1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel Low Power Subsystem PWM controller driver
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Author: Chew Kean Ho <kean.ho.chew@intel.com>
8 * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
9 * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
10 * Author: Alan Cox <alan@linux.intel.com>
11 */
12
13 #include <linux/bits.h>
14 #include <linux/delay.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/time.h>
21
22 #define DEFAULT_SYMBOL_NAMESPACE PWM_LPSS
23
24 #include "pwm-lpss.h"
25
26 #define PWM 0x00000000
27 #define PWM_ENABLE BIT(31)
28 #define PWM_SW_UPDATE BIT(30)
29 #define PWM_BASE_UNIT_SHIFT 8
30 #define PWM_ON_TIME_DIV_MASK GENMASK(7, 0)
31
32 /* Size of each PWM register space if multiple */
33 #define PWM_SIZE 0x400
34
35 /* BayTrail */
36 const struct pwm_lpss_boardinfo pwm_lpss_byt_info = {
37 .clk_rate = 25000000,
38 .npwm = 1,
39 .base_unit_bits = 16,
40 };
41 EXPORT_SYMBOL_GPL(pwm_lpss_byt_info);
42
43 /* Braswell */
44 const struct pwm_lpss_boardinfo pwm_lpss_bsw_info = {
45 .clk_rate = 19200000,
46 .npwm = 1,
47 .base_unit_bits = 16,
48 .other_devices_aml_touches_pwm_regs = true,
49 };
50 EXPORT_SYMBOL_GPL(pwm_lpss_bsw_info);
51
52 /* Broxton */
53 const struct pwm_lpss_boardinfo pwm_lpss_bxt_info = {
54 .clk_rate = 19200000,
55 .npwm = 4,
56 .base_unit_bits = 22,
57 .bypass = true,
58 };
59 EXPORT_SYMBOL_GPL(pwm_lpss_bxt_info);
60
61 /* Tangier */
62 const struct pwm_lpss_boardinfo pwm_lpss_tng_info = {
63 .clk_rate = 19200000,
64 .npwm = 4,
65 .base_unit_bits = 22,
66 };
67 EXPORT_SYMBOL_GPL(pwm_lpss_tng_info);
68
to_lpwm(struct pwm_chip * chip)69 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
70 {
71 return pwmchip_get_drvdata(chip);
72 }
73
pwm_lpss_read(const struct pwm_device * pwm)74 static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
75 {
76 struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
77
78 return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
79 }
80
pwm_lpss_write(const struct pwm_device * pwm,u32 value)81 static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
82 {
83 struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
84
85 writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
86 }
87
pwm_lpss_wait_for_update(struct pwm_device * pwm)88 static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
89 {
90 struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
91 const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
92 const unsigned int ms = 500 * USEC_PER_MSEC;
93 u32 val;
94 int err;
95
96 /*
97 * PWM Configuration register has SW_UPDATE bit that is set when a new
98 * configuration is written to the register. The bit is automatically
99 * cleared at the start of the next output cycle by the IP block.
100 *
101 * If one writes a new configuration to the register while it still has
102 * the bit enabled, PWM may freeze. That is, while one can still write
103 * to the register, it won't have an effect. Thus, we try to sleep long
104 * enough that the bit gets cleared and make sure the bit is not
105 * enabled while we update the configuration.
106 */
107 err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
108 if (err)
109 dev_err(pwmchip_parent(pwm->chip), "PWM_SW_UPDATE was not cleared\n");
110
111 return err;
112 }
113
pwm_lpss_is_updating(struct pwm_device * pwm)114 static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
115 {
116 if (pwm_lpss_read(pwm) & PWM_SW_UPDATE) {
117 dev_err(pwmchip_parent(pwm->chip), "PWM_SW_UPDATE is still set, skipping update\n");
118 return -EBUSY;
119 }
120
121 return 0;
122 }
123
pwm_lpss_prepare(struct pwm_lpss_chip * lpwm,struct pwm_device * pwm,int duty_ns,int period_ns)124 static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
125 int duty_ns, int period_ns)
126 {
127 unsigned long long on_time_div;
128 unsigned long c = lpwm->info->clk_rate, base_unit_range;
129 unsigned long long base_unit, freq = NSEC_PER_SEC;
130 u32 ctrl;
131
132 do_div(freq, period_ns);
133
134 /*
135 * The equation is:
136 * base_unit = round(base_unit_range * freq / c)
137 */
138 base_unit_range = BIT(lpwm->info->base_unit_bits);
139 freq *= base_unit_range;
140
141 base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
142 /* base_unit must not be 0 and we also want to avoid overflowing it */
143 base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
144
145 on_time_div = 255ULL * duty_ns;
146 do_div(on_time_div, period_ns);
147 on_time_div = 255ULL - on_time_div;
148
149 ctrl = pwm_lpss_read(pwm);
150 ctrl &= ~PWM_ON_TIME_DIV_MASK;
151 ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
152 ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
153 ctrl |= on_time_div;
154
155 pwm_lpss_write(pwm, ctrl);
156 pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
157 }
158
pwm_lpss_cond_enable(struct pwm_device * pwm,bool cond)159 static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
160 {
161 if (cond)
162 pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
163 }
164
pwm_lpss_prepare_enable(struct pwm_lpss_chip * lpwm,struct pwm_device * pwm,const struct pwm_state * state)165 static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
166 struct pwm_device *pwm,
167 const struct pwm_state *state)
168 {
169 int ret;
170
171 ret = pwm_lpss_is_updating(pwm);
172 if (ret)
173 return ret;
174
175 pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
176 pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
177 ret = pwm_lpss_wait_for_update(pwm);
178 if (ret)
179 return ret;
180
181 pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
182 return 0;
183 }
184
pwm_lpss_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)185 static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
186 const struct pwm_state *state)
187 {
188 struct pwm_lpss_chip *lpwm = to_lpwm(chip);
189 int ret = 0;
190
191 if (state->enabled) {
192 if (!pwm_is_enabled(pwm)) {
193 pm_runtime_get_sync(pwmchip_parent(chip));
194 ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
195 if (ret)
196 pm_runtime_put(pwmchip_parent(chip));
197 } else {
198 ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
199 }
200 } else if (pwm_is_enabled(pwm)) {
201 pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
202 pm_runtime_put(pwmchip_parent(chip));
203 }
204
205 return ret;
206 }
207
pwm_lpss_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)208 static int pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
209 struct pwm_state *state)
210 {
211 struct pwm_lpss_chip *lpwm = to_lpwm(chip);
212 unsigned long base_unit_range;
213 unsigned long long base_unit, freq, on_time_div;
214 u32 ctrl;
215
216 pm_runtime_get_sync(pwmchip_parent(chip));
217
218 base_unit_range = BIT(lpwm->info->base_unit_bits);
219
220 ctrl = pwm_lpss_read(pwm);
221 on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
222 base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
223
224 freq = base_unit * lpwm->info->clk_rate;
225 do_div(freq, base_unit_range);
226 if (freq == 0)
227 state->period = NSEC_PER_SEC;
228 else
229 state->period = NSEC_PER_SEC / (unsigned long)freq;
230
231 on_time_div *= state->period;
232 do_div(on_time_div, 255);
233 state->duty_cycle = on_time_div;
234
235 state->polarity = PWM_POLARITY_NORMAL;
236 state->enabled = !!(ctrl & PWM_ENABLE);
237
238 pm_runtime_put(pwmchip_parent(chip));
239
240 return 0;
241 }
242
243 static const struct pwm_ops pwm_lpss_ops = {
244 .apply = pwm_lpss_apply,
245 .get_state = pwm_lpss_get_state,
246 };
247
devm_pwm_lpss_probe(struct device * dev,void __iomem * base,const struct pwm_lpss_boardinfo * info)248 struct pwm_chip *devm_pwm_lpss_probe(struct device *dev, void __iomem *base,
249 const struct pwm_lpss_boardinfo *info)
250 {
251 struct pwm_lpss_chip *lpwm;
252 struct pwm_chip *chip;
253 unsigned long c;
254 int i, ret;
255 u32 ctrl;
256
257 if (WARN_ON(info->npwm > LPSS_MAX_PWMS))
258 return ERR_PTR(-ENODEV);
259
260 chip = devm_pwmchip_alloc(dev, info->npwm, sizeof(*lpwm));
261 if (IS_ERR(chip))
262 return chip;
263 lpwm = to_lpwm(chip);
264
265 lpwm->regs = base;
266 lpwm->info = info;
267
268 c = lpwm->info->clk_rate;
269 if (!c)
270 return ERR_PTR(-EINVAL);
271
272 chip->ops = &pwm_lpss_ops;
273
274 ret = devm_pwmchip_add(dev, chip);
275 if (ret) {
276 dev_err(dev, "failed to add PWM chip: %d\n", ret);
277 return ERR_PTR(ret);
278 }
279
280 for (i = 0; i < lpwm->info->npwm; i++) {
281 ctrl = pwm_lpss_read(&chip->pwms[i]);
282 if (ctrl & PWM_ENABLE)
283 pm_runtime_get(dev);
284 }
285
286 return chip;
287 }
288 EXPORT_SYMBOL_GPL(devm_pwm_lpss_probe);
289
290 MODULE_DESCRIPTION("PWM driver for Intel LPSS");
291 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
292 MODULE_LICENSE("GPL v2");
293