1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DFS referral cache routines
4  *
5  * Copyright (c) 2018-2019 Paulo Alcantara <palcantara@suse.de>
6  */
7 
8 #include <linux/jhash.h>
9 #include <linux/ktime.h>
10 #include <linux/slab.h>
11 #include <linux/proc_fs.h>
12 #include <linux/nls.h>
13 #include <linux/workqueue.h>
14 #include <linux/uuid.h>
15 #include "cifsglob.h"
16 #include "smb2pdu.h"
17 #include "smb2proto.h"
18 #include "cifsproto.h"
19 #include "cifs_debug.h"
20 #include "cifs_unicode.h"
21 #include "smb2glob.h"
22 #include "dns_resolve.h"
23 #include "dfs.h"
24 
25 #include "dfs_cache.h"
26 
27 #define CACHE_HTABLE_SIZE	32
28 #define CACHE_MAX_ENTRIES	64
29 #define CACHE_MIN_TTL		120 /* 2 minutes */
30 #define CACHE_DEFAULT_TTL	300 /* 5 minutes */
31 
32 struct cache_dfs_tgt {
33 	char *name;
34 	int path_consumed;
35 	struct list_head list;
36 };
37 
38 struct cache_entry {
39 	struct hlist_node hlist;
40 	const char *path;
41 	int hdr_flags; /* RESP_GET_DFS_REFERRAL.ReferralHeaderFlags */
42 	int ttl; /* DFS_REREFERRAL_V3.TimeToLive */
43 	int srvtype; /* DFS_REREFERRAL_V3.ServerType */
44 	int ref_flags; /* DFS_REREFERRAL_V3.ReferralEntryFlags */
45 	struct timespec64 etime;
46 	int path_consumed; /* RESP_GET_DFS_REFERRAL.PathConsumed */
47 	int numtgts;
48 	struct list_head tlist;
49 	struct cache_dfs_tgt *tgthint;
50 };
51 
52 static struct kmem_cache *cache_slab __read_mostly;
53 struct workqueue_struct *dfscache_wq;
54 
55 atomic_t dfs_cache_ttl;
56 
57 static struct nls_table *cache_cp;
58 
59 /*
60  * Number of entries in the cache
61  */
62 static atomic_t cache_count;
63 
64 static struct hlist_head cache_htable[CACHE_HTABLE_SIZE];
65 static DECLARE_RWSEM(htable_rw_lock);
66 
67 /**
68  * dfs_cache_canonical_path - get a canonical DFS path
69  *
70  * @path: DFS path
71  * @cp: codepage
72  * @remap: mapping type
73  *
74  * Return canonical path if success, otherwise error.
75  */
dfs_cache_canonical_path(const char * path,const struct nls_table * cp,int remap)76 char *dfs_cache_canonical_path(const char *path, const struct nls_table *cp, int remap)
77 {
78 	char *tmp;
79 	int plen = 0;
80 	char *npath;
81 
82 	if (!path || strlen(path) < 3 || (*path != '\\' && *path != '/'))
83 		return ERR_PTR(-EINVAL);
84 
85 	if (unlikely(strcmp(cp->charset, cache_cp->charset))) {
86 		tmp = (char *)cifs_strndup_to_utf16(path, strlen(path), &plen, cp, remap);
87 		if (!tmp) {
88 			cifs_dbg(VFS, "%s: failed to convert path to utf16\n", __func__);
89 			return ERR_PTR(-EINVAL);
90 		}
91 
92 		npath = cifs_strndup_from_utf16(tmp, plen, true, cache_cp);
93 		kfree(tmp);
94 
95 		if (!npath) {
96 			cifs_dbg(VFS, "%s: failed to convert path from utf16\n", __func__);
97 			return ERR_PTR(-EINVAL);
98 		}
99 	} else {
100 		npath = kstrdup(path, GFP_KERNEL);
101 		if (!npath)
102 			return ERR_PTR(-ENOMEM);
103 	}
104 	convert_delimiter(npath, '\\');
105 	return npath;
106 }
107 
cache_entry_expired(const struct cache_entry * ce)108 static inline bool cache_entry_expired(const struct cache_entry *ce)
109 {
110 	struct timespec64 ts;
111 
112 	ktime_get_coarse_real_ts64(&ts);
113 	return timespec64_compare(&ts, &ce->etime) >= 0;
114 }
115 
free_tgts(struct cache_entry * ce)116 static inline void free_tgts(struct cache_entry *ce)
117 {
118 	struct cache_dfs_tgt *t, *n;
119 
120 	list_for_each_entry_safe(t, n, &ce->tlist, list) {
121 		list_del(&t->list);
122 		kfree(t->name);
123 		kfree(t);
124 	}
125 }
126 
flush_cache_ent(struct cache_entry * ce)127 static inline void flush_cache_ent(struct cache_entry *ce)
128 {
129 	cifs_dbg(FYI, "%s: %s\n", __func__, ce->path);
130 	hlist_del_init(&ce->hlist);
131 	kfree(ce->path);
132 	free_tgts(ce);
133 	atomic_dec(&cache_count);
134 	kmem_cache_free(cache_slab, ce);
135 }
136 
flush_cache_ents(void)137 static void flush_cache_ents(void)
138 {
139 	int i;
140 
141 	for (i = 0; i < CACHE_HTABLE_SIZE; i++) {
142 		struct hlist_head *l = &cache_htable[i];
143 		struct hlist_node *n;
144 		struct cache_entry *ce;
145 
146 		hlist_for_each_entry_safe(ce, n, l, hlist) {
147 			if (!hlist_unhashed(&ce->hlist))
148 				flush_cache_ent(ce);
149 		}
150 	}
151 }
152 
153 /*
154  * dfs cache /proc file
155  */
dfscache_proc_show(struct seq_file * m,void * v)156 static int dfscache_proc_show(struct seq_file *m, void *v)
157 {
158 	int i;
159 	struct cache_entry *ce;
160 	struct cache_dfs_tgt *t;
161 
162 	seq_puts(m, "DFS cache\n---------\n");
163 
164 	down_read(&htable_rw_lock);
165 	for (i = 0; i < CACHE_HTABLE_SIZE; i++) {
166 		struct hlist_head *l = &cache_htable[i];
167 
168 		hlist_for_each_entry(ce, l, hlist) {
169 			if (hlist_unhashed(&ce->hlist))
170 				continue;
171 
172 			seq_printf(m,
173 				   "cache entry: path=%s,type=%s,ttl=%d,etime=%ld,hdr_flags=0x%x,ref_flags=0x%x,interlink=%s,path_consumed=%d,expired=%s\n",
174 				   ce->path, ce->srvtype == DFS_TYPE_ROOT ? "root" : "link",
175 				   ce->ttl, ce->etime.tv_nsec, ce->hdr_flags, ce->ref_flags,
176 				   DFS_INTERLINK(ce->hdr_flags) ? "yes" : "no",
177 				   ce->path_consumed, cache_entry_expired(ce) ? "yes" : "no");
178 
179 			list_for_each_entry(t, &ce->tlist, list) {
180 				seq_printf(m, "  %s%s\n",
181 					   t->name,
182 					   READ_ONCE(ce->tgthint) == t ? " (target hint)" : "");
183 			}
184 		}
185 	}
186 	up_read(&htable_rw_lock);
187 
188 	return 0;
189 }
190 
dfscache_proc_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)191 static ssize_t dfscache_proc_write(struct file *file, const char __user *buffer,
192 				   size_t count, loff_t *ppos)
193 {
194 	char c;
195 	int rc;
196 
197 	rc = get_user(c, buffer);
198 	if (rc)
199 		return rc;
200 
201 	if (c != '0')
202 		return -EINVAL;
203 
204 	cifs_dbg(FYI, "clearing dfs cache\n");
205 
206 	down_write(&htable_rw_lock);
207 	flush_cache_ents();
208 	up_write(&htable_rw_lock);
209 
210 	return count;
211 }
212 
dfscache_proc_open(struct inode * inode,struct file * file)213 static int dfscache_proc_open(struct inode *inode, struct file *file)
214 {
215 	return single_open(file, dfscache_proc_show, NULL);
216 }
217 
218 const struct proc_ops dfscache_proc_ops = {
219 	.proc_open	= dfscache_proc_open,
220 	.proc_read	= seq_read,
221 	.proc_lseek	= seq_lseek,
222 	.proc_release	= single_release,
223 	.proc_write	= dfscache_proc_write,
224 };
225 
226 #ifdef CONFIG_CIFS_DEBUG2
dump_tgts(const struct cache_entry * ce)227 static inline void dump_tgts(const struct cache_entry *ce)
228 {
229 	struct cache_dfs_tgt *t;
230 
231 	cifs_dbg(FYI, "target list:\n");
232 	list_for_each_entry(t, &ce->tlist, list) {
233 		cifs_dbg(FYI, "  %s%s\n", t->name,
234 			 READ_ONCE(ce->tgthint) == t ? " (target hint)" : "");
235 	}
236 }
237 
dump_ce(const struct cache_entry * ce)238 static inline void dump_ce(const struct cache_entry *ce)
239 {
240 	cifs_dbg(FYI, "cache entry: path=%s,type=%s,ttl=%d,etime=%ld,hdr_flags=0x%x,ref_flags=0x%x,interlink=%s,path_consumed=%d,expired=%s\n",
241 		 ce->path,
242 		 ce->srvtype == DFS_TYPE_ROOT ? "root" : "link", ce->ttl,
243 		 ce->etime.tv_nsec,
244 		 ce->hdr_flags, ce->ref_flags,
245 		 DFS_INTERLINK(ce->hdr_flags) ? "yes" : "no",
246 		 ce->path_consumed,
247 		 cache_entry_expired(ce) ? "yes" : "no");
248 	dump_tgts(ce);
249 }
250 
dump_refs(const struct dfs_info3_param * refs,int numrefs)251 static inline void dump_refs(const struct dfs_info3_param *refs, int numrefs)
252 {
253 	int i;
254 
255 	cifs_dbg(FYI, "DFS referrals returned by the server:\n");
256 	for (i = 0; i < numrefs; i++) {
257 		const struct dfs_info3_param *ref = &refs[i];
258 
259 		cifs_dbg(FYI,
260 			 "\n"
261 			 "flags:         0x%x\n"
262 			 "path_consumed: %d\n"
263 			 "server_type:   0x%x\n"
264 			 "ref_flag:      0x%x\n"
265 			 "path_name:     %s\n"
266 			 "node_name:     %s\n"
267 			 "ttl:           %d (%dm)\n",
268 			 ref->flags, ref->path_consumed, ref->server_type,
269 			 ref->ref_flag, ref->path_name, ref->node_name,
270 			 ref->ttl, ref->ttl / 60);
271 	}
272 }
273 #else
274 #define dump_tgts(e)
275 #define dump_ce(e)
276 #define dump_refs(r, n)
277 #endif
278 
279 /**
280  * dfs_cache_init - Initialize DFS referral cache.
281  *
282  * Return zero if initialized successfully, otherwise non-zero.
283  */
dfs_cache_init(void)284 int dfs_cache_init(void)
285 {
286 	int rc;
287 	int i;
288 
289 	dfscache_wq = alloc_workqueue("cifs-dfscache",
290 				      WQ_UNBOUND|WQ_FREEZABLE|WQ_MEM_RECLAIM,
291 				      0);
292 	if (!dfscache_wq)
293 		return -ENOMEM;
294 
295 	cache_slab = kmem_cache_create("cifs_dfs_cache",
296 				       sizeof(struct cache_entry), 0,
297 				       SLAB_HWCACHE_ALIGN, NULL);
298 	if (!cache_slab) {
299 		rc = -ENOMEM;
300 		goto out_destroy_wq;
301 	}
302 
303 	for (i = 0; i < CACHE_HTABLE_SIZE; i++)
304 		INIT_HLIST_HEAD(&cache_htable[i]);
305 
306 	atomic_set(&cache_count, 0);
307 	atomic_set(&dfs_cache_ttl, CACHE_DEFAULT_TTL);
308 	cache_cp = load_nls("utf8");
309 	if (!cache_cp)
310 		cache_cp = load_nls_default();
311 
312 	cifs_dbg(FYI, "%s: initialized DFS referral cache\n", __func__);
313 	return 0;
314 
315 out_destroy_wq:
316 	destroy_workqueue(dfscache_wq);
317 	return rc;
318 }
319 
cache_entry_hash(const void * data,int size,unsigned int * hash)320 static int cache_entry_hash(const void *data, int size, unsigned int *hash)
321 {
322 	int i, clen;
323 	const unsigned char *s = data;
324 	wchar_t c;
325 	unsigned int h = 0;
326 
327 	for (i = 0; i < size; i += clen) {
328 		clen = cache_cp->char2uni(&s[i], size - i, &c);
329 		if (unlikely(clen < 0)) {
330 			cifs_dbg(VFS, "%s: can't convert char\n", __func__);
331 			return clen;
332 		}
333 		c = cifs_toupper(c);
334 		h = jhash(&c, sizeof(c), h);
335 	}
336 	*hash = h % CACHE_HTABLE_SIZE;
337 	return 0;
338 }
339 
340 /* Return target hint of a DFS cache entry */
get_tgt_name(const struct cache_entry * ce)341 static inline char *get_tgt_name(const struct cache_entry *ce)
342 {
343 	struct cache_dfs_tgt *t = READ_ONCE(ce->tgthint);
344 
345 	return t ? t->name : ERR_PTR(-ENOENT);
346 }
347 
348 /* Return expire time out of a new entry's TTL */
get_expire_time(int ttl)349 static inline struct timespec64 get_expire_time(int ttl)
350 {
351 	struct timespec64 ts = {
352 		.tv_sec = ttl,
353 		.tv_nsec = 0,
354 	};
355 	struct timespec64 now;
356 
357 	ktime_get_coarse_real_ts64(&now);
358 	return timespec64_add(now, ts);
359 }
360 
361 /* Allocate a new DFS target */
alloc_target(const char * name,int path_consumed)362 static struct cache_dfs_tgt *alloc_target(const char *name, int path_consumed)
363 {
364 	struct cache_dfs_tgt *t;
365 
366 	t = kmalloc(sizeof(*t), GFP_ATOMIC);
367 	if (!t)
368 		return ERR_PTR(-ENOMEM);
369 	t->name = kstrdup(name, GFP_ATOMIC);
370 	if (!t->name) {
371 		kfree(t);
372 		return ERR_PTR(-ENOMEM);
373 	}
374 	t->path_consumed = path_consumed;
375 	INIT_LIST_HEAD(&t->list);
376 	return t;
377 }
378 
379 /*
380  * Copy DFS referral information to a cache entry and conditionally update
381  * target hint.
382  */
copy_ref_data(const struct dfs_info3_param * refs,int numrefs,struct cache_entry * ce,const char * tgthint)383 static int copy_ref_data(const struct dfs_info3_param *refs, int numrefs,
384 			 struct cache_entry *ce, const char *tgthint)
385 {
386 	struct cache_dfs_tgt *target;
387 	int i;
388 
389 	ce->ttl = max_t(int, refs[0].ttl, CACHE_MIN_TTL);
390 	ce->etime = get_expire_time(ce->ttl);
391 	ce->srvtype = refs[0].server_type;
392 	ce->hdr_flags = refs[0].flags;
393 	ce->ref_flags = refs[0].ref_flag;
394 	ce->path_consumed = refs[0].path_consumed;
395 
396 	for (i = 0; i < numrefs; i++) {
397 		struct cache_dfs_tgt *t;
398 
399 		t = alloc_target(refs[i].node_name, refs[i].path_consumed);
400 		if (IS_ERR(t)) {
401 			free_tgts(ce);
402 			return PTR_ERR(t);
403 		}
404 		if (tgthint && !strcasecmp(t->name, tgthint)) {
405 			list_add(&t->list, &ce->tlist);
406 			tgthint = NULL;
407 		} else {
408 			list_add_tail(&t->list, &ce->tlist);
409 		}
410 		ce->numtgts++;
411 	}
412 
413 	target = list_first_entry_or_null(&ce->tlist, struct cache_dfs_tgt,
414 					  list);
415 	WRITE_ONCE(ce->tgthint, target);
416 
417 	return 0;
418 }
419 
420 /* Allocate a new cache entry */
alloc_cache_entry(struct dfs_info3_param * refs,int numrefs)421 static struct cache_entry *alloc_cache_entry(struct dfs_info3_param *refs, int numrefs)
422 {
423 	struct cache_entry *ce;
424 	int rc;
425 
426 	ce = kmem_cache_zalloc(cache_slab, GFP_KERNEL);
427 	if (!ce)
428 		return ERR_PTR(-ENOMEM);
429 
430 	ce->path = refs[0].path_name;
431 	refs[0].path_name = NULL;
432 
433 	INIT_HLIST_NODE(&ce->hlist);
434 	INIT_LIST_HEAD(&ce->tlist);
435 
436 	rc = copy_ref_data(refs, numrefs, ce, NULL);
437 	if (rc) {
438 		kfree(ce->path);
439 		kmem_cache_free(cache_slab, ce);
440 		ce = ERR_PTR(rc);
441 	}
442 	return ce;
443 }
444 
445 /* Remove all referrals that have a single target or oldest entry */
purge_cache(void)446 static void purge_cache(void)
447 {
448 	int i;
449 	struct cache_entry *ce;
450 	struct cache_entry *oldest = NULL;
451 
452 	for (i = 0; i < CACHE_HTABLE_SIZE; i++) {
453 		struct hlist_head *l = &cache_htable[i];
454 		struct hlist_node *n;
455 
456 		hlist_for_each_entry_safe(ce, n, l, hlist) {
457 			if (hlist_unhashed(&ce->hlist))
458 				continue;
459 			if (ce->numtgts == 1)
460 				flush_cache_ent(ce);
461 			else if (!oldest ||
462 				 timespec64_compare(&ce->etime,
463 						    &oldest->etime) < 0)
464 				oldest = ce;
465 		}
466 	}
467 
468 	if (atomic_read(&cache_count) >= CACHE_MAX_ENTRIES && oldest)
469 		flush_cache_ent(oldest);
470 }
471 
472 /* Add a new DFS cache entry */
add_cache_entry_locked(struct dfs_info3_param * refs,int numrefs)473 static struct cache_entry *add_cache_entry_locked(struct dfs_info3_param *refs,
474 						  int numrefs)
475 {
476 	int rc;
477 	struct cache_entry *ce;
478 	unsigned int hash;
479 	int ttl;
480 
481 	WARN_ON(!rwsem_is_locked(&htable_rw_lock));
482 
483 	if (atomic_read(&cache_count) >= CACHE_MAX_ENTRIES) {
484 		cifs_dbg(FYI, "%s: reached max cache size (%d)\n", __func__, CACHE_MAX_ENTRIES);
485 		purge_cache();
486 	}
487 
488 	rc = cache_entry_hash(refs[0].path_name, strlen(refs[0].path_name), &hash);
489 	if (rc)
490 		return ERR_PTR(rc);
491 
492 	ce = alloc_cache_entry(refs, numrefs);
493 	if (IS_ERR(ce))
494 		return ce;
495 
496 	ttl = min_t(int, atomic_read(&dfs_cache_ttl), ce->ttl);
497 	atomic_set(&dfs_cache_ttl, ttl);
498 
499 	hlist_add_head(&ce->hlist, &cache_htable[hash]);
500 	dump_ce(ce);
501 
502 	atomic_inc(&cache_count);
503 
504 	return ce;
505 }
506 
507 /* Check if two DFS paths are equal.  @s1 and @s2 are expected to be in @cache_cp's charset */
dfs_path_equal(const char * s1,int len1,const char * s2,int len2)508 static bool dfs_path_equal(const char *s1, int len1, const char *s2, int len2)
509 {
510 	int i, l1, l2;
511 	wchar_t c1, c2;
512 
513 	if (len1 != len2)
514 		return false;
515 
516 	for (i = 0; i < len1; i += l1) {
517 		l1 = cache_cp->char2uni(&s1[i], len1 - i, &c1);
518 		l2 = cache_cp->char2uni(&s2[i], len2 - i, &c2);
519 		if (unlikely(l1 < 0 && l2 < 0)) {
520 			if (s1[i] != s2[i])
521 				return false;
522 			l1 = 1;
523 			continue;
524 		}
525 		if (l1 != l2)
526 			return false;
527 		if (cifs_toupper(c1) != cifs_toupper(c2))
528 			return false;
529 	}
530 	return true;
531 }
532 
__lookup_cache_entry(const char * path,unsigned int hash,int len)533 static struct cache_entry *__lookup_cache_entry(const char *path, unsigned int hash, int len)
534 {
535 	struct cache_entry *ce;
536 
537 	hlist_for_each_entry(ce, &cache_htable[hash], hlist) {
538 		if (dfs_path_equal(ce->path, strlen(ce->path), path, len)) {
539 			dump_ce(ce);
540 			return ce;
541 		}
542 	}
543 	return ERR_PTR(-ENOENT);
544 }
545 
546 /*
547  * Find a DFS cache entry in hash table and optionally check prefix path against normalized @path.
548  *
549  * Use whole path components in the match.  Must be called with htable_rw_lock held.
550  *
551  * Return cached entry if successful.
552  * Return ERR_PTR(-ENOENT) if the entry is not found.
553  * Return error ptr otherwise.
554  */
lookup_cache_entry(const char * path)555 static struct cache_entry *lookup_cache_entry(const char *path)
556 {
557 	struct cache_entry *ce;
558 	int cnt = 0;
559 	const char *s = path, *e;
560 	char sep = *s;
561 	unsigned int hash;
562 	int rc;
563 
564 	while ((s = strchr(s, sep)) && ++cnt < 3)
565 		s++;
566 
567 	if (cnt < 3) {
568 		rc = cache_entry_hash(path, strlen(path), &hash);
569 		if (rc)
570 			return ERR_PTR(rc);
571 		return __lookup_cache_entry(path, hash, strlen(path));
572 	}
573 	/*
574 	 * Handle paths that have more than two path components and are a complete prefix of the DFS
575 	 * referral request path (@path).
576 	 *
577 	 * See MS-DFSC 3.2.5.5 "Receiving a Root Referral Request or Link Referral Request".
578 	 */
579 	e = path + strlen(path) - 1;
580 	while (e > s) {
581 		int len;
582 
583 		/* skip separators */
584 		while (e > s && *e == sep)
585 			e--;
586 		if (e == s)
587 			break;
588 
589 		len = e + 1 - path;
590 		rc = cache_entry_hash(path, len, &hash);
591 		if (rc)
592 			return ERR_PTR(rc);
593 		ce = __lookup_cache_entry(path, hash, len);
594 		if (!IS_ERR(ce))
595 			return ce;
596 
597 		/* backward until separator */
598 		while (e > s && *e != sep)
599 			e--;
600 	}
601 	return ERR_PTR(-ENOENT);
602 }
603 
604 /**
605  * dfs_cache_destroy - destroy DFS referral cache
606  */
dfs_cache_destroy(void)607 void dfs_cache_destroy(void)
608 {
609 	unload_nls(cache_cp);
610 	flush_cache_ents();
611 	kmem_cache_destroy(cache_slab);
612 	destroy_workqueue(dfscache_wq);
613 
614 	cifs_dbg(FYI, "%s: destroyed DFS referral cache\n", __func__);
615 }
616 
617 /* Update a cache entry with the new referral in @refs */
update_cache_entry_locked(struct cache_entry * ce,const struct dfs_info3_param * refs,int numrefs)618 static int update_cache_entry_locked(struct cache_entry *ce, const struct dfs_info3_param *refs,
619 				     int numrefs)
620 {
621 	struct cache_dfs_tgt *target;
622 	char *th = NULL;
623 	int rc;
624 
625 	WARN_ON(!rwsem_is_locked(&htable_rw_lock));
626 
627 	target = READ_ONCE(ce->tgthint);
628 	if (target) {
629 		th = kstrdup(target->name, GFP_ATOMIC);
630 		if (!th)
631 			return -ENOMEM;
632 	}
633 
634 	free_tgts(ce);
635 	ce->numtgts = 0;
636 
637 	rc = copy_ref_data(refs, numrefs, ce, th);
638 
639 	kfree(th);
640 
641 	return rc;
642 }
643 
get_dfs_referral(const unsigned int xid,struct cifs_ses * ses,const char * path,struct dfs_info3_param ** refs,int * numrefs)644 static int get_dfs_referral(const unsigned int xid, struct cifs_ses *ses, const char *path,
645 			    struct dfs_info3_param **refs, int *numrefs)
646 {
647 	int rc;
648 	int i;
649 
650 	*refs = NULL;
651 	*numrefs = 0;
652 
653 	if (!ses || !ses->server || !ses->server->ops->get_dfs_refer)
654 		return -EOPNOTSUPP;
655 	if (unlikely(!cache_cp))
656 		return -EINVAL;
657 
658 	cifs_dbg(FYI, "%s: ipc=%s referral=%s\n", __func__, ses->tcon_ipc->tree_name, path);
659 	rc =  ses->server->ops->get_dfs_refer(xid, ses, path, refs, numrefs, cache_cp,
660 					      NO_MAP_UNI_RSVD);
661 	if (!rc) {
662 		struct dfs_info3_param *ref = *refs;
663 
664 		for (i = 0; i < *numrefs; i++)
665 			convert_delimiter(ref[i].path_name, '\\');
666 	}
667 	return rc;
668 }
669 
670 /*
671  * Find, create or update a DFS cache entry.
672  *
673  * If the entry wasn't found, it will create a new one. Or if it was found but
674  * expired, then it will update the entry accordingly.
675  *
676  * For interlinks, cifs_mount() and expand_dfs_referral() are supposed to
677  * handle them properly.
678  *
679  * On success, return entry with acquired lock for reading, otherwise error ptr.
680  */
cache_refresh_path(const unsigned int xid,struct cifs_ses * ses,const char * path,bool force_refresh)681 static struct cache_entry *cache_refresh_path(const unsigned int xid,
682 					      struct cifs_ses *ses,
683 					      const char *path,
684 					      bool force_refresh)
685 {
686 	struct dfs_info3_param *refs = NULL;
687 	struct cache_entry *ce;
688 	int numrefs = 0;
689 	int rc;
690 
691 	cifs_dbg(FYI, "%s: search path: %s\n", __func__, path);
692 
693 	down_read(&htable_rw_lock);
694 
695 	ce = lookup_cache_entry(path);
696 	if (!IS_ERR(ce)) {
697 		if (!force_refresh && !cache_entry_expired(ce))
698 			return ce;
699 	} else if (PTR_ERR(ce) != -ENOENT) {
700 		up_read(&htable_rw_lock);
701 		return ce;
702 	}
703 
704 	/*
705 	 * Unlock shared access as we don't want to hold any locks while getting
706 	 * a new referral.  The @ses used for performing the I/O could be
707 	 * reconnecting and it acquires @htable_rw_lock to look up the dfs cache
708 	 * in order to failover -- if necessary.
709 	 */
710 	up_read(&htable_rw_lock);
711 
712 	/*
713 	 * Either the entry was not found, or it is expired, or it is a forced
714 	 * refresh.
715 	 * Request a new DFS referral in order to create or update a cache entry.
716 	 */
717 	rc = get_dfs_referral(xid, ses, path, &refs, &numrefs);
718 	if (rc) {
719 		ce = ERR_PTR(rc);
720 		goto out;
721 	}
722 
723 	dump_refs(refs, numrefs);
724 
725 	down_write(&htable_rw_lock);
726 	/* Re-check as another task might have it added or refreshed already */
727 	ce = lookup_cache_entry(path);
728 	if (!IS_ERR(ce)) {
729 		if (force_refresh || cache_entry_expired(ce)) {
730 			rc = update_cache_entry_locked(ce, refs, numrefs);
731 			if (rc)
732 				ce = ERR_PTR(rc);
733 		}
734 	} else if (PTR_ERR(ce) == -ENOENT) {
735 		ce = add_cache_entry_locked(refs, numrefs);
736 	}
737 
738 	if (IS_ERR(ce)) {
739 		up_write(&htable_rw_lock);
740 		goto out;
741 	}
742 
743 	downgrade_write(&htable_rw_lock);
744 out:
745 	free_dfs_info_array(refs, numrefs);
746 	return ce;
747 }
748 
749 /*
750  * Set up a DFS referral from a given cache entry.
751  *
752  * Must be called with htable_rw_lock held.
753  */
setup_referral(const char * path,struct cache_entry * ce,struct dfs_info3_param * ref,const char * target)754 static int setup_referral(const char *path, struct cache_entry *ce,
755 			  struct dfs_info3_param *ref, const char *target)
756 {
757 	int rc;
758 
759 	cifs_dbg(FYI, "%s: set up new ref\n", __func__);
760 
761 	memset(ref, 0, sizeof(*ref));
762 
763 	ref->path_name = kstrdup(path, GFP_ATOMIC);
764 	if (!ref->path_name)
765 		return -ENOMEM;
766 
767 	ref->node_name = kstrdup(target, GFP_ATOMIC);
768 	if (!ref->node_name) {
769 		rc = -ENOMEM;
770 		goto err_free_path;
771 	}
772 
773 	ref->path_consumed = ce->path_consumed;
774 	ref->ttl = ce->ttl;
775 	ref->server_type = ce->srvtype;
776 	ref->ref_flag = ce->ref_flags;
777 	ref->flags = ce->hdr_flags;
778 
779 	return 0;
780 
781 err_free_path:
782 	kfree(ref->path_name);
783 	ref->path_name = NULL;
784 	return rc;
785 }
786 
787 /* Return target list of a DFS cache entry */
get_targets(struct cache_entry * ce,struct dfs_cache_tgt_list * tl)788 static int get_targets(struct cache_entry *ce, struct dfs_cache_tgt_list *tl)
789 {
790 	int rc;
791 	struct list_head *head = &tl->tl_list;
792 	struct cache_dfs_tgt *t;
793 	struct dfs_cache_tgt_iterator *it, *nit;
794 
795 	memset(tl, 0, sizeof(*tl));
796 	INIT_LIST_HEAD(head);
797 
798 	list_for_each_entry(t, &ce->tlist, list) {
799 		it = kzalloc(sizeof(*it), GFP_ATOMIC);
800 		if (!it) {
801 			rc = -ENOMEM;
802 			goto err_free_it;
803 		}
804 
805 		it->it_name = kstrdup(t->name, GFP_ATOMIC);
806 		if (!it->it_name) {
807 			kfree(it);
808 			rc = -ENOMEM;
809 			goto err_free_it;
810 		}
811 		it->it_path_consumed = t->path_consumed;
812 
813 		if (READ_ONCE(ce->tgthint) == t)
814 			list_add(&it->it_list, head);
815 		else
816 			list_add_tail(&it->it_list, head);
817 	}
818 
819 	tl->tl_numtgts = ce->numtgts;
820 
821 	return 0;
822 
823 err_free_it:
824 	list_for_each_entry_safe(it, nit, head, it_list) {
825 		list_del(&it->it_list);
826 		kfree(it->it_name);
827 		kfree(it);
828 	}
829 	return rc;
830 }
831 
832 /**
833  * dfs_cache_find - find a DFS cache entry
834  *
835  * If it doesn't find the cache entry, then it will get a DFS referral
836  * for @path and create a new entry.
837  *
838  * In case the cache entry exists but expired, it will get a DFS referral
839  * for @path and then update the respective cache entry.
840  *
841  * These parameters are passed down to the get_dfs_refer() call if it
842  * needs to be issued:
843  * @xid: syscall xid
844  * @ses: smb session to issue the request on
845  * @cp: codepage
846  * @remap: path character remapping type
847  * @path: path to lookup in DFS referral cache.
848  *
849  * @ref: when non-NULL, store single DFS referral result in it.
850  * @tgt_list: when non-NULL, store complete DFS target list in it.
851  *
852  * Return zero if the target was found, otherwise non-zero.
853  */
dfs_cache_find(const unsigned int xid,struct cifs_ses * ses,const struct nls_table * cp,int remap,const char * path,struct dfs_info3_param * ref,struct dfs_cache_tgt_list * tgt_list)854 int dfs_cache_find(const unsigned int xid, struct cifs_ses *ses, const struct nls_table *cp,
855 		   int remap, const char *path, struct dfs_info3_param *ref,
856 		   struct dfs_cache_tgt_list *tgt_list)
857 {
858 	int rc;
859 	const char *npath;
860 	struct cache_entry *ce;
861 
862 	npath = dfs_cache_canonical_path(path, cp, remap);
863 	if (IS_ERR(npath))
864 		return PTR_ERR(npath);
865 
866 	ce = cache_refresh_path(xid, ses, npath, false);
867 	if (IS_ERR(ce)) {
868 		rc = PTR_ERR(ce);
869 		goto out_free_path;
870 	}
871 
872 	if (ref)
873 		rc = setup_referral(path, ce, ref, get_tgt_name(ce));
874 	else
875 		rc = 0;
876 	if (!rc && tgt_list)
877 		rc = get_targets(ce, tgt_list);
878 
879 	up_read(&htable_rw_lock);
880 
881 out_free_path:
882 	kfree(npath);
883 	return rc;
884 }
885 
886 /**
887  * dfs_cache_noreq_find - find a DFS cache entry without sending any requests to
888  * the currently connected server.
889  *
890  * NOTE: This function will neither update a cache entry in case it was
891  * expired, nor create a new cache entry if @path hasn't been found. It heavily
892  * relies on an existing cache entry.
893  *
894  * @path: canonical DFS path to lookup in the DFS referral cache.
895  * @ref: when non-NULL, store single DFS referral result in it.
896  * @tgt_list: when non-NULL, store complete DFS target list in it.
897  *
898  * Return 0 if successful.
899  * Return -ENOENT if the entry was not found.
900  * Return non-zero for other errors.
901  */
dfs_cache_noreq_find(const char * path,struct dfs_info3_param * ref,struct dfs_cache_tgt_list * tgt_list)902 int dfs_cache_noreq_find(const char *path, struct dfs_info3_param *ref,
903 			 struct dfs_cache_tgt_list *tgt_list)
904 {
905 	int rc;
906 	struct cache_entry *ce;
907 
908 	cifs_dbg(FYI, "%s: path: %s\n", __func__, path);
909 
910 	down_read(&htable_rw_lock);
911 
912 	ce = lookup_cache_entry(path);
913 	if (IS_ERR(ce)) {
914 		rc = PTR_ERR(ce);
915 		goto out_unlock;
916 	}
917 
918 	if (ref)
919 		rc = setup_referral(path, ce, ref, get_tgt_name(ce));
920 	else
921 		rc = 0;
922 	if (!rc && tgt_list)
923 		rc = get_targets(ce, tgt_list);
924 
925 out_unlock:
926 	up_read(&htable_rw_lock);
927 	return rc;
928 }
929 
930 /**
931  * dfs_cache_noreq_update_tgthint - update target hint of a DFS cache entry
932  * without sending any requests to the currently connected server.
933  *
934  * NOTE: This function will neither update a cache entry in case it was
935  * expired, nor create a new cache entry if @path hasn't been found. It heavily
936  * relies on an existing cache entry.
937  *
938  * @path: canonical DFS path to lookup in DFS referral cache.
939  * @it: target iterator which contains the target hint to update the cache
940  * entry with.
941  *
942  * Return zero if the target hint was updated successfully, otherwise non-zero.
943  */
dfs_cache_noreq_update_tgthint(const char * path,const struct dfs_cache_tgt_iterator * it)944 void dfs_cache_noreq_update_tgthint(const char *path, const struct dfs_cache_tgt_iterator *it)
945 {
946 	struct cache_dfs_tgt *t;
947 	struct cache_entry *ce;
948 
949 	if (!path || !it)
950 		return;
951 
952 	cifs_dbg(FYI, "%s: path: %s\n", __func__, path);
953 
954 	down_read(&htable_rw_lock);
955 
956 	ce = lookup_cache_entry(path);
957 	if (IS_ERR(ce))
958 		goto out_unlock;
959 
960 	t = READ_ONCE(ce->tgthint);
961 
962 	if (unlikely(!strcasecmp(it->it_name, t->name)))
963 		goto out_unlock;
964 
965 	list_for_each_entry(t, &ce->tlist, list) {
966 		if (!strcasecmp(t->name, it->it_name)) {
967 			WRITE_ONCE(ce->tgthint, t);
968 			cifs_dbg(FYI, "%s: new target hint: %s\n", __func__,
969 				 it->it_name);
970 			break;
971 		}
972 	}
973 
974 out_unlock:
975 	up_read(&htable_rw_lock);
976 }
977 
978 /**
979  * dfs_cache_get_tgt_referral - returns a DFS referral (@ref) from a given
980  * target iterator (@it).
981  *
982  * @path: canonical DFS path to lookup in DFS referral cache.
983  * @it: DFS target iterator.
984  * @ref: DFS referral pointer to set up the gathered information.
985  *
986  * Return zero if the DFS referral was set up correctly, otherwise non-zero.
987  */
dfs_cache_get_tgt_referral(const char * path,const struct dfs_cache_tgt_iterator * it,struct dfs_info3_param * ref)988 int dfs_cache_get_tgt_referral(const char *path, const struct dfs_cache_tgt_iterator *it,
989 			       struct dfs_info3_param *ref)
990 {
991 	int rc;
992 	struct cache_entry *ce;
993 
994 	if (!it || !ref)
995 		return -EINVAL;
996 
997 	cifs_dbg(FYI, "%s: path: %s\n", __func__, path);
998 
999 	down_read(&htable_rw_lock);
1000 
1001 	ce = lookup_cache_entry(path);
1002 	if (IS_ERR(ce)) {
1003 		rc = PTR_ERR(ce);
1004 		goto out_unlock;
1005 	}
1006 
1007 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, it->it_name);
1008 
1009 	rc = setup_referral(path, ce, ref, it->it_name);
1010 
1011 out_unlock:
1012 	up_read(&htable_rw_lock);
1013 	return rc;
1014 }
1015 
1016 /* Extract share from DFS target and return a pointer to prefix path or NULL */
parse_target_share(const char * target,char ** share)1017 static const char *parse_target_share(const char *target, char **share)
1018 {
1019 	const char *s, *seps = "/\\";
1020 	size_t len;
1021 
1022 	s = strpbrk(target + 1, seps);
1023 	if (!s)
1024 		return ERR_PTR(-EINVAL);
1025 
1026 	len = strcspn(s + 1, seps);
1027 	if (!len)
1028 		return ERR_PTR(-EINVAL);
1029 	s += len;
1030 
1031 	len = s - target + 1;
1032 	*share = kstrndup(target, len, GFP_KERNEL);
1033 	if (!*share)
1034 		return ERR_PTR(-ENOMEM);
1035 
1036 	s = target + len;
1037 	return s + strspn(s, seps);
1038 }
1039 
1040 /**
1041  * dfs_cache_get_tgt_share - parse a DFS target
1042  *
1043  * @path: DFS full path
1044  * @it: DFS target iterator.
1045  * @share: tree name.
1046  * @prefix: prefix path.
1047  *
1048  * Return zero if target was parsed correctly, otherwise non-zero.
1049  */
dfs_cache_get_tgt_share(char * path,const struct dfs_cache_tgt_iterator * it,char ** share,char ** prefix)1050 int dfs_cache_get_tgt_share(char *path, const struct dfs_cache_tgt_iterator *it, char **share,
1051 			    char **prefix)
1052 {
1053 	char sep;
1054 	char *target_share;
1055 	char *ppath = NULL;
1056 	const char *target_ppath, *dfsref_ppath;
1057 	size_t target_pplen, dfsref_pplen;
1058 	size_t len, c;
1059 
1060 	if (!it || !path || !share || !prefix || strlen(path) < it->it_path_consumed)
1061 		return -EINVAL;
1062 
1063 	sep = it->it_name[0];
1064 	if (sep != '\\' && sep != '/')
1065 		return -EINVAL;
1066 
1067 	target_ppath = parse_target_share(it->it_name, &target_share);
1068 	if (IS_ERR(target_ppath))
1069 		return PTR_ERR(target_ppath);
1070 
1071 	/* point to prefix in DFS referral path */
1072 	dfsref_ppath = path + it->it_path_consumed;
1073 	dfsref_ppath += strspn(dfsref_ppath, "/\\");
1074 
1075 	target_pplen = strlen(target_ppath);
1076 	dfsref_pplen = strlen(dfsref_ppath);
1077 
1078 	/* merge prefix paths from DFS referral path and target node */
1079 	if (target_pplen || dfsref_pplen) {
1080 		len = target_pplen + dfsref_pplen + 2;
1081 		ppath = kzalloc(len, GFP_KERNEL);
1082 		if (!ppath) {
1083 			kfree(target_share);
1084 			return -ENOMEM;
1085 		}
1086 		c = strscpy(ppath, target_ppath, len);
1087 		if (c && dfsref_pplen)
1088 			ppath[c] = sep;
1089 		strlcat(ppath, dfsref_ppath, len);
1090 	}
1091 	*share = target_share;
1092 	*prefix = ppath;
1093 	return 0;
1094 }
1095 
target_share_equal(struct cifs_tcon * tcon,const char * s1)1096 static bool target_share_equal(struct cifs_tcon *tcon, const char *s1)
1097 {
1098 	struct TCP_Server_Info *server = tcon->ses->server;
1099 	struct sockaddr_storage ss;
1100 	const char *host;
1101 	const char *s2 = &tcon->tree_name[1];
1102 	size_t hostlen;
1103 	char unc[sizeof("\\\\") + SERVER_NAME_LENGTH] = {0};
1104 	bool match;
1105 	int rc;
1106 
1107 	if (strcasecmp(s2, s1))
1108 		return false;
1109 
1110 	/*
1111 	 * Resolve share's hostname and check if server address matches.  Otherwise just ignore it
1112 	 * as we could not have upcall to resolve hostname or failed to convert ip address.
1113 	 */
1114 	extract_unc_hostname(s1, &host, &hostlen);
1115 	scnprintf(unc, sizeof(unc), "\\\\%.*s", (int)hostlen, host);
1116 
1117 	rc = dns_resolve_server_name_to_ip(unc, (struct sockaddr *)&ss, NULL);
1118 	if (rc < 0) {
1119 		cifs_dbg(FYI, "%s: could not resolve %.*s. assuming server address matches.\n",
1120 			 __func__, (int)hostlen, host);
1121 		return true;
1122 	}
1123 
1124 	cifs_server_lock(server);
1125 	match = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1126 	cifs_server_unlock(server);
1127 
1128 	return match;
1129 }
1130 
is_ses_good(struct cifs_ses * ses)1131 static bool is_ses_good(struct cifs_ses *ses)
1132 {
1133 	struct TCP_Server_Info *server = ses->server;
1134 	struct cifs_tcon *tcon = ses->tcon_ipc;
1135 	bool ret;
1136 
1137 	spin_lock(&ses->ses_lock);
1138 	spin_lock(&ses->chan_lock);
1139 	ret = !cifs_chan_needs_reconnect(ses, server) &&
1140 		ses->ses_status == SES_GOOD &&
1141 		!tcon->need_reconnect;
1142 	spin_unlock(&ses->chan_lock);
1143 	spin_unlock(&ses->ses_lock);
1144 	return ret;
1145 }
1146 
get_ses_refpath(struct cifs_ses * ses)1147 static char *get_ses_refpath(struct cifs_ses *ses)
1148 {
1149 	struct TCP_Server_Info *server = ses->server;
1150 	char *path = ERR_PTR(-ENOENT);
1151 
1152 	mutex_lock(&server->refpath_lock);
1153 	if (server->leaf_fullpath) {
1154 		path = kstrdup(server->leaf_fullpath + 1, GFP_ATOMIC);
1155 		if (!path)
1156 			path = ERR_PTR(-ENOMEM);
1157 	}
1158 	mutex_unlock(&server->refpath_lock);
1159 	return path;
1160 }
1161 
1162 /* Refresh dfs referral of @ses */
refresh_ses_referral(struct cifs_ses * ses)1163 static void refresh_ses_referral(struct cifs_ses *ses)
1164 {
1165 	struct cache_entry *ce;
1166 	unsigned int xid;
1167 	char *path;
1168 	int rc = 0;
1169 
1170 	xid = get_xid();
1171 
1172 	path = get_ses_refpath(ses);
1173 	if (IS_ERR(path)) {
1174 		rc = PTR_ERR(path);
1175 		path = NULL;
1176 		goto out;
1177 	}
1178 
1179 	ses = CIFS_DFS_ROOT_SES(ses);
1180 	if (!is_ses_good(ses)) {
1181 		cifs_dbg(FYI, "%s: skip cache refresh due to disconnected ipc\n",
1182 			 __func__);
1183 		goto out;
1184 	}
1185 
1186 	ce = cache_refresh_path(xid, ses, path, false);
1187 	if (!IS_ERR(ce))
1188 		up_read(&htable_rw_lock);
1189 	else
1190 		rc = PTR_ERR(ce);
1191 
1192 out:
1193 	free_xid(xid);
1194 	kfree(path);
1195 }
1196 
__refresh_tcon_referral(struct cifs_tcon * tcon,const char * path,struct dfs_info3_param * refs,int numrefs,bool force_refresh)1197 static int __refresh_tcon_referral(struct cifs_tcon *tcon,
1198 				   const char *path,
1199 				   struct dfs_info3_param *refs,
1200 				   int numrefs, bool force_refresh)
1201 {
1202 	struct cache_entry *ce;
1203 	bool reconnect = force_refresh;
1204 	int rc = 0;
1205 	int i;
1206 
1207 	if (unlikely(!numrefs))
1208 		return 0;
1209 
1210 	if (force_refresh) {
1211 		for (i = 0; i < numrefs; i++) {
1212 			/* TODO: include prefix paths in the matching */
1213 			if (target_share_equal(tcon, refs[i].node_name)) {
1214 				reconnect = false;
1215 				break;
1216 			}
1217 		}
1218 	}
1219 
1220 	down_write(&htable_rw_lock);
1221 	ce = lookup_cache_entry(path);
1222 	if (!IS_ERR(ce)) {
1223 		if (force_refresh || cache_entry_expired(ce))
1224 			rc = update_cache_entry_locked(ce, refs, numrefs);
1225 	} else if (PTR_ERR(ce) == -ENOENT) {
1226 		ce = add_cache_entry_locked(refs, numrefs);
1227 	}
1228 	up_write(&htable_rw_lock);
1229 
1230 	if (IS_ERR(ce))
1231 		rc = PTR_ERR(ce);
1232 	if (reconnect) {
1233 		cifs_tcon_dbg(FYI, "%s: mark for reconnect\n", __func__);
1234 		cifs_signal_cifsd_for_reconnect(tcon->ses->server, true);
1235 	}
1236 	return rc;
1237 }
1238 
refresh_tcon_referral(struct cifs_tcon * tcon,bool force_refresh)1239 static void refresh_tcon_referral(struct cifs_tcon *tcon, bool force_refresh)
1240 {
1241 	struct dfs_info3_param *refs = NULL;
1242 	struct cache_entry *ce;
1243 	struct cifs_ses *ses;
1244 	unsigned int xid;
1245 	bool needs_refresh;
1246 	char *path;
1247 	int numrefs = 0;
1248 	int rc = 0;
1249 
1250 	xid = get_xid();
1251 	ses = tcon->ses;
1252 
1253 	path = get_ses_refpath(ses);
1254 	if (IS_ERR(path)) {
1255 		rc = PTR_ERR(path);
1256 		path = NULL;
1257 		goto out;
1258 	}
1259 
1260 	down_read(&htable_rw_lock);
1261 	ce = lookup_cache_entry(path);
1262 	needs_refresh = force_refresh || IS_ERR(ce) || cache_entry_expired(ce);
1263 	if (!needs_refresh) {
1264 		up_read(&htable_rw_lock);
1265 		goto out;
1266 	}
1267 	up_read(&htable_rw_lock);
1268 
1269 	ses = CIFS_DFS_ROOT_SES(ses);
1270 	if (!is_ses_good(ses)) {
1271 		cifs_dbg(FYI, "%s: skip cache refresh due to disconnected ipc\n",
1272 			 __func__);
1273 		goto out;
1274 	}
1275 
1276 	rc = get_dfs_referral(xid, ses, path, &refs, &numrefs);
1277 	if (!rc) {
1278 		rc = __refresh_tcon_referral(tcon, path, refs,
1279 					     numrefs, force_refresh);
1280 	}
1281 
1282 out:
1283 	free_xid(xid);
1284 	kfree(path);
1285 	free_dfs_info_array(refs, numrefs);
1286 }
1287 
1288 /**
1289  * dfs_cache_remount_fs - remount a DFS share
1290  *
1291  * Reconfigure dfs mount by forcing a new DFS referral and if the currently cached targets do not
1292  * match any of the new targets, mark it for reconnect.
1293  *
1294  * @cifs_sb: cifs superblock.
1295  *
1296  * Return zero if remounted, otherwise non-zero.
1297  */
dfs_cache_remount_fs(struct cifs_sb_info * cifs_sb)1298 int dfs_cache_remount_fs(struct cifs_sb_info *cifs_sb)
1299 {
1300 	struct cifs_tcon *tcon;
1301 
1302 	if (!cifs_sb || !cifs_sb->master_tlink)
1303 		return -EINVAL;
1304 
1305 	tcon = cifs_sb_master_tcon(cifs_sb);
1306 
1307 	spin_lock(&tcon->tc_lock);
1308 	if (!tcon->origin_fullpath) {
1309 		spin_unlock(&tcon->tc_lock);
1310 		cifs_dbg(FYI, "%s: not a dfs mount\n", __func__);
1311 		return 0;
1312 	}
1313 	spin_unlock(&tcon->tc_lock);
1314 
1315 	/*
1316 	 * After reconnecting to a different server, unique ids won't match anymore, so we disable
1317 	 * serverino. This prevents dentry revalidation to think the dentry are stale (ESTALE).
1318 	 */
1319 	cifs_autodisable_serverino(cifs_sb);
1320 	/*
1321 	 * Force the use of prefix path to support failover on DFS paths that resolve to targets
1322 	 * that have different prefix paths.
1323 	 */
1324 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1325 
1326 	refresh_tcon_referral(tcon, true);
1327 	return 0;
1328 }
1329 
1330 /* Refresh all DFS referrals related to DFS tcon */
dfs_cache_refresh(struct work_struct * work)1331 void dfs_cache_refresh(struct work_struct *work)
1332 {
1333 	struct cifs_tcon *tcon;
1334 	struct cifs_ses *ses;
1335 
1336 	tcon = container_of(work, struct cifs_tcon, dfs_cache_work.work);
1337 
1338 	list_for_each_entry(ses, &tcon->dfs_ses_list, dlist)
1339 		refresh_ses_referral(ses);
1340 	refresh_tcon_referral(tcon, false);
1341 
1342 	queue_delayed_work(dfscache_wq, &tcon->dfs_cache_work,
1343 			   atomic_read(&dfs_cache_ttl) * HZ);
1344 }
1345