1 /*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26
27
28 #include "dccg.h"
29 #include "clk_mgr_internal.h"
30
31 // For dce12_get_dp_ref_freq_khz
32 #include "dce100/dce_clk_mgr.h"
33
34 // For dcn20_update_clocks_update_dpp_dto
35 #include "dcn20/dcn20_clk_mgr.h"
36
37
38
39 #include "dcn31_clk_mgr.h"
40
41 #include "reg_helper.h"
42 #include "core_types.h"
43 #include "dcn31_smu.h"
44 #include "dm_helpers.h"
45
46 /* TODO: remove this include once we ported over remaining clk mgr functions*/
47 #include "dcn30/dcn30_clk_mgr.h"
48
49 #include "dc_dmub_srv.h"
50 #include "link.h"
51
52 #include "logger_types.h"
53 #undef DC_LOGGER
54 #define DC_LOGGER \
55 clk_mgr->base.base.ctx->logger
56
57 #include "yellow_carp_offset.h"
58
59 #define regCLK1_CLK_PLL_REQ 0x0237
60 #define regCLK1_CLK_PLL_REQ_BASE_IDX 0
61
62 #define CLK1_CLK_PLL_REQ__FbMult_int__SHIFT 0x0
63 #define CLK1_CLK_PLL_REQ__PllSpineDiv__SHIFT 0xc
64 #define CLK1_CLK_PLL_REQ__FbMult_frac__SHIFT 0x10
65 #define CLK1_CLK_PLL_REQ__FbMult_int_MASK 0x000001FFL
66 #define CLK1_CLK_PLL_REQ__PllSpineDiv_MASK 0x0000F000L
67 #define CLK1_CLK_PLL_REQ__FbMult_frac_MASK 0xFFFF0000L
68
69 #define REG(reg_name) \
70 (CLK_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
71
72 #define TO_CLK_MGR_DCN31(clk_mgr)\
73 container_of(clk_mgr, struct clk_mgr_dcn31, base)
74
dcn31_get_active_display_cnt_wa(struct dc * dc,struct dc_state * context)75 static int dcn31_get_active_display_cnt_wa(
76 struct dc *dc,
77 struct dc_state *context)
78 {
79 int i, display_count;
80 bool tmds_present = false;
81
82 display_count = 0;
83 for (i = 0; i < context->stream_count; i++) {
84 const struct dc_stream_state *stream = context->streams[i];
85
86 if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
87 stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
88 stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
89 tmds_present = true;
90
91 /* Checking stream / link detection ensuring that PHY is active*/
92 if (dc_is_dp_signal(stream->signal) && !stream->dpms_off)
93 display_count++;
94
95 }
96
97 for (i = 0; i < dc->link_count; i++) {
98 const struct dc_link *link = dc->links[i];
99
100 /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
101 if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
102 link->link_enc->funcs->is_dig_enabled(link->link_enc))
103 display_count++;
104 }
105
106 /* WA for hang on HDMI after display off back back on*/
107 if (display_count == 0 && tmds_present)
108 display_count = 1;
109
110 return display_count;
111 }
112
dcn31_disable_otg_wa(struct clk_mgr * clk_mgr_base,struct dc_state * context,bool disable)113 static void dcn31_disable_otg_wa(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool disable)
114 {
115 struct dc *dc = clk_mgr_base->ctx->dc;
116 int i;
117
118 for (i = 0; i < dc->res_pool->pipe_count; ++i) {
119 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
120
121 if (pipe->top_pipe || pipe->prev_odm_pipe)
122 continue;
123 if (pipe->stream && (pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal))) {
124 if (disable) {
125 pipe->stream_res.tg->funcs->immediate_disable_crtc(pipe->stream_res.tg);
126 reset_sync_context_for_pipe(dc, context, i);
127 } else
128 pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg);
129 }
130 }
131 }
132
dcn31_update_clocks(struct clk_mgr * clk_mgr_base,struct dc_state * context,bool safe_to_lower)133 void dcn31_update_clocks(struct clk_mgr *clk_mgr_base,
134 struct dc_state *context,
135 bool safe_to_lower)
136 {
137 union dmub_rb_cmd cmd;
138 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
139 struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
140 struct dc *dc = clk_mgr_base->ctx->dc;
141 int display_count;
142 bool update_dppclk = false;
143 bool update_dispclk = false;
144 bool dpp_clock_lowered = false;
145
146 if (dc->work_arounds.skip_clock_update)
147 return;
148
149 /*
150 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
151 * also if safe to lower is false, we just go in the higher state
152 */
153 if (safe_to_lower) {
154 if (new_clocks->zstate_support != DCN_ZSTATE_SUPPORT_DISALLOW &&
155 new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
156 dcn31_smu_set_zstate_support(clk_mgr, new_clocks->zstate_support);
157 dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, true);
158 clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
159 }
160
161 if (clk_mgr_base->clks.dtbclk_en && !new_clocks->dtbclk_en) {
162 dcn31_smu_set_dtbclk(clk_mgr, false);
163 clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
164 }
165 /* check that we're not already in lower */
166 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
167 display_count = dcn31_get_active_display_cnt_wa(dc, context);
168 /* if we can go lower, go lower */
169 if (display_count == 0) {
170 union display_idle_optimization_u idle_info = { 0 };
171 idle_info.idle_info.df_request_disabled = 1;
172 idle_info.idle_info.phy_ref_clk_off = 1;
173 idle_info.idle_info.s0i2_rdy = 1;
174 dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
175 /* update power state */
176 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
177 }
178 }
179 } else {
180 if (new_clocks->zstate_support == DCN_ZSTATE_SUPPORT_DISALLOW &&
181 new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
182 dcn31_smu_set_zstate_support(clk_mgr, DCN_ZSTATE_SUPPORT_DISALLOW);
183 dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, false);
184 clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
185 }
186
187 if (!clk_mgr_base->clks.dtbclk_en && new_clocks->dtbclk_en) {
188 dcn31_smu_set_dtbclk(clk_mgr, true);
189 clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
190 }
191
192 /* check that we're not already in D0 */
193 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
194 union display_idle_optimization_u idle_info = { 0 };
195 dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
196 /* update power state */
197 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
198 }
199 }
200
201 if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
202 clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
203 dcn31_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
204 }
205
206 if (should_set_clock(safe_to_lower,
207 new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
208 clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
209 dcn31_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
210 }
211
212 // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
213 if (new_clocks->dppclk_khz < 100000)
214 new_clocks->dppclk_khz = 100000;
215
216 if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
217 if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
218 dpp_clock_lowered = true;
219 clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
220 update_dppclk = true;
221 }
222
223 if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
224 dcn31_disable_otg_wa(clk_mgr_base, context, true);
225
226 clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
227 dcn31_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
228 dcn31_disable_otg_wa(clk_mgr_base, context, false);
229
230 update_dispclk = true;
231 }
232
233 if (dpp_clock_lowered) {
234 // increase per DPP DTO before lowering global dppclk
235 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
236 dcn31_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
237 } else {
238 // increase global DPPCLK before lowering per DPP DTO
239 if (update_dppclk || update_dispclk)
240 dcn31_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
241 // always update dtos unless clock is lowered and not safe to lower
242 if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
243 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
244 }
245
246 // notify DMCUB of latest clocks
247 memset(&cmd, 0, sizeof(cmd));
248 cmd.notify_clocks.header.type = DMUB_CMD__CLK_MGR;
249 cmd.notify_clocks.header.sub_type = DMUB_CMD__CLK_MGR_NOTIFY_CLOCKS;
250 cmd.notify_clocks.clocks.dcfclk_khz = clk_mgr_base->clks.dcfclk_khz;
251 cmd.notify_clocks.clocks.dcfclk_deep_sleep_khz =
252 clk_mgr_base->clks.dcfclk_deep_sleep_khz;
253 cmd.notify_clocks.clocks.dispclk_khz = clk_mgr_base->clks.dispclk_khz;
254 cmd.notify_clocks.clocks.dppclk_khz = clk_mgr_base->clks.dppclk_khz;
255
256 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
257 }
258
get_vco_frequency_from_reg(struct clk_mgr_internal * clk_mgr)259 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
260 {
261 /* get FbMult value */
262 struct fixed31_32 pll_req;
263 unsigned int fbmult_frac_val = 0;
264 unsigned int fbmult_int_val = 0;
265
266 /*
267 * Register value of fbmult is in 8.16 format, we are converting to 31.32
268 * to leverage the fix point operations available in driver
269 */
270
271 REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
272 REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
273
274 pll_req = dc_fixpt_from_int(fbmult_int_val);
275
276 /*
277 * since fractional part is only 16 bit in register definition but is 32 bit
278 * in our fix point definiton, need to shift left by 16 to obtain correct value
279 */
280 pll_req.value |= fbmult_frac_val << 16;
281
282 /* multiply by REFCLK period */
283 pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
284
285 /* integer part is now VCO frequency in kHz */
286 return dc_fixpt_floor(pll_req);
287 }
288
dcn31_enable_pme_wa(struct clk_mgr * clk_mgr_base)289 static void dcn31_enable_pme_wa(struct clk_mgr *clk_mgr_base)
290 {
291 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
292
293 dcn31_smu_enable_pme_wa(clk_mgr);
294 }
295
dcn31_init_clocks(struct clk_mgr * clk_mgr)296 void dcn31_init_clocks(struct clk_mgr *clk_mgr)
297 {
298 uint32_t ref_dtbclk = clk_mgr->clks.ref_dtbclk_khz;
299
300 memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
301 // Assumption is that boot state always supports pstate
302 clk_mgr->clks.ref_dtbclk_khz = ref_dtbclk; // restore ref_dtbclk
303 clk_mgr->clks.p_state_change_support = true;
304 clk_mgr->clks.prev_p_state_change_support = true;
305 clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
306 clk_mgr->clks.zstate_support = DCN_ZSTATE_SUPPORT_UNKNOWN;
307 }
308
dcn31_are_clock_states_equal(struct dc_clocks * a,struct dc_clocks * b)309 bool dcn31_are_clock_states_equal(struct dc_clocks *a,
310 struct dc_clocks *b)
311 {
312 if (a->dispclk_khz != b->dispclk_khz)
313 return false;
314 else if (a->dppclk_khz != b->dppclk_khz)
315 return false;
316 else if (a->dcfclk_khz != b->dcfclk_khz)
317 return false;
318 else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
319 return false;
320 else if (a->zstate_support != b->zstate_support)
321 return false;
322 else if (a->dtbclk_en != b->dtbclk_en)
323 return false;
324
325 return true;
326 }
327
dcn31_dump_clk_registers(struct clk_state_registers_and_bypass * regs_and_bypass,struct clk_mgr * clk_mgr_base,struct clk_log_info * log_info)328 static void dcn31_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
329 struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
330 {
331 return;
332 }
333
334 static struct clk_bw_params dcn31_bw_params = {
335 .vram_type = Ddr4MemType,
336 .num_channels = 1,
337 .clk_table = {
338 .num_entries = 4,
339 },
340
341 };
342
343 static struct wm_table ddr5_wm_table = {
344 .entries = {
345 {
346 .wm_inst = WM_A,
347 .wm_type = WM_TYPE_PSTATE_CHG,
348 .pstate_latency_us = 11.72,
349 .sr_exit_time_us = 9,
350 .sr_enter_plus_exit_time_us = 11,
351 .valid = true,
352 },
353 {
354 .wm_inst = WM_B,
355 .wm_type = WM_TYPE_PSTATE_CHG,
356 .pstate_latency_us = 11.72,
357 .sr_exit_time_us = 9,
358 .sr_enter_plus_exit_time_us = 11,
359 .valid = true,
360 },
361 {
362 .wm_inst = WM_C,
363 .wm_type = WM_TYPE_PSTATE_CHG,
364 .pstate_latency_us = 11.72,
365 .sr_exit_time_us = 9,
366 .sr_enter_plus_exit_time_us = 11,
367 .valid = true,
368 },
369 {
370 .wm_inst = WM_D,
371 .wm_type = WM_TYPE_PSTATE_CHG,
372 .pstate_latency_us = 11.72,
373 .sr_exit_time_us = 9,
374 .sr_enter_plus_exit_time_us = 11,
375 .valid = true,
376 },
377 }
378 };
379
380 static struct wm_table lpddr5_wm_table = {
381 .entries = {
382 {
383 .wm_inst = WM_A,
384 .wm_type = WM_TYPE_PSTATE_CHG,
385 .pstate_latency_us = 11.65333,
386 .sr_exit_time_us = 11.5,
387 .sr_enter_plus_exit_time_us = 14.5,
388 .valid = true,
389 },
390 {
391 .wm_inst = WM_B,
392 .wm_type = WM_TYPE_PSTATE_CHG,
393 .pstate_latency_us = 11.65333,
394 .sr_exit_time_us = 11.5,
395 .sr_enter_plus_exit_time_us = 14.5,
396 .valid = true,
397 },
398 {
399 .wm_inst = WM_C,
400 .wm_type = WM_TYPE_PSTATE_CHG,
401 .pstate_latency_us = 11.65333,
402 .sr_exit_time_us = 11.5,
403 .sr_enter_plus_exit_time_us = 14.5,
404 .valid = true,
405 },
406 {
407 .wm_inst = WM_D,
408 .wm_type = WM_TYPE_PSTATE_CHG,
409 .pstate_latency_us = 11.65333,
410 .sr_exit_time_us = 11.5,
411 .sr_enter_plus_exit_time_us = 14.5,
412 .valid = true,
413 },
414 }
415 };
416
417 static DpmClocks_t dummy_clocks;
418
419 static struct dcn31_watermarks dummy_wms = { 0 };
420
dcn31_build_watermark_ranges(struct clk_bw_params * bw_params,struct dcn31_watermarks * table)421 static void dcn31_build_watermark_ranges(struct clk_bw_params *bw_params, struct dcn31_watermarks *table)
422 {
423 int i, num_valid_sets;
424
425 num_valid_sets = 0;
426
427 for (i = 0; i < WM_SET_COUNT; i++) {
428 /* skip empty entries, the smu array has no holes*/
429 if (!bw_params->wm_table.entries[i].valid)
430 continue;
431
432 table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
433 table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
434 /* We will not select WM based on fclk, so leave it as unconstrained */
435 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
436 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
437
438 if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
439 if (i == 0)
440 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
441 else {
442 /* add 1 to make it non-overlapping with next lvl */
443 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
444 bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
445 }
446 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
447 bw_params->clk_table.entries[i].dcfclk_mhz;
448
449 } else {
450 /* unconstrained for memory retraining */
451 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
452 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
453
454 /* Modify previous watermark range to cover up to max */
455 table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
456 }
457 num_valid_sets++;
458 }
459
460 ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
461
462 /* modify the min and max to make sure we cover the whole range*/
463 table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
464 table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
465 table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
466 table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
467
468 /* This is for writeback only, does not matter currently as no writeback support*/
469 table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
470 table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
471 table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
472 table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
473 table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
474 }
475
dcn31_notify_wm_ranges(struct clk_mgr * clk_mgr_base)476 static void dcn31_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
477 {
478 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
479 struct clk_mgr_dcn31 *clk_mgr_dcn31 = TO_CLK_MGR_DCN31(clk_mgr);
480 struct dcn31_watermarks *table = clk_mgr_dcn31->smu_wm_set.wm_set;
481
482 if (!clk_mgr->smu_ver)
483 return;
484
485 if (!table || clk_mgr_dcn31->smu_wm_set.mc_address.quad_part == 0)
486 return;
487
488 memset(table, 0, sizeof(*table));
489
490 dcn31_build_watermark_ranges(clk_mgr_base->bw_params, table);
491
492 dcn31_smu_set_dram_addr_high(clk_mgr,
493 clk_mgr_dcn31->smu_wm_set.mc_address.high_part);
494 dcn31_smu_set_dram_addr_low(clk_mgr,
495 clk_mgr_dcn31->smu_wm_set.mc_address.low_part);
496 dcn31_smu_transfer_wm_table_dram_2_smu(clk_mgr);
497 }
498
dcn31_get_dpm_table_from_smu(struct clk_mgr_internal * clk_mgr,struct dcn31_smu_dpm_clks * smu_dpm_clks)499 static void dcn31_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
500 struct dcn31_smu_dpm_clks *smu_dpm_clks)
501 {
502 DpmClocks_t *table = smu_dpm_clks->dpm_clks;
503
504 if (!clk_mgr->smu_ver)
505 return;
506
507 if (!table || smu_dpm_clks->mc_address.quad_part == 0)
508 return;
509
510 memset(table, 0, sizeof(*table));
511
512 dcn31_smu_set_dram_addr_high(clk_mgr,
513 smu_dpm_clks->mc_address.high_part);
514 dcn31_smu_set_dram_addr_low(clk_mgr,
515 smu_dpm_clks->mc_address.low_part);
516 dcn31_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
517 }
518
find_max_clk_value(const uint32_t clocks[],uint32_t num_clocks)519 static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks)
520 {
521 uint32_t max = 0;
522 int i;
523
524 for (i = 0; i < num_clocks; ++i) {
525 if (clocks[i] > max)
526 max = clocks[i];
527 }
528
529 return max;
530 }
531
find_clk_for_voltage(const DpmClocks_t * clock_table,const uint32_t clocks[],unsigned int voltage)532 static unsigned int find_clk_for_voltage(
533 const DpmClocks_t *clock_table,
534 const uint32_t clocks[],
535 unsigned int voltage)
536 {
537 int i;
538 int max_voltage = 0;
539 int clock = 0;
540
541 for (i = 0; i < NUM_SOC_VOLTAGE_LEVELS; i++) {
542 if (clock_table->SocVoltage[i] == voltage) {
543 return clocks[i];
544 } else if (clock_table->SocVoltage[i] >= max_voltage &&
545 clock_table->SocVoltage[i] < voltage) {
546 max_voltage = clock_table->SocVoltage[i];
547 clock = clocks[i];
548 }
549 }
550
551 ASSERT(clock);
552 return clock;
553 }
554
dcn31_clk_mgr_helper_populate_bw_params(struct clk_mgr_internal * clk_mgr,struct integrated_info * bios_info,const DpmClocks_t * clock_table)555 static void dcn31_clk_mgr_helper_populate_bw_params(struct clk_mgr_internal *clk_mgr,
556 struct integrated_info *bios_info,
557 const DpmClocks_t *clock_table)
558 {
559 int i, j;
560 struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
561 uint32_t max_dispclk = 0, max_dppclk = 0;
562
563 j = -1;
564
565 static_assert(NUM_DF_PSTATE_LEVELS <= MAX_NUM_DPM_LVL,
566 "number of reported pstate levels exceeds maximum");
567
568 /* Find lowest DPM, FCLK is filled in reverse order*/
569
570 for (i = NUM_DF_PSTATE_LEVELS - 1; i >= 0; i--) {
571 if (clock_table->DfPstateTable[i].FClk != 0) {
572 j = i;
573 break;
574 }
575 }
576
577 if (j == -1) {
578 /* clock table is all 0s, just use our own hardcode */
579 ASSERT(0);
580 return;
581 }
582
583 bw_params->clk_table.num_entries = j + 1;
584
585 /* dispclk and dppclk can be max at any voltage, same number of levels for both */
586 if (clock_table->NumDispClkLevelsEnabled <= NUM_DISPCLK_DPM_LEVELS &&
587 clock_table->NumDispClkLevelsEnabled <= NUM_DPPCLK_DPM_LEVELS) {
588 max_dispclk = find_max_clk_value(clock_table->DispClocks, clock_table->NumDispClkLevelsEnabled);
589 max_dppclk = find_max_clk_value(clock_table->DppClocks, clock_table->NumDispClkLevelsEnabled);
590 } else {
591 ASSERT(0);
592 }
593
594 for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
595 bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].FClk;
596 bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].MemClk;
597 bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].Voltage;
598 switch (clock_table->DfPstateTable[j].WckRatio) {
599 case WCK_RATIO_1_2:
600 bw_params->clk_table.entries[i].wck_ratio = 2;
601 break;
602 case WCK_RATIO_1_4:
603 bw_params->clk_table.entries[i].wck_ratio = 4;
604 break;
605 default:
606 bw_params->clk_table.entries[i].wck_ratio = 1;
607 }
608 bw_params->clk_table.entries[i].dcfclk_mhz = find_clk_for_voltage(clock_table, clock_table->DcfClocks, clock_table->DfPstateTable[j].Voltage);
609 bw_params->clk_table.entries[i].socclk_mhz = find_clk_for_voltage(clock_table, clock_table->SocClocks, clock_table->DfPstateTable[j].Voltage);
610 bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk;
611 bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk;
612 }
613
614 bw_params->vram_type = bios_info->memory_type;
615
616 bw_params->dram_channel_width_bytes = bios_info->memory_type == 0x22 ? 8 : 4;
617 //bw_params->dram_channel_width_bytes = dc->ctx->asic_id.vram_width;
618 bw_params->num_channels = bios_info->ma_channel_number ? bios_info->ma_channel_number : 4;
619 for (i = 0; i < WM_SET_COUNT; i++) {
620 bw_params->wm_table.entries[i].wm_inst = i;
621
622 if (i >= bw_params->clk_table.num_entries) {
623 bw_params->wm_table.entries[i].valid = false;
624 continue;
625 }
626
627 bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
628 bw_params->wm_table.entries[i].valid = true;
629 }
630 }
631
dcn31_set_low_power_state(struct clk_mgr * clk_mgr_base)632 static void dcn31_set_low_power_state(struct clk_mgr *clk_mgr_base)
633 {
634 int display_count;
635 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
636 struct dc *dc = clk_mgr_base->ctx->dc;
637 struct dc_state *context = dc->current_state;
638
639 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
640 display_count = dcn31_get_active_display_cnt_wa(dc, context);
641 /* if we can go lower, go lower */
642 if (display_count == 0) {
643 union display_idle_optimization_u idle_info = { 0 };
644
645 idle_info.idle_info.df_request_disabled = 1;
646 idle_info.idle_info.phy_ref_clk_off = 1;
647 idle_info.idle_info.s0i2_rdy = 1;
648 dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
649 /* update power state */
650 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
651 }
652 }
653 }
654
dcn31_get_dtb_ref_freq_khz(struct clk_mgr * clk_mgr_base)655 int dcn31_get_dtb_ref_freq_khz(struct clk_mgr *clk_mgr_base)
656 {
657 return clk_mgr_base->clks.ref_dtbclk_khz;
658 }
659
660 static struct clk_mgr_funcs dcn31_funcs = {
661 .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
662 .get_dtb_ref_clk_frequency = dcn31_get_dtb_ref_freq_khz,
663 .update_clocks = dcn31_update_clocks,
664 .init_clocks = dcn31_init_clocks,
665 .enable_pme_wa = dcn31_enable_pme_wa,
666 .are_clock_states_equal = dcn31_are_clock_states_equal,
667 .notify_wm_ranges = dcn31_notify_wm_ranges,
668 .set_low_power_state = dcn31_set_low_power_state
669 };
670 extern struct clk_mgr_funcs dcn3_fpga_funcs;
671
dcn31_clk_mgr_construct(struct dc_context * ctx,struct clk_mgr_dcn31 * clk_mgr,struct pp_smu_funcs * pp_smu,struct dccg * dccg)672 void dcn31_clk_mgr_construct(
673 struct dc_context *ctx,
674 struct clk_mgr_dcn31 *clk_mgr,
675 struct pp_smu_funcs *pp_smu,
676 struct dccg *dccg)
677 {
678 struct dcn31_smu_dpm_clks smu_dpm_clks = { 0 };
679 struct clk_log_info log_info = {0};
680
681 clk_mgr->base.base.ctx = ctx;
682 clk_mgr->base.base.funcs = &dcn31_funcs;
683
684 clk_mgr->base.pp_smu = pp_smu;
685
686 clk_mgr->base.dccg = dccg;
687 clk_mgr->base.dfs_bypass_disp_clk = 0;
688
689 clk_mgr->base.dprefclk_ss_percentage = 0;
690 clk_mgr->base.dprefclk_ss_divider = 1000;
691 clk_mgr->base.ss_on_dprefclk = false;
692 clk_mgr->base.dfs_ref_freq_khz = 48000;
693
694 clk_mgr->smu_wm_set.wm_set = (struct dcn31_watermarks *)dm_helpers_allocate_gpu_mem(
695 clk_mgr->base.base.ctx,
696 DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
697 sizeof(struct dcn31_watermarks),
698 &clk_mgr->smu_wm_set.mc_address.quad_part);
699
700 if (!clk_mgr->smu_wm_set.wm_set) {
701 clk_mgr->smu_wm_set.wm_set = &dummy_wms;
702 clk_mgr->smu_wm_set.mc_address.quad_part = 0;
703 }
704 ASSERT(clk_mgr->smu_wm_set.wm_set);
705
706 smu_dpm_clks.dpm_clks = (DpmClocks_t *)dm_helpers_allocate_gpu_mem(
707 clk_mgr->base.base.ctx,
708 DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
709 sizeof(DpmClocks_t),
710 &smu_dpm_clks.mc_address.quad_part);
711
712 if (smu_dpm_clks.dpm_clks == NULL) {
713 smu_dpm_clks.dpm_clks = &dummy_clocks;
714 smu_dpm_clks.mc_address.quad_part = 0;
715 }
716
717 ASSERT(smu_dpm_clks.dpm_clks);
718
719 clk_mgr->base.smu_ver = dcn31_smu_get_smu_version(&clk_mgr->base);
720
721 if (clk_mgr->base.smu_ver)
722 clk_mgr->base.smu_present = true;
723
724 /* TODO: Check we get what we expect during bringup */
725 clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
726
727 if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
728 dcn31_bw_params.wm_table = lpddr5_wm_table;
729 } else {
730 dcn31_bw_params.wm_table = ddr5_wm_table;
731 }
732 /* Saved clocks configured at boot for debug purposes */
733 dcn31_dump_clk_registers(&clk_mgr->base.base.boot_snapshot,
734 &clk_mgr->base.base, &log_info);
735
736 clk_mgr->base.base.dprefclk_khz = 600000;
737 clk_mgr->base.base.clks.ref_dtbclk_khz = 600000;
738 dce_clock_read_ss_info(&clk_mgr->base);
739 /*if bios enabled SS, driver needs to adjust dtb clock, only enable with correct bios*/
740 //clk_mgr->base.dccg->ref_dtbclk_khz = dce_adjust_dp_ref_freq_for_ss(clk_mgr_internal, clk_mgr->base.base.dprefclk_khz);
741
742 clk_mgr->base.base.bw_params = &dcn31_bw_params;
743
744 if (clk_mgr->base.base.ctx->dc->debug.pstate_enabled) {
745 int i;
746
747 dcn31_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
748
749 DC_LOG_SMU("NumDcfClkLevelsEnabled: %d\n"
750 "NumDispClkLevelsEnabled: %d\n"
751 "NumSocClkLevelsEnabled: %d\n"
752 "VcnClkLevelsEnabled: %d\n"
753 "NumDfPst atesEnabled: %d\n"
754 "MinGfxClk: %d\n"
755 "MaxGfxClk: %d\n",
756 smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled,
757 smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled,
758 smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled,
759 smu_dpm_clks.dpm_clks->VcnClkLevelsEnabled,
760 smu_dpm_clks.dpm_clks->NumDfPstatesEnabled,
761 smu_dpm_clks.dpm_clks->MinGfxClk,
762 smu_dpm_clks.dpm_clks->MaxGfxClk);
763 for (i = 0; i < smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled; i++) {
764 DC_LOG_SMU("smu_dpm_clks.dpm_clks->DcfClocks[%d] = %d\n",
765 i,
766 smu_dpm_clks.dpm_clks->DcfClocks[i]);
767 }
768 for (i = 0; i < smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled; i++) {
769 DC_LOG_SMU("smu_dpm_clks.dpm_clks->DispClocks[%d] = %d\n",
770 i, smu_dpm_clks.dpm_clks->DispClocks[i]);
771 }
772 for (i = 0; i < smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled; i++) {
773 DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocClocks[%d] = %d\n",
774 i, smu_dpm_clks.dpm_clks->SocClocks[i]);
775 }
776 for (i = 0; i < NUM_SOC_VOLTAGE_LEVELS; i++)
777 DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocVoltage[%d] = %d\n",
778 i, smu_dpm_clks.dpm_clks->SocVoltage[i]);
779
780 for (i = 0; i < NUM_DF_PSTATE_LEVELS; i++) {
781 DC_LOG_SMU("smu_dpm_clks.dpm_clks.DfPstateTable[%d].FClk = %d\n"
782 "smu_dpm_clks.dpm_clks->DfPstateTable[%d].MemClk= %d\n"
783 "smu_dpm_clks.dpm_clks->DfPstateTable[%d].Voltage = %d\n",
784 i, smu_dpm_clks.dpm_clks->DfPstateTable[i].FClk,
785 i, smu_dpm_clks.dpm_clks->DfPstateTable[i].MemClk,
786 i, smu_dpm_clks.dpm_clks->DfPstateTable[i].Voltage);
787 }
788 if (ctx->dc_bios->integrated_info) {
789 dcn31_clk_mgr_helper_populate_bw_params(
790 &clk_mgr->base,
791 ctx->dc_bios->integrated_info,
792 smu_dpm_clks.dpm_clks);
793 }
794 }
795
796 if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
797 dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
798 smu_dpm_clks.dpm_clks);
799 }
800
dcn31_clk_mgr_destroy(struct clk_mgr_internal * clk_mgr_int)801 void dcn31_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
802 {
803 struct clk_mgr_dcn31 *clk_mgr = TO_CLK_MGR_DCN31(clk_mgr_int);
804
805 if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
806 dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
807 clk_mgr->smu_wm_set.wm_set);
808 }
809