1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 
28 /* include DCE11 register header files */
29 #include "dce/dce_11_0_d.h"
30 #include "dce/dce_11_0_sh_mask.h"
31 
32 #include "dc_types.h"
33 #include "dc_bios_types.h"
34 #include "dc.h"
35 
36 #include "include/grph_object_id.h"
37 #include "include/logger_interface.h"
38 #include "dce110_timing_generator.h"
39 
40 #include "timing_generator.h"
41 
42 
43 #define NUMBER_OF_FRAME_TO_WAIT_ON_TRIGGERED_RESET 10
44 
45 #define MAX_H_TOTAL (CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1)
46 #define MAX_V_TOTAL (CRTC_V_TOTAL__CRTC_V_TOTAL_MASKhw + 1)
47 
48 #define CRTC_REG(reg) (reg + tg110->offsets.crtc)
49 #define DCP_REG(reg) (reg + tg110->offsets.dcp)
50 
51 /* Flowing register offsets are same in files of
52  * dce/dce_11_0_d.h
53  * dce/vi_polaris10_p/vi_polaris10_d.h
54  *
55  * So we can create dce110 timing generator to use it.
56  */
57 
58 
59 /*
60 * apply_front_porch_workaround
61 *
62 * This is a workaround for a bug that has existed since R5xx and has not been
63 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
64 */
dce110_timing_generator_apply_front_porch_workaround(struct timing_generator * tg,struct dc_crtc_timing * timing)65 static void dce110_timing_generator_apply_front_porch_workaround(
66 	struct timing_generator *tg,
67 	struct dc_crtc_timing *timing)
68 {
69 	if (timing->flags.INTERLACE == 1) {
70 		if (timing->v_front_porch < 2)
71 			timing->v_front_porch = 2;
72 	} else {
73 		if (timing->v_front_porch < 1)
74 			timing->v_front_porch = 1;
75 	}
76 }
77 
78 /*
79  *****************************************************************************
80  *  Function: is_in_vertical_blank
81  *
82  *  @brief
83  *     check the current status of CRTC to check if we are in Vertical Blank
84  *     regioneased" state
85  *
86  *  @return
87  *     true if currently in blank region, false otherwise
88  *
89  *****************************************************************************
90  */
dce110_timing_generator_is_in_vertical_blank(struct timing_generator * tg)91 static bool dce110_timing_generator_is_in_vertical_blank(
92 		struct timing_generator *tg)
93 {
94 	uint32_t addr = 0;
95 	uint32_t value = 0;
96 	uint32_t field = 0;
97 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
98 
99 	addr = CRTC_REG(mmCRTC_STATUS);
100 	value = dm_read_reg(tg->ctx, addr);
101 	field = get_reg_field_value(value, CRTC_STATUS, CRTC_V_BLANK);
102 	return field == 1;
103 }
104 
dce110_timing_generator_set_early_control(struct timing_generator * tg,uint32_t early_cntl)105 void dce110_timing_generator_set_early_control(
106 		struct timing_generator *tg,
107 		uint32_t early_cntl)
108 {
109 	uint32_t regval;
110 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
111 	uint32_t address = CRTC_REG(mmCRTC_CONTROL);
112 
113 	regval = dm_read_reg(tg->ctx, address);
114 	set_reg_field_value(regval, early_cntl,
115 			CRTC_CONTROL, CRTC_HBLANK_EARLY_CONTROL);
116 	dm_write_reg(tg->ctx, address, regval);
117 }
118 
119 /*
120  * Enable CRTC
121  * Enable CRTC - call ASIC Control Object to enable Timing generator.
122  */
dce110_timing_generator_enable_crtc(struct timing_generator * tg)123 bool dce110_timing_generator_enable_crtc(struct timing_generator *tg)
124 {
125 	enum bp_result result;
126 
127 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
128 	uint32_t value = 0;
129 
130 	/*
131 	 * 3 is used to make sure V_UPDATE occurs at the beginning of the first
132 	 * line of vertical front porch
133 	 */
134 	set_reg_field_value(
135 		value,
136 		0,
137 		CRTC_MASTER_UPDATE_MODE,
138 		MASTER_UPDATE_MODE);
139 
140 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
141 
142 	/* TODO: may want this on to catch underflow */
143 	value = 0;
144 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK), value);
145 
146 	result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
147 
148 	return result == BP_RESULT_OK;
149 }
150 
dce110_timing_generator_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)151 void dce110_timing_generator_program_blank_color(
152 		struct timing_generator *tg,
153 		const struct tg_color *black_color)
154 {
155 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
156 	uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
157 	uint32_t value = dm_read_reg(tg->ctx, addr);
158 
159 	set_reg_field_value(
160 		value,
161 		black_color->color_b_cb,
162 		CRTC_BLACK_COLOR,
163 		CRTC_BLACK_COLOR_B_CB);
164 	set_reg_field_value(
165 		value,
166 		black_color->color_g_y,
167 		CRTC_BLACK_COLOR,
168 		CRTC_BLACK_COLOR_G_Y);
169 	set_reg_field_value(
170 		value,
171 		black_color->color_r_cr,
172 		CRTC_BLACK_COLOR,
173 		CRTC_BLACK_COLOR_R_CR);
174 
175 	dm_write_reg(tg->ctx, addr, value);
176 }
177 
178 /*
179  *****************************************************************************
180  *  Function: disable_stereo
181  *
182  *  @brief
183  *     Disables active stereo on controller
184  *     Frame Packing need to be disabled in vBlank or when CRTC not running
185  *****************************************************************************
186  */
187 #if 0
188 @TODOSTEREO
189 static void disable_stereo(struct timing_generator *tg)
190 {
191 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
192 	uint32_t addr = CRTC_REG(mmCRTC_3D_STRUCTURE_CONTROL);
193 	uint32_t value = 0;
194 	uint32_t test = 0;
195 	uint32_t field = 0;
196 	uint32_t struc_en = 0;
197 	uint32_t struc_stereo_sel_ovr = 0;
198 
199 	value = dm_read_reg(tg->ctx, addr);
200 	struc_en = get_reg_field_value(
201 			value,
202 			CRTC_3D_STRUCTURE_CONTROL,
203 			CRTC_3D_STRUCTURE_EN);
204 
205 	struc_stereo_sel_ovr = get_reg_field_value(
206 			value,
207 			CRTC_3D_STRUCTURE_CONTROL,
208 			CRTC_3D_STRUCTURE_STEREO_SEL_OVR);
209 
210 	/*
211 	 * When disabling Frame Packing in 2 step mode, we need to program both
212 	 * registers at the same frame
213 	 * Programming it in the beginning of VActive makes sure we are ok
214 	 */
215 
216 	if (struc_en != 0 && struc_stereo_sel_ovr == 0) {
217 		tg->funcs->wait_for_vblank(tg);
218 		tg->funcs->wait_for_vactive(tg);
219 	}
220 
221 	value = 0;
222 	dm_write_reg(tg->ctx, addr, value);
223 
224 	addr = tg->regs[IDX_CRTC_STEREO_CONTROL];
225 	dm_write_reg(tg->ctx, addr, value);
226 }
227 #endif
228 
229 /*
230  * disable_crtc - call ASIC Control Object to disable Timing generator.
231  */
dce110_timing_generator_disable_crtc(struct timing_generator * tg)232 bool dce110_timing_generator_disable_crtc(struct timing_generator *tg)
233 {
234 	enum bp_result result;
235 
236 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
237 
238 	result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, false);
239 
240 	/* Need to make sure stereo is disabled according to the DCE5.0 spec */
241 
242 	/*
243 	 * @TODOSTEREO call this when adding stereo support
244 	 * tg->funcs->disable_stereo(tg);
245 	 */
246 
247 	return result == BP_RESULT_OK;
248 }
249 
250 /*
251  * program_horz_count_by_2
252  * Programs DxCRTC_HORZ_COUNT_BY2_EN - 1 for DVI 30bpp mode, 0 otherwise
253  */
program_horz_count_by_2(struct timing_generator * tg,const struct dc_crtc_timing * timing)254 static void program_horz_count_by_2(
255 	struct timing_generator *tg,
256 	const struct dc_crtc_timing *timing)
257 {
258 	uint32_t regval;
259 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
260 
261 	regval = dm_read_reg(tg->ctx,
262 			CRTC_REG(mmCRTC_COUNT_CONTROL));
263 
264 	set_reg_field_value(regval, 0, CRTC_COUNT_CONTROL,
265 			CRTC_HORZ_COUNT_BY2_EN);
266 
267 	if (timing->flags.HORZ_COUNT_BY_TWO)
268 		set_reg_field_value(regval, 1, CRTC_COUNT_CONTROL,
269 					CRTC_HORZ_COUNT_BY2_EN);
270 
271 	dm_write_reg(tg->ctx,
272 			CRTC_REG(mmCRTC_COUNT_CONTROL), regval);
273 }
274 
275 /*
276  * program_timing_generator
277  * Program CRTC Timing Registers - DxCRTC_H_*, DxCRTC_V_*, Pixel repetition.
278  * Call ASIC Control Object to program Timings.
279  */
dce110_timing_generator_program_timing_generator(struct timing_generator * tg,const struct dc_crtc_timing * dc_crtc_timing)280 bool dce110_timing_generator_program_timing_generator(
281 	struct timing_generator *tg,
282 	const struct dc_crtc_timing *dc_crtc_timing)
283 {
284 	enum bp_result result;
285 	struct bp_hw_crtc_timing_parameters bp_params;
286 	struct dc_crtc_timing patched_crtc_timing;
287 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
288 
289 	uint32_t vsync_offset = dc_crtc_timing->v_border_bottom +
290 			dc_crtc_timing->v_front_porch;
291 	uint32_t v_sync_start = dc_crtc_timing->v_addressable + vsync_offset;
292 
293 	uint32_t hsync_offset = dc_crtc_timing->h_border_right +
294 			dc_crtc_timing->h_front_porch;
295 	uint32_t h_sync_start = dc_crtc_timing->h_addressable + hsync_offset;
296 
297 	memset(&bp_params, 0, sizeof(struct bp_hw_crtc_timing_parameters));
298 
299 	/* Due to an asic bug we need to apply the Front Porch workaround prior
300 	 * to programming the timing.
301 	 */
302 
303 	patched_crtc_timing = *dc_crtc_timing;
304 
305 	dce110_timing_generator_apply_front_porch_workaround(tg, &patched_crtc_timing);
306 
307 	bp_params.controller_id = tg110->controller_id;
308 
309 	bp_params.h_total = patched_crtc_timing.h_total;
310 	bp_params.h_addressable =
311 		patched_crtc_timing.h_addressable;
312 	bp_params.v_total = patched_crtc_timing.v_total;
313 	bp_params.v_addressable = patched_crtc_timing.v_addressable;
314 
315 	bp_params.h_sync_start = h_sync_start;
316 	bp_params.h_sync_width = patched_crtc_timing.h_sync_width;
317 	bp_params.v_sync_start = v_sync_start;
318 	bp_params.v_sync_width = patched_crtc_timing.v_sync_width;
319 
320 	/* Set overscan */
321 	bp_params.h_overscan_left =
322 		patched_crtc_timing.h_border_left;
323 	bp_params.h_overscan_right =
324 		patched_crtc_timing.h_border_right;
325 	bp_params.v_overscan_top = patched_crtc_timing.v_border_top;
326 	bp_params.v_overscan_bottom =
327 		patched_crtc_timing.v_border_bottom;
328 
329 	/* Set flags */
330 	if (patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY == 1)
331 		bp_params.flags.HSYNC_POSITIVE_POLARITY = 1;
332 
333 	if (patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY == 1)
334 		bp_params.flags.VSYNC_POSITIVE_POLARITY = 1;
335 
336 	if (patched_crtc_timing.flags.INTERLACE == 1)
337 		bp_params.flags.INTERLACE = 1;
338 
339 	if (patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1)
340 		bp_params.flags.HORZ_COUNT_BY_TWO = 1;
341 
342 	result = tg->bp->funcs->program_crtc_timing(tg->bp, &bp_params);
343 
344 	program_horz_count_by_2(tg, &patched_crtc_timing);
345 
346 	tg110->base.funcs->enable_advanced_request(tg, true, &patched_crtc_timing);
347 
348 	/* Enable stereo - only when we need to pack 3D frame. Other types
349 	 * of stereo handled in explicit call */
350 
351 	return result == BP_RESULT_OK;
352 }
353 
354 /*
355  *****************************************************************************
356  *  Function: set_drr
357  *
358  *  @brief
359  *     Program dynamic refresh rate registers m_DxCRTC_V_TOTAL_*.
360  *
361  *  @param [in] pHwCrtcTiming: point to H
362  *  wCrtcTiming struct
363  *****************************************************************************
364  */
dce110_timing_generator_set_drr(struct timing_generator * tg,const struct drr_params * params)365 void dce110_timing_generator_set_drr(
366 	struct timing_generator *tg,
367 	const struct drr_params *params)
368 {
369 	/* register values */
370 	uint32_t v_total_min = 0;
371 	uint32_t v_total_max = 0;
372 	uint32_t v_total_cntl = 0;
373 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
374 
375 	uint32_t addr = 0;
376 
377 	addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
378 	v_total_min = dm_read_reg(tg->ctx, addr);
379 
380 	addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
381 	v_total_max = dm_read_reg(tg->ctx, addr);
382 
383 	addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
384 	v_total_cntl = dm_read_reg(tg->ctx, addr);
385 
386 	if (params != NULL &&
387 		params->vertical_total_max > 0 &&
388 		params->vertical_total_min > 0) {
389 
390 		set_reg_field_value(v_total_max,
391 				params->vertical_total_max - 1,
392 				CRTC_V_TOTAL_MAX,
393 				CRTC_V_TOTAL_MAX);
394 
395 		set_reg_field_value(v_total_min,
396 				params->vertical_total_min - 1,
397 				CRTC_V_TOTAL_MIN,
398 				CRTC_V_TOTAL_MIN);
399 
400 		set_reg_field_value(v_total_cntl,
401 				1,
402 				CRTC_V_TOTAL_CONTROL,
403 				CRTC_V_TOTAL_MIN_SEL);
404 
405 		set_reg_field_value(v_total_cntl,
406 				1,
407 				CRTC_V_TOTAL_CONTROL,
408 				CRTC_V_TOTAL_MAX_SEL);
409 
410 		set_reg_field_value(v_total_cntl,
411 				0,
412 				CRTC_V_TOTAL_CONTROL,
413 				CRTC_FORCE_LOCK_ON_EVENT);
414 		set_reg_field_value(v_total_cntl,
415 				0,
416 				CRTC_V_TOTAL_CONTROL,
417 				CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
418 
419 		set_reg_field_value(v_total_cntl,
420 				0,
421 				CRTC_V_TOTAL_CONTROL,
422 				CRTC_SET_V_TOTAL_MIN_MASK_EN);
423 
424 		set_reg_field_value(v_total_cntl,
425 				0,
426 				CRTC_V_TOTAL_CONTROL,
427 				CRTC_SET_V_TOTAL_MIN_MASK);
428 	} else {
429 		set_reg_field_value(v_total_cntl,
430 			0,
431 			CRTC_V_TOTAL_CONTROL,
432 			CRTC_SET_V_TOTAL_MIN_MASK);
433 		set_reg_field_value(v_total_cntl,
434 				0,
435 				CRTC_V_TOTAL_CONTROL,
436 				CRTC_V_TOTAL_MIN_SEL);
437 		set_reg_field_value(v_total_cntl,
438 				0,
439 				CRTC_V_TOTAL_CONTROL,
440 				CRTC_V_TOTAL_MAX_SEL);
441 		set_reg_field_value(v_total_min,
442 				0,
443 				CRTC_V_TOTAL_MIN,
444 				CRTC_V_TOTAL_MIN);
445 		set_reg_field_value(v_total_max,
446 				0,
447 				CRTC_V_TOTAL_MAX,
448 				CRTC_V_TOTAL_MAX);
449 		set_reg_field_value(v_total_cntl,
450 				0,
451 				CRTC_V_TOTAL_CONTROL,
452 				CRTC_FORCE_LOCK_ON_EVENT);
453 		set_reg_field_value(v_total_cntl,
454 				0,
455 				CRTC_V_TOTAL_CONTROL,
456 				CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
457 	}
458 
459 	addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
460 	dm_write_reg(tg->ctx, addr, v_total_min);
461 
462 	addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
463 	dm_write_reg(tg->ctx, addr, v_total_max);
464 
465 	addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
466 	dm_write_reg(tg->ctx, addr, v_total_cntl);
467 }
468 
dce110_timing_generator_set_static_screen_control(struct timing_generator * tg,uint32_t event_triggers,uint32_t num_frames)469 void dce110_timing_generator_set_static_screen_control(
470 	struct timing_generator *tg,
471 	uint32_t event_triggers,
472 	uint32_t num_frames)
473 {
474 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
475 	uint32_t static_screen_cntl = 0;
476 	uint32_t addr = 0;
477 
478 	// By register spec, it only takes 8 bit value
479 	if (num_frames > 0xFF)
480 		num_frames = 0xFF;
481 
482 	addr = CRTC_REG(mmCRTC_STATIC_SCREEN_CONTROL);
483 	static_screen_cntl = dm_read_reg(tg->ctx, addr);
484 
485 	set_reg_field_value(static_screen_cntl,
486 				event_triggers,
487 				CRTC_STATIC_SCREEN_CONTROL,
488 				CRTC_STATIC_SCREEN_EVENT_MASK);
489 
490 	set_reg_field_value(static_screen_cntl,
491 				num_frames,
492 				CRTC_STATIC_SCREEN_CONTROL,
493 				CRTC_STATIC_SCREEN_FRAME_COUNT);
494 
495 	dm_write_reg(tg->ctx, addr, static_screen_cntl);
496 }
497 
498 /*
499  * get_vblank_counter
500  *
501  * @brief
502  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
503  * holds the counter of frames.
504  *
505  * @param
506  * struct timing_generator *tg - [in] timing generator which controls the
507  * desired CRTC
508  *
509  * @return
510  * Counter of frames, which should equal to number of vblanks.
511  */
dce110_timing_generator_get_vblank_counter(struct timing_generator * tg)512 uint32_t dce110_timing_generator_get_vblank_counter(struct timing_generator *tg)
513 {
514 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
515 	uint32_t addr = CRTC_REG(mmCRTC_STATUS_FRAME_COUNT);
516 	uint32_t value = dm_read_reg(tg->ctx, addr);
517 	uint32_t field = get_reg_field_value(
518 			value, CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
519 
520 	return field;
521 }
522 
523 /*
524  *****************************************************************************
525  *  Function: dce110_timing_generator_get_position
526  *
527  *  @brief
528  *     Returns CRTC vertical/horizontal counters
529  *
530  *  @param [out] position
531  *****************************************************************************
532  */
dce110_timing_generator_get_position(struct timing_generator * tg,struct crtc_position * position)533 void dce110_timing_generator_get_position(struct timing_generator *tg,
534 	struct crtc_position *position)
535 {
536 	uint32_t value;
537 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
538 
539 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_STATUS_POSITION));
540 
541 	position->horizontal_count = get_reg_field_value(
542 			value,
543 			CRTC_STATUS_POSITION,
544 			CRTC_HORZ_COUNT);
545 
546 	position->vertical_count = get_reg_field_value(
547 			value,
548 			CRTC_STATUS_POSITION,
549 			CRTC_VERT_COUNT);
550 
551 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_NOM_VERT_POSITION));
552 
553 	position->nominal_vcount = get_reg_field_value(
554 			value,
555 			CRTC_NOM_VERT_POSITION,
556 			CRTC_VERT_COUNT_NOM);
557 }
558 
559 /*
560  *****************************************************************************
561  *  Function: get_crtc_scanoutpos
562  *
563  *  @brief
564  *     Returns CRTC vertical/horizontal counters
565  *
566  *  @param [out] vpos, hpos
567  *****************************************************************************
568  */
dce110_timing_generator_get_crtc_scanoutpos(struct timing_generator * tg,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)569 void dce110_timing_generator_get_crtc_scanoutpos(
570 	struct timing_generator *tg,
571 	uint32_t *v_blank_start,
572 	uint32_t *v_blank_end,
573 	uint32_t *h_position,
574 	uint32_t *v_position)
575 {
576 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
577 	struct crtc_position position;
578 
579 	uint32_t value  = dm_read_reg(tg->ctx,
580 			CRTC_REG(mmCRTC_V_BLANK_START_END));
581 
582 	*v_blank_start = get_reg_field_value(value,
583 					     CRTC_V_BLANK_START_END,
584 					     CRTC_V_BLANK_START);
585 	*v_blank_end = get_reg_field_value(value,
586 					   CRTC_V_BLANK_START_END,
587 					   CRTC_V_BLANK_END);
588 
589 	dce110_timing_generator_get_position(
590 			tg, &position);
591 
592 	*h_position = position.horizontal_count;
593 	*v_position = position.vertical_count;
594 }
595 
596 /* TODO: is it safe to assume that mask/shift of Primary and Underlay
597  * are the same?
598  * For example: today CRTC_H_TOTAL == CRTCV_H_TOTAL but is it always
599  * guaranteed? */
dce110_timing_generator_program_blanking(struct timing_generator * tg,const struct dc_crtc_timing * timing)600 void dce110_timing_generator_program_blanking(
601 	struct timing_generator *tg,
602 	const struct dc_crtc_timing *timing)
603 {
604 	uint32_t vsync_offset = timing->v_border_bottom +
605 			timing->v_front_porch;
606 	uint32_t v_sync_start = timing->v_addressable + vsync_offset;
607 
608 	uint32_t hsync_offset = timing->h_border_right +
609 			timing->h_front_porch;
610 	uint32_t h_sync_start = timing->h_addressable + hsync_offset;
611 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
612 
613 	struct dc_context *ctx = tg->ctx;
614 	uint32_t value = 0;
615 	uint32_t addr = 0;
616 	uint32_t tmp = 0;
617 
618 	addr = CRTC_REG(mmCRTC_H_TOTAL);
619 	value = dm_read_reg(ctx, addr);
620 	set_reg_field_value(
621 		value,
622 		timing->h_total - 1,
623 		CRTC_H_TOTAL,
624 		CRTC_H_TOTAL);
625 	dm_write_reg(ctx, addr, value);
626 
627 	addr = CRTC_REG(mmCRTC_V_TOTAL);
628 	value = dm_read_reg(ctx, addr);
629 	set_reg_field_value(
630 		value,
631 		timing->v_total - 1,
632 		CRTC_V_TOTAL,
633 		CRTC_V_TOTAL);
634 	dm_write_reg(ctx, addr, value);
635 
636 	/* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
637 	 * V_TOTAL_MIN are equal to V_TOTAL.
638 	 */
639 	addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
640 	value = dm_read_reg(ctx, addr);
641 	set_reg_field_value(
642 		value,
643 		timing->v_total - 1,
644 		CRTC_V_TOTAL_MAX,
645 		CRTC_V_TOTAL_MAX);
646 	dm_write_reg(ctx, addr, value);
647 
648 	addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
649 	value = dm_read_reg(ctx, addr);
650 	set_reg_field_value(
651 		value,
652 		timing->v_total - 1,
653 		CRTC_V_TOTAL_MIN,
654 		CRTC_V_TOTAL_MIN);
655 	dm_write_reg(ctx, addr, value);
656 
657 	addr = CRTC_REG(mmCRTC_H_BLANK_START_END);
658 	value = dm_read_reg(ctx, addr);
659 
660 	tmp = timing->h_total -
661 		(h_sync_start + timing->h_border_left);
662 
663 	set_reg_field_value(
664 		value,
665 		tmp,
666 		CRTC_H_BLANK_START_END,
667 		CRTC_H_BLANK_END);
668 
669 	tmp = tmp + timing->h_addressable +
670 		timing->h_border_left + timing->h_border_right;
671 
672 	set_reg_field_value(
673 		value,
674 		tmp,
675 		CRTC_H_BLANK_START_END,
676 		CRTC_H_BLANK_START);
677 
678 	dm_write_reg(ctx, addr, value);
679 
680 	addr = CRTC_REG(mmCRTC_V_BLANK_START_END);
681 	value = dm_read_reg(ctx, addr);
682 
683 	tmp = timing->v_total - (v_sync_start + timing->v_border_top);
684 
685 	set_reg_field_value(
686 		value,
687 		tmp,
688 		CRTC_V_BLANK_START_END,
689 		CRTC_V_BLANK_END);
690 
691 	tmp = tmp + timing->v_addressable + timing->v_border_top +
692 		timing->v_border_bottom;
693 
694 	set_reg_field_value(
695 		value,
696 		tmp,
697 		CRTC_V_BLANK_START_END,
698 		CRTC_V_BLANK_START);
699 
700 	dm_write_reg(ctx, addr, value);
701 }
702 
dce110_timing_generator_set_test_pattern(struct timing_generator * tg,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)703 void dce110_timing_generator_set_test_pattern(
704 	struct timing_generator *tg,
705 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
706 	 * because this is not DP-specific (which is probably somewhere in DP
707 	 * encoder) */
708 	enum controller_dp_test_pattern test_pattern,
709 	enum dc_color_depth color_depth)
710 {
711 	struct dc_context *ctx = tg->ctx;
712 	uint32_t value;
713 	uint32_t addr;
714 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
715 	enum test_pattern_color_format bit_depth;
716 	enum test_pattern_dyn_range dyn_range;
717 	enum test_pattern_mode mode;
718 	/* color ramp generator mixes 16-bits color */
719 	uint32_t src_bpc = 16;
720 	/* requested bpc */
721 	uint32_t dst_bpc;
722 	uint32_t index;
723 	/* RGB values of the color bars.
724 	 * Produce two RGB colors: RGB0 - white (all Fs)
725 	 * and RGB1 - black (all 0s)
726 	 * (three RGB components for two colors)
727 	 */
728 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
729 						0x0000, 0x0000};
730 	/* dest color (converted to the specified color format) */
731 	uint16_t dst_color[6];
732 	uint32_t inc_base;
733 
734 	/* translate to bit depth */
735 	switch (color_depth) {
736 	case COLOR_DEPTH_666:
737 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
738 	break;
739 	case COLOR_DEPTH_888:
740 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
741 	break;
742 	case COLOR_DEPTH_101010:
743 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
744 	break;
745 	case COLOR_DEPTH_121212:
746 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
747 	break;
748 	default:
749 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
750 	break;
751 	}
752 
753 	switch (test_pattern) {
754 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
755 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
756 	{
757 		dyn_range = (test_pattern ==
758 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
759 				TEST_PATTERN_DYN_RANGE_CEA :
760 				TEST_PATTERN_DYN_RANGE_VESA);
761 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
762 		value = 0;
763 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
764 
765 		set_reg_field_value(
766 			value,
767 			6,
768 			CRTC_TEST_PATTERN_PARAMETERS,
769 			CRTC_TEST_PATTERN_VRES);
770 		set_reg_field_value(
771 			value,
772 			6,
773 			CRTC_TEST_PATTERN_PARAMETERS,
774 			CRTC_TEST_PATTERN_HRES);
775 
776 		dm_write_reg(ctx, addr, value);
777 
778 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
779 		value = 0;
780 
781 		set_reg_field_value(
782 			value,
783 			1,
784 			CRTC_TEST_PATTERN_CONTROL,
785 			CRTC_TEST_PATTERN_EN);
786 
787 		set_reg_field_value(
788 			value,
789 			mode,
790 			CRTC_TEST_PATTERN_CONTROL,
791 			CRTC_TEST_PATTERN_MODE);
792 
793 		set_reg_field_value(
794 			value,
795 			dyn_range,
796 			CRTC_TEST_PATTERN_CONTROL,
797 			CRTC_TEST_PATTERN_DYNAMIC_RANGE);
798 		set_reg_field_value(
799 			value,
800 			bit_depth,
801 			CRTC_TEST_PATTERN_CONTROL,
802 			CRTC_TEST_PATTERN_COLOR_FORMAT);
803 		dm_write_reg(ctx, addr, value);
804 	}
805 	break;
806 
807 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
808 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
809 	{
810 		mode = (test_pattern ==
811 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
812 			TEST_PATTERN_MODE_VERTICALBARS :
813 			TEST_PATTERN_MODE_HORIZONTALBARS);
814 
815 		switch (bit_depth) {
816 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
817 			dst_bpc = 6;
818 		break;
819 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
820 			dst_bpc = 8;
821 		break;
822 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
823 			dst_bpc = 10;
824 		break;
825 		default:
826 			dst_bpc = 8;
827 		break;
828 		}
829 
830 		/* adjust color to the required colorFormat */
831 		for (index = 0; index < 6; index++) {
832 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
833 			 * (srcBpc - dstBpc);
834 			 */
835 			dst_color[index] =
836 				src_color[index] >> (src_bpc - dst_bpc);
837 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
838 		 * lowest 6 are hardwired to ZERO
839 		 * color bits should be left aligned aligned to MSB
840 		 * XXXXXXXXXX000000 for 10 bit,
841 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
842 		 */
843 			dst_color[index] <<= (16 - dst_bpc);
844 		}
845 
846 		value = 0;
847 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
848 		dm_write_reg(ctx, addr, value);
849 
850 		/* We have to write the mask before data, similar to pipeline.
851 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
852 		 * and RGB1 to be cyan,
853 		 * we need to make 7 writes:
854 		 * MASK   DATA
855 		 * 000001 00000000 00000000                     set mask to R0
856 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
857 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
858 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
859 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
860 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
861 		 * 100000 11111111 00000000     B1 255, 0xFF00
862 		 *
863 		 * we will make a loop of 6 in which we prepare the mask,
864 		 * then write, then prepare the color for next write.
865 		 * first iteration will write mask only,
866 		 * but each next iteration color prepared in
867 		 * previous iteration will be written within new mask,
868 		 * the last component will written separately,
869 		 * mask is not changing between 6th and 7th write
870 		 * and color will be prepared by last iteration
871 		 */
872 
873 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
874 		 * is B1, G1, R1, B0, G0, R0
875 		 */
876 		value = 0;
877 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
878 		for (index = 0; index < 6; index++) {
879 			/* prepare color mask, first write PATTERN_DATA
880 			 * will have all zeros
881 			 */
882 			set_reg_field_value(
883 				value,
884 				(1 << index),
885 				CRTC_TEST_PATTERN_COLOR,
886 				CRTC_TEST_PATTERN_MASK);
887 			/* write color component */
888 			dm_write_reg(ctx, addr, value);
889 			/* prepare next color component,
890 			 * will be written in the next iteration
891 			 */
892 			set_reg_field_value(
893 				value,
894 				dst_color[index],
895 				CRTC_TEST_PATTERN_COLOR,
896 				CRTC_TEST_PATTERN_DATA);
897 		}
898 		/* write last color component,
899 		 * it's been already prepared in the loop
900 		 */
901 		dm_write_reg(ctx, addr, value);
902 
903 		/* enable test pattern */
904 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
905 		value = 0;
906 
907 		set_reg_field_value(
908 			value,
909 			1,
910 			CRTC_TEST_PATTERN_CONTROL,
911 			CRTC_TEST_PATTERN_EN);
912 
913 		set_reg_field_value(
914 			value,
915 			mode,
916 			CRTC_TEST_PATTERN_CONTROL,
917 			CRTC_TEST_PATTERN_MODE);
918 
919 		set_reg_field_value(
920 			value,
921 			0,
922 			CRTC_TEST_PATTERN_CONTROL,
923 			CRTC_TEST_PATTERN_DYNAMIC_RANGE);
924 
925 		set_reg_field_value(
926 			value,
927 			bit_depth,
928 			CRTC_TEST_PATTERN_CONTROL,
929 			CRTC_TEST_PATTERN_COLOR_FORMAT);
930 
931 		dm_write_reg(ctx, addr, value);
932 	}
933 	break;
934 
935 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
936 	{
937 		mode = (bit_depth ==
938 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
939 			TEST_PATTERN_MODE_DUALRAMP_RGB :
940 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
941 
942 		switch (bit_depth) {
943 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
944 			dst_bpc = 6;
945 		break;
946 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
947 			dst_bpc = 8;
948 		break;
949 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
950 			dst_bpc = 10;
951 		break;
952 		default:
953 			dst_bpc = 8;
954 		break;
955 		}
956 
957 		/* increment for the first ramp for one color gradation
958 		 * 1 gradation for 6-bit color is 2^10
959 		 * gradations in 16-bit color
960 		 */
961 		inc_base = (src_bpc - dst_bpc);
962 
963 		value = 0;
964 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
965 
966 		switch (bit_depth) {
967 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
968 		{
969 			set_reg_field_value(
970 				value,
971 				inc_base,
972 				CRTC_TEST_PATTERN_PARAMETERS,
973 				CRTC_TEST_PATTERN_INC0);
974 			set_reg_field_value(
975 				value,
976 				0,
977 				CRTC_TEST_PATTERN_PARAMETERS,
978 				CRTC_TEST_PATTERN_INC1);
979 			set_reg_field_value(
980 				value,
981 				6,
982 				CRTC_TEST_PATTERN_PARAMETERS,
983 				CRTC_TEST_PATTERN_HRES);
984 			set_reg_field_value(
985 				value,
986 				6,
987 				CRTC_TEST_PATTERN_PARAMETERS,
988 				CRTC_TEST_PATTERN_VRES);
989 			set_reg_field_value(
990 				value,
991 				0,
992 				CRTC_TEST_PATTERN_PARAMETERS,
993 				CRTC_TEST_PATTERN_RAMP0_OFFSET);
994 		}
995 		break;
996 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
997 		{
998 			set_reg_field_value(
999 				value,
1000 				inc_base,
1001 				CRTC_TEST_PATTERN_PARAMETERS,
1002 				CRTC_TEST_PATTERN_INC0);
1003 			set_reg_field_value(
1004 				value,
1005 				0,
1006 				CRTC_TEST_PATTERN_PARAMETERS,
1007 				CRTC_TEST_PATTERN_INC1);
1008 			set_reg_field_value(
1009 				value,
1010 				8,
1011 				CRTC_TEST_PATTERN_PARAMETERS,
1012 				CRTC_TEST_PATTERN_HRES);
1013 			set_reg_field_value(
1014 				value,
1015 				6,
1016 				CRTC_TEST_PATTERN_PARAMETERS,
1017 				CRTC_TEST_PATTERN_VRES);
1018 			set_reg_field_value(
1019 				value,
1020 				0,
1021 				CRTC_TEST_PATTERN_PARAMETERS,
1022 				CRTC_TEST_PATTERN_RAMP0_OFFSET);
1023 		}
1024 		break;
1025 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1026 		{
1027 			set_reg_field_value(
1028 				value,
1029 				inc_base,
1030 				CRTC_TEST_PATTERN_PARAMETERS,
1031 				CRTC_TEST_PATTERN_INC0);
1032 			set_reg_field_value(
1033 				value,
1034 				inc_base + 2,
1035 				CRTC_TEST_PATTERN_PARAMETERS,
1036 				CRTC_TEST_PATTERN_INC1);
1037 			set_reg_field_value(
1038 				value,
1039 				8,
1040 				CRTC_TEST_PATTERN_PARAMETERS,
1041 				CRTC_TEST_PATTERN_HRES);
1042 			set_reg_field_value(
1043 				value,
1044 				5,
1045 				CRTC_TEST_PATTERN_PARAMETERS,
1046 				CRTC_TEST_PATTERN_VRES);
1047 			set_reg_field_value(
1048 				value,
1049 				384 << 6,
1050 				CRTC_TEST_PATTERN_PARAMETERS,
1051 				CRTC_TEST_PATTERN_RAMP0_OFFSET);
1052 		}
1053 		break;
1054 		default:
1055 		break;
1056 		}
1057 		dm_write_reg(ctx, addr, value);
1058 
1059 		value = 0;
1060 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
1061 		dm_write_reg(ctx, addr, value);
1062 
1063 		/* enable test pattern */
1064 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
1065 		value = 0;
1066 
1067 		set_reg_field_value(
1068 			value,
1069 			1,
1070 			CRTC_TEST_PATTERN_CONTROL,
1071 			CRTC_TEST_PATTERN_EN);
1072 
1073 		set_reg_field_value(
1074 			value,
1075 			mode,
1076 			CRTC_TEST_PATTERN_CONTROL,
1077 			CRTC_TEST_PATTERN_MODE);
1078 
1079 		set_reg_field_value(
1080 			value,
1081 			0,
1082 			CRTC_TEST_PATTERN_CONTROL,
1083 			CRTC_TEST_PATTERN_DYNAMIC_RANGE);
1084 		/* add color depth translation here */
1085 		set_reg_field_value(
1086 			value,
1087 			bit_depth,
1088 			CRTC_TEST_PATTERN_CONTROL,
1089 			CRTC_TEST_PATTERN_COLOR_FORMAT);
1090 
1091 		dm_write_reg(ctx, addr, value);
1092 	}
1093 	break;
1094 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1095 	{
1096 		value = 0;
1097 		dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL), value);
1098 		dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_COLOR), value);
1099 		dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS),
1100 				value);
1101 	}
1102 	break;
1103 	default:
1104 	break;
1105 	}
1106 }
1107 
1108 /*
1109  * dce110_timing_generator_validate_timing
1110  * The timing generators support a maximum display size of is 8192 x 8192 pixels,
1111  * including both active display and blanking periods. Check H Total and V Total.
1112  */
dce110_timing_generator_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,enum signal_type signal)1113 bool dce110_timing_generator_validate_timing(
1114 	struct timing_generator *tg,
1115 	const struct dc_crtc_timing *timing,
1116 	enum signal_type signal)
1117 {
1118 	uint32_t h_blank;
1119 	uint32_t h_back_porch, hsync_offset, h_sync_start;
1120 
1121 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1122 
1123 	ASSERT(timing != NULL);
1124 
1125 	if (!timing)
1126 		return false;
1127 
1128 	hsync_offset = timing->h_border_right + timing->h_front_porch;
1129 	h_sync_start = timing->h_addressable + hsync_offset;
1130 
1131 	/* Currently we don't support 3D, so block all 3D timings */
1132 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE)
1133 		return false;
1134 
1135 	/* Temporarily blocking interlacing mode until it's supported */
1136 	if (timing->flags.INTERLACE == 1)
1137 		return false;
1138 
1139 	/* Check maximum number of pixels supported by Timing Generator
1140 	 * (Currently will never fail, in order to fail needs display which
1141 	 * needs more than 8192 horizontal and
1142 	 * more than 8192 vertical total pixels)
1143 	 */
1144 	if (timing->h_total > tg110->max_h_total ||
1145 		timing->v_total > tg110->max_v_total)
1146 		return false;
1147 
1148 	h_blank = (timing->h_total - timing->h_addressable -
1149 		timing->h_border_right -
1150 		timing->h_border_left);
1151 
1152 	if (h_blank < tg110->min_h_blank)
1153 		return false;
1154 
1155 	if (timing->h_front_porch < tg110->min_h_front_porch)
1156 		return false;
1157 
1158 	h_back_porch = h_blank - (h_sync_start -
1159 		timing->h_addressable -
1160 		timing->h_border_right -
1161 		timing->h_sync_width);
1162 
1163 	if (h_back_porch < tg110->min_h_back_porch)
1164 		return false;
1165 
1166 	return true;
1167 }
1168 
1169 /*
1170  * Wait till we are at the beginning of VBlank.
1171  */
dce110_timing_generator_wait_for_vblank(struct timing_generator * tg)1172 void dce110_timing_generator_wait_for_vblank(struct timing_generator *tg)
1173 {
1174 	/* We want to catch beginning of VBlank here, so if the first try are
1175 	 * in VBlank, we might be very close to Active, in this case wait for
1176 	 * another frame
1177 	 */
1178 	while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1179 		if (!dce110_timing_generator_is_counter_moving(tg)) {
1180 			/* error - no point to wait if counter is not moving */
1181 			break;
1182 		}
1183 	}
1184 
1185 	while (!dce110_timing_generator_is_in_vertical_blank(tg)) {
1186 		if (!dce110_timing_generator_is_counter_moving(tg)) {
1187 			/* error - no point to wait if counter is not moving */
1188 			break;
1189 		}
1190 	}
1191 }
1192 
1193 /*
1194  * Wait till we are in VActive (anywhere in VActive)
1195  */
dce110_timing_generator_wait_for_vactive(struct timing_generator * tg)1196 void dce110_timing_generator_wait_for_vactive(struct timing_generator *tg)
1197 {
1198 	while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1199 		if (!dce110_timing_generator_is_counter_moving(tg)) {
1200 			/* error - no point to wait if counter is not moving */
1201 			break;
1202 		}
1203 	}
1204 }
1205 
1206 /*
1207  *****************************************************************************
1208  *  Function: dce110_timing_generator_setup_global_swap_lock
1209  *
1210  *  @brief
1211  *     Setups Global Swap Lock group for current pipe
1212  *     Pipe can join or leave GSL group, become a TimingServer or TimingClient
1213  *
1214  *  @param [in] gsl_params: setup data
1215  *****************************************************************************
1216  */
dce110_timing_generator_setup_global_swap_lock(struct timing_generator * tg,const struct dcp_gsl_params * gsl_params)1217 void dce110_timing_generator_setup_global_swap_lock(
1218 	struct timing_generator *tg,
1219 	const struct dcp_gsl_params *gsl_params)
1220 {
1221 	uint32_t value;
1222 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1223 	uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1224 	uint32_t check_point = FLIP_READY_BACK_LOOKUP;
1225 
1226 	value = dm_read_reg(tg->ctx, address);
1227 
1228 	/* This pipe will belong to GSL Group zero. */
1229 	set_reg_field_value(value,
1230 			    1,
1231 			    DCP_GSL_CONTROL,
1232 			    DCP_GSL0_EN);
1233 
1234 	set_reg_field_value(value,
1235 			    gsl_params->gsl_master == tg->inst,
1236 			    DCP_GSL_CONTROL,
1237 			    DCP_GSL_MASTER_EN);
1238 
1239 	set_reg_field_value(value,
1240 			    HFLIP_READY_DELAY,
1241 			    DCP_GSL_CONTROL,
1242 			    DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1243 
1244 	/* Keep signal low (pending high) during 6 lines.
1245 	 * Also defines minimum interval before re-checking signal. */
1246 	set_reg_field_value(value,
1247 			    HFLIP_CHECK_DELAY,
1248 			    DCP_GSL_CONTROL,
1249 			    DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1250 
1251 	dm_write_reg(tg->ctx, CRTC_REG(mmDCP_GSL_CONTROL), value);
1252 	value = 0;
1253 
1254 	set_reg_field_value(value,
1255 			    gsl_params->gsl_master,
1256 			    DCIO_GSL0_CNTL,
1257 			    DCIO_GSL0_VSYNC_SEL);
1258 
1259 	set_reg_field_value(value,
1260 			    0,
1261 			    DCIO_GSL0_CNTL,
1262 			    DCIO_GSL0_TIMING_SYNC_SEL);
1263 
1264 	set_reg_field_value(value,
1265 			    0,
1266 			    DCIO_GSL0_CNTL,
1267 			    DCIO_GSL0_GLOBAL_UNLOCK_SEL);
1268 
1269 	dm_write_reg(tg->ctx, CRTC_REG(mmDCIO_GSL0_CNTL), value);
1270 
1271 
1272 	{
1273 		uint32_t value_crtc_vtotal;
1274 
1275 		value_crtc_vtotal = dm_read_reg(tg->ctx,
1276 				CRTC_REG(mmCRTC_V_TOTAL));
1277 
1278 		set_reg_field_value(value,
1279 				    0,/* DCP_GSL_PURPOSE_SURFACE_FLIP */
1280 				    DCP_GSL_CONTROL,
1281 				    DCP_GSL_SYNC_SOURCE);
1282 
1283 		/* Checkpoint relative to end of frame */
1284 		check_point = get_reg_field_value(value_crtc_vtotal,
1285 						  CRTC_V_TOTAL,
1286 						  CRTC_V_TOTAL);
1287 
1288 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_GSL_WINDOW), 0);
1289 	}
1290 
1291 	set_reg_field_value(value,
1292 			    1,
1293 			    DCP_GSL_CONTROL,
1294 			    DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1295 
1296 	dm_write_reg(tg->ctx, address, value);
1297 
1298 	/********************************************************************/
1299 	address = CRTC_REG(mmCRTC_GSL_CONTROL);
1300 
1301 	value = dm_read_reg(tg->ctx, address);
1302 	set_reg_field_value(value,
1303 			    check_point - FLIP_READY_BACK_LOOKUP,
1304 			    CRTC_GSL_CONTROL,
1305 			    CRTC_GSL_CHECK_LINE_NUM);
1306 
1307 	set_reg_field_value(value,
1308 			    VFLIP_READY_DELAY,
1309 			    CRTC_GSL_CONTROL,
1310 			    CRTC_GSL_FORCE_DELAY);
1311 
1312 	dm_write_reg(tg->ctx, address, value);
1313 }
1314 
dce110_timing_generator_tear_down_global_swap_lock(struct timing_generator * tg)1315 void dce110_timing_generator_tear_down_global_swap_lock(
1316 	struct timing_generator *tg)
1317 {
1318 	/* Clear all the register writes done by
1319 	 * dce110_timing_generator_setup_global_swap_lock
1320 	 */
1321 
1322 	uint32_t value;
1323 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1324 	uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1325 
1326 	value = 0;
1327 
1328 	/* This pipe will belong to GSL Group zero. */
1329 	/* Settig HW default values from reg specs */
1330 	set_reg_field_value(value,
1331 			0,
1332 			DCP_GSL_CONTROL,
1333 			DCP_GSL0_EN);
1334 
1335 	set_reg_field_value(value,
1336 			0,
1337 			DCP_GSL_CONTROL,
1338 			DCP_GSL_MASTER_EN);
1339 
1340 	set_reg_field_value(value,
1341 			0x2,
1342 			DCP_GSL_CONTROL,
1343 			DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1344 
1345 	set_reg_field_value(value,
1346 			0x6,
1347 			DCP_GSL_CONTROL,
1348 			DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1349 
1350 	/* Restore DCP_GSL_PURPOSE_SURFACE_FLIP */
1351 	{
1352 		dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_V_TOTAL));
1353 
1354 		set_reg_field_value(value,
1355 				0,
1356 				DCP_GSL_CONTROL,
1357 				DCP_GSL_SYNC_SOURCE);
1358 	}
1359 
1360 	set_reg_field_value(value,
1361 			0,
1362 			DCP_GSL_CONTROL,
1363 			DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1364 
1365 	dm_write_reg(tg->ctx, address, value);
1366 
1367 	/********************************************************************/
1368 	address = CRTC_REG(mmCRTC_GSL_CONTROL);
1369 
1370 	value = 0;
1371 	set_reg_field_value(value,
1372 			0,
1373 			CRTC_GSL_CONTROL,
1374 			CRTC_GSL_CHECK_LINE_NUM);
1375 
1376 	set_reg_field_value(value,
1377 			0x2,
1378 			CRTC_GSL_CONTROL,
1379 			CRTC_GSL_FORCE_DELAY);
1380 
1381 	dm_write_reg(tg->ctx, address, value);
1382 }
1383 /*
1384  *****************************************************************************
1385  *  Function: is_counter_moving
1386  *
1387  *  @brief
1388  *     check if the timing generator is currently going
1389  *
1390  *  @return
1391  *     true if currently going, false if currently paused or stopped.
1392  *
1393  *****************************************************************************
1394  */
dce110_timing_generator_is_counter_moving(struct timing_generator * tg)1395 bool dce110_timing_generator_is_counter_moving(struct timing_generator *tg)
1396 {
1397 	struct crtc_position position1, position2;
1398 
1399 	tg->funcs->get_position(tg, &position1);
1400 	tg->funcs->get_position(tg, &position2);
1401 
1402 	if (position1.horizontal_count == position2.horizontal_count &&
1403 		position1.vertical_count == position2.vertical_count)
1404 		return false;
1405 	else
1406 		return true;
1407 }
1408 
dce110_timing_generator_enable_advanced_request(struct timing_generator * tg,bool enable,const struct dc_crtc_timing * timing)1409 void dce110_timing_generator_enable_advanced_request(
1410 	struct timing_generator *tg,
1411 	bool enable,
1412 	const struct dc_crtc_timing *timing)
1413 {
1414 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1415 	uint32_t addr = CRTC_REG(mmCRTC_START_LINE_CONTROL);
1416 	uint32_t value = dm_read_reg(tg->ctx, addr);
1417 
1418 	if (enable) {
1419 		set_reg_field_value(
1420 			value,
1421 			0,
1422 			CRTC_START_LINE_CONTROL,
1423 			CRTC_LEGACY_REQUESTOR_EN);
1424 	} else {
1425 		set_reg_field_value(
1426 			value,
1427 			1,
1428 			CRTC_START_LINE_CONTROL,
1429 			CRTC_LEGACY_REQUESTOR_EN);
1430 	}
1431 
1432 	if ((timing->v_sync_width + timing->v_front_porch) <= 3) {
1433 		set_reg_field_value(
1434 			value,
1435 			3,
1436 			CRTC_START_LINE_CONTROL,
1437 			CRTC_ADVANCED_START_LINE_POSITION);
1438 		set_reg_field_value(
1439 			value,
1440 			0,
1441 			CRTC_START_LINE_CONTROL,
1442 			CRTC_PREFETCH_EN);
1443 	} else {
1444 		set_reg_field_value(
1445 			value,
1446 			4,
1447 			CRTC_START_LINE_CONTROL,
1448 			CRTC_ADVANCED_START_LINE_POSITION);
1449 		set_reg_field_value(
1450 			value,
1451 			1,
1452 			CRTC_START_LINE_CONTROL,
1453 			CRTC_PREFETCH_EN);
1454 	}
1455 
1456 	set_reg_field_value(
1457 		value,
1458 		1,
1459 		CRTC_START_LINE_CONTROL,
1460 		CRTC_PROGRESSIVE_START_LINE_EARLY);
1461 
1462 	set_reg_field_value(
1463 		value,
1464 		1,
1465 		CRTC_START_LINE_CONTROL,
1466 		CRTC_INTERLACE_START_LINE_EARLY);
1467 
1468 	dm_write_reg(tg->ctx, addr, value);
1469 }
1470 
1471 /*TODO: Figure out if we need this function. */
dce110_timing_generator_set_lock_master(struct timing_generator * tg,bool lock)1472 void dce110_timing_generator_set_lock_master(struct timing_generator *tg,
1473 		bool lock)
1474 {
1475 	struct dc_context *ctx = tg->ctx;
1476 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1477 	uint32_t addr = CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK);
1478 	uint32_t value = dm_read_reg(ctx, addr);
1479 
1480 	set_reg_field_value(
1481 		value,
1482 		lock ? 1 : 0,
1483 		CRTC_MASTER_UPDATE_LOCK,
1484 		MASTER_UPDATE_LOCK);
1485 
1486 	dm_write_reg(ctx, addr, value);
1487 }
1488 
dce110_timing_generator_enable_reset_trigger(struct timing_generator * tg,int source_tg_inst)1489 void dce110_timing_generator_enable_reset_trigger(
1490 	struct timing_generator *tg,
1491 	int source_tg_inst)
1492 {
1493 	uint32_t value;
1494 	uint32_t rising_edge = 0;
1495 	uint32_t falling_edge = 0;
1496 	enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
1497 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1498 
1499 	/* Setup trigger edge */
1500 	{
1501 		uint32_t pol_value = dm_read_reg(tg->ctx,
1502 				CRTC_REG(mmCRTC_V_SYNC_A_CNTL));
1503 
1504 		/* Register spec has reversed definition:
1505 		 *	0 for positive, 1 for negative */
1506 		if (get_reg_field_value(pol_value,
1507 				CRTC_V_SYNC_A_CNTL,
1508 				CRTC_V_SYNC_A_POL) == 0) {
1509 			rising_edge = 1;
1510 		} else {
1511 			falling_edge = 1;
1512 		}
1513 	}
1514 
1515 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1516 
1517 	trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
1518 
1519 	set_reg_field_value(value,
1520 			trig_src_select,
1521 			CRTC_TRIGB_CNTL,
1522 			CRTC_TRIGB_SOURCE_SELECT);
1523 
1524 	set_reg_field_value(value,
1525 			TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1526 			CRTC_TRIGB_CNTL,
1527 			CRTC_TRIGB_POLARITY_SELECT);
1528 
1529 	set_reg_field_value(value,
1530 			rising_edge,
1531 			CRTC_TRIGB_CNTL,
1532 			CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1533 
1534 	set_reg_field_value(value,
1535 			falling_edge,
1536 			CRTC_TRIGB_CNTL,
1537 			CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1538 
1539 	set_reg_field_value(value,
1540 			0, /* send every signal */
1541 			CRTC_TRIGB_CNTL,
1542 			CRTC_TRIGB_FREQUENCY_SELECT);
1543 
1544 	set_reg_field_value(value,
1545 			0, /* no delay */
1546 			CRTC_TRIGB_CNTL,
1547 			CRTC_TRIGB_DELAY);
1548 
1549 	set_reg_field_value(value,
1550 			1, /* clear trigger status */
1551 			CRTC_TRIGB_CNTL,
1552 			CRTC_TRIGB_CLEAR);
1553 
1554 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1555 
1556 	/**************************************************************/
1557 
1558 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1559 
1560 	set_reg_field_value(value,
1561 			2, /* force H count to H_TOTAL and V count to V_TOTAL */
1562 			CRTC_FORCE_COUNT_NOW_CNTL,
1563 			CRTC_FORCE_COUNT_NOW_MODE);
1564 
1565 	set_reg_field_value(value,
1566 			1, /* TriggerB - we never use TriggerA */
1567 			CRTC_FORCE_COUNT_NOW_CNTL,
1568 			CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1569 
1570 	set_reg_field_value(value,
1571 			1, /* clear trigger status */
1572 			CRTC_FORCE_COUNT_NOW_CNTL,
1573 			CRTC_FORCE_COUNT_NOW_CLEAR);
1574 
1575 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1576 }
1577 
dce110_timing_generator_enable_crtc_reset(struct timing_generator * tg,int source_tg_inst,struct crtc_trigger_info * crtc_tp)1578 void dce110_timing_generator_enable_crtc_reset(
1579 		struct timing_generator *tg,
1580 		int source_tg_inst,
1581 		struct crtc_trigger_info *crtc_tp)
1582 {
1583 	uint32_t value = 0;
1584 	uint32_t rising_edge = 0;
1585 	uint32_t falling_edge = 0;
1586 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1587 
1588 	/* Setup trigger edge */
1589 	switch (crtc_tp->event) {
1590 	case CRTC_EVENT_VSYNC_RISING:
1591 			rising_edge = 1;
1592 			break;
1593 
1594 	case CRTC_EVENT_VSYNC_FALLING:
1595 		falling_edge = 1;
1596 		break;
1597 	}
1598 
1599 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1600 
1601 	set_reg_field_value(value,
1602 			    source_tg_inst,
1603 			    CRTC_TRIGB_CNTL,
1604 			    CRTC_TRIGB_SOURCE_SELECT);
1605 
1606 	set_reg_field_value(value,
1607 			    TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1608 			    CRTC_TRIGB_CNTL,
1609 			    CRTC_TRIGB_POLARITY_SELECT);
1610 
1611 	set_reg_field_value(value,
1612 			    rising_edge,
1613 			    CRTC_TRIGB_CNTL,
1614 			    CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1615 
1616 	set_reg_field_value(value,
1617 			    falling_edge,
1618 			    CRTC_TRIGB_CNTL,
1619 			    CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1620 
1621 	set_reg_field_value(value,
1622 			    1, /* clear trigger status */
1623 			    CRTC_TRIGB_CNTL,
1624 			    CRTC_TRIGB_CLEAR);
1625 
1626 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1627 
1628 	/**************************************************************/
1629 
1630 	switch (crtc_tp->delay) {
1631 	case TRIGGER_DELAY_NEXT_LINE:
1632 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1633 
1634 		set_reg_field_value(value,
1635 				    0, /* force H count to H_TOTAL and V count to V_TOTAL */
1636 				    CRTC_FORCE_COUNT_NOW_CNTL,
1637 				    CRTC_FORCE_COUNT_NOW_MODE);
1638 
1639 		set_reg_field_value(value,
1640 				    0, /* TriggerB - we never use TriggerA */
1641 				    CRTC_FORCE_COUNT_NOW_CNTL,
1642 				    CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1643 
1644 		set_reg_field_value(value,
1645 				    1, /* clear trigger status */
1646 				    CRTC_FORCE_COUNT_NOW_CNTL,
1647 				    CRTC_FORCE_COUNT_NOW_CLEAR);
1648 
1649 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1650 
1651 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1652 
1653 		set_reg_field_value(value,
1654 				    1,
1655 				    CRTC_VERT_SYNC_CONTROL,
1656 				    CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1657 
1658 		set_reg_field_value(value,
1659 				    2,
1660 				    CRTC_VERT_SYNC_CONTROL,
1661 				    CRTC_AUTO_FORCE_VSYNC_MODE);
1662 
1663 		break;
1664 
1665 	case TRIGGER_DELAY_NEXT_PIXEL:
1666 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1667 
1668 		set_reg_field_value(value,
1669 				    1,
1670 				    CRTC_VERT_SYNC_CONTROL,
1671 				    CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1672 
1673 		set_reg_field_value(value,
1674 				    0,
1675 				    CRTC_VERT_SYNC_CONTROL,
1676 				    CRTC_AUTO_FORCE_VSYNC_MODE);
1677 
1678 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1679 
1680 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1681 
1682 		set_reg_field_value(value,
1683 				    2, /* force H count to H_TOTAL and V count to V_TOTAL */
1684 				    CRTC_FORCE_COUNT_NOW_CNTL,
1685 				    CRTC_FORCE_COUNT_NOW_MODE);
1686 
1687 		set_reg_field_value(value,
1688 				    1, /* TriggerB - we never use TriggerA */
1689 				    CRTC_FORCE_COUNT_NOW_CNTL,
1690 				    CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1691 
1692 		set_reg_field_value(value,
1693 				    1, /* clear trigger status */
1694 				    CRTC_FORCE_COUNT_NOW_CNTL,
1695 				    CRTC_FORCE_COUNT_NOW_CLEAR);
1696 
1697 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1698 		break;
1699 	}
1700 
1701 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE));
1702 
1703 	set_reg_field_value(value,
1704 			    2,
1705 			    CRTC_MASTER_UPDATE_MODE,
1706 			    MASTER_UPDATE_MODE);
1707 
1708 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
1709 }
dce110_timing_generator_disable_reset_trigger(struct timing_generator * tg)1710 void dce110_timing_generator_disable_reset_trigger(
1711 	struct timing_generator *tg)
1712 {
1713 	uint32_t value;
1714 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1715 
1716 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1717 
1718 	set_reg_field_value(value,
1719 			    0, /* force counter now mode is disabled */
1720 			    CRTC_FORCE_COUNT_NOW_CNTL,
1721 			    CRTC_FORCE_COUNT_NOW_MODE);
1722 
1723 	set_reg_field_value(value,
1724 			    1, /* clear trigger status */
1725 			    CRTC_FORCE_COUNT_NOW_CNTL,
1726 			    CRTC_FORCE_COUNT_NOW_CLEAR);
1727 
1728 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1729 
1730 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1731 
1732 	set_reg_field_value(value,
1733 			    1,
1734 			    CRTC_VERT_SYNC_CONTROL,
1735 			    CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1736 
1737 	set_reg_field_value(value,
1738 			    0,
1739 			    CRTC_VERT_SYNC_CONTROL,
1740 			    CRTC_AUTO_FORCE_VSYNC_MODE);
1741 
1742 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1743 
1744 	/********************************************************************/
1745 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1746 
1747 	set_reg_field_value(value,
1748 			    TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
1749 			    CRTC_TRIGB_CNTL,
1750 			    CRTC_TRIGB_SOURCE_SELECT);
1751 
1752 	set_reg_field_value(value,
1753 			    TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1754 			    CRTC_TRIGB_CNTL,
1755 			    CRTC_TRIGB_POLARITY_SELECT);
1756 
1757 	set_reg_field_value(value,
1758 			    1, /* clear trigger status */
1759 			    CRTC_TRIGB_CNTL,
1760 			    CRTC_TRIGB_CLEAR);
1761 
1762 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1763 }
1764 
1765 /*
1766  *****************************************************************************
1767  *  @brief
1768  *     Checks whether CRTC triggered reset occurred
1769  *
1770  *  @return
1771  *     true if triggered reset occurred, false otherwise
1772  *****************************************************************************
1773  */
dce110_timing_generator_did_triggered_reset_occur(struct timing_generator * tg)1774 bool dce110_timing_generator_did_triggered_reset_occur(
1775 	struct timing_generator *tg)
1776 {
1777 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1778 	uint32_t value = dm_read_reg(tg->ctx,
1779 			CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1780 	uint32_t value1 = dm_read_reg(tg->ctx,
1781 			CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1782 	bool force = get_reg_field_value(value,
1783 					 CRTC_FORCE_COUNT_NOW_CNTL,
1784 					 CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
1785 	bool vert_sync = get_reg_field_value(value1,
1786 					     CRTC_VERT_SYNC_CONTROL,
1787 					     CRTC_FORCE_VSYNC_NEXT_LINE_OCCURRED) != 0;
1788 
1789 	return (force || vert_sync);
1790 }
1791 
1792 /*
1793  * dce110_timing_generator_disable_vga
1794  * Turn OFF VGA Mode and Timing  - DxVGA_CONTROL
1795  * VGA Mode and VGA Timing is used by VBIOS on CRT Monitors;
1796  */
dce110_timing_generator_disable_vga(struct timing_generator * tg)1797 void dce110_timing_generator_disable_vga(
1798 	struct timing_generator *tg)
1799 {
1800 	uint32_t addr = 0;
1801 	uint32_t value = 0;
1802 
1803 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1804 
1805 	switch (tg110->controller_id) {
1806 	case CONTROLLER_ID_D0:
1807 		addr = mmD1VGA_CONTROL;
1808 		break;
1809 	case CONTROLLER_ID_D1:
1810 		addr = mmD2VGA_CONTROL;
1811 		break;
1812 	case CONTROLLER_ID_D2:
1813 		addr = mmD3VGA_CONTROL;
1814 		break;
1815 	case CONTROLLER_ID_D3:
1816 		addr = mmD4VGA_CONTROL;
1817 		break;
1818 	case CONTROLLER_ID_D4:
1819 		addr = mmD5VGA_CONTROL;
1820 		break;
1821 	case CONTROLLER_ID_D5:
1822 		addr = mmD6VGA_CONTROL;
1823 		break;
1824 	default:
1825 		break;
1826 	}
1827 	value = dm_read_reg(tg->ctx, addr);
1828 
1829 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
1830 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
1831 	set_reg_field_value(
1832 			value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
1833 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
1834 
1835 	dm_write_reg(tg->ctx, addr, value);
1836 }
1837 
1838 /*
1839  * set_overscan_color_black
1840  *
1841  * @param :black_color is one of the color space
1842  *    :this routine will set overscan black color according to the color space.
1843  * @return none
1844  */
dce110_timing_generator_set_overscan_color_black(struct timing_generator * tg,const struct tg_color * color)1845 void dce110_timing_generator_set_overscan_color_black(
1846 	struct timing_generator *tg,
1847 	const struct tg_color *color)
1848 {
1849 	struct dc_context *ctx = tg->ctx;
1850 	uint32_t addr;
1851 	uint32_t value = 0;
1852 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1853 
1854 	set_reg_field_value(
1855 			value,
1856 			color->color_b_cb,
1857 			CRTC_OVERSCAN_COLOR,
1858 			CRTC_OVERSCAN_COLOR_BLUE);
1859 
1860 	set_reg_field_value(
1861 			value,
1862 			color->color_r_cr,
1863 			CRTC_OVERSCAN_COLOR,
1864 			CRTC_OVERSCAN_COLOR_RED);
1865 
1866 	set_reg_field_value(
1867 			value,
1868 			color->color_g_y,
1869 			CRTC_OVERSCAN_COLOR,
1870 			CRTC_OVERSCAN_COLOR_GREEN);
1871 
1872 	addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1873 	dm_write_reg(ctx, addr, value);
1874 	addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1875 	dm_write_reg(ctx, addr, value);
1876 	/* This is desirable to have a constant DAC output voltage during the
1877 	 * blank time that is higher than the 0 volt reference level that the
1878 	 * DAC outputs when the NBLANK signal
1879 	 * is asserted low, such as for output to an analog TV. */
1880 	addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1881 	dm_write_reg(ctx, addr, value);
1882 
1883 	/* TO DO we have to program EXT registers and we need to know LB DATA
1884 	 * format because it is used when more 10 , i.e. 12 bits per color
1885 	 *
1886 	 * m_mmDxCRTC_OVERSCAN_COLOR_EXT
1887 	 * m_mmDxCRTC_BLACK_COLOR_EXT
1888 	 * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
1889 	 */
1890 
1891 }
1892 
dce110_tg_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)1893 void dce110_tg_program_blank_color(struct timing_generator *tg,
1894 		const struct tg_color *black_color)
1895 {
1896 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1897 	uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1898 	uint32_t value = dm_read_reg(tg->ctx, addr);
1899 
1900 	set_reg_field_value(
1901 		value,
1902 		black_color->color_b_cb,
1903 		CRTC_BLACK_COLOR,
1904 		CRTC_BLACK_COLOR_B_CB);
1905 	set_reg_field_value(
1906 		value,
1907 		black_color->color_g_y,
1908 		CRTC_BLACK_COLOR,
1909 		CRTC_BLACK_COLOR_G_Y);
1910 	set_reg_field_value(
1911 		value,
1912 		black_color->color_r_cr,
1913 		CRTC_BLACK_COLOR,
1914 		CRTC_BLACK_COLOR_R_CR);
1915 
1916 	dm_write_reg(tg->ctx, addr, value);
1917 
1918 	addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1919 	dm_write_reg(tg->ctx, addr, value);
1920 }
1921 
dce110_tg_set_overscan_color(struct timing_generator * tg,const struct tg_color * overscan_color)1922 void dce110_tg_set_overscan_color(struct timing_generator *tg,
1923 	const struct tg_color *overscan_color)
1924 {
1925 	struct dc_context *ctx = tg->ctx;
1926 	uint32_t value = 0;
1927 	uint32_t addr;
1928 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1929 
1930 	set_reg_field_value(
1931 		value,
1932 		overscan_color->color_b_cb,
1933 		CRTC_OVERSCAN_COLOR,
1934 		CRTC_OVERSCAN_COLOR_BLUE);
1935 
1936 	set_reg_field_value(
1937 		value,
1938 		overscan_color->color_g_y,
1939 		CRTC_OVERSCAN_COLOR,
1940 		CRTC_OVERSCAN_COLOR_GREEN);
1941 
1942 	set_reg_field_value(
1943 		value,
1944 		overscan_color->color_r_cr,
1945 		CRTC_OVERSCAN_COLOR,
1946 		CRTC_OVERSCAN_COLOR_RED);
1947 
1948 	addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1949 	dm_write_reg(ctx, addr, value);
1950 }
1951 
dce110_tg_program_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,int pstate_keepout,const enum signal_type signal,bool use_vbios)1952 void dce110_tg_program_timing(struct timing_generator *tg,
1953 	const struct dc_crtc_timing *timing,
1954 	int vready_offset,
1955 	int vstartup_start,
1956 	int vupdate_offset,
1957 	int vupdate_width,
1958 	int pstate_keepout,
1959 	const enum signal_type signal,
1960 	bool use_vbios)
1961 {
1962 	if (use_vbios)
1963 		dce110_timing_generator_program_timing_generator(tg, timing);
1964 	else
1965 		dce110_timing_generator_program_blanking(tg, timing);
1966 }
1967 
dce110_tg_is_blanked(struct timing_generator * tg)1968 bool dce110_tg_is_blanked(struct timing_generator *tg)
1969 {
1970 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1971 	uint32_t value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL));
1972 
1973 	if (get_reg_field_value(
1974 			value,
1975 			CRTC_BLANK_CONTROL,
1976 			CRTC_BLANK_DATA_EN) == 1 &&
1977 		get_reg_field_value(
1978 			value,
1979 			CRTC_BLANK_CONTROL,
1980 			CRTC_CURRENT_BLANK_STATE) == 1)
1981 		return true;
1982 	return false;
1983 }
1984 
dce110_tg_set_blank(struct timing_generator * tg,bool enable_blanking)1985 void dce110_tg_set_blank(struct timing_generator *tg,
1986 		bool enable_blanking)
1987 {
1988 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1989 	uint32_t value = 0;
1990 
1991 	set_reg_field_value(
1992 		value,
1993 		1,
1994 		CRTC_DOUBLE_BUFFER_CONTROL,
1995 		CRTC_BLANK_DATA_DOUBLE_BUFFER_EN);
1996 
1997 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_DOUBLE_BUFFER_CONTROL), value);
1998 	value = 0;
1999 
2000 	if (enable_blanking) {
2001 		set_reg_field_value(
2002 			value,
2003 			1,
2004 			CRTC_BLANK_CONTROL,
2005 			CRTC_BLANK_DATA_EN);
2006 
2007 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), value);
2008 
2009 	} else
2010 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), 0);
2011 }
2012 
dce110_tg_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing)2013 bool dce110_tg_validate_timing(struct timing_generator *tg,
2014 	const struct dc_crtc_timing *timing)
2015 {
2016 	return dce110_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
2017 }
2018 
2019 /* "Container" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
2020  *
2021  * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
2022  *   container rate.
2023  *
2024  * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
2025  *   halved to maintain the correct pixel rate.
2026  *
2027  * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
2028  *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
2029  *
2030  */
dce110_is_two_pixels_per_container(const struct dc_crtc_timing * timing)2031 bool dce110_is_two_pixels_per_container(const struct dc_crtc_timing *timing)
2032 {
2033 	return timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
2034 }
2035 
dce110_tg_wait_for_state(struct timing_generator * tg,enum crtc_state state)2036 void dce110_tg_wait_for_state(struct timing_generator *tg,
2037 	enum crtc_state state)
2038 {
2039 	switch (state) {
2040 	case CRTC_STATE_VBLANK:
2041 		dce110_timing_generator_wait_for_vblank(tg);
2042 		break;
2043 
2044 	case CRTC_STATE_VACTIVE:
2045 		dce110_timing_generator_wait_for_vactive(tg);
2046 		break;
2047 
2048 	default:
2049 		break;
2050 	}
2051 }
2052 
dce110_tg_set_colors(struct timing_generator * tg,const struct tg_color * blank_color,const struct tg_color * overscan_color)2053 void dce110_tg_set_colors(struct timing_generator *tg,
2054 	const struct tg_color *blank_color,
2055 	const struct tg_color *overscan_color)
2056 {
2057 	if (blank_color != NULL)
2058 		dce110_tg_program_blank_color(tg, blank_color);
2059 	if (overscan_color != NULL)
2060 		dce110_tg_set_overscan_color(tg, overscan_color);
2061 }
2062 
2063 /* Gets first line of blank region of the display timing for CRTC
2064  * and programms is as a trigger to fire vertical interrupt
2065  */
dce110_arm_vert_intr(struct timing_generator * tg,uint8_t width)2066 bool dce110_arm_vert_intr(struct timing_generator *tg, uint8_t width)
2067 {
2068 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2069 	uint32_t v_blank_start = 0;
2070 	uint32_t v_blank_end = 0;
2071 	uint32_t val = 0;
2072 	uint32_t h_position, v_position;
2073 
2074 	tg->funcs->get_scanoutpos(
2075 			tg,
2076 			&v_blank_start,
2077 			&v_blank_end,
2078 			&h_position,
2079 			&v_position);
2080 
2081 	if (v_blank_start == 0 || v_blank_end == 0)
2082 		return false;
2083 
2084 	set_reg_field_value(
2085 		val,
2086 		v_blank_start,
2087 		CRTC_VERTICAL_INTERRUPT0_POSITION,
2088 		CRTC_VERTICAL_INTERRUPT0_LINE_START);
2089 
2090 	/* Set interval width for interrupt to fire to 1 scanline */
2091 	set_reg_field_value(
2092 		val,
2093 		v_blank_start + width,
2094 		CRTC_VERTICAL_INTERRUPT0_POSITION,
2095 		CRTC_VERTICAL_INTERRUPT0_LINE_END);
2096 
2097 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERTICAL_INTERRUPT0_POSITION), val);
2098 
2099 	return true;
2100 }
2101 
dce110_is_tg_enabled(struct timing_generator * tg)2102 static bool dce110_is_tg_enabled(struct timing_generator *tg)
2103 {
2104 	uint32_t addr = 0;
2105 	uint32_t value = 0;
2106 	uint32_t field = 0;
2107 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2108 
2109 	addr = CRTC_REG(mmCRTC_CONTROL);
2110 	value = dm_read_reg(tg->ctx, addr);
2111 	field = get_reg_field_value(value, CRTC_CONTROL,
2112 				    CRTC_CURRENT_MASTER_EN_STATE);
2113 	return field == 1;
2114 }
2115 
dce110_configure_crc(struct timing_generator * tg,const struct crc_params * params)2116 bool dce110_configure_crc(struct timing_generator *tg,
2117 			  const struct crc_params *params)
2118 {
2119 	uint32_t cntl_addr = 0;
2120 	uint32_t addr = 0;
2121 	uint32_t value;
2122 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2123 
2124 	/* Cannot configure crc on a CRTC that is disabled */
2125 	if (!dce110_is_tg_enabled(tg))
2126 		return false;
2127 
2128 	cntl_addr = CRTC_REG(mmCRTC_CRC_CNTL);
2129 
2130 	/* First, disable CRC before we configure it. */
2131 	dm_write_reg(tg->ctx, cntl_addr, 0);
2132 
2133 	if (!params->enable)
2134 		return true;
2135 
2136 	/* Program frame boundaries */
2137 	/* Window A x axis start and end. */
2138 	value = 0;
2139 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_X_CONTROL);
2140 	set_reg_field_value(value, params->windowa_x_start,
2141 			    CRTC_CRC0_WINDOWA_X_CONTROL,
2142 			    CRTC_CRC0_WINDOWA_X_START);
2143 	set_reg_field_value(value, params->windowa_x_end,
2144 			    CRTC_CRC0_WINDOWA_X_CONTROL,
2145 			    CRTC_CRC0_WINDOWA_X_END);
2146 	dm_write_reg(tg->ctx, addr, value);
2147 
2148 	/* Window A y axis start and end. */
2149 	value = 0;
2150 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_Y_CONTROL);
2151 	set_reg_field_value(value, params->windowa_y_start,
2152 			    CRTC_CRC0_WINDOWA_Y_CONTROL,
2153 			    CRTC_CRC0_WINDOWA_Y_START);
2154 	set_reg_field_value(value, params->windowa_y_end,
2155 			    CRTC_CRC0_WINDOWA_Y_CONTROL,
2156 			    CRTC_CRC0_WINDOWA_Y_END);
2157 	dm_write_reg(tg->ctx, addr, value);
2158 
2159 	/* Window B x axis start and end. */
2160 	value = 0;
2161 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_X_CONTROL);
2162 	set_reg_field_value(value, params->windowb_x_start,
2163 			    CRTC_CRC0_WINDOWB_X_CONTROL,
2164 			    CRTC_CRC0_WINDOWB_X_START);
2165 	set_reg_field_value(value, params->windowb_x_end,
2166 			    CRTC_CRC0_WINDOWB_X_CONTROL,
2167 			    CRTC_CRC0_WINDOWB_X_END);
2168 	dm_write_reg(tg->ctx, addr, value);
2169 
2170 	/* Window B y axis start and end. */
2171 	value = 0;
2172 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_Y_CONTROL);
2173 	set_reg_field_value(value, params->windowb_y_start,
2174 			    CRTC_CRC0_WINDOWB_Y_CONTROL,
2175 			    CRTC_CRC0_WINDOWB_Y_START);
2176 	set_reg_field_value(value, params->windowb_y_end,
2177 			    CRTC_CRC0_WINDOWB_Y_CONTROL,
2178 			    CRTC_CRC0_WINDOWB_Y_END);
2179 	dm_write_reg(tg->ctx, addr, value);
2180 
2181 	/* Set crc mode and selection, and enable. Only using CRC0*/
2182 	value = 0;
2183 	set_reg_field_value(value, params->continuous_mode ? 1 : 0,
2184 			    CRTC_CRC_CNTL, CRTC_CRC_CONT_EN);
2185 	set_reg_field_value(value, params->selection,
2186 			    CRTC_CRC_CNTL, CRTC_CRC0_SELECT);
2187 	set_reg_field_value(value, 1, CRTC_CRC_CNTL, CRTC_CRC_EN);
2188 	dm_write_reg(tg->ctx, cntl_addr, value);
2189 
2190 	return true;
2191 }
2192 
dce110_get_crc(struct timing_generator * tg,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)2193 bool dce110_get_crc(struct timing_generator *tg,
2194 		    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
2195 {
2196 	uint32_t addr = 0;
2197 	uint32_t value = 0;
2198 	uint32_t field = 0;
2199 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2200 
2201 	addr = CRTC_REG(mmCRTC_CRC_CNTL);
2202 	value = dm_read_reg(tg->ctx, addr);
2203 	field = get_reg_field_value(value, CRTC_CRC_CNTL, CRTC_CRC_EN);
2204 
2205 	/* Early return if CRC is not enabled for this CRTC */
2206 	if (!field)
2207 		return false;
2208 
2209 	addr = CRTC_REG(mmCRTC_CRC0_DATA_RG);
2210 	value = dm_read_reg(tg->ctx, addr);
2211 	*r_cr = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_R_CR);
2212 	*g_y = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_G_Y);
2213 
2214 	addr = CRTC_REG(mmCRTC_CRC0_DATA_B);
2215 	value = dm_read_reg(tg->ctx, addr);
2216 	*b_cb = get_reg_field_value(value, CRTC_CRC0_DATA_B, CRC0_B_CB);
2217 
2218 	return true;
2219 }
2220 
2221 static const struct timing_generator_funcs dce110_tg_funcs = {
2222 		.validate_timing = dce110_tg_validate_timing,
2223 		.program_timing = dce110_tg_program_timing,
2224 		.enable_crtc = dce110_timing_generator_enable_crtc,
2225 		.disable_crtc = dce110_timing_generator_disable_crtc,
2226 		.is_counter_moving = dce110_timing_generator_is_counter_moving,
2227 		.get_position = dce110_timing_generator_get_position,
2228 		.get_frame_count = dce110_timing_generator_get_vblank_counter,
2229 		.get_scanoutpos = dce110_timing_generator_get_crtc_scanoutpos,
2230 		.set_early_control = dce110_timing_generator_set_early_control,
2231 		.wait_for_state = dce110_tg_wait_for_state,
2232 		.set_blank = dce110_tg_set_blank,
2233 		.is_blanked = dce110_tg_is_blanked,
2234 		.set_colors = dce110_tg_set_colors,
2235 		.set_overscan_blank_color =
2236 				dce110_timing_generator_set_overscan_color_black,
2237 		.set_blank_color = dce110_timing_generator_program_blank_color,
2238 		.disable_vga = dce110_timing_generator_disable_vga,
2239 		.did_triggered_reset_occur =
2240 				dce110_timing_generator_did_triggered_reset_occur,
2241 		.setup_global_swap_lock =
2242 				dce110_timing_generator_setup_global_swap_lock,
2243 		.enable_reset_trigger = dce110_timing_generator_enable_reset_trigger,
2244 		.enable_crtc_reset = dce110_timing_generator_enable_crtc_reset,
2245 		.disable_reset_trigger = dce110_timing_generator_disable_reset_trigger,
2246 		.tear_down_global_swap_lock =
2247 				dce110_timing_generator_tear_down_global_swap_lock,
2248 		.enable_advanced_request =
2249 				dce110_timing_generator_enable_advanced_request,
2250 		.set_drr =
2251 				dce110_timing_generator_set_drr,
2252 		.get_last_used_drr_vtotal = NULL,
2253 		.set_static_screen_control =
2254 			dce110_timing_generator_set_static_screen_control,
2255 		.set_test_pattern = dce110_timing_generator_set_test_pattern,
2256 		.arm_vert_intr = dce110_arm_vert_intr,
2257 		.is_tg_enabled = dce110_is_tg_enabled,
2258 		.configure_crc = dce110_configure_crc,
2259 		.get_crc = dce110_get_crc,
2260 		.is_two_pixels_per_container = dce110_is_two_pixels_per_container,
2261 };
2262 
dce110_timing_generator_construct(struct dce110_timing_generator * tg110,struct dc_context * ctx,uint32_t instance,const struct dce110_timing_generator_offsets * offsets)2263 void dce110_timing_generator_construct(
2264 	struct dce110_timing_generator *tg110,
2265 	struct dc_context *ctx,
2266 	uint32_t instance,
2267 	const struct dce110_timing_generator_offsets *offsets)
2268 {
2269 	tg110->controller_id = CONTROLLER_ID_D0 + instance;
2270 	tg110->base.inst = instance;
2271 
2272 	tg110->offsets = *offsets;
2273 
2274 	tg110->base.funcs = &dce110_tg_funcs;
2275 
2276 	tg110->base.ctx = ctx;
2277 	tg110->base.bp = ctx->dc_bios;
2278 
2279 	tg110->max_h_total = CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
2280 	tg110->max_v_total = CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
2281 
2282 	tg110->min_h_blank = 56;
2283 	tg110->min_h_front_porch = 4;
2284 	tg110->min_h_back_porch = 4;
2285 }
2286