mode           = 0644,
4855  		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4856  	},
4857  #endif
4858  	{
4859  		.procname	= "hugetlb_shm_group",
4860  		.data		= &sysctl_hugetlb_shm_group,
4861  		.maxlen		= sizeof(gid_t),
4862  		.mode		= 0644,
4863  		.proc_handler	= proc_dointvec,
4864  	},
4865  	{
4866  		.procname	= "nr_overcommit_hugepages",
4867  		.data		= NULL,
4868  		.maxlen		= sizeof(unsigned long),
4869  		.mode		= 0644,
4870  		.proc_handler	= hugetlb_overcommit_handler,
4871  	},
4872  };
4873  
hugetlb_sysctl_init(void)4874  static void hugetlb_sysctl_init(void)
4875  {
4876  	register_sysctl_init("vm", hugetlb_table);
4877  }
4878  #endif /* CONFIG_SYSCTL */
4879  
hugetlb_report_meminfo(struct seq_file * m)4880  void hugetlb_report_meminfo(struct seq_file *m)
4881  {
4882  	struct hstate *h;
4883  	unsigned long total = 0;
4884  
4885  	if (!hugepages_supported())
4886  		return;
4887  
4888  	for_each_hstate(h) {
4889  		unsigned long count = h->nr_huge_pages;
4890  
4891  		total += huge_page_size(h) * count;
4892  
4893  		if (h == &default_hstate)
4894  			seq_printf(m,
4895  				   "HugePages_Total:   %5lu\n"
4896  				   "HugePages_Free:    %5lu\n"
4897  				   "HugePages_Rsvd:    %5lu\n"
4898  				   "HugePages_Surp:    %5lu\n"
4899  				   "Hugepagesize:   %8lu kB\n",
4900  				   count,
4901  				   h->free_huge_pages,
4902  				   h->resv_huge_pages,
4903  				   h->surplus_huge_pages,
4904  				   huge_page_size(h) / SZ_1K);
4905  	}
4906  
4907  	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4908  }
4909  
hugetlb_report_node_meminfo(char * buf,int len,int nid)4910  int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4911  {
4912  	struct hstate *h = &default_hstate;
4913  
4914  	if (!hugepages_supported())
4915  		return 0;
4916  
4917  	return sysfs_emit_at(buf, len,
4918  			     "Node %d HugePages_Total: %5u\n"
4919  			     "Node %d HugePages_Free:  %5u\n"
4920  			     "Node %d HugePages_Surp:  %5u\n",
4921  			     nid, h->nr_huge_pages_node[nid],
4922  			     nid, h->free_huge_pages_node[nid],
4923  			     nid, h->surplus_huge_pages_node[nid]);
4924  }
4925  
hugetlb_show_meminfo_node(int nid)4926  void hugetlb_show_meminfo_node(int nid)
4927  {
4928  	struct hstate *h;
4929  
4930  	if (!hugepages_supported())
4931  		return;
4932  
4933  	for_each_hstate(h)
4934  		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4935  			nid,
4936  			h->nr_huge_pages_node[nid],
4937  			h->free_huge_pages_node[nid],
4938  			h->surplus_huge_pages_node[nid],
4939  			huge_page_size(h) / SZ_1K);
4940  }
4941  
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4942  void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4943  {
4944  	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4945  		   K(atomic_long_read(&mm->hugetlb_usage)));
4946  }
4947  
4948  /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4949  unsigned long hugetlb_total_pages(void)
4950  {
4951  	struct hstate *h;
4952  	unsigned long nr_total_pages = 0;
4953  
4954  	for_each_hstate(h)
4955  		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4956  	return nr_total_pages;
4957  }
4958  
hugetlb_acct_memory(struct hstate * h,long delta)4959  static int hugetlb_acct_memory(struct hstate *h, long delta)
4960  {
4961  	int ret = -ENOMEM;
4962  
4963  	if (!delta)
4964  		return 0;
4965  
4966  	spin_lock_irq(&hugetlb_lock);
4967  	/*
4968  	 * When cpuset is configured, it breaks the strict hugetlb page
4969  	 * reservation as the accounting is done on a global variable. Such
4970  	 * reservation is completely rubbish in the presence of cpuset because
4971  	 * the reservation is not checked against page availability for the
4972  	 * current cpuset. Application can still potentially OOM'ed by kernel
4973  	 * with lack of free htlb page in cpuset that the task is in.
4974  	 * Attempt to enforce strict accounting with cpuset is almost
4975  	 * impossible (or too ugly) because cpuset is too fluid that
4976  	 * task or memory node can be dynamically moved between cpusets.
4977  	 *
4978  	 * The change of semantics for shared hugetlb mapping with cpuset is
4979  	 * undesirable. However, in order to preserve some of the semantics,
4980  	 * we fall back to check against current free page availability as
4981  	 * a best attempt and hopefully to minimize the impact of changing
4982  	 * semantics that cpuset has.
4983  	 *
4984  	 * Apart from cpuset, we also have memory policy mechanism that
4985  	 * also determines from which node the kernel will allocate memory
4986  	 * in a NUMA system. So similar to cpuset, we also should consider
4987  	 * the memory policy of the current task. Similar to the description
4988  	 * above.
4989  	 */
4990  	if (delta > 0) {
4991  		if (gather_surplus_pages(h, delta) < 0)
4992  			goto out;
4993  
4994  		if (delta > allowed_mems_nr(h)) {
4995  			return_unused_surplus_pages(h, delta);
4996  			goto out;
4997  		}
4998  	}
4999  
5000  	ret = 0;
5001  	if (delta < 0)
5002  		return_unused_surplus_pages(h, (unsigned long) -delta);
5003  
5004  out:
5005  	spin_unlock_irq(&hugetlb_lock);
5006  	return ret;
5007  }
5008  
hugetlb_vm_op_open(struct vm_area_struct * vma)5009  static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5010  {
5011  	struct resv_map *resv = vma_resv_map(vma);
5012  
5013  	/*
5014  	 * HPAGE_RESV_OWNER indicates a private mapping.
5015  	 * This new VMA should share its siblings reservation map if present.
5016  	 * The VMA will only ever have a valid reservation map pointer where
5017  	 * it is being copied for another still existing VMA.  As that VMA
5018  	 * has a reference to the reservation map it cannot disappear until
5019  	 * after this open call completes.  It is therefore safe to take a
5020  	 * new reference here without additional locking.
5021  	 */
5022  	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5023  		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5024  		kref_get(&resv->refs);
5025  	}
5026  
5027  	/*
5028  	 * vma_lock structure for sharable mappings is vma specific.
5029  	 * Clear old pointer (if copied via vm_area_dup) and allocate
5030  	 * new structure.  Before clearing, make sure vma_lock is not
5031  	 * for this vma.
5032  	 */
5033  	if (vma->vm_flags & VM_MAYSHARE) {
5034  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5035  
5036  		if (vma_lock) {
5037  			if (vma_lock->vma != vma) {
5038  				vma->vm_private_data = NULL;
5039  				hugetlb_vma_lock_alloc(vma);
5040  			} else
5041  				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5042  		} else
5043  			hugetlb_vma_lock_alloc(vma);
5044  	}
5045  }
5046  
hugetlb_vm_op_close(struct vm_area_struct * vma)5047  static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5048  {
5049  	struct hstate *h = hstate_vma(vma);
5050  	struct resv_map *resv;
5051  	struct hugepage_subpool *spool = subpool_vma(vma);
5052  	unsigned long reserve, start, end;
5053  	long gbl_reserve;
5054  
5055  	hugetlb_vma_lock_free(vma);
5056  
5057  	resv = vma_resv_map(vma);
5058  	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5059  		return;
5060  
5061  	start = vma_hugecache_offset(h, vma, vma->vm_start);
5062  	end = vma_hugecache_offset(h, vma, vma->vm_end);
5063  
5064  	reserve = (end - start) - region_count(resv, start, end);
5065  	hugetlb_cgroup_uncharge_counter(resv, start, end);
5066  	if (reserve) {
5067  		/*
5068  		 * Decrement reserve counts.  The global reserve count may be
5069  		 * adjusted if the subpool has a minimum size.
5070  		 */
5071  		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5072  		hugetlb_acct_memory(h, -gbl_reserve);
5073  	}
5074  
5075  	kref_put(&resv->refs, resv_map_release);
5076  }
5077  
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5078  static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5079  {
5080  	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5081  		return -EINVAL;
5082  
5083  	/*
5084  	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5085  	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5086  	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5087  	 */
5088  	if (addr & ~PUD_MASK) {
5089  		/*
5090  		 * hugetlb_vm_op_split is called right before we attempt to
5091  		 * split the VMA. We will need to unshare PMDs in the old and
5092  		 * new VMAs, so let's unshare before we split.
5093  		 */
5094  		unsigned long floor = addr & PUD_MASK;
5095  		unsigned long ceil = floor + PUD_SIZE;
5096  
5097  		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5098  			hugetlb_unshare_pmds(vma, floor, ceil);
5099  	}
5100  
5101  	return 0;
5102  }
5103  
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5104  static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5105  {
5106  	return huge_page_size(hstate_vma(vma));
5107  }
5108  
5109  /*
5110   * We cannot handle pagefaults against hugetlb pages at all.  They cause
5111   * handle_mm_fault() to try to instantiate regular-sized pages in the
5112   * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5113   * this far.
5114   */
hugetlb_vm_op_fault(struct vm_fault * vmf)5115  static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5116  {
5117  	BUG();
5118  	return 0;
5119  }
5120  
5121  /*
5122   * When a new function is introduced to vm_operations_struct and added
5123   * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5124   * This is because under System V memory model, mappings created via
5125   * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5126   * their original vm_ops are overwritten with shm_vm_ops.
5127   */
5128  const struct vm_operations_struct hugetlb_vm_ops = {
5129  	.fault = hugetlb_vm_op_fault,
5130  	.open = hugetlb_vm_op_open,
5131  	.close = hugetlb_vm_op_close,
5132  	.may_split = hugetlb_vm_op_split,
5133  	.pagesize = hugetlb_vm_op_pagesize,
5134  };
5135  
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)5136  static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5137  				int writable)
5138  {
5139  	pte_t entry;
5140  	unsigned int shift = huge_page_shift(hstate_vma(vma));
5141  
5142  	if (writable) {
5143  		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5144  					 vma->vm_page_prot)));
5145  	} else {
5146  		entry = huge_pte_wrprotect(mk_huge_pte(page,
5147  					   vma->vm_page_prot));
5148  	}
5149  	entry = pte_mkyoung(entry);
5150  	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5151  
5152  	return entry;
5153  }
5154  
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5155  static void set_huge_ptep_writable(struct vm_area_struct *vma,
5156  				   unsigned long address, pte_t *ptep)
5157  {
5158  	pte_t entry;
5159  
5160  	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5161  	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5162  		update_mmu_cache(vma, address, ptep);
5163  }
5164  
is_hugetlb_entry_migration(pte_t pte)5165  bool is_hugetlb_entry_migration(pte_t pte)
5166  {
5167  	swp_entry_t swp;
5168  
5169  	if (huge_pte_none(pte) || pte_present(pte))
5170  		return false;
5171  	swp = pte_to_swp_entry(pte);
5172  	if (is_migration_entry(swp))
5173  		return true;
5174  	else
5175  		return false;
5176  }
5177  
is_hugetlb_entry_hwpoisoned(pte_t pte)5178  bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5179  {
5180  	swp_entry_t swp;
5181  
5182  	if (huge_pte_none(pte) || pte_present(pte))
5183  		return false;
5184  	swp = pte_to_swp_entry(pte);
5185  	if (is_hwpoison_entry(swp))
5186  		return true;
5187  	else
5188  		return false;
5189  }
5190  
5191  static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5192  hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5193  		      struct folio *new_folio, pte_t old, unsigned long sz)
5194  {
5195  	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5196  
5197  	__folio_mark_uptodate(new_folio);
5198  	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5199  	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5200  		newpte = huge_pte_mkuffd_wp(newpte);
5201  	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5202  	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5203  	folio_set_hugetlb_migratable(new_folio);
5204  }
5205  
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5206  int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5207  			    struct vm_area_struct *dst_vma,
5208  			    struct vm_area_struct *src_vma)
5209  {
5210  	pte_t *src_pte, *dst_pte, entry;
5211  	struct folio *pte_folio;
5212  	unsigned long addr;
5213  	bool cow = is_cow_mapping(src_vma->vm_flags);
5214  	struct hstate *h = hstate_vma(src_vma);
5215  	unsigned long sz = huge_page_size(h);
5216  	unsigned long npages = pages_per_huge_page(h);
5217  	struct mmu_notifier_range range;
5218  	unsigned long last_addr_mask;
5219  	int ret = 0;
5220  
5221  	if (cow) {
5222  		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5223  					src_vma->vm_start,
5224  					src_vma->vm_end);
5225  		mmu_notifier_invalidate_range_start(&range);
5226  		vma_assert_write_locked(src_vma);
5227  		raw_write_seqcount_begin(&src->write_protect_seq);
5228  	} else {
5229  		/*
5230  		 * For shared mappings the vma lock must be held before
5231  		 * calling hugetlb_walk() in the src vma. Otherwise, the
5232  		 * returned ptep could go away if part of a shared pmd and
5233  		 * another thread calls huge_pmd_unshare.
5234  		 */
5235  		hugetlb_vma_lock_read(src_vma);
5236  	}
5237  
5238  	last_addr_mask = hugetlb_mask_last_page(h);
5239  	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5240  		spinlock_t *src_ptl, *dst_ptl;
5241  		src_pte = hugetlb_walk(src_vma, addr, sz);
5242  		if (!src_pte) {
5243  			addr |= last_addr_mask;
5244  			continue;
5245  		}
5246  		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5247  		if (!dst_pte) {
5248  			ret = -ENOMEM;
5249  			break;
5250  		}
5251  
5252  		/*
5253  		 * If the pagetables are shared don't copy or take references.
5254  		 *
5255  		 * dst_pte == src_pte is the common case of src/dest sharing.
5256  		 * However, src could have 'unshared' and dst shares with
5257  		 * another vma. So page_count of ptep page is checked instead
5258  		 * to reliably determine whether pte is shared.
5259  		 */
5260  		if (page_count(virt_to_page(dst_pte)) > 1) {
5261  			addr |= last_addr_mask;
5262  			continue;
5263  		}
5264  
5265  		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5266  		src_ptl = huge_pte_lockptr(h, src, src_pte);
5267  		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5268  		entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5269  again:
5270  		if (huge_pte_none(entry)) {
5271  			/*
5272  			 * Skip if src entry none.
5273  			 */
5274  			;
5275  		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5276  			if (!userfaultfd_wp(dst_vma))
5277  				entry = huge_pte_clear_uffd_wp(entry);
5278  			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5279  		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5280  			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5281  			bool uffd_wp = pte_swp_uffd_wp(entry);
5282  
5283  			if (!is_readable_migration_entry(swp_entry) && cow) {
5284  				/*
5285  				 * COW mappings require pages in both
5286  				 * parent and child to be set to read.
5287  				 */
5288  				swp_entry = make_readable_migration_entry(
5289  							swp_offset(swp_entry));
5290  				entry = swp_entry_to_pte(swp_entry);
5291  				if (userfaultfd_wp(src_vma) && uffd_wp)
5292  					entry = pte_swp_mkuffd_wp(entry);
5293  				set_huge_pte_at(src, addr, src_pte, entry, sz);
5294  			}
5295  			if (!userfaultfd_wp(dst_vma))
5296  				entry = huge_pte_clear_uffd_wp(entry);
5297  			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5298  		} else if (unlikely(is_pte_marker(entry))) {
5299  			pte_marker marker = copy_pte_marker(
5300  				pte_to_swp_entry(entry), dst_vma);
5301  
5302  			if (marker)
5303  				set_huge_pte_at(dst, addr, dst_pte,
5304  						make_pte_marker(marker), sz);
5305  		} else {
5306  			entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5307  			pte_folio = page_folio(pte_page(entry));
5308  			folio_get(pte_folio);
5309  
5310  			/*
5311  			 * Failing to duplicate the anon rmap is a rare case
5312  			 * where we see pinned hugetlb pages while they're
5313  			 * prone to COW. We need to do the COW earlier during
5314  			 * fork.
5315  			 *
5316  			 * When pre-allocating the page or copying data, we
5317  			 * need to be without the pgtable locks since we could
5318  			 * sleep during the process.
5319  			 */
5320  			if (!folio_test_anon(pte_folio)) {
5321  				hugetlb_add_file_rmap(pte_folio);
5322  			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5323  				pte_t src_pte_old = entry;
5324  				struct folio *new_folio;
5325  
5326  				spin_unlock(src_ptl);
5327  				spin_unlock(dst_ptl);
5328  				/* Do not use reserve as it's private owned */
5329  				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5330  				if (IS_ERR(new_folio)) {
5331  					folio_put(pte_folio);
5332  					ret = PTR_ERR(new_folio);
5333  					break;
5334  				}
5335  				ret = copy_user_large_folio(new_folio, pte_folio,
5336  						ALIGN_DOWN(addr, sz), dst_vma);
5337  				folio_put(pte_folio);
5338  				if (ret) {
5339  					folio_put(new_folio);
5340  					break;
5341  				}
5342  
5343  				/* Install the new hugetlb folio if src pte stable */
5344  				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5345  				src_ptl = huge_pte_lockptr(h, src, src_pte);
5346  				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5347  				entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5348  				if (!pte_same(src_pte_old, entry)) {
5349  					restore_reserve_on_error(h, dst_vma, addr,
5350  								new_folio);
5351  					folio_put(new_folio);
5352  					/* huge_ptep of dst_pte won't change as in child */
5353  					goto again;
5354  				}
5355  				hugetlb_install_folio(dst_vma, dst_pte, addr,
5356  						      new_folio, src_pte_old, sz);
5357  				spin_unlock(src_ptl);
5358  				spin_unlock(dst_ptl);
5359  				continue;
5360  			}
5361  
5362  			if (cow) {
5363  				/*
5364  				 * No need to notify as we are downgrading page
5365  				 * table protection not changing it to point
5366  				 * to a new page.
5367  				 *
5368  				 * See Documentation/mm/mmu_notifier.rst
5369  				 */
5370  				huge_ptep_set_wrprotect(src, addr, src_pte);
5371  				entry = huge_pte_wrprotect(entry);
5372  			}
5373  
5374  			if (!userfaultfd_wp(dst_vma))
5375  				entry = huge_pte_clear_uffd_wp(entry);
5376  
5377  			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5378  			hugetlb_count_add(npages, dst);
5379  		}
5380  		spin_unlock(src_ptl);
5381  		spin_unlock(dst_ptl);
5382  	}
5383  
5384  	if (cow) {
5385  		raw_write_seqcount_end(&src->write_protect_seq);
5386  		mmu_notifier_invalidate_range_end(&range);
5387  	} else {
5388  		hugetlb_vma_unlock_read(src_vma);
5389  	}
5390  
5391  	return ret;
5392  }
5393  
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5394  static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5395  			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5396  			  unsigned long sz)
5397  {
5398  	struct hstate *h = hstate_vma(vma);
5399  	struct mm_struct *mm = vma->vm_mm;
5400  	spinlock_t *src_ptl, *dst_ptl;
5401  	pte_t pte;
5402  
5403  	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5404  	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5405  
5406  	/*
5407  	 * We don't have to worry about the ordering of src and dst ptlocks
5408  	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5409  	 */
5410  	if (src_ptl != dst_ptl)
5411  		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5412  
5413  	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5414  	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5415  
5416  	if (src_ptl != dst_ptl)
5417  		spin_unlock(src_ptl);
5418  	spin_unlock(dst_ptl);
5419  }
5420  
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5421  int move_hugetlb_page_tables(struct vm_area_struct *vma,
5422  			     struct vm_area_struct *new_vma,
5423  			     unsigned long old_addr, unsigned long new_addr,
5424  			     unsigned long len)
5425  {
5426  	struct hstate *h = hstate_vma(vma);
5427  	struct address_space *mapping = vma->vm_file->f_mapping;
5428  	unsigned long sz = huge_page_size(h);
5429  	struct mm_struct *mm = vma->vm_mm;
5430  	unsigned long old_end = old_addr + len;
5431  	unsigned long last_addr_mask;
5432  	pte_t *src_pte, *dst_pte;
5433  	struct mmu_notifier_range range;
5434  	bool shared_pmd = false;
5435  
5436  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5437  				old_end);
5438  	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5439  	/*
5440  	 * In case of shared PMDs, we should cover the maximum possible
5441  	 * range.
5442  	 */
5443  	flush_cache_range(vma, range.start, range.end);
5444  
5445  	mmu_notifier_invalidate_range_start(&range);
5446  	last_addr_mask = hugetlb_mask_last_page(h);
5447  	/* Prevent race with file truncation */
5448  	hugetlb_vma_lock_write(vma);
5449  	i_mmap_lock_write(mapping);
5450  	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5451  		src_pte = hugetlb_walk(vma, old_addr, sz);
5452  		if (!src_pte) {
5453  			old_addr |= last_addr_mask;
5454  			new_addr |= last_addr_mask;
5455  			continue;
5456  		}
5457  		if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5458  			continue;
5459  
5460  		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5461  			shared_pmd = true;
5462  			old_addr |= last_addr_mask;
5463  			new_addr |= last_addr_mask;
5464  			continue;
5465  		}
5466  
5467  		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5468  		if (!dst_pte)
5469  			break;
5470  
5471  		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5472  	}
5473  
5474  	if (shared_pmd)
5475  		flush_hugetlb_tlb_range(vma, range.start, range.end);
5476  	else
5477  		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5478  	mmu_notifier_invalidate_range_end(&range);
5479  	i_mmap_unlock_write(mapping);
5480  	hugetlb_vma_unlock_write(vma);
5481  
5482  	return len + old_addr - old_end;
5483  }
5484  
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5485  void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5486  			    unsigned long start, unsigned long end,
5487  			    struct page *ref_page, zap_flags_t zap_flags)
5488  {
5489  	struct mm_struct *mm = vma->vm_mm;
5490  	unsigned long address;
5491  	pte_t *ptep;
5492  	pte_t pte;
5493  	spinlock_t *ptl;
5494  	struct page *page;
5495  	struct hstate *h = hstate_vma(vma);
5496  	unsigned long sz = huge_page_size(h);
5497  	bool adjust_reservation = false;
5498  	unsigned long last_addr_mask;
5499  	bool force_flush = false;
5500  
5501  	WARN_ON(!is_vm_hugetlb_page(vma));
5502  	BUG_ON(start & ~huge_page_mask(h));
5503  	BUG_ON(end & ~huge_page_mask(h));
5504  
5505  	/*
5506  	 * This is a hugetlb vma, all the pte entries should point
5507  	 * to huge page.
5508  	 */
5509  	tlb_change_page_size(tlb, sz);
5510  	tlb_start_vma(tlb, vma);
5511  
5512  	last_addr_mask = hugetlb_mask_last_page(h);
5513  	address = start;
5514  	for (; address < end; address += sz) {
5515  		ptep = hugetlb_walk(vma, address, sz);
5516  		if (!ptep) {
5517  			address |= last_addr_mask;
5518  			continue;
5519  		}
5520  
5521  		ptl = huge_pte_lock(h, mm, ptep);
5522  		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5523  			spin_unlock(ptl);
5524  			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5525  			force_flush = true;
5526  			address |= last_addr_mask;
5527  			continue;
5528  		}
5529  
5530  		pte = huge_ptep_get(mm, address, ptep);
5531  		if (huge_pte_none(pte)) {
5532  			spin_unlock(ptl);
5533  			continue;
5534  		}
5535  
5536  		/*
5537  		 * Migrating hugepage or HWPoisoned hugepage is already
5538  		 * unmapped and its refcount is dropped, so just clear pte here.
5539  		 */
5540  		if (unlikely(!pte_present(pte))) {
5541  			/*
5542  			 * If the pte was wr-protected by uffd-wp in any of the
5543  			 * swap forms, meanwhile the caller does not want to
5544  			 * drop the uffd-wp bit in this zap, then replace the
5545  			 * pte with a marker.
5546  			 */
5547  			if (pte_swp_uffd_wp_any(pte) &&
5548  			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5549  				set_huge_pte_at(mm, address, ptep,
5550  						make_pte_marker(PTE_MARKER_UFFD_WP),
5551  						sz);
5552  			else
5553  				huge_pte_clear(mm, address, ptep, sz);
5554  			spin_unlock(ptl);
5555  			continue;
5556  		}
5557  
5558  		page = pte_page(pte);
5559  		/*
5560  		 * If a reference page is supplied, it is because a specific
5561  		 * page is being unmapped, not a range. Ensure the page we
5562  		 * are about to unmap is the actual page of interest.
5563  		 */
5564  		if (ref_page) {
5565  			if (page != ref_page) {
5566  				spin_unlock(ptl);
5567  				continue;
5568  			}
5569  			/*
5570  			 * Mark the VMA as having unmapped its page so that
5571  			 * future faults in this VMA will fail rather than
5572  			 * looking like data was lost
5573  			 */
5574  			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5575  		}
5576  
5577  		pte = huge_ptep_get_and_clear(mm, address, ptep);
5578  		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5579  		if (huge_pte_dirty(pte))
5580  			set_page_dirty(page);
5581  		/* Leave a uffd-wp pte marker if needed */
5582  		if (huge_pte_uffd_wp(pte) &&
5583  		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5584  			set_huge_pte_at(mm, address, ptep,
5585  					make_pte_marker(PTE_MARKER_UFFD_WP),
5586  					sz);
5587  		hugetlb_count_sub(pages_per_huge_page(h), mm);
5588  		hugetlb_remove_rmap(page_folio(page));
5589  
5590  		/*
5591  		 * Restore the reservation for anonymous page, otherwise the
5592  		 * backing page could be stolen by someone.
5593  		 * If there we are freeing a surplus, do not set the restore
5594  		 * reservation bit.
5595  		 */
5596  		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5597  		    folio_test_anon(page_folio(page))) {
5598  			folio_set_hugetlb_restore_reserve(page_folio(page));
5599  			/* Reservation to be adjusted after the spin lock */
5600  			adjust_reservation = true;
5601  		}
5602  
5603  		spin_unlock(ptl);
5604  
5605  		/*
5606  		 * Adjust the reservation for the region that will have the
5607  		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5608  		 * resv->adds_in_progress if it succeeds. If this is not done,
5609  		 * do_exit() will not see it, and will keep the reservation
5610  		 * forever.
5611  		 */
5612  		if (adjust_reservation) {
5613  			int rc = vma_needs_reservation(h, vma, address);
5614  
5615  			if (rc < 0)
5616  				/* Pressumably allocate_file_region_entries failed
5617  				 * to allocate a file_region struct. Clear
5618  				 * hugetlb_restore_reserve so that global reserve
5619  				 * count will not be incremented by free_huge_folio.
5620  				 * Act as if we consumed the reservation.
5621  				 */
5622  				folio_clear_hugetlb_restore_reserve(page_folio(page));
5623  			else if (rc)
5624  				vma_add_reservation(h, vma, address);
5625  		}
5626  
5627  		tlb_remove_page_size(tlb, page, huge_page_size(h));
5628  		/*
5629  		 * Bail out after unmapping reference page if supplied
5630  		 */
5631  		if (ref_page)
5632  			break;
5633  	}
5634  	tlb_end_vma(tlb, vma);
5635  
5636  	/*
5637  	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5638  	 * could defer the flush until now, since by holding i_mmap_rwsem we
5639  	 * guaranteed that the last refernece would not be dropped. But we must
5640  	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5641  	 * dropped and the last reference to the shared PMDs page might be
5642  	 * dropped as well.
5643  	 *
5644  	 * In theory we could defer the freeing of the PMD pages as well, but
5645  	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5646  	 * detect sharing, so we cannot defer the release of the page either.
5647  	 * Instead, do flush now.
5648  	 */
5649  	if (force_flush)
5650  		tlb_flush_mmu_tlbonly(tlb);
5651  }
5652  
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5653  void __hugetlb_zap_begin(struct vm_area_struct *vma,
5654  			 unsigned long *start, unsigned long *end)
5655  {
5656  	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5657  		return;
5658  
5659  	adjust_range_if_pmd_sharing_possible(vma, start, end);
5660  	hugetlb_vma_lock_write(vma);
5661  	if (vma->vm_file)
5662  		i_mmap_lock_write(vma->vm_file->f_mapping);
5663  }
5664  
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5665  void __hugetlb_zap_end(struct vm_area_struct *vma,
5666  		       struct zap_details *details)
5667  {
5668  	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5669  
5670  	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5671  		return;
5672  
5673  	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5674  		/*
5675  		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5676  		 * When the vma_lock is freed, this makes the vma ineligible
5677  		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5678  		 * pmd sharing.  This is important as page tables for this
5679  		 * unmapped range will be asynchrously deleted.  If the page
5680  		 * tables are shared, there will be issues when accessed by
5681  		 * someone else.
5682  		 */
5683  		__hugetlb_vma_unlock_write_free(vma);
5684  	} else {
5685  		hugetlb_vma_unlock_write(vma);
5686  	}
5687  
5688  	if (vma->vm_file)
5689  		i_mmap_unlock_write(vma->vm_file->f_mapping);
5690  }
5691  
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5692  void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5693  			  unsigned long end, struct page *ref_page,
5694  			  zap_flags_t zap_flags)
5695  {
5696  	struct mmu_notifier_range range;
5697  	struct mmu_gather tlb;
5698  
5699  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5700  				start, end);
5701  	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5702  	mmu_notifier_invalidate_range_start(&range);
5703  	tlb_gather_mmu(&tlb, vma->vm_mm);
5704  
5705  	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5706  
5707  	mmu_notifier_invalidate_range_end(&range);
5708  	tlb_finish_mmu(&tlb);
5709  }
5710  
5711  /*
5712   * This is called when the original mapper is failing to COW a MAP_PRIVATE
5713   * mapping it owns the reserve page for. The intention is to unmap the page
5714   * from other VMAs and let the children be SIGKILLed if they are faulting the
5715   * same region.
5716   */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)5717  static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5718  			      struct page *page, unsigned long address)
5719  {
5720  	struct hstate *h = hstate_vma(vma);
5721  	struct vm_area_struct *iter_vma;
5722  	struct address_space *mapping;
5723  	pgoff_t pgoff;
5724  
5725  	/*
5726  	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5727  	 * from page cache lookup which is in HPAGE_SIZE units.
5728  	 */
5729  	address = address & huge_page_mask(h);
5730  	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5731  			vma->vm_pgoff;
5732  	mapping = vma->vm_file->f_mapping;
5733  
5734  	/*
5735  	 * Take the mapping lock for the duration of the table walk. As
5736  	 * this mapping should be shared between all the VMAs,
5737  	 * __unmap_hugepage_range() is called as the lock is already held
5738  	 */
5739  	i_mmap_lock_write(mapping);
5740  	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5741  		/* Do not unmap the current VMA */
5742  		if (iter_vma == vma)
5743  			continue;
5744  
5745  		/*
5746  		 * Shared VMAs have their own reserves and do not affect
5747  		 * MAP_PRIVATE accounting but it is possible that a shared
5748  		 * VMA is using the same page so check and skip such VMAs.
5749  		 */
5750  		if (iter_vma->vm_flags & VM_MAYSHARE)
5751  			continue;
5752  
5753  		/*
5754  		 * Unmap the page from other VMAs without their own reserves.
5755  		 * They get marked to be SIGKILLed if they fault in these
5756  		 * areas. This is because a future no-page fault on this VMA
5757  		 * could insert a zeroed page instead of the data existing
5758  		 * from the time of fork. This would look like data corruption
5759  		 */
5760  		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5761  			unmap_hugepage_range(iter_vma, address,
5762  					     address + huge_page_size(h), page, 0);
5763  	}
5764  	i_mmap_unlock_write(mapping);
5765  }
5766  
5767  /*
5768   * hugetlb_wp() should be called with page lock of the original hugepage held.
5769   * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5770   * cannot race with other handlers or page migration.
5771   * Keep the pte_same checks anyway to make transition from the mutex easier.
5772   */
hugetlb_wp(struct folio * pagecache_folio,struct vm_fault * vmf)5773  static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5774  		       struct vm_fault *vmf)
5775  {
5776  	struct vm_area_struct *vma = vmf->vma;
5777  	struct mm_struct *mm = vma->vm_mm;
5778  	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5779  	pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5780  	struct hstate *h = hstate_vma(vma);
5781  	struct folio *old_folio;
5782  	struct folio *new_folio;
5783  	int outside_reserve = 0;
5784  	vm_fault_t ret = 0;
5785  	struct mmu_notifier_range range;
5786  
5787  	/*
5788  	 * Never handle CoW for uffd-wp protected pages.  It should be only
5789  	 * handled when the uffd-wp protection is removed.
5790  	 *
5791  	 * Note that only the CoW optimization path (in hugetlb_no_page())
5792  	 * can trigger this, because hugetlb_fault() will always resolve
5793  	 * uffd-wp bit first.
5794  	 */
5795  	if (!unshare && huge_pte_uffd_wp(pte))
5796  		return 0;
5797  
5798  	/*
5799  	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5800  	 * PTE mapped R/O such as maybe_mkwrite() would do.
5801  	 */
5802  	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5803  		return VM_FAULT_SIGSEGV;
5804  
5805  	/* Let's take out MAP_SHARED mappings first. */
5806  	if (vma->vm_flags & VM_MAYSHARE) {
5807  		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5808  		return 0;
5809  	}
5810  
5811  	old_folio = page_folio(pte_page(pte));
5812  
5813  	delayacct_wpcopy_start();
5814  
5815  retry_avoidcopy:
5816  	/*
5817  	 * If no-one else is actually using this page, we're the exclusive
5818  	 * owner and can reuse this page.
5819  	 *
5820  	 * Note that we don't rely on the (safer) folio refcount here, because
5821  	 * copying the hugetlb folio when there are unexpected (temporary)
5822  	 * folio references could harm simple fork()+exit() users when
5823  	 * we run out of free hugetlb folios: we would have to kill processes
5824  	 * in scenarios that used to work. As a side effect, there can still
5825  	 * be leaks between processes, for example, with FOLL_GET users.
5826  	 */
5827  	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5828  		if (!PageAnonExclusive(&old_folio->page)) {
5829  			folio_move_anon_rmap(old_folio, vma);
5830  			SetPageAnonExclusive(&old_folio->page);
5831  		}
5832  		if (likely(!unshare))
5833  			set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5834  
5835  		delayacct_wpcopy_end();
5836  		return 0;
5837  	}
5838  	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5839  		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5840  
5841  	/*
5842  	 * If the process that created a MAP_PRIVATE mapping is about to
5843  	 * perform a COW due to a shared page count, attempt to satisfy
5844  	 * the allocation without using the existing reserves. The pagecache
5845  	 * page is used to determine if the reserve at this address was
5846  	 * consumed or not. If reserves were used, a partial faulted mapping
5847  	 * at the time of fork() could consume its reserves on COW instead
5848  	 * of the full address range.
5849  	 */
5850  	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5851  			old_folio != pagecache_folio)
5852  		outside_reserve = 1;
5853  
5854  	folio_get(old_folio);
5855  
5856  	/*
5857  	 * Drop page table lock as buddy allocator may be called. It will
5858  	 * be acquired again before returning to the caller, as expected.
5859  	 */
5860  	spin_unlock(vmf->ptl);
5861  	new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5862  
5863  	if (IS_ERR(new_folio)) {
5864  		/*
5865  		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5866  		 * it is due to references held by a child and an insufficient
5867  		 * huge page pool. To guarantee the original mappers
5868  		 * reliability, unmap the page from child processes. The child
5869  		 * may get SIGKILLed if it later faults.
5870  		 */
5871  		if (outside_reserve) {
5872  			struct address_space *mapping = vma->vm_file->f_mapping;
5873  			pgoff_t idx;
5874  			u32 hash;
5875  
5876  			folio_put(old_folio);
5877  			/*
5878  			 * Drop hugetlb_fault_mutex and vma_lock before
5879  			 * unmapping.  unmapping needs to hold vma_lock
5880  			 * in write mode.  Dropping vma_lock in read mode
5881  			 * here is OK as COW mappings do not interact with
5882  			 * PMD sharing.
5883  			 *
5884  			 * Reacquire both after unmap operation.
5885  			 */
5886  			idx = vma_hugecache_offset(h, vma, vmf->address);
5887  			hash = hugetlb_fault_mutex_hash(mapping, idx);
5888  			hugetlb_vma_unlock_read(vma);
5889  			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5890  
5891  			unmap_ref_private(mm, vma, &old_folio->page,
5892  					vmf->address);
5893  
5894  			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5895  			hugetlb_vma_lock_read(vma);
5896  			spin_lock(vmf->ptl);
5897  			vmf->pte = hugetlb_walk(vma, vmf->address,
5898  					huge_page_size(h));
5899  			if (likely(vmf->pte &&
5900  				   pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5901  				goto retry_avoidcopy;
5902  			/*
5903  			 * race occurs while re-acquiring page table
5904  			 * lock, and our job is done.
5905  			 */
5906  			delayacct_wpcopy_end();
5907  			return 0;
5908  		}
5909  
5910  		ret = vmf_error(PTR_ERR(new_folio));
5911  		goto out_release_old;
5912  	}
5913  
5914  	/*
5915  	 * When the original hugepage is shared one, it does not have
5916  	 * anon_vma prepared.
5917  	 */
5918  	ret = __vmf_anon_prepare(vmf);
5919  	if (unlikely(ret))
5920  		goto out_release_all;
5921  
5922  	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5923  		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5924  		goto out_release_all;
5925  	}
5926  	__folio_mark_uptodate(new_folio);
5927  
5928  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5929  				vmf->address + huge_page_size(h));
5930  	mmu_notifier_invalidate_range_start(&range);
5931  
5932  	/*
5933  	 * Retake the page table lock to check for racing updates
5934  	 * before the page tables are altered
5935  	 */
5936  	spin_lock(vmf->ptl);
5937  	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5938  	if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5939  		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5940  
5941  		/* Break COW or unshare */
5942  		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5943  		hugetlb_remove_rmap(old_folio);
5944  		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5945  		if (huge_pte_uffd_wp(pte))
5946  			newpte = huge_pte_mkuffd_wp(newpte);
5947  		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
5948  				huge_page_size(h));
5949  		folio_set_hugetlb_migratable(new_folio);
5950  		/* Make the old page be freed below */
5951  		new_folio = old_folio;
5952  	}
5953  	spin_unlock(vmf->ptl);
5954  	mmu_notifier_invalidate_range_end(&range);
5955  out_release_all:
5956  	/*
5957  	 * No restore in case of successful pagetable update (Break COW or
5958  	 * unshare)
5959  	 */
5960  	if (new_folio != old_folio)
5961  		restore_reserve_on_error(h, vma, vmf->address, new_folio);
5962  	folio_put(new_folio);
5963  out_release_old:
5964  	folio_put(old_folio);
5965  
5966  	spin_lock(vmf->ptl); /* Caller expects lock to be held */
5967  
5968  	delayacct_wpcopy_end();
5969  	return ret;
5970  }
5971  
5972  /*
5973   * Return whether there is a pagecache page to back given address within VMA.
5974   */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)5975  bool hugetlbfs_pagecache_present(struct hstate *h,
5976  				 struct vm_area_struct *vma, unsigned long address)
5977  {
5978  	struct address_space *mapping = vma->vm_file->f_mapping;
5979  	pgoff_t idx = linear_page_index(vma, address);
5980  	struct folio *folio;
5981  
5982  	folio = filemap_get_folio(mapping, idx);
5983  	if (IS_ERR(folio))
5984  		return false;
5985  	folio_put(folio);
5986  	return true;
5987  }
5988  
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)5989  int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5990  			   pgoff_t idx)
5991  {
5992  	struct inode *inode = mapping->host;
5993  	struct hstate *h = hstate_inode(inode);
5994  	int err;
5995  
5996  	idx <<= huge_page_order(h);
5997  	__folio_set_locked(folio);
5998  	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5999  
6000  	if (unlikely(err)) {
6001  		__folio_clear_locked(folio);
6002  		return err;
6003  	}
6004  	folio_clear_hugetlb_restore_reserve(folio);
6005  
6006  	/*
6007  	 * mark folio dirty so that it will not be removed from cache/file
6008  	 * by non-hugetlbfs specific code paths.
6009  	 */
6010  	folio_mark_dirty(folio);
6011  
6012  	spin_lock(&inode->i_lock);
6013  	inode->i_blocks += blocks_per_huge_page(h);
6014  	spin_unlock(&inode->i_lock);
6015  	return 0;
6016  }
6017  
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6018  static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6019  						  struct address_space *mapping,
6020  						  unsigned long reason)
6021  {
6022  	u32 hash;
6023  
6024  	/*
6025  	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6026  	 * userfault. Also mmap_lock could be dropped due to handling
6027  	 * userfault, any vma operation should be careful from here.
6028  	 */
6029  	hugetlb_vma_unlock_read(vmf->vma);
6030  	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6031  	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6032  	return handle_userfault(vmf, reason);
6033  }
6034  
6035  /*
6036   * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6037   * false if pte changed or is changing.
6038   */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6039  static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6040  			       pte_t *ptep, pte_t old_pte)
6041  {
6042  	spinlock_t *ptl;
6043  	bool same;
6044  
6045  	ptl = huge_pte_lock(h, mm, ptep);
6046  	same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6047  	spin_unlock(ptl);
6048  
6049  	return same;
6050  }
6051  
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6052  static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6053  			struct vm_fault *vmf)
6054  {
6055  	struct vm_area_struct *vma = vmf->vma;
6056  	struct mm_struct *mm = vma->vm_mm;
6057  	struct hstate *h = hstate_vma(vma);
6058  	vm_fault_t ret = VM_FAULT_SIGBUS;
6059  	int anon_rmap = 0;
6060  	unsigned long size;
6061  	struct folio *folio;
6062  	pte_t new_pte;
6063  	bool new_folio, new_pagecache_folio = false;
6064  	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6065  
6066  	/*
6067  	 * Currently, we are forced to kill the process in the event the
6068  	 * original mapper has unmapped pages from the child due to a failed
6069  	 * COW/unsharing. Warn that such a situation has occurred as it may not
6070  	 * be obvious.
6071  	 */
6072  	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6073  		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6074  			   current->pid);
6075  		goto out;
6076  	}
6077  
6078  	/*
6079  	 * Use page lock to guard against racing truncation
6080  	 * before we get page_table_lock.
6081  	 */
6082  	new_folio = false;
6083  	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6084  	if (IS_ERR(folio)) {
6085  		size = i_size_read(mapping->host) >> huge_page_shift(h);
6086  		if (vmf->pgoff >= size)
6087  			goto out;
6088  		/* Check for page in userfault range */
6089  		if (userfaultfd_missing(vma)) {
6090  			/*
6091  			 * Since hugetlb_no_page() was examining pte
6092  			 * without pgtable lock, we need to re-test under
6093  			 * lock because the pte may not be stable and could
6094  			 * have changed from under us.  Try to detect
6095  			 * either changed or during-changing ptes and retry
6096  			 * properly when needed.
6097  			 *
6098  			 * Note that userfaultfd is actually fine with
6099  			 * false positives (e.g. caused by pte changed),
6100  			 * but not wrong logical events (e.g. caused by
6101  			 * reading a pte during changing).  The latter can
6102  			 * confuse the userspace, so the strictness is very
6103  			 * much preferred.  E.g., MISSING event should
6104  			 * never happen on the page after UFFDIO_COPY has
6105  			 * correctly installed the page and returned.
6106  			 */
6107  			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6108  				ret = 0;
6109  				goto out;
6110  			}
6111  
6112  			return hugetlb_handle_userfault(vmf, mapping,
6113  							VM_UFFD_MISSING);
6114  		}
6115  
6116  		if (!(vma->vm_flags & VM_MAYSHARE)) {
6117  			ret = __vmf_anon_prepare(vmf);
6118  			if (unlikely(ret))
6119  				goto out;
6120  		}
6121  
6122  		folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6123  		if (IS_ERR(folio)) {
6124  			/*
6125  			 * Returning error will result in faulting task being
6126  			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6127  			 * tasks from racing to fault in the same page which
6128  			 * could result in false unable to allocate errors.
6129  			 * Page migration does not take the fault mutex, but
6130  			 * does a clear then write of pte's under page table
6131  			 * lock.  Page fault code could race with migration,
6132  			 * notice the clear pte and try to allocate a page
6133  			 * here.  Before returning error, get ptl and make
6134  			 * sure there really is no pte entry.
6135  			 */
6136  			if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6137  				ret = vmf_error(PTR_ERR(folio));
6138  			else
6139  				ret = 0;
6140  			goto out;
6141  		}
6142  		folio_zero_user(folio, vmf->real_address);
6143  		__folio_mark_uptodate(folio);
6144  		new_folio = true;
6145  
6146  		if (vma->vm_flags & VM_MAYSHARE) {
6147  			int err = hugetlb_add_to_page_cache(folio, mapping,
6148  							vmf->pgoff);
6149  			if (err) {
6150  				/*
6151  				 * err can't be -EEXIST which implies someone
6152  				 * else consumed the reservation since hugetlb
6153  				 * fault mutex is held when add a hugetlb page
6154  				 * to the page cache. So it's safe to call
6155  				 * restore_reserve_on_error() here.
6156  				 */
6157  				restore_reserve_on_error(h, vma, vmf->address,
6158  							folio);
6159  				folio_put(folio);
6160  				ret = VM_FAULT_SIGBUS;
6161  				goto out;
6162  			}
6163  			new_pagecache_folio = true;
6164  		} else {
6165  			folio_lock(folio);
6166  			anon_rmap = 1;
6167  		}
6168  	} else {
6169  		/*
6170  		 * If memory error occurs between mmap() and fault, some process
6171  		 * don't have hwpoisoned swap entry for errored virtual address.
6172  		 * So we need to block hugepage fault by PG_hwpoison bit check.
6173  		 */
6174  		if (unlikely(folio_test_hwpoison(folio))) {
6175  			ret = VM_FAULT_HWPOISON_LARGE |
6176  				VM_FAULT_SET_HINDEX(hstate_index(h));
6177  			goto backout_unlocked;
6178  		}
6179  
6180  		/* Check for page in userfault range. */
6181  		if (userfaultfd_minor(vma)) {
6182  			folio_unlock(folio);
6183  			folio_put(folio);
6184  			/* See comment in userfaultfd_missing() block above */
6185  			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6186  				ret = 0;
6187  				goto out;
6188  			}
6189  			return hugetlb_handle_userfault(vmf, mapping,
6190  							VM_UFFD_MINOR);
6191  		}
6192  	}
6193  
6194  	/*
6195  	 * If we are going to COW a private mapping later, we examine the
6196  	 * pending reservations for this page now. This will ensure that
6197  	 * any allocations necessary to record that reservation occur outside
6198  	 * the spinlock.
6199  	 */
6200  	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6201  		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6202  			ret = VM_FAULT_OOM;
6203  			goto backout_unlocked;
6204  		}
6205  		/* Just decrements count, does not deallocate */
6206  		vma_end_reservation(h, vma, vmf->address);
6207  	}
6208  
6209  	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6210  	ret = 0;
6211  	/* If pte changed from under us, retry */
6212  	if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6213  		goto backout;
6214  
6215  	if (anon_rmap)
6216  		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6217  	else
6218  		hugetlb_add_file_rmap(folio);
6219  	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6220  				&& (vma->vm_flags & VM_SHARED)));
6221  	/*
6222  	 * If this pte was previously wr-protected, keep it wr-protected even
6223  	 * if populated.
6224  	 */
6225  	if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6226  		new_pte = huge_pte_mkuffd_wp(new_pte);
6227  	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6228  
6229  	hugetlb_count_add(pages_per_huge_page(h), mm);
6230  	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6231  		/* Optimization, do the COW without a second fault */
6232  		ret = hugetlb_wp(folio, vmf);
6233  	}
6234  
6235  	spin_unlock(vmf->ptl);
6236  
6237  	/*
6238  	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6239  	 * found in the pagecache may not have hugetlb_migratable if they have
6240  	 * been isolated for migration.
6241  	 */
6242  	if (new_folio)
6243  		folio_set_hugetlb_migratable(folio);
6244  
6245  	folio_unlock(folio);
6246  out:
6247  	hugetlb_vma_unlock_read(vma);
6248  
6249  	/*
6250  	 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6251  	 * the only way ret can be set to VM_FAULT_RETRY.
6252  	 */
6253  	if (unlikely(ret & VM_FAULT_RETRY))
6254  		vma_end_read(vma);
6255  
6256  	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6257  	return ret;
6258  
6259  backout:
6260  	spin_unlock(vmf->ptl);
6261  backout_unlocked:
6262  	if (new_folio && !new_pagecache_folio)
6263  		restore_reserve_on_error(h, vma, vmf->address, folio);
6264  
6265  	folio_unlock(folio);
6266  	folio_put(folio);
6267  	goto out;
6268  }
6269  
6270  #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6271  u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6272  {
6273  	unsigned long key[2];
6274  	u32 hash;
6275  
6276  	key[0] = (unsigned long) mapping;
6277  	key[1] = idx;
6278  
6279  	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6280  
6281  	return hash & (num_fault_mutexes - 1);
6282  }
6283  #else
6284  /*
6285   * For uniprocessor systems we always use a single mutex, so just
6286   * return 0 and avoid the hashing overhead.
6287   */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6288  u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6289  {
6290  	return 0;
6291  }
6292  #endif
6293  
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6294  vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6295  			unsigned long address, unsigned int flags)
6296  {
6297  	vm_fault_t ret;
6298  	u32 hash;
6299  	struct folio *folio = NULL;
6300  	struct folio *pagecache_folio = NULL;
6301  	struct hstate *h = hstate_vma(vma);
6302  	struct address_space *mapping;
6303  	int need_wait_lock = 0;
6304  	struct vm_fault vmf = {
6305  		.vma = vma,
6306  		.address = address & huge_page_mask(h),
6307  		.real_address = address,
6308  		.flags = flags,
6309  		.pgoff = vma_hugecache_offset(h, vma,
6310  				address & huge_page_mask(h)),
6311  		/* TODO: Track hugetlb faults using vm_fault */
6312  
6313  		/*
6314  		 * Some fields may not be initialized, be careful as it may
6315  		 * be hard to debug if called functions make assumptions
6316  		 */
6317  	};
6318  
6319  	/*
6320  	 * Serialize hugepage allocation and instantiation, so that we don't
6321  	 * get spurious allocation failures if two CPUs race to instantiate
6322  	 * the same page in the page cache.
6323  	 */
6324  	mapping = vma->vm_file->f_mapping;
6325  	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6326  	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6327  
6328  	/*
6329  	 * Acquire vma lock before calling huge_pte_alloc and hold
6330  	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6331  	 * being called elsewhere and making the vmf.pte no longer valid.
6332  	 */
6333  	hugetlb_vma_lock_read(vma);
6334  	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6335  	if (!vmf.pte) {
6336  		hugetlb_vma_unlock_read(vma);
6337  		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6338  		return VM_FAULT_OOM;
6339  	}
6340  
6341  	vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6342  	if (huge_pte_none_mostly(vmf.orig_pte)) {
6343  		if (is_pte_marker(vmf.orig_pte)) {
6344  			pte_marker marker =
6345  				pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6346  
6347  			if (marker & PTE_MARKER_POISONED) {
6348  				ret = VM_FAULT_HWPOISON_LARGE |
6349  				      VM_FAULT_SET_HINDEX(hstate_index(h));
6350  				goto out_mutex;
6351  			}
6352  		}
6353  
6354  		/*
6355  		 * Other PTE markers should be handled the same way as none PTE.
6356  		 *
6357  		 * hugetlb_no_page will drop vma lock and hugetlb fault
6358  		 * mutex internally, which make us return immediately.
6359  		 */
6360  		return hugetlb_no_page(mapping, &vmf);
6361  	}
6362  
6363  	ret = 0;
6364  
6365  	/*
6366  	 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6367  	 * point, so this check prevents the kernel from going below assuming
6368  	 * that we have an active hugepage in pagecache. This goto expects
6369  	 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6370  	 * check will properly handle it.
6371  	 */
6372  	if (!pte_present(vmf.orig_pte)) {
6373  		if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6374  			/*
6375  			 * Release the hugetlb fault lock now, but retain
6376  			 * the vma lock, because it is needed to guard the
6377  			 * huge_pte_lockptr() later in
6378  			 * migration_entry_wait_huge(). The vma lock will
6379  			 * be released there.
6380  			 */
6381  			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6382  			migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6383  			return 0;
6384  		} else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6385  			ret = VM_FAULT_HWPOISON_LARGE |
6386  			    VM_FAULT_SET_HINDEX(hstate_index(h));
6387  		goto out_mutex;
6388  	}
6389  
6390  	/*
6391  	 * If we are going to COW/unshare the mapping later, we examine the
6392  	 * pending reservations for this page now. This will ensure that any
6393  	 * allocations necessary to record that reservation occur outside the
6394  	 * spinlock. Also lookup the pagecache page now as it is used to
6395  	 * determine if a reservation has been consumed.
6396  	 */
6397  	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6398  	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6399  		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6400  			ret = VM_FAULT_OOM;
6401  			goto out_mutex;
6402  		}
6403  		/* Just decrements count, does not deallocate */
6404  		vma_end_reservation(h, vma, vmf.address);
6405  
6406  		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6407  							     vmf.pgoff);
6408  		if (IS_ERR(pagecache_folio))
6409  			pagecache_folio = NULL;
6410  	}
6411  
6412  	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6413  
6414  	/* Check for a racing update before calling hugetlb_wp() */
6415  	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6416  		goto out_ptl;
6417  
6418  	/* Handle userfault-wp first, before trying to lock more pages */
6419  	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6420  	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6421  		if (!userfaultfd_wp_async(vma)) {
6422  			spin_unlock(vmf.ptl);
6423  			if (pagecache_folio) {
6424  				folio_unlock(pagecache_folio);
6425  				folio_put(pagecache_folio);
6426  			}
6427  			hugetlb_vma_unlock_read(vma);
6428  			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6429  			return handle_userfault(&vmf, VM_UFFD_WP);
6430  		}
6431  
6432  		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6433  		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6434  				huge_page_size(hstate_vma(vma)));
6435  		/* Fallthrough to CoW */
6436  	}
6437  
6438  	/*
6439  	 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6440  	 * pagecache_folio, so here we need take the former one
6441  	 * when folio != pagecache_folio or !pagecache_folio.
6442  	 */
6443  	folio = page_folio(pte_page(vmf.orig_pte));
6444  	if (folio != pagecache_folio)
6445  		if (!folio_trylock(folio)) {
6446  			need_wait_lock = 1;
6447  			goto out_ptl;
6448  		}
6449  
6450  	folio_get(folio);
6451  
6452  	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6453  		if (!huge_pte_write(vmf.orig_pte)) {
6454  			ret = hugetlb_wp(pagecache_folio, &vmf);
6455  			goto out_put_page;
6456  		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6457  			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6458  		}
6459  	}
6460  	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6461  	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6462  						flags & FAULT_FLAG_WRITE))
6463  		update_mmu_cache(vma, vmf.address, vmf.pte);
6464  out_put_page:
6465  	if (folio != pagecache_folio)
6466  		folio_unlock(folio);
6467  	folio_put(folio);
6468  out_ptl:
6469  	spin_unlock(vmf.ptl);
6470  
6471  	if (pagecache_folio) {
6472  		folio_unlock(pagecache_folio);
6473  		folio_put(pagecache_folio);
6474  	}
6475  out_mutex:
6476  	hugetlb_vma_unlock_read(vma);
6477  
6478  	/*
6479  	 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6480  	 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6481  	 */
6482  	if (unlikely(ret & VM_FAULT_RETRY))
6483  		vma_end_read(vma);
6484  
6485  	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6486  	/*
6487  	 * Generally it's safe to hold refcount during waiting page lock. But
6488  	 * here we just wait to defer the next page fault to avoid busy loop and
6489  	 * the page is not used after unlocked before returning from the current
6490  	 * page fault. So we are safe from accessing freed page, even if we wait
6491  	 * here without taking refcount.
6492  	 */
6493  	if (need_wait_lock)
6494  		folio_wait_locked(folio);
6495  	return ret;
6496  }
6497  
6498  #ifdef CONFIG_USERFAULTFD
6499  /*
6500   * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6501   */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6502  static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6503  		struct vm_area_struct *vma, unsigned long address)
6504  {
6505  	struct mempolicy *mpol;
6506  	nodemask_t *nodemask;
6507  	struct folio *folio;
6508  	gfp_t gfp_mask;
6509  	int node;
6510  
6511  	gfp_mask = htlb_alloc_mask(h);
6512  	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6513  	/*
6514  	 * This is used to allocate a temporary hugetlb to hold the copied
6515  	 * content, which will then be copied again to the final hugetlb
6516  	 * consuming a reservation. Set the alloc_fallback to false to indicate
6517  	 * that breaking the per-node hugetlb pool is not allowed in this case.
6518  	 */
6519  	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6520  	mpol_cond_put(mpol);
6521  
6522  	return folio;
6523  }
6524  
6525  /*
6526   * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6527   * with modifications for hugetlb pages.
6528   */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6529  int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6530  			     struct vm_area_struct *dst_vma,
6531  			     unsigned long dst_addr,
6532  			     unsigned long src_addr,
6533  			     uffd_flags_t flags,
6534  			     struct folio **foliop)
6535  {
6536  	struct mm_struct *dst_mm = dst_vma->vm_mm;
6537  	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6538  	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6539  	struct hstate *h = hstate_vma(dst_vma);
6540  	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6541  	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6542  	unsigned long size = huge_page_size(h);
6543  	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6544  	pte_t _dst_pte;
6545  	spinlock_t *ptl;
6546  	int ret = -ENOMEM;
6547  	struct folio *folio;
6548  	int writable;
6549  	bool folio_in_pagecache = false;
6550  
6551  	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6552  		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6553  
6554  		/* Don't overwrite any existing PTEs (even markers) */
6555  		if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6556  			spin_unlock(ptl);
6557  			return -EEXIST;
6558  		}
6559  
6560  		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6561  		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6562  
6563  		/* No need to invalidate - it was non-present before */
6564  		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6565  
6566  		spin_unlock(ptl);
6567  		return 0;
6568  	}
6569  
6570  	if (is_continue) {
6571  		ret = -EFAULT;
6572  		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6573  		if (IS_ERR(folio))
6574  			goto out;
6575  		folio_in_pagecache = true;
6576  	} else if (!*foliop) {
6577  		/* If a folio already exists, then it's UFFDIO_COPY for
6578  		 * a non-missing case. Return -EEXIST.
6579  		 */
6580  		if (vm_shared &&
6581  		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6582  			ret = -EEXIST;
6583  			goto out;
6584  		}
6585  
6586  		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6587  		if (IS_ERR(folio)) {
6588  			ret = -ENOMEM;
6589  			goto out;
6590  		}
6591  
6592  		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6593  					   false);
6594  
6595  		/* fallback to copy_from_user outside mmap_lock */
6596  		if (unlikely(ret)) {
6597  			ret = -ENOENT;
6598  			/* Free the allocated folio which may have
6599  			 * consumed a reservation.
6600  			 */
6601  			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6602  			folio_put(folio);
6603  
6604  			/* Allocate a temporary folio to hold the copied
6605  			 * contents.
6606  			 */
6607  			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6608  			if (!folio) {
6609  				ret = -ENOMEM;
6610  				goto out;
6611  			}
6612  			*foliop = folio;
6613  			/* Set the outparam foliop and return to the caller to
6614  			 * copy the contents outside the lock. Don't free the
6615  			 * folio.
6616  			 */
6617  			goto out;
6618  		}
6619  	} else {
6620  		if (vm_shared &&
6621  		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6622  			folio_put(*foliop);
6623  			ret = -EEXIST;
6624  			*foliop = NULL;
6625  			goto out;
6626  		}
6627  
6628  		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6629  		if (IS_ERR(folio)) {
6630  			folio_put(*foliop);
6631  			ret = -ENOMEM;
6632  			*foliop = NULL;
6633  			goto out;
6634  		}
6635  		ret = copy_user_large_folio(folio, *foliop,
6636  					    ALIGN_DOWN(dst_addr, size), dst_vma);
6637  		folio_put(*foliop);
6638  		*foliop = NULL;
6639  		if (ret) {
6640  			folio_put(folio);
6641  			goto out;
6642  		}
6643  	}
6644  
6645  	/*
6646  	 * If we just allocated a new page, we need a memory barrier to ensure
6647  	 * that preceding stores to the page become visible before the
6648  	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6649  	 * is what we need.
6650  	 *
6651  	 * In the case where we have not allocated a new page (is_continue),
6652  	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6653  	 * an earlier smp_wmb() to ensure that prior stores will be visible
6654  	 * before the set_pte_at() write.
6655  	 */
6656  	if (!is_continue)
6657  		__folio_mark_uptodate(folio);
6658  	else
6659  		WARN_ON_ONCE(!folio_test_uptodate(folio));
6660  
6661  	/* Add shared, newly allocated pages to the page cache. */
6662  	if (vm_shared && !is_continue) {
6663  		ret = -EFAULT;
6664  		if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6665  			goto out_release_nounlock;
6666  
6667  		/*
6668  		 * Serialization between remove_inode_hugepages() and
6669  		 * hugetlb_add_to_page_cache() below happens through the
6670  		 * hugetlb_fault_mutex_table that here must be hold by
6671  		 * the caller.
6672  		 */
6673  		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6674  		if (ret)
6675  			goto out_release_nounlock;
6676  		folio_in_pagecache = true;
6677  	}
6678  
6679  	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6680  
6681  	ret = -EIO;
6682  	if (folio_test_hwpoison(folio))
6683  		goto out_release_unlock;
6684  
6685  	/*
6686  	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6687  	 * registered, we firstly wr-protect a none pte which has no page cache
6688  	 * page backing it, then access the page.
6689  	 */
6690  	ret = -EEXIST;
6691  	if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6692  		goto out_release_unlock;
6693  
6694  	if (folio_in_pagecache)
6695  		hugetlb_add_file_rmap(folio);
6696  	else
6697  		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6698  
6699  	/*
6700  	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6701  	 * with wp flag set, don't set pte write bit.
6702  	 */
6703  	if (wp_enabled || (is_continue && !vm_shared))
6704  		writable = 0;
6705  	else
6706  		writable = dst_vma->vm_flags & VM_WRITE;
6707  
6708  	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6709  	/*
6710  	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6711  	 * extremely important for hugetlbfs for now since swapping is not
6712  	 * supported, but we should still be clear in that this page cannot be
6713  	 * thrown away at will, even if write bit not set.
6714  	 */
6715  	_dst_pte = huge_pte_mkdirty(_dst_pte);
6716  	_dst_pte = pte_mkyoung(_dst_pte);
6717  
6718  	if (wp_enabled)
6719  		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6720  
6721  	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6722  
6723  	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6724  
6725  	/* No need to invalidate - it was non-present before */
6726  	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6727  
6728  	spin_unlock(ptl);
6729  	if (!is_continue)
6730  		folio_set_hugetlb_migratable(folio);
6731  	if (vm_shared || is_continue)
6732  		folio_unlock(folio);
6733  	ret = 0;
6734  out:
6735  	return ret;
6736  out_release_unlock:
6737  	spin_unlock(ptl);
6738  	if (vm_shared || is_continue)
6739  		folio_unlock(folio);
6740  out_release_nounlock:
6741  	if (!folio_in_pagecache)
6742  		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6743  	folio_put(folio);
6744  	goto out;
6745  }
6746  #endif /* CONFIG_USERFAULTFD */
6747  
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6748  long hugetlb_change_protection(struct vm_area_struct *vma,
6749  		unsigned long address, unsigned long end,
6750  		pgprot_t newprot, unsigned long cp_flags)
6751  {
6752  	struct mm_struct *mm = vma->vm_mm;
6753  	unsigned long start = address;
6754  	pte_t *ptep;
6755  	pte_t pte;
6756  	struct hstate *h = hstate_vma(vma);
6757  	long pages = 0, psize = huge_page_size(h);
6758  	bool shared_pmd = false;
6759  	struct mmu_notifier_range range;
6760  	unsigned long last_addr_mask;
6761  	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6762  	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6763  
6764  	/*
6765  	 * In the case of shared PMDs, the area to flush could be beyond
6766  	 * start/end.  Set range.start/range.end to cover the maximum possible
6767  	 * range if PMD sharing is possible.
6768  	 */
6769  	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6770  				0, mm, start, end);
6771  	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6772  
6773  	BUG_ON(address >= end);
6774  	flush_cache_range(vma, range.start, range.end);
6775  
6776  	mmu_notifier_invalidate_range_start(&range);
6777  	hugetlb_vma_lock_write(vma);
6778  	i_mmap_lock_write(vma->vm_file->f_mapping);
6779  	last_addr_mask = hugetlb_mask_last_page(h);
6780  	for (; address < end; address += psize) {
6781  		spinlock_t *ptl;
6782  		ptep = hugetlb_walk(vma, address, psize);
6783  		if (!ptep) {
6784  			if (!uffd_wp) {
6785  				address |= last_addr_mask;
6786  				continue;
6787  			}
6788  			/*
6789  			 * Userfaultfd wr-protect requires pgtable
6790  			 * pre-allocations to install pte markers.
6791  			 */
6792  			ptep = huge_pte_alloc(mm, vma, address, psize);
6793  			if (!ptep) {
6794  				pages = -ENOMEM;
6795  				break;
6796  			}
6797  		}
6798  		ptl = huge_pte_lock(h, mm, ptep);
6799  		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6800  			/*
6801  			 * When uffd-wp is enabled on the vma, unshare
6802  			 * shouldn't happen at all.  Warn about it if it
6803  			 * happened due to some reason.
6804  			 */
6805  			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6806  			pages++;
6807  			spin_unlock(ptl);
6808  			shared_pmd = true;
6809  			address |= last_addr_mask;
6810  			continue;
6811  		}
6812  		pte = huge_ptep_get(mm, address, ptep);
6813  		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6814  			/* Nothing to do. */
6815  		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6816  			swp_entry_t entry = pte_to_swp_entry(pte);
6817  			struct page *page = pfn_swap_entry_to_page(entry);
6818  			pte_t newpte = pte;
6819  
6820  			if (is_writable_migration_entry(entry)) {
6821  				if (PageAnon(page))
6822  					entry = make_readable_exclusive_migration_entry(
6823  								swp_offset(entry));
6824  				else
6825  					entry = make_readable_migration_entry(
6826  								swp_offset(entry));
6827  				newpte = swp_entry_to_pte(entry);
6828  				pages++;
6829  			}
6830  
6831  			if (uffd_wp)
6832  				newpte = pte_swp_mkuffd_wp(newpte);
6833  			else if (uffd_wp_resolve)
6834  				newpte = pte_swp_clear_uffd_wp(newpte);
6835  			if (!pte_same(pte, newpte))
6836  				set_huge_pte_at(mm, address, ptep, newpte, psize);
6837  		} else if (unlikely(is_pte_marker(pte))) {
6838  			/*
6839  			 * Do nothing on a poison marker; page is
6840  			 * corrupted, permissons do not apply.  Here
6841  			 * pte_marker_uffd_wp()==true implies !poison
6842  			 * because they're mutual exclusive.
6843  			 */
6844  			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6845  				/* Safe to modify directly (non-present->none). */
6846  				huge_pte_clear(mm, address, ptep, psize);
6847  		} else if (!huge_pte_none(pte)) {
6848  			pte_t old_pte;
6849  			unsigned int shift = huge_page_shift(hstate_vma(vma));
6850  
6851  			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6852  			pte = huge_pte_modify(old_pte, newprot);
6853  			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6854  			if (uffd_wp)
6855  				pte = huge_pte_mkuffd_wp(pte);
6856  			else if (uffd_wp_resolve)
6857  				pte = huge_pte_clear_uffd_wp(pte);
6858  			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6859  			pages++;
6860  		} else {
6861  			/* None pte */
6862  			if (unlikely(uffd_wp))
6863  				/* Safe to modify directly (none->non-present). */
6864  				set_huge_pte_at(mm, address, ptep,
6865  						make_pte_marker(PTE_MARKER_UFFD_WP),
6866  						psize);
6867  		}
6868  		spin_unlock(ptl);
6869  	}
6870  	/*
6871  	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6872  	 * may have cleared our pud entry and done put_page on the page table:
6873  	 * once we release i_mmap_rwsem, another task can do the final put_page
6874  	 * and that page table be reused and filled with junk.  If we actually
6875  	 * did unshare a page of pmds, flush the range corresponding to the pud.
6876  	 */
6877  	if (shared_pmd)
6878  		flush_hugetlb_tlb_range(vma, range.start, range.end);
6879  	else
6880  		flush_hugetlb_tlb_range(vma, start, end);
6881  	/*
6882  	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6883  	 * downgrading page table protection not changing it to point to a new
6884  	 * page.
6885  	 *
6886  	 * See Documentation/mm/mmu_notifier.rst
6887  	 */
6888  	i_mmap_unlock_write(vma->vm_file->f_mapping);
6889  	hugetlb_vma_unlock_write(vma);
6890  	mmu_notifier_invalidate_range_end(&range);
6891  
6892  	return pages > 0 ? (pages << h->order) : pages;
6893  }
6894  
6895  /* Return true if reservation was successful, false otherwise.  */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)6896  bool hugetlb_reserve_pages(struct inode *inode,
6897  					long from, long to,
6898  					struct vm_area_struct *vma,
6899  					vm_flags_t vm_flags)
6900  {
6901  	long chg = -1, add = -1;
6902  	struct hstate *h = hstate_inode(inode);
6903  	struct hugepage_subpool *spool = subpool_inode(inode);
6904  	struct resv_map *resv_map;
6905  	struct hugetlb_cgroup *h_cg = NULL;
6906  	long gbl_reserve, regions_needed = 0;
6907  
6908  	/* This should never happen */
6909  	if (from > to) {
6910  		VM_WARN(1, "%s called with a negative range\n", __func__);
6911  		return false;
6912  	}
6913  
6914  	/*
6915  	 * vma specific semaphore used for pmd sharing and fault/truncation
6916  	 * synchronization
6917  	 */
6918  	hugetlb_vma_lock_alloc(vma);
6919  
6920  	/*
6921  	 * Only apply hugepage reservation if asked. At fault time, an
6922  	 * attempt will be made for VM_NORESERVE to allocate a page
6923  	 * without using reserves
6924  	 */
6925  	if (vm_flags & VM_NORESERVE)
6926  		return true;
6927  
6928  	/*
6929  	 * Shared mappings base their reservation on the number of pages that
6930  	 * are already allocated on behalf of the file. Private mappings need
6931  	 * to reserve the full area even if read-only as mprotect() may be
6932  	 * called to make the mapping read-write. Assume !vma is a shm mapping
6933  	 */
6934  	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6935  		/*
6936  		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6937  		 * called for inodes for which resv_maps were created (see
6938  		 * hugetlbfs_get_inode).
6939  		 */
6940  		resv_map = inode_resv_map(inode);
6941  
6942  		chg = region_chg(resv_map, from, to, &regions_needed);
6943  	} else {
6944  		/* Private mapping. */
6945  		resv_map = resv_map_alloc();
6946  		if (!resv_map)
6947  			goto out_err;
6948  
6949  		chg = to - from;
6950  
6951  		set_vma_resv_map(vma, resv_map);
6952  		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6953  	}
6954  
6955  	if (chg < 0)
6956  		goto out_err;
6957  
6958  	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6959  				chg * pages_per_huge_page(h), &h_cg) < 0)
6960  		goto out_err;
6961  
6962  	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6963  		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6964  		 * of the resv_map.
6965  		 */
6966  		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6967  	}
6968  
6969  	/*
6970  	 * There must be enough pages in the subpool for the mapping. If
6971  	 * the subpool has a minimum size, there may be some global
6972  	 * reservations already in place (gbl_reserve).
6973  	 */
6974  	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6975  	if (gbl_reserve < 0)
6976  		goto out_uncharge_cgroup;
6977  
6978  	/*
6979  	 * Check enough hugepages are available for the reservation.
6980  	 * Hand the pages back to the subpool if there are not
6981  	 */
6982  	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6983  		goto out_put_pages;
6984  
6985  	/*
6986  	 * Account for the reservations made. Shared mappings record regions
6987  	 * that have reservations as they are shared by multiple VMAs.
6988  	 * When the last VMA disappears, the region map says how much
6989  	 * the reservation was and the page cache tells how much of
6990  	 * the reservation was consumed. Private mappings are per-VMA and
6991  	 * only the consumed reservations are tracked. When the VMA
6992  	 * disappears, the original reservation is the VMA size and the
6993  	 * consumed reservations are stored in the map. Hence, nothing
6994  	 * else has to be done for private mappings here
6995  	 */
6996  	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6997  		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6998  
6999  		if (unlikely(add < 0)) {
7000  			hugetlb_acct_memory(h, -gbl_reserve);
7001  			goto out_put_pages;
7002  		} else if (unlikely(chg > add)) {
7003  			/*
7004  			 * pages in this range were added to the reserve
7005  			 * map between region_chg and region_add.  This
7006  			 * indicates a race with alloc_hugetlb_folio.  Adjust
7007  			 * the subpool and reserve counts modified above
7008  			 * based on the difference.
7009  			 */
7010  			long rsv_adjust;
7011  
7012  			/*
7013  			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7014  			 * reference to h_cg->css. See comment below for detail.
7015  			 */
7016  			hugetlb_cgroup_uncharge_cgroup_rsvd(
7017  				hstate_index(h),
7018  				(chg - add) * pages_per_huge_page(h), h_cg);
7019  
7020  			rsv_adjust = hugepage_subpool_put_pages(spool,
7021  								chg - add);
7022  			hugetlb_acct_memory(h, -rsv_adjust);
7023  		} else if (h_cg) {
7024  			/*
7025  			 * The file_regions will hold their own reference to
7026  			 * h_cg->css. So we should release the reference held
7027  			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7028  			 * done.
7029  			 */
7030  			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7031  		}
7032  	}
7033  	return true;
7034  
7035  out_put_pages:
7036  	/* put back original number of pages, chg */
7037  	(void)hugepage_subpool_put_pages(spool, chg);
7038  out_uncharge_cgroup:
7039  	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7040  					    chg * pages_per_huge_page(h), h_cg);
7041  out_err:
7042  	hugetlb_vma_lock_free(vma);
7043  	if (!vma || vma->vm_flags & VM_MAYSHARE)
7044  		/* Only call region_abort if the region_chg succeeded but the
7045  		 * region_add failed or didn't run.
7046  		 */
7047  		if (chg >= 0 && add < 0)
7048  			region_abort(resv_map, from, to, regions_needed);
7049  	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7050  		kref_put(&resv_map->refs, resv_map_release);
7051  		set_vma_resv_map(vma, NULL);
7052  	}
7053  	return false;
7054  }
7055  
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7056  long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7057  								long freed)
7058  {
7059  	struct hstate *h = hstate_inode(inode);
7060  	struct resv_map *resv_map = inode_resv_map(inode);
7061  	long chg = 0;
7062  	struct hugepage_subpool *spool = subpool_inode(inode);
7063  	long gbl_reserve;
7064  
7065  	/*
7066  	 * Since this routine can be called in the evict inode path for all
7067  	 * hugetlbfs inodes, resv_map could be NULL.
7068  	 */
7069  	if (resv_map) {
7070  		chg = region_del(resv_map, start, end);
7071  		/*
7072  		 * region_del() can fail in the rare case where a region
7073  		 * must be split and another region descriptor can not be
7074  		 * allocated.  If end == LONG_MAX, it will not fail.
7075  		 */
7076  		if (chg < 0)
7077  			return chg;
7078  	}
7079  
7080  	spin_lock(&inode->i_lock);
7081  	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7082  	spin_unlock(&inode->i_lock);
7083  
7084  	/*
7085  	 * If the subpool has a minimum size, the number of global
7086  	 * reservations to be released may be adjusted.
7087  	 *
7088  	 * Note that !resv_map implies freed == 0. So (chg - freed)
7089  	 * won't go negative.
7090  	 */
7091  	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7092  	hugetlb_acct_memory(h, -gbl_reserve);
7093  
7094  	return 0;
7095  }
7096  
7097  #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7098  static unsigned long page_table_shareable(struct vm_area_struct *svma,
7099  				struct vm_area_struct *vma,
7100  				unsigned long addr, pgoff_t idx)
7101  {
7102  	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7103  				svma->vm_start;
7104  	unsigned long sbase = saddr & PUD_MASK;
7105  	unsigned long s_end = sbase + PUD_SIZE;
7106  
7107  	/* Allow segments to share if only one is marked locked */
7108  	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7109  	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7110  
7111  	/*
7112  	 * match the virtual addresses, permission and the alignment of the
7113  	 * page table page.
7114  	 *
7115  	 * Also, vma_lock (vm_private_data) is required for sharing.
7116  	 */
7117  	if (pmd_index(addr) != pmd_index(saddr) ||
7118  	    vm_flags != svm_flags ||
7119  	    !range_in_vma(svma, sbase, s_end) ||
7120  	    !svma->vm_private_data)
7121  		return 0;
7122  
7123  	return saddr;
7124  }
7125  
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7126  bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7127  {
7128  	unsigned long start = addr & PUD_MASK;
7129  	unsigned long end = start + PUD_SIZE;
7130  
7131  #ifdef CONFIG_USERFAULTFD
7132  	if (uffd_disable_huge_pmd_share(vma))
7133  		return false;
7134  #endif
7135  	/*
7136  	 * check on proper vm_flags and page table alignment
7137  	 */
7138  	if (!(vma->vm_flags & VM_MAYSHARE))
7139  		return false;
7140  	if (!vma->vm_private_data)	/* vma lock required for sharing */
7141  		return false;
7142  	if (!range_in_vma(vma, start, end))
7143  		return false;
7144  	return true;
7145  }
7146  
7147  /*
7148   * Determine if start,end range within vma could be mapped by shared pmd.
7149   * If yes, adjust start and end to cover range associated with possible
7150   * shared pmd mappings.
7151   */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7152  void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7153  				unsigned long *start, unsigned long *end)
7154  {
7155  	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7156  		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7157  
7158  	/*
7159  	 * vma needs to span at least one aligned PUD size, and the range
7160  	 * must be at least partially within in.
7161  	 */
7162  	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7163  		(*end <= v_start) || (*start >= v_end))
7164  		return;
7165  
7166  	/* Extend the range to be PUD aligned for a worst case scenario */
7167  	if (*start > v_start)
7168  		*start = ALIGN_DOWN(*start, PUD_SIZE);
7169  
7170  	if (*end < v_end)
7171  		*end = ALIGN(*end, PUD_SIZE);
7172  }
7173  
7174  /*
7175   * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7176   * and returns the corresponding pte. While this is not necessary for the
7177   * !shared pmd case because we can allocate the pmd later as well, it makes the
7178   * code much cleaner. pmd allocation is essential for the shared case because
7179   * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7180   * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7181   * bad pmd for sharing.
7182   */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7183  pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7184  		      unsigned long addr, pud_t *pud)
7185  {
7186  	struct address_space *mapping = vma->vm_file->f_mapping;
7187  	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7188  			vma->vm_pgoff;
7189  	struct vm_area_struct *svma;
7190  	unsigned long saddr;
7191  	pte_t *spte = NULL;
7192  	pte_t *pte;
7193  
7194  	i_mmap_lock_read(mapping);
7195  	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7196  		if (svma == vma)
7197  			continue;
7198  
7199  		saddr = page_table_shareable(svma, vma, addr, idx);
7200  		if (saddr) {
7201  			spte = hugetlb_walk(svma, saddr,
7202  					    vma_mmu_pagesize(svma));
7203  			if (spte) {
7204  				get_page(virt_to_page(spte));
7205  				break;
7206  			}
7207  		}
7208  	}
7209  
7210  	if (!spte)
7211  		goto out;
7212  
7213  	spin_lock(&mm->page_table_lock);
7214  	if (pud_none(*pud)) {
7215  		pud_populate(mm, pud,
7216  				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7217  		mm_inc_nr_pmds(mm);
7218  	} else {
7219  		put_page(virt_to_page(spte));
7220  	}
7221  	spin_unlock(&mm->page_table_lock);
7222  out:
7223  	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7224  	i_mmap_unlock_read(mapping);
7225  	return pte;
7226  }
7227  
7228  /*
7229   * unmap huge page backed by shared pte.
7230   *
7231   * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7232   * indicated by page_count > 1, unmap is achieved by clearing pud and
7233   * decrementing the ref count. If count == 1, the pte page is not shared.
7234   *
7235   * Called with page table lock held.
7236   *
7237   * returns: 1 successfully unmapped a shared pte page
7238   *	    0 the underlying pte page is not shared, or it is the last user
7239   */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7240  int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7241  					unsigned long addr, pte_t *ptep)
7242  {
7243  	pgd_t *pgd = pgd_offset(mm, addr);
7244  	p4d_t *p4d = p4d_offset(pgd, addr);
7245  	pud_t *pud = pud_offset(p4d, addr);
7246  
7247  	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7248  	hugetlb_vma_assert_locked(vma);
7249  	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7250  	if (page_count(virt_to_page(ptep)) == 1)
7251  		return 0;
7252  
7253  	pud_clear(pud);
7254  	put_page(virt_to_page(ptep));
7255  	mm_dec_nr_pmds(mm);
7256  	return 1;
7257  }
7258  
7259  #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7260  
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7261  pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7262  		      unsigned long addr, pud_t *pud)
7263  {
7264  	return NULL;
7265  }
7266  
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7267  int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7268  				unsigned long addr, pte_t *ptep)
7269  {
7270  	return 0;
7271  }
7272  
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7273  void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7274  				unsigned long *start, unsigned long *end)
7275  {
7276  }
7277  
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7278  bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7279  {
7280  	return false;
7281  }
7282  #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7283  
7284  #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7285  pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7286  			unsigned long addr, unsigned long sz)
7287  {
7288  	pgd_t *pgd;
7289  	p4d_t *p4d;
7290  	pud_t *pud;
7291  	pte_t *pte = NULL;
7292  
7293  	pgd = pgd_offset(mm, addr);
7294  	p4d = p4d_alloc(mm, pgd, addr);
7295  	if (!p4d)
7296  		return NULL;
7297  	pud = pud_alloc(mm, p4d, addr);
7298  	if (pud) {
7299  		if (sz == PUD_SIZE) {
7300  			pte = (pte_t *)pud;
7301  		} else {
7302  			BUG_ON(sz != PMD_SIZE);
7303  			if (want_pmd_share(vma, addr) && pud_none(*pud))
7304  				pte = huge_pmd_share(mm, vma, addr, pud);
7305  			else
7306  				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7307  		}
7308  	}
7309  
7310  	if (pte) {
7311  		pte_t pteval = ptep_get_lockless(pte);
7312  
7313  		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7314  	}
7315  
7316  	return pte;
7317  }
7318  
7319  /*
7320   * huge_pte_offset() - Walk the page table to resolve the hugepage
7321   * entry at address @addr
7322   *
7323   * Return: Pointer to page table entry (PUD or PMD) for
7324   * address @addr, or NULL if a !p*d_present() entry is encountered and the
7325   * size @sz doesn't match the hugepage size at this level of the page
7326   * table.
7327   */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7328  pte_t *huge_pte_offset(struct mm_struct *mm,
7329  		       unsigned long addr, unsigned long sz)
7330  {
7331  	pgd_t *pgd;
7332  	p4d_t *p4d;
7333  	pud_t *pud;
7334  	pmd_t *pmd;
7335  
7336  	pgd = pgd_offset(mm, addr);
7337  	if (!pgd_present(*pgd))
7338  		return NULL;
7339  	p4d = p4d_offset(pgd, addr);
7340  	if (!p4d_present(*p4d))
7341  		return NULL;
7342  
7343  	pud = pud_offset(p4d, addr);
7344  	if (sz == PUD_SIZE)
7345  		/* must be pud huge, non-present or none */
7346  		return (pte_t *)pud;
7347  	if (!pud_present(*pud))
7348  		return NULL;
7349  	/* must have a valid entry and size to go further */
7350  
7351  	pmd = pmd_offset(pud, addr);
7352  	/* must be pmd huge, non-present or none */
7353  	return (pte_t *)pmd;
7354  }
7355  
7356  /*
7357   * Return a mask that can be used to update an address to the last huge
7358   * page in a page table page mapping size.  Used to skip non-present
7359   * page table entries when linearly scanning address ranges.  Architectures
7360   * with unique huge page to page table relationships can define their own
7361   * version of this routine.
7362   */
hugetlb_mask_last_page(struct hstate * h)7363  unsigned long hugetlb_mask_last_page(struct hstate *h)
7364  {
7365  	unsigned long hp_size = huge_page_size(h);
7366  
7367  	if (hp_size == PUD_SIZE)
7368  		return P4D_SIZE - PUD_SIZE;
7369  	else if (hp_size == PMD_SIZE)
7370  		return PUD_SIZE - PMD_SIZE;
7371  	else
7372  		return 0UL;
7373  }
7374  
7375  #else
7376  
7377  /* See description above.  Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7378  __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7379  {
7380  #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7381  	if (huge_page_size(h) == PMD_SIZE)
7382  		return PUD_SIZE - PMD_SIZE;
7383  #endif
7384  	return 0UL;
7385  }
7386  
7387  #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7388  
isolate_hugetlb(struct folio * folio,struct list_head * list)7389  bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7390  {
7391  	bool ret = true;
7392  
7393  	spin_lock_irq(&hugetlb_lock);
7394  	if (!folio_test_hugetlb(folio) ||
7395  	    !folio_test_hugetlb_migratable(folio) ||
7396  	    !folio_try_get(folio)) {
7397  		ret = false;
7398  		goto unlock;
7399  	}
7400  	folio_clear_hugetlb_migratable(folio);
7401  	list_move_tail(&folio->lru, list);
7402  unlock:
7403  	spin_unlock_irq(&hugetlb_lock);
7404  	return ret;
7405  }
7406  
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7407  int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7408  {
7409  	int ret = 0;
7410  
7411  	*hugetlb = false;
7412  	spin_lock_irq(&hugetlb_lock);
7413  	if (folio_test_hugetlb(folio)) {
7414  		*hugetlb = true;
7415  		if (folio_test_hugetlb_freed(folio))
7416  			ret = 0;
7417  		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7418  			ret = folio_try_get(folio);
7419  		else
7420  			ret = -EBUSY;
7421  	}
7422  	spin_unlock_irq(&hugetlb_lock);
7423  	return ret;
7424  }
7425  
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7426  int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7427  				bool *migratable_cleared)
7428  {
7429  	int ret;
7430  
7431  	spin_lock_irq(&hugetlb_lock);
7432  	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7433  	spin_unlock_irq(&hugetlb_lock);
7434  	return ret;
7435  }
7436  
folio_putback_active_hugetlb(struct folio * folio)7437  void folio_putback_active_hugetlb(struct folio *folio)
7438  {
7439  	spin_lock_irq(&hugetlb_lock);
7440  	folio_set_hugetlb_migratable(folio);
7441  	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7442  	spin_unlock_irq(&hugetlb_lock);
7443  	folio_put(folio);
7444  }
7445  
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7446  void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7447  {
7448  	struct hstate *h = folio_hstate(old_folio);
7449  
7450  	hugetlb_cgroup_migrate(old_folio, new_folio);
7451  	set_page_owner_migrate_reason(&new_folio->page, reason);
7452  
7453  	/*
7454  	 * transfer temporary state of the new hugetlb folio. This is
7455  	 * reverse to other transitions because the newpage is going to
7456  	 * be final while the old one will be freed so it takes over
7457  	 * the temporary status.
7458  	 *
7459  	 * Also note that we have to transfer the per-node surplus state
7460  	 * here as well otherwise the global surplus count will not match
7461  	 * the per-node's.
7462  	 */
7463  	if (folio_test_hugetlb_temporary(new_folio)) {
7464  		int old_nid = folio_nid(old_folio);
7465  		int new_nid = folio_nid(new_folio);
7466  
7467  		folio_set_hugetlb_temporary(old_folio);
7468  		folio_clear_hugetlb_temporary(new_folio);
7469  
7470  
7471  		/*
7472  		 * There is no need to transfer the per-node surplus state
7473  		 * when we do not cross the node.
7474  		 */
7475  		if (new_nid == old_nid)
7476  			return;
7477  		spin_lock_irq(&hugetlb_lock);
7478  		if (h->surplus_huge_pages_node[old_nid]) {
7479  			h->surplus_huge_pages_node[old_nid]--;
7480  			h->surplus_huge_pages_node[new_nid]++;
7481  		}
7482  		spin_unlock_irq(&hugetlb_lock);
7483  	}
7484  }
7485  
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)7486  static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7487  				   unsigned long start,
7488  				   unsigned long end)
7489  {
7490  	struct hstate *h = hstate_vma(vma);
7491  	unsigned long sz = huge_page_size(h);
7492  	struct mm_struct *mm = vma->vm_mm;
7493  	struct mmu_notifier_range range;
7494  	unsigned long address;
7495  	spinlock_t *ptl;
7496  	pte_t *ptep;
7497  
7498  	if (!(vma->vm_flags & VM_MAYSHARE))
7499  		return;
7500  
7501  	if (start >= end)
7502  		return;
7503  
7504  	flush_cache_range(vma, start, end);
7505  	/*
7506  	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7507  	 * we have already done the PUD_SIZE alignment.
7508  	 */
7509  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7510  				start, end);
7511  	mmu_notifier_invalidate_range_start(&range);
7512  	hugetlb_vma_lock_write(vma);
7513  	i_mmap_lock_write(vma->vm_file->f_mapping);
7514  	for (address = start; address < end; address += PUD_SIZE) {
7515  		ptep = hugetlb_walk(vma, address, sz);
7516  		if (!ptep)
7517  			continue;
7518  		ptl = huge_pte_lock(h, mm, ptep);
7519  		huge_pmd_unshare(mm, vma, address, ptep);
7520  		spin_unlock(ptl);
7521  	}
7522  	flush_hugetlb_tlb_range(vma, start, end);
7523  	i_mmap_unlock_write(vma->vm_file->f_mapping);
7524  	hugetlb_vma_unlock_write(vma);
7525  	/*
7526  	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7527  	 * Documentation/mm/mmu_notifier.rst.
7528  	 */
7529  	mmu_notifier_invalidate_range_end(&range);
7530  }
7531  
7532  /*
7533   * This function will unconditionally remove all the shared pmd pgtable entries
7534   * within the specific vma for a hugetlbfs memory range.
7535   */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7536  void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7537  {
7538  	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7539  			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7540  }
7541  
7542  #ifdef CONFIG_CMA
7543  static bool cma_reserve_called __initdata;
7544  
cmdline_parse_hugetlb_cma(char * p)7545  static int __init cmdline_parse_hugetlb_cma(char *p)
7546  {
7547  	int nid, count = 0;
7548  	unsigned long tmp;
7549  	char *s = p;
7550  
7551  	while (*s) {
7552  		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7553  			break;
7554  
7555  		if (s[count] == ':') {
7556  			if (tmp >= MAX_NUMNODES)
7557  				break;
7558  			nid = array_index_nospec(tmp, MAX_NUMNODES);
7559  
7560  			s += count + 1;
7561  			tmp = memparse(s, &s);
7562  			hugetlb_cma_size_in_node[nid] = tmp;
7563  			hugetlb_cma_size += tmp;
7564  
7565  			/*
7566  			 * Skip the separator if have one, otherwise
7567  			 * break the parsing.
7568  			 */
7569  			if (*s == ',')
7570  				s++;
7571  			else
7572  				break;
7573  		} else {
7574  			hugetlb_cma_size = memparse(p, &p);
7575  			break;
7576  		}
7577  	}
7578  
7579  	return 0;
7580  }
7581  
7582  early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7583  
hugetlb_cma_reserve(int order)7584  void __init hugetlb_cma_reserve(int order)
7585  {
7586  	unsigned long size, reserved, per_node;
7587  	bool node_specific_cma_alloc = false;
7588  	int nid;
7589  
7590  	/*
7591  	 * HugeTLB CMA reservation is required for gigantic
7592  	 * huge pages which could not be allocated via the
7593  	 * page allocator. Just warn if there is any change
7594  	 * breaking this assumption.
7595  	 */
7596  	VM_WARN_ON(order <= MAX_PAGE_ORDER);
7597  	cma_reserve_called = true;
7598  
7599  	if (!hugetlb_cma_size)
7600  		return;
7601  
7602  	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7603  		if (hugetlb_cma_size_in_node[nid] == 0)
7604  			continue;
7605  
7606  		if (!node_online(nid)) {
7607  			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7608  			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7609  			hugetlb_cma_size_in_node[nid] = 0;
7610  			continue;
7611  		}
7612  
7613  		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7614  			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7615  				nid, (PAGE_SIZE << order) / SZ_1M);
7616  			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7617  			hugetlb_cma_size_in_node[nid] = 0;
7618  		} else {
7619  			node_specific_cma_alloc = true;
7620  		}
7621  	}
7622  
7623  	/* Validate the CMA size again in case some invalid nodes specified. */
7624  	if (!hugetlb_cma_size)
7625  		return;
7626  
7627  	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7628  		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7629  			(PAGE_SIZE << order) / SZ_1M);
7630  		hugetlb_cma_size = 0;
7631  		return;
7632  	}
7633  
7634  	if (!node_specific_cma_alloc) {
7635  		/*
7636  		 * If 3 GB area is requested on a machine with 4 numa nodes,
7637  		 * let's allocate 1 GB on first three nodes and ignore the last one.
7638  		 */
7639  		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7640  		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7641  			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7642  	}
7643  
7644  	reserved = 0;
7645  	for_each_online_node(nid) {
7646  		int res;
7647  		char name[CMA_MAX_NAME];
7648  
7649  		if (node_specific_cma_alloc) {
7650  			if (hugetlb_cma_size_in_node[nid] == 0)
7651  				continue;
7652  
7653  			size = hugetlb_cma_size_in_node[nid];
7654  		} else {
7655  			size = min(per_node, hugetlb_cma_size - reserved);
7656  		}
7657  
7658  		size = round_up(size, PAGE_SIZE << order);
7659  
7660  		snprintf(name, sizeof(name), "hugetlb%d", nid);
7661  		/*
7662  		 * Note that 'order per bit' is based on smallest size that
7663  		 * may be returned to CMA allocator in the case of
7664  		 * huge page demotion.
7665  		 */
7666  		res = cma_declare_contiguous_nid(0, size, 0,
7667  					PAGE_SIZE << order,
7668  					HUGETLB_PAGE_ORDER, false, name,
7669  					&hugetlb_cma[nid], nid);
7670  		if (res) {
7671  			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7672  				res, nid);
7673  			continue;
7674  		}
7675  
7676  		reserved += size;
7677  		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7678  			size / SZ_1M, nid);
7679  
7680  		if (reserved >= hugetlb_cma_size)
7681  			break;
7682  	}
7683  
7684  	if (!reserved)
7685  		/*
7686  		 * hugetlb_cma_size is used to determine if allocations from
7687  		 * cma are possible.  Set to zero if no cma regions are set up.
7688  		 */
7689  		hugetlb_cma_size = 0;
7690  }
7691  
hugetlb_cma_check(void)7692  static void __init hugetlb_cma_check(void)
7693  {
7694  	if (!hugetlb_cma_size || cma_reserve_called)
7695  		return;
7696  
7697  	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7698  }
7699  
7700  #endif /* CONFIG_CMA */
7701