1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "basics/dc_common.h"
28 #include "dc.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "ipp.h"
32 #include "timing_generator.h"
33 #include "dc_dmub_srv.h"
34 #include "dc_state_priv.h"
35 #include "dc_stream_priv.h"
36 
37 #define DC_LOGGER dc->ctx->logger
38 #ifndef MIN
39 #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
40 #define MAX(x, y) ((x > y) ? x : y)
41 #endif
42 
43 /*******************************************************************************
44  * Private functions
45  ******************************************************************************/
update_stream_signal(struct dc_stream_state * stream,struct dc_sink * sink)46 void update_stream_signal(struct dc_stream_state *stream, struct dc_sink *sink)
47 {
48 	if (sink->sink_signal == SIGNAL_TYPE_NONE)
49 		stream->signal = stream->link->connector_signal;
50 	else
51 		stream->signal = sink->sink_signal;
52 
53 	if (dc_is_dvi_signal(stream->signal)) {
54 		if (stream->ctx->dc->caps.dual_link_dvi &&
55 			(stream->timing.pix_clk_100hz / 10) > TMDS_MAX_PIXEL_CLOCK &&
56 			sink->sink_signal != SIGNAL_TYPE_DVI_SINGLE_LINK)
57 			stream->signal = SIGNAL_TYPE_DVI_DUAL_LINK;
58 		else
59 			stream->signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
60 	}
61 }
62 
dc_stream_construct(struct dc_stream_state * stream,struct dc_sink * dc_sink_data)63 bool dc_stream_construct(struct dc_stream_state *stream,
64 	struct dc_sink *dc_sink_data)
65 {
66 	uint32_t i = 0;
67 
68 	stream->sink = dc_sink_data;
69 	dc_sink_retain(dc_sink_data);
70 
71 	stream->ctx = dc_sink_data->ctx;
72 	stream->link = dc_sink_data->link;
73 	stream->sink_patches = dc_sink_data->edid_caps.panel_patch;
74 	stream->converter_disable_audio = dc_sink_data->converter_disable_audio;
75 	stream->qs_bit = dc_sink_data->edid_caps.qs_bit;
76 	stream->qy_bit = dc_sink_data->edid_caps.qy_bit;
77 
78 	/* Copy audio modes */
79 	/* TODO - Remove this translation */
80 	for (i = 0; i < (dc_sink_data->edid_caps.audio_mode_count); i++) {
81 		stream->audio_info.modes[i].channel_count = dc_sink_data->edid_caps.audio_modes[i].channel_count;
82 		stream->audio_info.modes[i].format_code = dc_sink_data->edid_caps.audio_modes[i].format_code;
83 		stream->audio_info.modes[i].sample_rates.all = dc_sink_data->edid_caps.audio_modes[i].sample_rate;
84 		stream->audio_info.modes[i].sample_size = dc_sink_data->edid_caps.audio_modes[i].sample_size;
85 	}
86 	stream->audio_info.mode_count = dc_sink_data->edid_caps.audio_mode_count;
87 	stream->audio_info.audio_latency = dc_sink_data->edid_caps.audio_latency;
88 	stream->audio_info.video_latency = dc_sink_data->edid_caps.video_latency;
89 	memmove(
90 		stream->audio_info.display_name,
91 		dc_sink_data->edid_caps.display_name,
92 		AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS);
93 	stream->audio_info.manufacture_id = dc_sink_data->edid_caps.manufacturer_id;
94 	stream->audio_info.product_id = dc_sink_data->edid_caps.product_id;
95 	stream->audio_info.flags.all = dc_sink_data->edid_caps.speaker_flags;
96 
97 	if (dc_sink_data->dc_container_id != NULL) {
98 		struct dc_container_id *dc_container_id = dc_sink_data->dc_container_id;
99 
100 		stream->audio_info.port_id[0] = dc_container_id->portId[0];
101 		stream->audio_info.port_id[1] = dc_container_id->portId[1];
102 	} else {
103 		/* TODO - WindowDM has implemented,
104 		other DMs need Unhardcode port_id */
105 		stream->audio_info.port_id[0] = 0x5558859e;
106 		stream->audio_info.port_id[1] = 0xd989449;
107 	}
108 
109 	/* EDID CAP translation for HDMI 2.0 */
110 	stream->timing.flags.LTE_340MCSC_SCRAMBLE = dc_sink_data->edid_caps.lte_340mcsc_scramble;
111 
112 	memset(&stream->timing.dsc_cfg, 0, sizeof(stream->timing.dsc_cfg));
113 	stream->timing.dsc_cfg.num_slices_h = 0;
114 	stream->timing.dsc_cfg.num_slices_v = 0;
115 	stream->timing.dsc_cfg.bits_per_pixel = 128;
116 	stream->timing.dsc_cfg.block_pred_enable = 1;
117 	stream->timing.dsc_cfg.linebuf_depth = 9;
118 	stream->timing.dsc_cfg.version_minor = 2;
119 	stream->timing.dsc_cfg.ycbcr422_simple = 0;
120 
121 	update_stream_signal(stream, dc_sink_data);
122 
123 	stream->out_transfer_func.type = TF_TYPE_BYPASS;
124 
125 	dc_stream_assign_stream_id(stream);
126 
127 	return true;
128 }
129 
dc_stream_destruct(struct dc_stream_state * stream)130 void dc_stream_destruct(struct dc_stream_state *stream)
131 {
132 	dc_sink_release(stream->sink);
133 }
134 
dc_stream_assign_stream_id(struct dc_stream_state * stream)135 void dc_stream_assign_stream_id(struct dc_stream_state *stream)
136 {
137 	/* MSB is reserved to indicate phantoms */
138 	stream->stream_id = stream->ctx->dc_stream_id_count;
139 	stream->ctx->dc_stream_id_count++;
140 }
141 
dc_stream_retain(struct dc_stream_state * stream)142 void dc_stream_retain(struct dc_stream_state *stream)
143 {
144 	kref_get(&stream->refcount);
145 }
146 
dc_stream_free(struct kref * kref)147 static void dc_stream_free(struct kref *kref)
148 {
149 	struct dc_stream_state *stream = container_of(kref, struct dc_stream_state, refcount);
150 
151 	dc_stream_destruct(stream);
152 	kfree(stream);
153 }
154 
dc_stream_release(struct dc_stream_state * stream)155 void dc_stream_release(struct dc_stream_state *stream)
156 {
157 	if (stream != NULL) {
158 		kref_put(&stream->refcount, dc_stream_free);
159 	}
160 }
161 
dc_create_stream_for_sink(struct dc_sink * sink)162 struct dc_stream_state *dc_create_stream_for_sink(
163 		struct dc_sink *sink)
164 {
165 	struct dc_stream_state *stream;
166 
167 	if (sink == NULL)
168 		return NULL;
169 
170 	stream = kzalloc(sizeof(struct dc_stream_state), GFP_KERNEL);
171 	if (stream == NULL)
172 		goto alloc_fail;
173 
174 	if (dc_stream_construct(stream, sink) == false)
175 		goto construct_fail;
176 
177 	kref_init(&stream->refcount);
178 
179 	return stream;
180 
181 construct_fail:
182 	kfree(stream);
183 
184 alloc_fail:
185 	return NULL;
186 }
187 
dc_copy_stream(const struct dc_stream_state * stream)188 struct dc_stream_state *dc_copy_stream(const struct dc_stream_state *stream)
189 {
190 	struct dc_stream_state *new_stream;
191 
192 	new_stream = kmemdup(stream, sizeof(struct dc_stream_state), GFP_KERNEL);
193 	if (!new_stream)
194 		return NULL;
195 
196 	if (new_stream->sink)
197 		dc_sink_retain(new_stream->sink);
198 
199 	dc_stream_assign_stream_id(new_stream);
200 
201 	/* If using dynamic encoder assignment, wait till stream committed to assign encoder. */
202 	if (new_stream->ctx->dc->res_pool->funcs->link_encs_assign)
203 		new_stream->link_enc = NULL;
204 
205 	kref_init(&new_stream->refcount);
206 
207 	return new_stream;
208 }
209 
210 /**
211  * dc_stream_get_status() - Get current stream status of the given stream state
212  * @stream: The stream to get the stream status for.
213  *
214  * The given stream is expected to exist in dc->current_state. Otherwise, NULL
215  * will be returned.
216  */
dc_stream_get_status(struct dc_stream_state * stream)217 struct dc_stream_status *dc_stream_get_status(
218 	struct dc_stream_state *stream)
219 {
220 	struct dc *dc = stream->ctx->dc;
221 	return dc_state_get_stream_status(dc->current_state, stream);
222 }
223 
program_cursor_attributes(struct dc * dc,struct dc_stream_state * stream)224 void program_cursor_attributes(
225 	struct dc *dc,
226 	struct dc_stream_state *stream)
227 {
228 	int i;
229 	struct resource_context *res_ctx;
230 	struct pipe_ctx *pipe_to_program = NULL;
231 
232 	if (!stream)
233 		return;
234 
235 	res_ctx = &dc->current_state->res_ctx;
236 
237 	for (i = 0; i < MAX_PIPES; i++) {
238 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
239 
240 		if (pipe_ctx->stream != stream)
241 			continue;
242 
243 		if (!pipe_to_program) {
244 			pipe_to_program = pipe_ctx;
245 			dc->hwss.cursor_lock(dc, pipe_to_program, true);
246 			if (pipe_to_program->next_odm_pipe)
247 				dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, true);
248 		}
249 
250 		dc->hwss.set_cursor_attribute(pipe_ctx);
251 		if (dc->ctx->dmub_srv)
252 			dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
253 		if (dc->hwss.set_cursor_sdr_white_level)
254 			dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
255 	}
256 
257 	if (pipe_to_program) {
258 		dc->hwss.cursor_lock(dc, pipe_to_program, false);
259 		if (pipe_to_program->next_odm_pipe)
260 			dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, false);
261 	}
262 }
263 
264 /*
265  * dc_stream_set_cursor_attributes() - Update cursor attributes and set cursor surface address
266  */
dc_stream_set_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)267 bool dc_stream_set_cursor_attributes(
268 	struct dc_stream_state *stream,
269 	const struct dc_cursor_attributes *attributes)
270 {
271 	struct dc  *dc;
272 
273 	if (NULL == stream) {
274 		dm_error("DC: dc_stream is NULL!\n");
275 		return false;
276 	}
277 	if (NULL == attributes) {
278 		dm_error("DC: attributes is NULL!\n");
279 		return false;
280 	}
281 
282 	if (attributes->address.quad_part == 0) {
283 		dm_output_to_console("DC: Cursor address is 0!\n");
284 		return false;
285 	}
286 
287 	dc = stream->ctx->dc;
288 
289 	/* SubVP is not compatible with HW cursor larger than 64 x 64 x 4.
290 	 * Therefore, if cursor is greater than 64 x 64 x 4, fallback to SW cursor in the following case:
291 	 * 1. If the config is a candidate for SubVP high refresh (both single an dual display configs)
292 	 * 2. If not subvp high refresh, for single display cases, if resolution is >= 5K and refresh rate < 120hz
293 	 * 3. If not subvp high refresh, for multi display cases, if resolution is >= 4K and refresh rate < 120hz
294 	 */
295 	if (dc->debug.allow_sw_cursor_fallback && attributes->height * attributes->width * 4 > 16384) {
296 		if (check_subvp_sw_cursor_fallback_req(dc, stream))
297 			return false;
298 	}
299 
300 	stream->cursor_attributes = *attributes;
301 
302 	return true;
303 }
304 
dc_stream_program_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)305 bool dc_stream_program_cursor_attributes(
306 	struct dc_stream_state *stream,
307 	const struct dc_cursor_attributes *attributes)
308 {
309 	struct dc  *dc;
310 	bool reset_idle_optimizations = false;
311 
312 	dc = stream ? stream->ctx->dc : NULL;
313 
314 	if (dc_stream_set_cursor_attributes(stream, attributes)) {
315 		dc_z10_restore(dc);
316 		/* disable idle optimizations while updating cursor */
317 		if (dc->idle_optimizations_allowed) {
318 			dc_allow_idle_optimizations(dc, false);
319 			reset_idle_optimizations = true;
320 		}
321 
322 		program_cursor_attributes(dc, stream);
323 
324 		/* re-enable idle optimizations if necessary */
325 		if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
326 			dc_allow_idle_optimizations(dc, true);
327 
328 		return true;
329 	}
330 
331 	return false;
332 }
333 
program_cursor_position(struct dc * dc,struct dc_stream_state * stream)334 void program_cursor_position(
335 	struct dc *dc,
336 	struct dc_stream_state *stream)
337 {
338 	int i;
339 	struct resource_context *res_ctx;
340 	struct pipe_ctx *pipe_to_program = NULL;
341 
342 	if (!stream)
343 		return;
344 
345 	res_ctx = &dc->current_state->res_ctx;
346 
347 	for (i = 0; i < MAX_PIPES; i++) {
348 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
349 
350 		if (pipe_ctx->stream != stream ||
351 				(!pipe_ctx->plane_res.mi  && !pipe_ctx->plane_res.hubp) ||
352 				!pipe_ctx->plane_state ||
353 				(!pipe_ctx->plane_res.xfm && !pipe_ctx->plane_res.dpp) ||
354 				(!pipe_ctx->plane_res.ipp && !pipe_ctx->plane_res.dpp))
355 			continue;
356 
357 		if (!pipe_to_program) {
358 			pipe_to_program = pipe_ctx;
359 			dc->hwss.cursor_lock(dc, pipe_to_program, true);
360 		}
361 
362 		dc->hwss.set_cursor_position(pipe_ctx);
363 		if (dc->ctx->dmub_srv)
364 			dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
365 	}
366 
367 	if (pipe_to_program)
368 		dc->hwss.cursor_lock(dc, pipe_to_program, false);
369 }
370 
dc_stream_set_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)371 bool dc_stream_set_cursor_position(
372 	struct dc_stream_state *stream,
373 	const struct dc_cursor_position *position)
374 {
375 	if (NULL == stream) {
376 		dm_error("DC: dc_stream is NULL!\n");
377 		return false;
378 	}
379 
380 	if (NULL == position) {
381 		dm_error("DC: cursor position is NULL!\n");
382 		return false;
383 	}
384 
385 	stream->cursor_position = *position;
386 
387 
388 	return true;
389 }
390 
dc_stream_program_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)391 bool dc_stream_program_cursor_position(
392 	struct dc_stream_state *stream,
393 	const struct dc_cursor_position *position)
394 {
395 	struct dc *dc;
396 	bool reset_idle_optimizations = false;
397 	const struct dc_cursor_position *old_position;
398 
399 	if (!stream)
400 		return false;
401 
402 	old_position = &stream->cursor_position;
403 	dc = stream->ctx->dc;
404 
405 	if (dc_stream_set_cursor_position(stream, position)) {
406 		dc_z10_restore(dc);
407 
408 		/* disable idle optimizations if enabling cursor */
409 		if (dc->idle_optimizations_allowed &&
410 		    (!old_position->enable || dc->debug.exit_idle_opt_for_cursor_updates) &&
411 		    position->enable) {
412 			dc_allow_idle_optimizations(dc, false);
413 			reset_idle_optimizations = true;
414 		}
415 
416 		program_cursor_position(dc, stream);
417 		/* re-enable idle optimizations if necessary */
418 		if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
419 			dc_allow_idle_optimizations(dc, true);
420 
421 		/* apply/update visual confirm */
422 		if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR) {
423 			/* update software state */
424 			uint32_t color_value = MAX_TG_COLOR_VALUE;
425 			int i;
426 
427 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
428 				struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
429 
430 				/* adjust visual confirm color for all pipes with current stream */
431 				if (stream == pipe_ctx->stream) {
432 					if (stream->cursor_position.enable) {
433 						pipe_ctx->visual_confirm_color.color_r_cr = color_value;
434 						pipe_ctx->visual_confirm_color.color_g_y = 0;
435 						pipe_ctx->visual_confirm_color.color_b_cb = 0;
436 					} else {
437 						pipe_ctx->visual_confirm_color.color_r_cr = 0;
438 						pipe_ctx->visual_confirm_color.color_g_y = 0;
439 						pipe_ctx->visual_confirm_color.color_b_cb = color_value;
440 					}
441 
442 					/* programming hardware */
443 					if (pipe_ctx->plane_state)
444 						dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
445 								pipe_ctx->plane_res.hubp->mpcc_id);
446 				}
447 			}
448 		}
449 
450 		return true;
451 	}
452 
453 	return false;
454 }
455 
dc_stream_add_writeback(struct dc * dc,struct dc_stream_state * stream,struct dc_writeback_info * wb_info)456 bool dc_stream_add_writeback(struct dc *dc,
457 		struct dc_stream_state *stream,
458 		struct dc_writeback_info *wb_info)
459 {
460 	bool isDrc = false;
461 	int i = 0;
462 	struct dwbc *dwb;
463 
464 	if (stream == NULL) {
465 		dm_error("DC: dc_stream is NULL!\n");
466 		return false;
467 	}
468 
469 	if (wb_info == NULL) {
470 		dm_error("DC: dc_writeback_info is NULL!\n");
471 		return false;
472 	}
473 
474 	if (wb_info->dwb_pipe_inst >= MAX_DWB_PIPES) {
475 		dm_error("DC: writeback pipe is invalid!\n");
476 		return false;
477 	}
478 
479 	dc_exit_ips_for_hw_access(dc);
480 
481 	wb_info->dwb_params.out_transfer_func = &stream->out_transfer_func;
482 
483 	dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
484 	dwb->dwb_is_drc = false;
485 
486 	/* recalculate and apply DML parameters */
487 
488 	for (i = 0; i < stream->num_wb_info; i++) {
489 		/*dynamic update*/
490 		if (stream->writeback_info[i].wb_enabled &&
491 			stream->writeback_info[i].dwb_pipe_inst == wb_info->dwb_pipe_inst) {
492 			stream->writeback_info[i] = *wb_info;
493 			isDrc = true;
494 		}
495 	}
496 
497 	if (!isDrc) {
498 		ASSERT(stream->num_wb_info + 1 <= MAX_DWB_PIPES);
499 		stream->writeback_info[stream->num_wb_info++] = *wb_info;
500 	}
501 
502 	if (dc->hwss.enable_writeback) {
503 		struct dc_stream_status *stream_status = dc_stream_get_status(stream);
504 		struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
505 		if (stream_status)
506 			dwb->otg_inst = stream_status->primary_otg_inst;
507 	}
508 
509 	if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
510 		dm_error("DC: update_bandwidth failed!\n");
511 		return false;
512 	}
513 
514 	/* enable writeback */
515 	if (dc->hwss.enable_writeback) {
516 		struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
517 
518 		if (dwb->funcs->is_enabled(dwb)) {
519 			/* writeback pipe already enabled, only need to update */
520 			dc->hwss.update_writeback(dc, wb_info, dc->current_state);
521 		} else {
522 			/* Enable writeback pipe from scratch*/
523 			dc->hwss.enable_writeback(dc, wb_info, dc->current_state);
524 		}
525 	}
526 
527 	return true;
528 }
529 
dc_stream_fc_disable_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)530 bool dc_stream_fc_disable_writeback(struct dc *dc,
531 		struct dc_stream_state *stream,
532 		uint32_t dwb_pipe_inst)
533 {
534 	struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
535 
536 	if (stream == NULL) {
537 		dm_error("DC: dc_stream is NULL!\n");
538 		return false;
539 	}
540 
541 	if (dwb_pipe_inst >= MAX_DWB_PIPES) {
542 		dm_error("DC: writeback pipe is invalid!\n");
543 		return false;
544 	}
545 
546 	if (stream->num_wb_info > MAX_DWB_PIPES) {
547 		dm_error("DC: num_wb_info is invalid!\n");
548 		return false;
549 	}
550 
551 	dc_exit_ips_for_hw_access(dc);
552 
553 	if (dwb->funcs->set_fc_enable)
554 		dwb->funcs->set_fc_enable(dwb, DWB_FRAME_CAPTURE_DISABLE);
555 
556 	return true;
557 }
558 
dc_stream_remove_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)559 bool dc_stream_remove_writeback(struct dc *dc,
560 		struct dc_stream_state *stream,
561 		uint32_t dwb_pipe_inst)
562 {
563 	unsigned int i, j;
564 	if (stream == NULL) {
565 		dm_error("DC: dc_stream is NULL!\n");
566 		return false;
567 	}
568 
569 	if (dwb_pipe_inst >= MAX_DWB_PIPES) {
570 		dm_error("DC: writeback pipe is invalid!\n");
571 		return false;
572 	}
573 
574 	if (stream->num_wb_info > MAX_DWB_PIPES) {
575 		dm_error("DC: num_wb_info is invalid!\n");
576 		return false;
577 	}
578 
579 	/* remove writeback info for disabled writeback pipes from stream */
580 	for (i = 0, j = 0; i < stream->num_wb_info; i++) {
581 		if (stream->writeback_info[i].wb_enabled) {
582 
583 			if (stream->writeback_info[i].dwb_pipe_inst == dwb_pipe_inst)
584 				stream->writeback_info[i].wb_enabled = false;
585 
586 			/* trim the array */
587 			if (j < i) {
588 				memcpy(&stream->writeback_info[j], &stream->writeback_info[i],
589 						sizeof(struct dc_writeback_info));
590 				j++;
591 			}
592 		}
593 	}
594 	stream->num_wb_info = j;
595 
596 	/* recalculate and apply DML parameters */
597 	if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
598 		dm_error("DC: update_bandwidth failed!\n");
599 		return false;
600 	}
601 
602 	dc_exit_ips_for_hw_access(dc);
603 
604 	/* disable writeback */
605 	if (dc->hwss.disable_writeback) {
606 		struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
607 
608 		if (dwb->funcs->is_enabled(dwb))
609 			dc->hwss.disable_writeback(dc, dwb_pipe_inst);
610 	}
611 
612 	return true;
613 }
614 
dc_stream_warmup_writeback(struct dc * dc,int num_dwb,struct dc_writeback_info * wb_info)615 bool dc_stream_warmup_writeback(struct dc *dc,
616 		int num_dwb,
617 		struct dc_writeback_info *wb_info)
618 {
619 	dc_exit_ips_for_hw_access(dc);
620 
621 	if (dc->hwss.mmhubbub_warmup)
622 		return dc->hwss.mmhubbub_warmup(dc, num_dwb, wb_info);
623 	else
624 		return false;
625 }
dc_stream_get_vblank_counter(const struct dc_stream_state * stream)626 uint32_t dc_stream_get_vblank_counter(const struct dc_stream_state *stream)
627 {
628 	uint8_t i;
629 	struct dc  *dc = stream->ctx->dc;
630 	struct resource_context *res_ctx =
631 		&dc->current_state->res_ctx;
632 
633 	dc_exit_ips_for_hw_access(dc);
634 
635 	for (i = 0; i < MAX_PIPES; i++) {
636 		struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
637 
638 		if (res_ctx->pipe_ctx[i].stream != stream || !tg)
639 			continue;
640 
641 		return tg->funcs->get_frame_count(tg);
642 	}
643 
644 	return 0;
645 }
646 
dc_stream_send_dp_sdp(const struct dc_stream_state * stream,const uint8_t * custom_sdp_message,unsigned int sdp_message_size)647 bool dc_stream_send_dp_sdp(const struct dc_stream_state *stream,
648 		const uint8_t *custom_sdp_message,
649 		unsigned int sdp_message_size)
650 {
651 	int i;
652 	struct dc  *dc;
653 	struct resource_context *res_ctx;
654 
655 	if (stream == NULL) {
656 		dm_error("DC: dc_stream is NULL!\n");
657 		return false;
658 	}
659 
660 	dc = stream->ctx->dc;
661 	res_ctx = &dc->current_state->res_ctx;
662 
663 	dc_exit_ips_for_hw_access(dc);
664 
665 	for (i = 0; i < MAX_PIPES; i++) {
666 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
667 
668 		if (pipe_ctx->stream != stream)
669 			continue;
670 
671 		if (dc->hwss.send_immediate_sdp_message != NULL)
672 			dc->hwss.send_immediate_sdp_message(pipe_ctx,
673 								custom_sdp_message,
674 								sdp_message_size);
675 		else
676 			DC_LOG_WARNING("%s:send_immediate_sdp_message not implemented on this ASIC\n",
677 			__func__);
678 
679 	}
680 
681 	return true;
682 }
683 
dc_stream_get_scanoutpos(const struct dc_stream_state * stream,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)684 bool dc_stream_get_scanoutpos(const struct dc_stream_state *stream,
685 				  uint32_t *v_blank_start,
686 				  uint32_t *v_blank_end,
687 				  uint32_t *h_position,
688 				  uint32_t *v_position)
689 {
690 	uint8_t i;
691 	bool ret = false;
692 	struct dc  *dc = stream->ctx->dc;
693 	struct resource_context *res_ctx =
694 		&dc->current_state->res_ctx;
695 
696 	dc_exit_ips_for_hw_access(dc);
697 
698 	for (i = 0; i < MAX_PIPES; i++) {
699 		struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
700 
701 		if (res_ctx->pipe_ctx[i].stream != stream || !tg)
702 			continue;
703 
704 		tg->funcs->get_scanoutpos(tg,
705 					  v_blank_start,
706 					  v_blank_end,
707 					  h_position,
708 					  v_position);
709 
710 		ret = true;
711 		break;
712 	}
713 
714 	return ret;
715 }
716 
dc_stream_dmdata_status_done(struct dc * dc,struct dc_stream_state * stream)717 bool dc_stream_dmdata_status_done(struct dc *dc, struct dc_stream_state *stream)
718 {
719 	struct pipe_ctx *pipe = NULL;
720 	int i;
721 
722 	if (!dc->hwss.dmdata_status_done)
723 		return false;
724 
725 	for (i = 0; i < MAX_PIPES; i++) {
726 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
727 		if (pipe->stream == stream)
728 			break;
729 	}
730 	/* Stream not found, by default we'll assume HUBP fetched dm data */
731 	if (i == MAX_PIPES)
732 		return true;
733 
734 	dc_exit_ips_for_hw_access(dc);
735 
736 	return dc->hwss.dmdata_status_done(pipe);
737 }
738 
dc_stream_set_dynamic_metadata(struct dc * dc,struct dc_stream_state * stream,struct dc_dmdata_attributes * attr)739 bool dc_stream_set_dynamic_metadata(struct dc *dc,
740 		struct dc_stream_state *stream,
741 		struct dc_dmdata_attributes *attr)
742 {
743 	struct pipe_ctx *pipe_ctx = NULL;
744 	struct hubp *hubp;
745 	int i;
746 
747 	/* Dynamic metadata is only supported on HDMI or DP */
748 	if (!dc_is_hdmi_signal(stream->signal) && !dc_is_dp_signal(stream->signal))
749 		return false;
750 
751 	/* Check hardware support */
752 	if (!dc->hwss.program_dmdata_engine)
753 		return false;
754 
755 	for (i = 0; i < MAX_PIPES; i++) {
756 		pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
757 		if (pipe_ctx->stream == stream)
758 			break;
759 	}
760 
761 	if (i == MAX_PIPES)
762 		return false;
763 
764 	hubp = pipe_ctx->plane_res.hubp;
765 	if (hubp == NULL)
766 		return false;
767 
768 	pipe_ctx->stream->dmdata_address = attr->address;
769 
770 	dc_exit_ips_for_hw_access(dc);
771 
772 	dc->hwss.program_dmdata_engine(pipe_ctx);
773 
774 	if (hubp->funcs->dmdata_set_attributes != NULL &&
775 			pipe_ctx->stream->dmdata_address.quad_part != 0) {
776 		hubp->funcs->dmdata_set_attributes(hubp, attr);
777 	}
778 
779 	return true;
780 }
781 
dc_stream_add_dsc_to_resource(struct dc * dc,struct dc_state * state,struct dc_stream_state * stream)782 enum dc_status dc_stream_add_dsc_to_resource(struct dc *dc,
783 		struct dc_state *state,
784 		struct dc_stream_state *stream)
785 {
786 	if (dc->res_pool->funcs->add_dsc_to_stream_resource) {
787 		return dc->res_pool->funcs->add_dsc_to_stream_resource(dc, state, stream);
788 	} else {
789 		return DC_NO_DSC_RESOURCE;
790 	}
791 }
792 
dc_stream_get_pipe_ctx(struct dc_stream_state * stream)793 struct pipe_ctx *dc_stream_get_pipe_ctx(struct dc_stream_state *stream)
794 {
795 	int i = 0;
796 
797 	for (i = 0; i < MAX_PIPES; i++) {
798 		struct pipe_ctx *pipe = &stream->ctx->dc->current_state->res_ctx.pipe_ctx[i];
799 
800 		if (pipe->stream == stream)
801 			return pipe;
802 	}
803 
804 	return NULL;
805 }
806 
dc_stream_log(const struct dc * dc,const struct dc_stream_state * stream)807 void dc_stream_log(const struct dc *dc, const struct dc_stream_state *stream)
808 {
809 	DC_LOG_DC(
810 			"core_stream 0x%p: src: %d, %d, %d, %d; dst: %d, %d, %d, %d, colorSpace:%d\n",
811 			stream,
812 			stream->src.x,
813 			stream->src.y,
814 			stream->src.width,
815 			stream->src.height,
816 			stream->dst.x,
817 			stream->dst.y,
818 			stream->dst.width,
819 			stream->dst.height,
820 			stream->output_color_space);
821 	DC_LOG_DC(
822 			"\tpix_clk_khz: %d, h_total: %d, v_total: %d, pixelencoder:%d, displaycolorDepth:%d\n",
823 			stream->timing.pix_clk_100hz / 10,
824 			stream->timing.h_total,
825 			stream->timing.v_total,
826 			stream->timing.pixel_encoding,
827 			stream->timing.display_color_depth);
828 	DC_LOG_DC(
829 			"\tlink: %d\n",
830 			stream->link->link_index);
831 
832 	DC_LOG_DC(
833 			"\tdsc: %d, mst_pbn: %d\n",
834 			stream->timing.flags.DSC,
835 			stream->timing.dsc_cfg.mst_pbn);
836 
837 	if (stream->sink) {
838 		if (stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL &&
839 			stream->sink->sink_signal != SIGNAL_TYPE_NONE) {
840 
841 			DC_LOG_DC(
842 					"\tdispname: %s signal: %x\n",
843 					stream->sink->edid_caps.display_name,
844 					stream->signal);
845 		}
846 	}
847 }
848 
849 /*
850  * Finds the greatest index in refresh_rate_hz that contains a value <= refresh
851  */
dc_stream_get_nearest_smallest_index(struct dc_stream_state * stream,int refresh)852 static int dc_stream_get_nearest_smallest_index(struct dc_stream_state *stream, int refresh)
853 {
854 	for (int i = 0; i < (LUMINANCE_DATA_TABLE_SIZE - 1); ++i) {
855 		if ((stream->lumin_data.refresh_rate_hz[i] <= refresh) && (refresh < stream->lumin_data.refresh_rate_hz[i + 1])) {
856 			return i;
857 		}
858 	}
859 	return 9;
860 }
861 
862 /*
863  * Finds a corresponding brightness for a given refresh rate between 2 given indices, where index1 < index2
864  */
dc_stream_get_brightness_millinits_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int refresh_hz)865 static int dc_stream_get_brightness_millinits_linear_interpolation (struct dc_stream_state *stream,
866 								     int index1,
867 								     int index2,
868 								     int refresh_hz)
869 {
870 	long long slope = 0;
871 	if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
872 		slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
873 			    (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
874 	}
875 
876 	int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
877 
878 	return (y_intercept + refresh_hz * slope);
879 }
880 
881 /*
882  * Finds a corresponding refresh rate for a given brightness between 2 given indices, where index1 < index2
883  */
dc_stream_get_refresh_hz_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int brightness_millinits)884 static int dc_stream_get_refresh_hz_linear_interpolation (struct dc_stream_state *stream,
885 							   int index1,
886 							   int index2,
887 							   int brightness_millinits)
888 {
889 	long long slope = 1;
890 	if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
891 		slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
892 				(stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
893 	}
894 
895 	int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
896 
897 	return ((int)div64_s64((brightness_millinits - y_intercept), slope));
898 }
899 
900 /*
901  * Finds the current brightness in millinits given a refresh rate
902  */
dc_stream_get_brightness_millinits_from_refresh(struct dc_stream_state * stream,int refresh_hz)903 static int dc_stream_get_brightness_millinits_from_refresh (struct dc_stream_state *stream, int refresh_hz)
904 {
905 	int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, refresh_hz);
906 	int nearest_smallest_value = stream->lumin_data.refresh_rate_hz[nearest_smallest_index];
907 
908 	if (nearest_smallest_value == refresh_hz)
909 		return stream->lumin_data.luminance_millinits[nearest_smallest_index];
910 
911 	if (nearest_smallest_index >= 9)
912 		return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index - 1, nearest_smallest_index, refresh_hz);
913 
914 	if (nearest_smallest_value == stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1])
915 		return stream->lumin_data.luminance_millinits[nearest_smallest_index];
916 
917 	return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index, nearest_smallest_index + 1, refresh_hz);
918 }
919 
920 /*
921  * Finds the lowest/highest refresh rate (depending on search_for_max_increase)
922  * that can be achieved from starting_refresh_hz while staying
923  * within flicker criteria
924  */
dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state * stream,int current_brightness,int starting_refresh_hz,bool is_gaming,bool search_for_max_increase)925 static int dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state *stream,
926 							 int current_brightness,
927 							 int starting_refresh_hz,
928 							 bool is_gaming,
929 							 bool search_for_max_increase)
930 {
931 	int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, starting_refresh_hz);
932 
933 	int flicker_criteria_millinits = is_gaming ?
934 					 stream->lumin_data.flicker_criteria_milli_nits_GAMING :
935 					 stream->lumin_data.flicker_criteria_milli_nits_STATIC;
936 
937 	int safe_upper_bound = current_brightness + flicker_criteria_millinits;
938 	int safe_lower_bound = current_brightness - flicker_criteria_millinits;
939 	int lumin_millinits_temp = 0;
940 
941 	int offset = -1;
942 	if (search_for_max_increase) {
943 		offset = 1;
944 	}
945 
946 	/*
947 	 * Increments up or down by 1 depending on search_for_max_increase
948 	 */
949 	for (int i = nearest_smallest_index; (i > 0 && !search_for_max_increase) || (i < (LUMINANCE_DATA_TABLE_SIZE - 1) && search_for_max_increase); i += offset) {
950 
951 		lumin_millinits_temp = stream->lumin_data.luminance_millinits[i + offset];
952 
953 		if ((lumin_millinits_temp >= safe_upper_bound) || (lumin_millinits_temp <= safe_lower_bound)) {
954 
955 			if (stream->lumin_data.refresh_rate_hz[i + offset] == stream->lumin_data.refresh_rate_hz[i])
956 				return stream->lumin_data.refresh_rate_hz[i];
957 
958 			int target_brightness = (stream->lumin_data.luminance_millinits[i + offset] >= (current_brightness + flicker_criteria_millinits)) ?
959 											current_brightness + flicker_criteria_millinits :
960 											current_brightness - flicker_criteria_millinits;
961 
962 			int refresh = 0;
963 
964 			/*
965 			 * Need the second input to be < third input for dc_stream_get_refresh_hz_linear_interpolation
966 			 */
967 			if (search_for_max_increase)
968 				refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i, i + offset, target_brightness);
969 			else
970 				refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i + offset, i, target_brightness);
971 
972 			if (refresh == stream->lumin_data.refresh_rate_hz[i + offset])
973 				return stream->lumin_data.refresh_rate_hz[i + offset];
974 
975 			return refresh;
976 		}
977 	}
978 
979 	if (search_for_max_increase)
980 		return (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
981 	else
982 		return stream->lumin_data.refresh_rate_hz[0];
983 }
984 
985 /*
986  * Gets the max delta luminance within a specified refresh range
987  */
dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state * stream,int hz1,int hz2,bool isGaming)988 static int dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state *stream, int hz1, int hz2, bool isGaming)
989 {
990 	int lower_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz1);
991 	int higher_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz2);
992 
993 	int min = lower_refresh_brightness;
994 	int max = higher_refresh_brightness;
995 
996 	/*
997 	 * Static screen, therefore no need to scan through array
998 	 */
999 	if (!isGaming) {
1000 		if (lower_refresh_brightness >= higher_refresh_brightness) {
1001 			return lower_refresh_brightness - higher_refresh_brightness;
1002 		}
1003 		return higher_refresh_brightness - lower_refresh_brightness;
1004 	}
1005 
1006 	min = MIN(lower_refresh_brightness, higher_refresh_brightness);
1007 	max = MAX(lower_refresh_brightness, higher_refresh_brightness);
1008 
1009 	int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, hz1);
1010 
1011 	for (; nearest_smallest_index < (LUMINANCE_DATA_TABLE_SIZE - 1) &&
1012 			stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1] <= hz2 ; nearest_smallest_index++) {
1013 		min = MIN(min, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
1014 		max = MAX(max, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
1015 	}
1016 
1017 	return (max - min);
1018 }
1019 
1020 /*
1021  * Determines the max flickerless instant vtotal delta for a stream.
1022  * Determines vtotal increase/decrease based on the bool "increase"
1023  */
dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state * stream,bool is_gaming,bool increase)1024 static unsigned int dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state *stream, bool is_gaming, bool increase)
1025 {
1026 	if (stream->timing.v_total * stream->timing.h_total == 0)
1027 		return 0;
1028 
1029 	int current_refresh_hz = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
1030 
1031 	int safe_refresh_hz = dc_stream_calculate_flickerless_refresh_rate(stream,
1032 							 dc_stream_get_brightness_millinits_from_refresh(stream, current_refresh_hz),
1033 							 current_refresh_hz,
1034 							 is_gaming,
1035 							 increase);
1036 
1037 	int safe_refresh_v_total = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, safe_refresh_hz*(long long)stream->timing.h_total);
1038 
1039 	if (increase)
1040 		return (((int) stream->timing.v_total - safe_refresh_v_total) >= 0) ? (stream->timing.v_total - safe_refresh_v_total) : 0;
1041 
1042 	return ((safe_refresh_v_total - (int) stream->timing.v_total) >= 0) ? (safe_refresh_v_total - stream->timing.v_total) : 0;
1043 }
1044 
1045 /*
1046  * Finds the highest refresh rate that can be achieved
1047  * from starting_refresh_hz while staying within flicker criteria
1048  */
dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1049 int dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1050 {
1051 	if (!stream->lumin_data.is_valid)
1052 		return 0;
1053 
1054 	int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1055 
1056 	return dc_stream_calculate_flickerless_refresh_rate(stream,
1057 							    current_brightness,
1058 							    starting_refresh_hz,
1059 							    is_gaming,
1060 							    true);
1061 }
1062 
1063 /*
1064  * Finds the lowest refresh rate that can be achieved
1065  * from starting_refresh_hz while staying within flicker criteria
1066  */
dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1067 int dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1068 {
1069 	if (!stream->lumin_data.is_valid)
1070 			return 0;
1071 
1072 	int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1073 
1074 	return dc_stream_calculate_flickerless_refresh_rate(stream,
1075 							    current_brightness,
1076 							    starting_refresh_hz,
1077 							    is_gaming,
1078 							    false);
1079 }
1080 
1081 /*
1082  * Determines if there will be a flicker when moving between 2 refresh rates
1083  */
dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state * stream,int hz1,int hz2,bool is_gaming)1084 bool dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state *stream, int hz1, int hz2, bool is_gaming)
1085 {
1086 
1087 	/*
1088 	 * Assume that we wont flicker if there is invalid data
1089 	 */
1090 	if (!stream->lumin_data.is_valid)
1091 		return false;
1092 
1093 	int dl = dc_stream_get_max_delta_lumin_millinits(stream, hz1, hz2, is_gaming);
1094 
1095 	int flicker_criteria_millinits = (is_gaming) ?
1096 					  stream->lumin_data.flicker_criteria_milli_nits_GAMING :
1097 					  stream->lumin_data.flicker_criteria_milli_nits_STATIC;
1098 
1099 	return (dl <= flicker_criteria_millinits);
1100 }
1101 
1102 /*
1103  * Determines the max instant vtotal delta increase that can be applied without
1104  * flickering for a given stream
1105  */
dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state * stream,bool is_gaming)1106 unsigned int dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state *stream,
1107 									  bool is_gaming)
1108 {
1109 	if (!stream->lumin_data.is_valid)
1110 		return 0;
1111 
1112 	return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, true);
1113 }
1114 
1115 /*
1116  * Determines the max instant vtotal delta decrease that can be applied without
1117  * flickering for a given stream
1118  */
dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state * stream,bool is_gaming)1119 unsigned int dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state *stream,
1120 									  bool is_gaming)
1121 {
1122 	if (!stream->lumin_data.is_valid)
1123 		return 0;
1124 
1125 	return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, false);
1126 }
1127