1  /*
2   * Copyright 2015 Advanced Micro Devices, Inc.
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice shall be included in
12   * all copies or substantial portions of the Software.
13   *
14   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17   * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18   * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19   * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20   * OTHER DEALINGS IN THE SOFTWARE.
21   *
22   * Authors: AMD
23   */
24  
25  #include "dm_services.h"
26  
27  #include "amdgpu.h"
28  
29  #include "dc.h"
30  
31  #include "core_status.h"
32  #include "core_types.h"
33  #include "hw_sequencer.h"
34  #include "dce/dce_hwseq.h"
35  
36  #include "resource.h"
37  #include "dc_state.h"
38  #include "dc_state_priv.h"
39  #include "dc_plane_priv.h"
40  
41  #include "gpio_service_interface.h"
42  #include "clk_mgr.h"
43  #include "clock_source.h"
44  #include "dc_bios_types.h"
45  
46  #include "bios_parser_interface.h"
47  #include "bios/bios_parser_helper.h"
48  #include "include/irq_service_interface.h"
49  #include "transform.h"
50  #include "dmcu.h"
51  #include "dpp.h"
52  #include "timing_generator.h"
53  #include "abm.h"
54  #include "virtual/virtual_link_encoder.h"
55  #include "hubp.h"
56  
57  #include "link_hwss.h"
58  #include "link_encoder.h"
59  #include "link_enc_cfg.h"
60  
61  #include "link.h"
62  #include "dm_helpers.h"
63  #include "mem_input.h"
64  
65  #include "dc_dmub_srv.h"
66  
67  #include "dsc.h"
68  
69  #include "vm_helper.h"
70  
71  #include "dce/dce_i2c.h"
72  
73  #include "dmub/dmub_srv.h"
74  
75  #include "dce/dmub_psr.h"
76  
77  #include "dce/dmub_hw_lock_mgr.h"
78  
79  #include "dc_trace.h"
80  
81  #include "hw_sequencer_private.h"
82  
83  #if defined(CONFIG_DRM_AMD_DC_FP)
84  #include "dml2/dml2_internal_types.h"
85  #endif
86  
87  #include "dce/dmub_outbox.h"
88  
89  #define CTX \
90  	dc->ctx
91  
92  #define DC_LOGGER \
93  	dc->ctx->logger
94  
95  static const char DC_BUILD_ID[] = "production-build";
96  
97  /**
98   * DOC: Overview
99   *
100   * DC is the OS-agnostic component of the amdgpu DC driver.
101   *
102   * DC maintains and validates a set of structs representing the state of the
103   * driver and writes that state to AMD hardware
104   *
105   * Main DC HW structs:
106   *
107   * struct dc - The central struct.  One per driver.  Created on driver load,
108   * destroyed on driver unload.
109   *
110   * struct dc_context - One per driver.
111   * Used as a backpointer by most other structs in dc.
112   *
113   * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
114   * plugpoints).  Created on driver load, destroyed on driver unload.
115   *
116   * struct dc_sink - One per display.  Created on boot or hotplug.
117   * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
118   * (the display directly attached).  It may also have one or more remote
119   * sinks (in the Multi-Stream Transport case)
120   *
121   * struct resource_pool - One per driver.  Represents the hw blocks not in the
122   * main pipeline.  Not directly accessible by dm.
123   *
124   * Main dc state structs:
125   *
126   * These structs can be created and destroyed as needed.  There is a full set of
127   * these structs in dc->current_state representing the currently programmed state.
128   *
129   * struct dc_state - The global DC state to track global state information,
130   * such as bandwidth values.
131   *
132   * struct dc_stream_state - Represents the hw configuration for the pipeline from
133   * a framebuffer to a display.  Maps one-to-one with dc_sink.
134   *
135   * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
136   * and may have more in the Multi-Plane Overlay case.
137   *
138   * struct resource_context - Represents the programmable state of everything in
139   * the resource_pool.  Not directly accessible by dm.
140   *
141   * struct pipe_ctx - A member of struct resource_context.  Represents the
142   * internal hardware pipeline components.  Each dc_plane_state has either
143   * one or two (in the pipe-split case).
144   */
145  
146  /* Private functions */
147  
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)148  static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
149  {
150  	if (new > *original)
151  		*original = new;
152  }
153  
destroy_links(struct dc * dc)154  static void destroy_links(struct dc *dc)
155  {
156  	uint32_t i;
157  
158  	for (i = 0; i < dc->link_count; i++) {
159  		if (NULL != dc->links[i])
160  			dc->link_srv->destroy_link(&dc->links[i]);
161  	}
162  }
163  
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)164  static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
165  {
166  	int i;
167  	uint32_t count = 0;
168  
169  	for (i = 0; i < num_links; i++) {
170  		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
171  				links[i]->is_internal_display)
172  			count++;
173  	}
174  
175  	return count;
176  }
177  
get_seamless_boot_stream_count(struct dc_state * ctx)178  static int get_seamless_boot_stream_count(struct dc_state *ctx)
179  {
180  	uint8_t i;
181  	uint8_t seamless_boot_stream_count = 0;
182  
183  	for (i = 0; i < ctx->stream_count; i++)
184  		if (ctx->streams[i]->apply_seamless_boot_optimization)
185  			seamless_boot_stream_count++;
186  
187  	return seamless_boot_stream_count;
188  }
189  
create_links(struct dc * dc,uint32_t num_virtual_links)190  static bool create_links(
191  		struct dc *dc,
192  		uint32_t num_virtual_links)
193  {
194  	int i;
195  	int connectors_num;
196  	struct dc_bios *bios = dc->ctx->dc_bios;
197  
198  	dc->link_count = 0;
199  
200  	connectors_num = bios->funcs->get_connectors_number(bios);
201  
202  	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
203  
204  	if (connectors_num > ENUM_ID_COUNT) {
205  		dm_error(
206  			"DC: Number of connectors %d exceeds maximum of %d!\n",
207  			connectors_num,
208  			ENUM_ID_COUNT);
209  		return false;
210  	}
211  
212  	dm_output_to_console(
213  		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
214  		__func__,
215  		connectors_num,
216  		num_virtual_links);
217  
218  	// condition loop on link_count to allow skipping invalid indices
219  	for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
220  		struct link_init_data link_init_params = {0};
221  		struct dc_link *link;
222  
223  		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
224  
225  		link_init_params.ctx = dc->ctx;
226  		/* next BIOS object table connector */
227  		link_init_params.connector_index = i;
228  		link_init_params.link_index = dc->link_count;
229  		link_init_params.dc = dc;
230  		link = dc->link_srv->create_link(&link_init_params);
231  
232  		if (link) {
233  			dc->links[dc->link_count] = link;
234  			link->dc = dc;
235  			++dc->link_count;
236  		}
237  	}
238  
239  	DC_LOG_DC("BIOS object table - end");
240  
241  	/* Create a link for each usb4 dpia port */
242  	for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
243  		struct link_init_data link_init_params = {0};
244  		struct dc_link *link;
245  
246  		link_init_params.ctx = dc->ctx;
247  		link_init_params.connector_index = i;
248  		link_init_params.link_index = dc->link_count;
249  		link_init_params.dc = dc;
250  		link_init_params.is_dpia_link = true;
251  
252  		link = dc->link_srv->create_link(&link_init_params);
253  		if (link) {
254  			dc->links[dc->link_count] = link;
255  			link->dc = dc;
256  			++dc->link_count;
257  		}
258  	}
259  
260  	for (i = 0; i < num_virtual_links; i++) {
261  		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
262  		struct encoder_init_data enc_init = {0};
263  
264  		if (link == NULL) {
265  			BREAK_TO_DEBUGGER();
266  			goto failed_alloc;
267  		}
268  
269  		link->link_index = dc->link_count;
270  		dc->links[dc->link_count] = link;
271  		dc->link_count++;
272  
273  		link->ctx = dc->ctx;
274  		link->dc = dc;
275  		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
276  		link->link_id.type = OBJECT_TYPE_CONNECTOR;
277  		link->link_id.id = CONNECTOR_ID_VIRTUAL;
278  		link->link_id.enum_id = ENUM_ID_1;
279  		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
280  
281  		if (!link->link_enc) {
282  			BREAK_TO_DEBUGGER();
283  			goto failed_alloc;
284  		}
285  
286  		link->link_status.dpcd_caps = &link->dpcd_caps;
287  
288  		enc_init.ctx = dc->ctx;
289  		enc_init.channel = CHANNEL_ID_UNKNOWN;
290  		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
291  		enc_init.transmitter = TRANSMITTER_UNKNOWN;
292  		enc_init.connector = link->link_id;
293  		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
294  		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
295  		enc_init.encoder.enum_id = ENUM_ID_1;
296  		virtual_link_encoder_construct(link->link_enc, &enc_init);
297  	}
298  
299  	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
300  
301  	return true;
302  
303  failed_alloc:
304  	return false;
305  }
306  
307  /* Create additional DIG link encoder objects if fewer than the platform
308   * supports were created during link construction. This can happen if the
309   * number of physical connectors is less than the number of DIGs.
310   */
create_link_encoders(struct dc * dc)311  static bool create_link_encoders(struct dc *dc)
312  {
313  	bool res = true;
314  	unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
315  	unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
316  	int i;
317  
318  	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
319  	 * link encoders and physical display endpoints and does not require
320  	 * additional link encoder objects.
321  	 */
322  	if (num_usb4_dpia == 0)
323  		return res;
324  
325  	/* Create as many link encoder objects as the platform supports. DPIA
326  	 * endpoints can be programmably mapped to any DIG.
327  	 */
328  	if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
329  		for (i = 0; i < num_dig_link_enc; i++) {
330  			struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
331  
332  			if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
333  				link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
334  						(enum engine_id)(ENGINE_ID_DIGA + i));
335  				if (link_enc) {
336  					dc->res_pool->link_encoders[i] = link_enc;
337  					dc->res_pool->dig_link_enc_count++;
338  				} else {
339  					res = false;
340  				}
341  			}
342  		}
343  	}
344  
345  	return res;
346  }
347  
348  /* Destroy any additional DIG link encoder objects created by
349   * create_link_encoders().
350   * NB: Must only be called after destroy_links().
351   */
destroy_link_encoders(struct dc * dc)352  static void destroy_link_encoders(struct dc *dc)
353  {
354  	unsigned int num_usb4_dpia;
355  	unsigned int num_dig_link_enc;
356  	int i;
357  
358  	if (!dc->res_pool)
359  		return;
360  
361  	num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
362  	num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
363  
364  	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
365  	 * link encoders and physical display endpoints and does not require
366  	 * additional link encoder objects.
367  	 */
368  	if (num_usb4_dpia == 0)
369  		return;
370  
371  	for (i = 0; i < num_dig_link_enc; i++) {
372  		struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
373  
374  		if (link_enc) {
375  			link_enc->funcs->destroy(&link_enc);
376  			dc->res_pool->link_encoders[i] = NULL;
377  			dc->res_pool->dig_link_enc_count--;
378  		}
379  	}
380  }
381  
dc_perf_trace_create(void)382  static struct dc_perf_trace *dc_perf_trace_create(void)
383  {
384  	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
385  }
386  
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)387  static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
388  {
389  	kfree(*perf_trace);
390  	*perf_trace = NULL;
391  }
392  
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)393  static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
394  {
395  	if (!dc || !stream || !adjust)
396  		return false;
397  
398  	if (!dc->current_state)
399  		return false;
400  
401  	int i;
402  
403  	for (i = 0; i < MAX_PIPES; i++) {
404  		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
405  
406  		if (pipe->stream == stream && pipe->stream_res.tg) {
407  			if (dc->hwss.set_long_vtotal)
408  				dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
409  
410  			return true;
411  		}
412  	}
413  
414  	return false;
415  }
416  
417  /**
418   *  dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
419   *  @dc:     dc reference
420   *  @stream: Initial dc stream state
421   *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
422   *
423   *  Looks up the pipe context of dc_stream_state and updates the
424   *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
425   *  Rate, which is a power-saving feature that targets reducing panel
426   *  refresh rate while the screen is static
427   *
428   *  Return: %true if the pipe context is found and adjusted;
429   *          %false if the pipe context is not found.
430   */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)431  bool dc_stream_adjust_vmin_vmax(struct dc *dc,
432  		struct dc_stream_state *stream,
433  		struct dc_crtc_timing_adjust *adjust)
434  {
435  	int i;
436  
437  	/*
438  	 * Don't adjust DRR while there's bandwidth optimizations pending to
439  	 * avoid conflicting with firmware updates.
440  	 */
441  	if (dc->ctx->dce_version > DCE_VERSION_MAX)
442  		if (dc->optimized_required || dc->wm_optimized_required)
443  			return false;
444  
445  	dc_exit_ips_for_hw_access(dc);
446  
447  	stream->adjust.v_total_max = adjust->v_total_max;
448  	stream->adjust.v_total_mid = adjust->v_total_mid;
449  	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
450  	stream->adjust.v_total_min = adjust->v_total_min;
451  	stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
452  
453  	if (dc->caps.max_v_total != 0 &&
454  		(adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
455  		if (adjust->allow_otg_v_count_halt)
456  			return set_long_vtotal(dc, stream, adjust);
457  		else
458  			return false;
459  	}
460  
461  	for (i = 0; i < MAX_PIPES; i++) {
462  		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
463  
464  		if (pipe->stream == stream && pipe->stream_res.tg) {
465  			dc->hwss.set_drr(&pipe,
466  					1,
467  					*adjust);
468  
469  			return true;
470  		}
471  	}
472  	return false;
473  }
474  
475  /**
476   * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
477   * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
478   *
479   * @dc: [in] dc reference
480   * @stream: [in] Initial dc stream state
481   * @refresh_rate: [in] new refresh_rate
482   *
483   * Return: %true if the pipe context is found and there is an associated
484   *         timing_generator for the DC;
485   *         %false if the pipe context is not found or there is no
486   *         timing_generator for the DC.
487   */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)488  bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
489  		struct dc_stream_state *stream,
490  		uint32_t *refresh_rate)
491  {
492  	bool status = false;
493  
494  	int i = 0;
495  
496  	dc_exit_ips_for_hw_access(dc);
497  
498  	for (i = 0; i < MAX_PIPES; i++) {
499  		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
500  
501  		if (pipe->stream == stream && pipe->stream_res.tg) {
502  			/* Only execute if a function pointer has been defined for
503  			 * the DC version in question
504  			 */
505  			if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
506  				pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
507  
508  				status = true;
509  
510  				break;
511  			}
512  		}
513  	}
514  
515  	return status;
516  }
517  
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)518  bool dc_stream_get_crtc_position(struct dc *dc,
519  		struct dc_stream_state **streams, int num_streams,
520  		unsigned int *v_pos, unsigned int *nom_v_pos)
521  {
522  	/* TODO: Support multiple streams */
523  	const struct dc_stream_state *stream = streams[0];
524  	int i;
525  	bool ret = false;
526  	struct crtc_position position;
527  
528  	dc_exit_ips_for_hw_access(dc);
529  
530  	for (i = 0; i < MAX_PIPES; i++) {
531  		struct pipe_ctx *pipe =
532  				&dc->current_state->res_ctx.pipe_ctx[i];
533  
534  		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
535  			dc->hwss.get_position(&pipe, 1, &position);
536  
537  			*v_pos = position.vertical_count;
538  			*nom_v_pos = position.nominal_vcount;
539  			ret = true;
540  		}
541  	}
542  	return ret;
543  }
544  
545  #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
546  static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)547  dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
548  		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
549  {
550  	union dmub_rb_cmd cmd = {0};
551  
552  	cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
553  	cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
554  
555  	if (is_stop) {
556  		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
557  		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
558  	} else {
559  		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
560  		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
561  		cmd.secure_display.roi_info.x_start = rect->x;
562  		cmd.secure_display.roi_info.y_start = rect->y;
563  		cmd.secure_display.roi_info.x_end = rect->x + rect->width;
564  		cmd.secure_display.roi_info.y_end = rect->y + rect->height;
565  	}
566  
567  	dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
568  }
569  
570  static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)571  dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
572  		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
573  {
574  	if (is_stop)
575  		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
576  	else
577  		dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
578  }
579  
580  bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,bool is_stop)581  dc_stream_forward_crc_window(struct dc_stream_state *stream,
582  		struct rect *rect, bool is_stop)
583  {
584  	struct dmcu *dmcu;
585  	struct dc_dmub_srv *dmub_srv;
586  	struct otg_phy_mux mux_mapping;
587  	struct pipe_ctx *pipe;
588  	int i;
589  	struct dc *dc = stream->ctx->dc;
590  
591  	for (i = 0; i < MAX_PIPES; i++) {
592  		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
593  		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
594  			break;
595  	}
596  
597  	/* Stream not found */
598  	if (i == MAX_PIPES)
599  		return false;
600  
601  	mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
602  	mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
603  
604  	dmcu = dc->res_pool->dmcu;
605  	dmub_srv = dc->ctx->dmub_srv;
606  
607  	/* forward to dmub */
608  	if (dmub_srv)
609  		dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
610  	/* forward to dmcu */
611  	else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
612  		dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
613  	else
614  		return false;
615  
616  	return true;
617  }
618  #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
619  
620  /**
621   * dc_stream_configure_crc() - Configure CRC capture for the given stream.
622   * @dc: DC Object
623   * @stream: The stream to configure CRC on.
624   * @enable: Enable CRC if true, disable otherwise.
625   * @crc_window: CRC window (x/y start/end) information
626   * @continuous: Capture CRC on every frame if true. Otherwise, only capture
627   *              once.
628   *
629   * By default, only CRC0 is configured, and the entire frame is used to
630   * calculate the CRC.
631   *
632   * Return: %false if the stream is not found or CRC capture is not supported;
633   *         %true if the stream has been configured.
634   */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)635  bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
636  			     struct crc_params *crc_window, bool enable, bool continuous)
637  {
638  	struct pipe_ctx *pipe;
639  	struct crc_params param;
640  	struct timing_generator *tg;
641  
642  	pipe = resource_get_otg_master_for_stream(
643  			&dc->current_state->res_ctx, stream);
644  
645  	/* Stream not found */
646  	if (pipe == NULL)
647  		return false;
648  
649  	dc_exit_ips_for_hw_access(dc);
650  
651  	/* By default, capture the full frame */
652  	param.windowa_x_start = 0;
653  	param.windowa_y_start = 0;
654  	param.windowa_x_end = pipe->stream->timing.h_addressable;
655  	param.windowa_y_end = pipe->stream->timing.v_addressable;
656  	param.windowb_x_start = 0;
657  	param.windowb_y_start = 0;
658  	param.windowb_x_end = pipe->stream->timing.h_addressable;
659  	param.windowb_y_end = pipe->stream->timing.v_addressable;
660  
661  	if (crc_window) {
662  		param.windowa_x_start = crc_window->windowa_x_start;
663  		param.windowa_y_start = crc_window->windowa_y_start;
664  		param.windowa_x_end = crc_window->windowa_x_end;
665  		param.windowa_y_end = crc_window->windowa_y_end;
666  		param.windowb_x_start = crc_window->windowb_x_start;
667  		param.windowb_y_start = crc_window->windowb_y_start;
668  		param.windowb_x_end = crc_window->windowb_x_end;
669  		param.windowb_y_end = crc_window->windowb_y_end;
670  	}
671  
672  	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
673  	param.odm_mode = pipe->next_odm_pipe ? 1:0;
674  
675  	/* Default to the union of both windows */
676  	param.selection = UNION_WINDOW_A_B;
677  	param.continuous_mode = continuous;
678  	param.enable = enable;
679  
680  	tg = pipe->stream_res.tg;
681  
682  	/* Only call if supported */
683  	if (tg->funcs->configure_crc)
684  		return tg->funcs->configure_crc(tg, &param);
685  	DC_LOG_WARNING("CRC capture not supported.");
686  	return false;
687  }
688  
689  /**
690   * dc_stream_get_crc() - Get CRC values for the given stream.
691   *
692   * @dc: DC object.
693   * @stream: The DC stream state of the stream to get CRCs from.
694   * @r_cr: CRC value for the red component.
695   * @g_y:  CRC value for the green component.
696   * @b_cb: CRC value for the blue component.
697   *
698   * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
699   *
700   * Return:
701   * %false if stream is not found, or if CRCs are not enabled.
702   */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)703  bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
704  		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
705  {
706  	int i;
707  	struct pipe_ctx *pipe;
708  	struct timing_generator *tg;
709  
710  	dc_exit_ips_for_hw_access(dc);
711  
712  	for (i = 0; i < MAX_PIPES; i++) {
713  		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
714  		if (pipe->stream == stream)
715  			break;
716  	}
717  	/* Stream not found */
718  	if (i == MAX_PIPES)
719  		return false;
720  
721  	tg = pipe->stream_res.tg;
722  
723  	if (tg->funcs->get_crc)
724  		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
725  	DC_LOG_WARNING("CRC capture not supported.");
726  	return false;
727  }
728  
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)729  void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
730  		enum dc_dynamic_expansion option)
731  {
732  	/* OPP FMT dyn expansion updates*/
733  	int i;
734  	struct pipe_ctx *pipe_ctx;
735  
736  	dc_exit_ips_for_hw_access(dc);
737  
738  	for (i = 0; i < MAX_PIPES; i++) {
739  		if (dc->current_state->res_ctx.pipe_ctx[i].stream
740  				== stream) {
741  			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
742  			pipe_ctx->stream_res.opp->dyn_expansion = option;
743  			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
744  					pipe_ctx->stream_res.opp,
745  					COLOR_SPACE_YCBCR601,
746  					stream->timing.display_color_depth,
747  					stream->signal);
748  		}
749  	}
750  }
751  
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)752  void dc_stream_set_dither_option(struct dc_stream_state *stream,
753  		enum dc_dither_option option)
754  {
755  	struct bit_depth_reduction_params params;
756  	struct dc_link *link = stream->link;
757  	struct pipe_ctx *pipes = NULL;
758  	int i;
759  
760  	for (i = 0; i < MAX_PIPES; i++) {
761  		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
762  				stream) {
763  			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
764  			break;
765  		}
766  	}
767  
768  	if (!pipes)
769  		return;
770  	if (option > DITHER_OPTION_MAX)
771  		return;
772  
773  	dc_exit_ips_for_hw_access(stream->ctx->dc);
774  
775  	stream->dither_option = option;
776  
777  	memset(&params, 0, sizeof(params));
778  	resource_build_bit_depth_reduction_params(stream, &params);
779  	stream->bit_depth_params = params;
780  
781  	if (pipes->plane_res.xfm &&
782  	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
783  		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
784  			pipes->plane_res.xfm,
785  			pipes->plane_res.scl_data.lb_params.depth,
786  			&stream->bit_depth_params);
787  	}
788  
789  	pipes->stream_res.opp->funcs->
790  		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
791  }
792  
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)793  bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
794  {
795  	int i;
796  	bool ret = false;
797  	struct pipe_ctx *pipes;
798  
799  	dc_exit_ips_for_hw_access(dc);
800  
801  	for (i = 0; i < MAX_PIPES; i++) {
802  		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
803  			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
804  			dc->hwss.program_gamut_remap(pipes);
805  			ret = true;
806  		}
807  	}
808  
809  	return ret;
810  }
811  
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)812  bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
813  {
814  	int i;
815  	bool ret = false;
816  	struct pipe_ctx *pipes;
817  
818  	dc_exit_ips_for_hw_access(dc);
819  
820  	for (i = 0; i < MAX_PIPES; i++) {
821  		if (dc->current_state->res_ctx.pipe_ctx[i].stream
822  				== stream) {
823  
824  			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
825  			dc->hwss.program_output_csc(dc,
826  					pipes,
827  					stream->output_color_space,
828  					stream->csc_color_matrix.matrix,
829  					pipes->stream_res.opp->inst);
830  			ret = true;
831  		}
832  	}
833  
834  	return ret;
835  }
836  
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)837  void dc_stream_set_static_screen_params(struct dc *dc,
838  		struct dc_stream_state **streams,
839  		int num_streams,
840  		const struct dc_static_screen_params *params)
841  {
842  	int i, j;
843  	struct pipe_ctx *pipes_affected[MAX_PIPES];
844  	int num_pipes_affected = 0;
845  
846  	dc_exit_ips_for_hw_access(dc);
847  
848  	for (i = 0; i < num_streams; i++) {
849  		struct dc_stream_state *stream = streams[i];
850  
851  		for (j = 0; j < MAX_PIPES; j++) {
852  			if (dc->current_state->res_ctx.pipe_ctx[j].stream
853  					== stream) {
854  				pipes_affected[num_pipes_affected++] =
855  						&dc->current_state->res_ctx.pipe_ctx[j];
856  			}
857  		}
858  	}
859  
860  	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
861  }
862  
dc_destruct(struct dc * dc)863  static void dc_destruct(struct dc *dc)
864  {
865  	// reset link encoder assignment table on destruct
866  	if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
867  		link_enc_cfg_init(dc, dc->current_state);
868  
869  	if (dc->current_state) {
870  		dc_state_release(dc->current_state);
871  		dc->current_state = NULL;
872  	}
873  
874  	destroy_links(dc);
875  
876  	destroy_link_encoders(dc);
877  
878  	if (dc->clk_mgr) {
879  		dc_destroy_clk_mgr(dc->clk_mgr);
880  		dc->clk_mgr = NULL;
881  	}
882  
883  	dc_destroy_resource_pool(dc);
884  
885  	if (dc->link_srv)
886  		link_destroy_link_service(&dc->link_srv);
887  
888  	if (dc->ctx->gpio_service)
889  		dal_gpio_service_destroy(&dc->ctx->gpio_service);
890  
891  	if (dc->ctx->created_bios)
892  		dal_bios_parser_destroy(&dc->ctx->dc_bios);
893  
894  	kfree(dc->ctx->logger);
895  	dc_perf_trace_destroy(&dc->ctx->perf_trace);
896  
897  	kfree(dc->ctx);
898  	dc->ctx = NULL;
899  
900  	kfree(dc->bw_vbios);
901  	dc->bw_vbios = NULL;
902  
903  	kfree(dc->bw_dceip);
904  	dc->bw_dceip = NULL;
905  
906  	kfree(dc->dcn_soc);
907  	dc->dcn_soc = NULL;
908  
909  	kfree(dc->dcn_ip);
910  	dc->dcn_ip = NULL;
911  
912  	kfree(dc->vm_helper);
913  	dc->vm_helper = NULL;
914  
915  }
916  
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)917  static bool dc_construct_ctx(struct dc *dc,
918  		const struct dc_init_data *init_params)
919  {
920  	struct dc_context *dc_ctx;
921  
922  	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
923  	if (!dc_ctx)
924  		return false;
925  
926  	dc_ctx->cgs_device = init_params->cgs_device;
927  	dc_ctx->driver_context = init_params->driver;
928  	dc_ctx->dc = dc;
929  	dc_ctx->asic_id = init_params->asic_id;
930  	dc_ctx->dc_sink_id_count = 0;
931  	dc_ctx->dc_stream_id_count = 0;
932  	dc_ctx->dce_environment = init_params->dce_environment;
933  	dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
934  	dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
935  	dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
936  
937  	/* Create logger */
938  	dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
939  
940  	if (!dc_ctx->logger) {
941  		kfree(dc_ctx);
942  		return false;
943  	}
944  
945  	dc_ctx->logger->dev = adev_to_drm(init_params->driver);
946  	dc->dml.logger = dc_ctx->logger;
947  
948  	dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
949  
950  	dc_ctx->perf_trace = dc_perf_trace_create();
951  	if (!dc_ctx->perf_trace) {
952  		kfree(dc_ctx);
953  		ASSERT_CRITICAL(false);
954  		return false;
955  	}
956  
957  	dc->ctx = dc_ctx;
958  
959  	dc->link_srv = link_create_link_service();
960  	if (!dc->link_srv)
961  		return false;
962  
963  	return true;
964  }
965  
dc_construct(struct dc * dc,const struct dc_init_data * init_params)966  static bool dc_construct(struct dc *dc,
967  		const struct dc_init_data *init_params)
968  {
969  	struct dc_context *dc_ctx;
970  	struct bw_calcs_dceip *dc_dceip;
971  	struct bw_calcs_vbios *dc_vbios;
972  	struct dcn_soc_bounding_box *dcn_soc;
973  	struct dcn_ip_params *dcn_ip;
974  
975  	dc->config = init_params->flags;
976  
977  	// Allocate memory for the vm_helper
978  	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
979  	if (!dc->vm_helper) {
980  		dm_error("%s: failed to create dc->vm_helper\n", __func__);
981  		goto fail;
982  	}
983  
984  	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
985  
986  	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
987  	if (!dc_dceip) {
988  		dm_error("%s: failed to create dceip\n", __func__);
989  		goto fail;
990  	}
991  
992  	dc->bw_dceip = dc_dceip;
993  
994  	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
995  	if (!dc_vbios) {
996  		dm_error("%s: failed to create vbios\n", __func__);
997  		goto fail;
998  	}
999  
1000  	dc->bw_vbios = dc_vbios;
1001  	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1002  	if (!dcn_soc) {
1003  		dm_error("%s: failed to create dcn_soc\n", __func__);
1004  		goto fail;
1005  	}
1006  
1007  	dc->dcn_soc = dcn_soc;
1008  
1009  	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1010  	if (!dcn_ip) {
1011  		dm_error("%s: failed to create dcn_ip\n", __func__);
1012  		goto fail;
1013  	}
1014  
1015  	dc->dcn_ip = dcn_ip;
1016  
1017  	if (init_params->bb_from_dmub)
1018  		dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub;
1019  	else
1020  		dc->dml2_options.bb_from_dmub = NULL;
1021  
1022  	if (!dc_construct_ctx(dc, init_params)) {
1023  		dm_error("%s: failed to create ctx\n", __func__);
1024  		goto fail;
1025  	}
1026  
1027  	dc_ctx = dc->ctx;
1028  
1029  	/* Resource should construct all asic specific resources.
1030  	 * This should be the only place where we need to parse the asic id
1031  	 */
1032  	if (init_params->vbios_override)
1033  		dc_ctx->dc_bios = init_params->vbios_override;
1034  	else {
1035  		/* Create BIOS parser */
1036  		struct bp_init_data bp_init_data;
1037  
1038  		bp_init_data.ctx = dc_ctx;
1039  		bp_init_data.bios = init_params->asic_id.atombios_base_address;
1040  
1041  		dc_ctx->dc_bios = dal_bios_parser_create(
1042  				&bp_init_data, dc_ctx->dce_version);
1043  
1044  		if (!dc_ctx->dc_bios) {
1045  			ASSERT_CRITICAL(false);
1046  			goto fail;
1047  		}
1048  
1049  		dc_ctx->created_bios = true;
1050  	}
1051  
1052  	dc->vendor_signature = init_params->vendor_signature;
1053  
1054  	/* Create GPIO service */
1055  	dc_ctx->gpio_service = dal_gpio_service_create(
1056  			dc_ctx->dce_version,
1057  			dc_ctx->dce_environment,
1058  			dc_ctx);
1059  
1060  	if (!dc_ctx->gpio_service) {
1061  		ASSERT_CRITICAL(false);
1062  		goto fail;
1063  	}
1064  
1065  	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1066  	if (!dc->res_pool)
1067  		goto fail;
1068  
1069  	/* set i2c speed if not done by the respective dcnxxx__resource.c */
1070  	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1071  		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1072  	if (dc->caps.max_optimizable_video_width == 0)
1073  		dc->caps.max_optimizable_video_width = 5120;
1074  	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1075  	if (!dc->clk_mgr)
1076  		goto fail;
1077  #ifdef CONFIG_DRM_AMD_DC_FP
1078  	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1079  
1080  	if (dc->res_pool->funcs->update_bw_bounding_box) {
1081  		DC_FP_START();
1082  		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1083  		DC_FP_END();
1084  	}
1085  #endif
1086  
1087  	if (!create_links(dc, init_params->num_virtual_links))
1088  		goto fail;
1089  
1090  	/* Create additional DIG link encoder objects if fewer than the platform
1091  	 * supports were created during link construction.
1092  	 */
1093  	if (!create_link_encoders(dc))
1094  		goto fail;
1095  
1096  	/* Creation of current_state must occur after dc->dml
1097  	 * is initialized in dc_create_resource_pool because
1098  	 * on creation it copies the contents of dc->dml
1099  	 */
1100  	dc->current_state = dc_state_create(dc, NULL);
1101  
1102  	if (!dc->current_state) {
1103  		dm_error("%s: failed to create validate ctx\n", __func__);
1104  		goto fail;
1105  	}
1106  
1107  	return true;
1108  
1109  fail:
1110  	return false;
1111  }
1112  
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1113  static void disable_all_writeback_pipes_for_stream(
1114  		const struct dc *dc,
1115  		struct dc_stream_state *stream,
1116  		struct dc_state *context)
1117  {
1118  	int i;
1119  
1120  	for (i = 0; i < stream->num_wb_info; i++)
1121  		stream->writeback_info[i].wb_enabled = false;
1122  }
1123  
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1124  static void apply_ctx_interdependent_lock(struct dc *dc,
1125  					  struct dc_state *context,
1126  					  struct dc_stream_state *stream,
1127  					  bool lock)
1128  {
1129  	int i;
1130  
1131  	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1132  	if (dc->hwss.interdependent_update_lock)
1133  		dc->hwss.interdependent_update_lock(dc, context, lock);
1134  	else {
1135  		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1136  			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1137  			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1138  
1139  			// Copied conditions that were previously in dce110_apply_ctx_for_surface
1140  			if (stream == pipe_ctx->stream) {
1141  				if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1142  					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1143  					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1144  			}
1145  		}
1146  	}
1147  }
1148  
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1149  static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1150  {
1151  	if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1152  		memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1153  
1154  		if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1155  			get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1156  		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1157  			get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1158  		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1159  			get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1160  		else {
1161  			if (dc->ctx->dce_version < DCN_VERSION_2_0)
1162  				color_space_to_black_color(
1163  					dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1164  		}
1165  		if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1166  			if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1167  				get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1168  			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1169  				get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1170  			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1171  				get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1172  			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2)
1173  				get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1174  		}
1175  	}
1176  }
1177  
disable_dangling_plane(struct dc * dc,struct dc_state * context)1178  static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1179  {
1180  	int i, j;
1181  	struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1182  	struct dc_state *current_ctx;
1183  	struct pipe_ctx *pipe;
1184  	struct timing_generator *tg;
1185  
1186  	if (dangling_context == NULL)
1187  		return;
1188  
1189  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1190  		struct dc_stream_state *old_stream =
1191  				dc->current_state->res_ctx.pipe_ctx[i].stream;
1192  		bool should_disable = true;
1193  		bool pipe_split_change = false;
1194  
1195  		if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1196  			(dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1197  			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1198  				dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1199  		else
1200  			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1201  				dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1202  
1203  		for (j = 0; j < context->stream_count; j++) {
1204  			if (old_stream == context->streams[j]) {
1205  				should_disable = false;
1206  				break;
1207  			}
1208  		}
1209  		if (!should_disable && pipe_split_change &&
1210  				dc->current_state->stream_count != context->stream_count)
1211  			should_disable = true;
1212  
1213  		if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1214  				!dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1215  			struct pipe_ctx *old_pipe, *new_pipe;
1216  
1217  			old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1218  			new_pipe = &context->res_ctx.pipe_ctx[i];
1219  
1220  			if (old_pipe->plane_state && !new_pipe->plane_state)
1221  				should_disable = true;
1222  		}
1223  
1224  		if (should_disable && old_stream) {
1225  			bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1226  			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1227  			tg = pipe->stream_res.tg;
1228  			/* When disabling plane for a phantom pipe, we must turn on the
1229  			 * phantom OTG so the disable programming gets the double buffer
1230  			 * update. Otherwise the pipe will be left in a partially disabled
1231  			 * state that can result in underflow or hang when enabling it
1232  			 * again for different use.
1233  			 */
1234  			if (is_phantom) {
1235  				if (tg->funcs->enable_crtc) {
1236  					int main_pipe_width = 0, main_pipe_height = 0;
1237  					struct dc_stream_state *old_paired_stream = dc_state_get_paired_subvp_stream(dc->current_state, old_stream);
1238  
1239  					if (old_paired_stream) {
1240  						main_pipe_width = old_paired_stream->dst.width;
1241  						main_pipe_height = old_paired_stream->dst.height;
1242  					}
1243  
1244  					if (dc->hwss.blank_phantom)
1245  						dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1246  					tg->funcs->enable_crtc(tg);
1247  				}
1248  			}
1249  
1250  			if (is_phantom)
1251  				dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1252  			else
1253  				dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1254  			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1255  
1256  			if (pipe->stream && pipe->plane_state) {
1257  				if (!dc->debug.using_dml2)
1258  					set_p_state_switch_method(dc, context, pipe);
1259  				dc_update_visual_confirm_color(dc, context, pipe);
1260  			}
1261  
1262  			if (dc->hwss.apply_ctx_for_surface) {
1263  				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1264  				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1265  				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1266  				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1267  			}
1268  
1269  			if (dc->res_pool->funcs->prepare_mcache_programming)
1270  				dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context);
1271  			if (dc->hwss.program_front_end_for_ctx) {
1272  				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1273  				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1274  				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1275  				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1276  			}
1277  			/* We need to put the phantom OTG back into it's default (disabled) state or we
1278  			 * can get corruption when transition from one SubVP config to a different one.
1279  			 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1280  			 * will still get it's double buffer update.
1281  			 */
1282  			if (is_phantom) {
1283  				if (tg->funcs->disable_phantom_crtc)
1284  					tg->funcs->disable_phantom_crtc(tg);
1285  			}
1286  		}
1287  	}
1288  
1289  	current_ctx = dc->current_state;
1290  	dc->current_state = dangling_context;
1291  	dc_state_release(current_ctx);
1292  }
1293  
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1294  static void disable_vbios_mode_if_required(
1295  		struct dc *dc,
1296  		struct dc_state *context)
1297  {
1298  	unsigned int i, j;
1299  
1300  	/* check if timing_changed, disable stream*/
1301  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1302  		struct dc_stream_state *stream = NULL;
1303  		struct dc_link *link = NULL;
1304  		struct pipe_ctx *pipe = NULL;
1305  
1306  		pipe = &context->res_ctx.pipe_ctx[i];
1307  		stream = pipe->stream;
1308  		if (stream == NULL)
1309  			continue;
1310  
1311  		if (stream->apply_seamless_boot_optimization)
1312  			continue;
1313  
1314  		// only looking for first odm pipe
1315  		if (pipe->prev_odm_pipe)
1316  			continue;
1317  
1318  		if (stream->link->local_sink &&
1319  			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1320  			link = stream->link;
1321  		}
1322  
1323  		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1324  			unsigned int enc_inst, tg_inst = 0;
1325  			unsigned int pix_clk_100hz = 0;
1326  
1327  			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1328  			if (enc_inst != ENGINE_ID_UNKNOWN) {
1329  				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1330  					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1331  						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1332  							dc->res_pool->stream_enc[j]);
1333  						break;
1334  					}
1335  				}
1336  
1337  				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1338  					dc->res_pool->dp_clock_source,
1339  					tg_inst, &pix_clk_100hz);
1340  
1341  				if (link->link_status.link_active) {
1342  					uint32_t requested_pix_clk_100hz =
1343  						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1344  
1345  					if (pix_clk_100hz != requested_pix_clk_100hz) {
1346  						dc->link_srv->set_dpms_off(pipe);
1347  						pipe->stream->dpms_off = false;
1348  					}
1349  				}
1350  			}
1351  		}
1352  	}
1353  }
1354  
1355  /* Public functions */
1356  
dc_create(const struct dc_init_data * init_params)1357  struct dc *dc_create(const struct dc_init_data *init_params)
1358  {
1359  	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1360  	unsigned int full_pipe_count;
1361  
1362  	if (!dc)
1363  		return NULL;
1364  
1365  	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1366  		dc->caps.linear_pitch_alignment = 64;
1367  		if (!dc_construct_ctx(dc, init_params))
1368  			goto destruct_dc;
1369  	} else {
1370  		if (!dc_construct(dc, init_params))
1371  			goto destruct_dc;
1372  
1373  		full_pipe_count = dc->res_pool->pipe_count;
1374  		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1375  			full_pipe_count--;
1376  		dc->caps.max_streams = min(
1377  				full_pipe_count,
1378  				dc->res_pool->stream_enc_count);
1379  
1380  		dc->caps.max_links = dc->link_count;
1381  		dc->caps.max_audios = dc->res_pool->audio_count;
1382  		dc->caps.linear_pitch_alignment = 64;
1383  
1384  		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1385  
1386  		dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1387  
1388  		if (dc->res_pool->dmcu != NULL)
1389  			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1390  	}
1391  
1392  	dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1393  	dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1394  	dc->clk_reg_offsets = init_params->clk_reg_offsets;
1395  
1396  	/* Populate versioning information */
1397  	dc->versions.dc_ver = DC_VER;
1398  
1399  	dc->build_id = DC_BUILD_ID;
1400  
1401  	DC_LOG_DC("Display Core initialized\n");
1402  
1403  	return dc;
1404  
1405  destruct_dc:
1406  	dc_destruct(dc);
1407  	kfree(dc);
1408  	return NULL;
1409  }
1410  
detect_edp_presence(struct dc * dc)1411  static void detect_edp_presence(struct dc *dc)
1412  {
1413  	struct dc_link *edp_links[MAX_NUM_EDP];
1414  	struct dc_link *edp_link = NULL;
1415  	enum dc_connection_type type;
1416  	int i;
1417  	int edp_num;
1418  
1419  	dc_get_edp_links(dc, edp_links, &edp_num);
1420  	if (!edp_num)
1421  		return;
1422  
1423  	for (i = 0; i < edp_num; i++) {
1424  		edp_link = edp_links[i];
1425  		if (dc->config.edp_not_connected) {
1426  			edp_link->edp_sink_present = false;
1427  		} else {
1428  			dc_link_detect_connection_type(edp_link, &type);
1429  			edp_link->edp_sink_present = (type != dc_connection_none);
1430  		}
1431  	}
1432  }
1433  
dc_hardware_init(struct dc * dc)1434  void dc_hardware_init(struct dc *dc)
1435  {
1436  
1437  	detect_edp_presence(dc);
1438  	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1439  		dc->hwss.init_hw(dc);
1440  }
1441  
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1442  void dc_init_callbacks(struct dc *dc,
1443  		const struct dc_callback_init *init_params)
1444  {
1445  	dc->ctx->cp_psp = init_params->cp_psp;
1446  }
1447  
dc_deinit_callbacks(struct dc * dc)1448  void dc_deinit_callbacks(struct dc *dc)
1449  {
1450  	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1451  }
1452  
dc_destroy(struct dc ** dc)1453  void dc_destroy(struct dc **dc)
1454  {
1455  	dc_destruct(*dc);
1456  	kfree(*dc);
1457  	*dc = NULL;
1458  }
1459  
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1460  static void enable_timing_multisync(
1461  		struct dc *dc,
1462  		struct dc_state *ctx)
1463  {
1464  	int i, multisync_count = 0;
1465  	int pipe_count = dc->res_pool->pipe_count;
1466  	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1467  
1468  	for (i = 0; i < pipe_count; i++) {
1469  		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1470  				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1471  			continue;
1472  		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1473  			continue;
1474  		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1475  		multisync_count++;
1476  	}
1477  
1478  	if (multisync_count > 0) {
1479  		dc->hwss.enable_per_frame_crtc_position_reset(
1480  			dc, multisync_count, multisync_pipes);
1481  	}
1482  }
1483  
program_timing_sync(struct dc * dc,struct dc_state * ctx)1484  static void program_timing_sync(
1485  		struct dc *dc,
1486  		struct dc_state *ctx)
1487  {
1488  	int i, j, k;
1489  	int group_index = 0;
1490  	int num_group = 0;
1491  	int pipe_count = dc->res_pool->pipe_count;
1492  	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1493  
1494  	for (i = 0; i < pipe_count; i++) {
1495  		if (!ctx->res_ctx.pipe_ctx[i].stream
1496  				|| ctx->res_ctx.pipe_ctx[i].top_pipe
1497  				|| ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1498  			continue;
1499  
1500  		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1501  	}
1502  
1503  	for (i = 0; i < pipe_count; i++) {
1504  		int group_size = 1;
1505  		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1506  		struct pipe_ctx *pipe_set[MAX_PIPES];
1507  
1508  		if (!unsynced_pipes[i])
1509  			continue;
1510  
1511  		pipe_set[0] = unsynced_pipes[i];
1512  		unsynced_pipes[i] = NULL;
1513  
1514  		/* Add tg to the set, search rest of the tg's for ones with
1515  		 * same timing, add all tgs with same timing to the group
1516  		 */
1517  		for (j = i + 1; j < pipe_count; j++) {
1518  			if (!unsynced_pipes[j])
1519  				continue;
1520  			if (sync_type != TIMING_SYNCHRONIZABLE &&
1521  				dc->hwss.enable_vblanks_synchronization &&
1522  				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1523  				resource_are_vblanks_synchronizable(
1524  					unsynced_pipes[j]->stream,
1525  					pipe_set[0]->stream)) {
1526  				sync_type = VBLANK_SYNCHRONIZABLE;
1527  				pipe_set[group_size] = unsynced_pipes[j];
1528  				unsynced_pipes[j] = NULL;
1529  				group_size++;
1530  			} else
1531  			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1532  				resource_are_streams_timing_synchronizable(
1533  					unsynced_pipes[j]->stream,
1534  					pipe_set[0]->stream)) {
1535  				sync_type = TIMING_SYNCHRONIZABLE;
1536  				pipe_set[group_size] = unsynced_pipes[j];
1537  				unsynced_pipes[j] = NULL;
1538  				group_size++;
1539  			}
1540  		}
1541  
1542  		/* set first unblanked pipe as master */
1543  		for (j = 0; j < group_size; j++) {
1544  			bool is_blanked;
1545  
1546  			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1547  				is_blanked =
1548  					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1549  			else
1550  				is_blanked =
1551  					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1552  			if (!is_blanked) {
1553  				if (j == 0)
1554  					break;
1555  
1556  				swap(pipe_set[0], pipe_set[j]);
1557  				break;
1558  			}
1559  		}
1560  
1561  		for (k = 0; k < group_size; k++) {
1562  			struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1563  
1564  			if (!status)
1565  				continue;
1566  
1567  			status->timing_sync_info.group_id = num_group;
1568  			status->timing_sync_info.group_size = group_size;
1569  			if (k == 0)
1570  				status->timing_sync_info.master = true;
1571  			else
1572  				status->timing_sync_info.master = false;
1573  
1574  		}
1575  
1576  		/* remove any other unblanked pipes as they have already been synced */
1577  		if (dc->config.use_pipe_ctx_sync_logic) {
1578  			/* check pipe's syncd to decide which pipe to be removed */
1579  			for (j = 1; j < group_size; j++) {
1580  				if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1581  					group_size--;
1582  					pipe_set[j] = pipe_set[group_size];
1583  					j--;
1584  				} else
1585  					/* link slave pipe's syncd with master pipe */
1586  					pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1587  			}
1588  		} else {
1589  			/* remove any other pipes by checking valid plane */
1590  			for (j = j + 1; j < group_size; j++) {
1591  				bool is_blanked;
1592  
1593  				if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1594  					is_blanked =
1595  						pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1596  				else
1597  					is_blanked =
1598  						pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1599  				if (!is_blanked) {
1600  					group_size--;
1601  					pipe_set[j] = pipe_set[group_size];
1602  					j--;
1603  				}
1604  			}
1605  		}
1606  
1607  		if (group_size > 1) {
1608  			if (sync_type == TIMING_SYNCHRONIZABLE) {
1609  				dc->hwss.enable_timing_synchronization(
1610  					dc, ctx, group_index, group_size, pipe_set);
1611  			} else
1612  				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1613  				dc->hwss.enable_vblanks_synchronization(
1614  					dc, group_index, group_size, pipe_set);
1615  				}
1616  			group_index++;
1617  		}
1618  		num_group++;
1619  	}
1620  }
1621  
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1622  static bool streams_changed(struct dc *dc,
1623  			    struct dc_stream_state *streams[],
1624  			    uint8_t stream_count)
1625  {
1626  	uint8_t i;
1627  
1628  	if (stream_count != dc->current_state->stream_count)
1629  		return true;
1630  
1631  	for (i = 0; i < dc->current_state->stream_count; i++) {
1632  		if (dc->current_state->streams[i] != streams[i])
1633  			return true;
1634  		if (!streams[i]->link->link_state_valid)
1635  			return true;
1636  	}
1637  
1638  	return false;
1639  }
1640  
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1641  bool dc_validate_boot_timing(const struct dc *dc,
1642  				const struct dc_sink *sink,
1643  				struct dc_crtc_timing *crtc_timing)
1644  {
1645  	struct timing_generator *tg;
1646  	struct stream_encoder *se = NULL;
1647  
1648  	struct dc_crtc_timing hw_crtc_timing = {0};
1649  
1650  	struct dc_link *link = sink->link;
1651  	unsigned int i, enc_inst, tg_inst = 0;
1652  
1653  	/* Support seamless boot on EDP displays only */
1654  	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1655  		return false;
1656  	}
1657  
1658  	if (dc->debug.force_odm_combine)
1659  		return false;
1660  
1661  	/* Check for enabled DIG to identify enabled display */
1662  	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1663  		return false;
1664  
1665  	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1666  
1667  	if (enc_inst == ENGINE_ID_UNKNOWN)
1668  		return false;
1669  
1670  	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1671  		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1672  
1673  			se = dc->res_pool->stream_enc[i];
1674  
1675  			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1676  				dc->res_pool->stream_enc[i]);
1677  			break;
1678  		}
1679  	}
1680  
1681  	// tg_inst not found
1682  	if (i == dc->res_pool->stream_enc_count)
1683  		return false;
1684  
1685  	if (tg_inst >= dc->res_pool->timing_generator_count)
1686  		return false;
1687  
1688  	if (tg_inst != link->link_enc->preferred_engine)
1689  		return false;
1690  
1691  	tg = dc->res_pool->timing_generators[tg_inst];
1692  
1693  	if (!tg->funcs->get_hw_timing)
1694  		return false;
1695  
1696  	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1697  		return false;
1698  
1699  	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1700  		return false;
1701  
1702  	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1703  		return false;
1704  
1705  	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1706  		return false;
1707  
1708  	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1709  		return false;
1710  
1711  	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1712  		return false;
1713  
1714  	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1715  		return false;
1716  
1717  	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1718  		return false;
1719  
1720  	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1721  		return false;
1722  
1723  	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1724  		return false;
1725  
1726  	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1727  		return false;
1728  
1729  	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1730  		return false;
1731  
1732  	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1733  		return false;
1734  
1735  	/* block DSC for now, as VBIOS does not currently support DSC timings */
1736  	if (crtc_timing->flags.DSC)
1737  		return false;
1738  
1739  	if (dc_is_dp_signal(link->connector_signal)) {
1740  		unsigned int pix_clk_100hz = 0;
1741  		uint32_t numOdmPipes = 1;
1742  		uint32_t id_src[4] = {0};
1743  
1744  		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1745  			dc->res_pool->dp_clock_source,
1746  			tg_inst, &pix_clk_100hz);
1747  
1748  		if (tg->funcs->get_optc_source)
1749  			tg->funcs->get_optc_source(tg,
1750  						&numOdmPipes, &id_src[0], &id_src[1]);
1751  
1752  		if (numOdmPipes == 2) {
1753  			pix_clk_100hz *= 2;
1754  		} else if (numOdmPipes == 4) {
1755  			pix_clk_100hz *= 4;
1756  		} else if (se && se->funcs->get_pixels_per_cycle) {
1757  			uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se);
1758  
1759  			if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy)
1760  				return false;
1761  
1762  			pix_clk_100hz *= pixels_per_cycle;
1763  		}
1764  
1765  		// Note: In rare cases, HW pixclk may differ from crtc's pixclk
1766  		// slightly due to rounding issues in 10 kHz units.
1767  		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1768  			return false;
1769  
1770  		if (!se || !se->funcs->dp_get_pixel_format)
1771  			return false;
1772  
1773  		if (!se->funcs->dp_get_pixel_format(
1774  			se,
1775  			&hw_crtc_timing.pixel_encoding,
1776  			&hw_crtc_timing.display_color_depth))
1777  			return false;
1778  
1779  		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1780  			return false;
1781  
1782  		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1783  			return false;
1784  	}
1785  
1786  	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1787  		return false;
1788  	}
1789  
1790  	if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED)
1791  		return false;
1792  
1793  	if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1794  		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1795  		return false;
1796  	}
1797  
1798  	return true;
1799  }
1800  
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1801  static inline bool should_update_pipe_for_stream(
1802  		struct dc_state *context,
1803  		struct pipe_ctx *pipe_ctx,
1804  		struct dc_stream_state *stream)
1805  {
1806  	return (pipe_ctx->stream && pipe_ctx->stream == stream);
1807  }
1808  
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1809  static inline bool should_update_pipe_for_plane(
1810  		struct dc_state *context,
1811  		struct pipe_ctx *pipe_ctx,
1812  		struct dc_plane_state *plane_state)
1813  {
1814  	return (pipe_ctx->plane_state == plane_state);
1815  }
1816  
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1817  void dc_enable_stereo(
1818  	struct dc *dc,
1819  	struct dc_state *context,
1820  	struct dc_stream_state *streams[],
1821  	uint8_t stream_count)
1822  {
1823  	int i, j;
1824  	struct pipe_ctx *pipe;
1825  
1826  	dc_exit_ips_for_hw_access(dc);
1827  
1828  	for (i = 0; i < MAX_PIPES; i++) {
1829  		if (context != NULL) {
1830  			pipe = &context->res_ctx.pipe_ctx[i];
1831  		} else {
1832  			context = dc->current_state;
1833  			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1834  		}
1835  
1836  		for (j = 0; pipe && j < stream_count; j++)  {
1837  			if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1838  				dc->hwss.setup_stereo)
1839  				dc->hwss.setup_stereo(pipe, dc);
1840  		}
1841  	}
1842  }
1843  
dc_trigger_sync(struct dc * dc,struct dc_state * context)1844  void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1845  {
1846  	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1847  		dc_exit_ips_for_hw_access(dc);
1848  
1849  		enable_timing_multisync(dc, context);
1850  		program_timing_sync(dc, context);
1851  	}
1852  }
1853  
get_stream_mask(struct dc * dc,struct dc_state * context)1854  static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1855  {
1856  	int i;
1857  	unsigned int stream_mask = 0;
1858  
1859  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1860  		if (context->res_ctx.pipe_ctx[i].stream)
1861  			stream_mask |= 1 << i;
1862  	}
1863  
1864  	return stream_mask;
1865  }
1866  
dc_z10_restore(const struct dc * dc)1867  void dc_z10_restore(const struct dc *dc)
1868  {
1869  	if (dc->hwss.z10_restore)
1870  		dc->hwss.z10_restore(dc);
1871  }
1872  
dc_z10_save_init(struct dc * dc)1873  void dc_z10_save_init(struct dc *dc)
1874  {
1875  	if (dc->hwss.z10_save_init)
1876  		dc->hwss.z10_save_init(dc);
1877  }
1878  
1879  /**
1880   * dc_commit_state_no_check - Apply context to the hardware
1881   *
1882   * @dc: DC object with the current status to be updated
1883   * @context: New state that will become the current status at the end of this function
1884   *
1885   * Applies given context to the hardware and copy it into current context.
1886   * It's up to the user to release the src context afterwards.
1887   *
1888   * Return: an enum dc_status result code for the operation
1889   */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1890  static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1891  {
1892  	struct dc_bios *dcb = dc->ctx->dc_bios;
1893  	enum dc_status result = DC_ERROR_UNEXPECTED;
1894  	struct pipe_ctx *pipe;
1895  	int i, k, l;
1896  	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1897  	struct dc_state *old_state;
1898  	bool subvp_prev_use = false;
1899  
1900  	dc_z10_restore(dc);
1901  	dc_allow_idle_optimizations(dc, false);
1902  
1903  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1904  		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1905  
1906  		/* Check old context for SubVP */
1907  		subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
1908  		if (subvp_prev_use)
1909  			break;
1910  	}
1911  
1912  	for (i = 0; i < context->stream_count; i++)
1913  		dc_streams[i] =  context->streams[i];
1914  
1915  	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1916  		disable_vbios_mode_if_required(dc, context);
1917  		dc->hwss.enable_accelerated_mode(dc, context);
1918  	}
1919  
1920  	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1921  		context->stream_count == 0)
1922  		dc->hwss.prepare_bandwidth(dc, context);
1923  
1924  	/* When SubVP is active, all HW programming must be done while
1925  	 * SubVP lock is acquired
1926  	 */
1927  	if (dc->hwss.subvp_pipe_control_lock)
1928  		dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1929  	if (dc->hwss.fams2_global_control_lock)
1930  		dc->hwss.fams2_global_control_lock(dc, context, true);
1931  
1932  	if (dc->hwss.update_dsc_pg)
1933  		dc->hwss.update_dsc_pg(dc, context, false);
1934  
1935  	disable_dangling_plane(dc, context);
1936  	/* re-program planes for existing stream, in case we need to
1937  	 * free up plane resource for later use
1938  	 */
1939  	if (dc->hwss.apply_ctx_for_surface) {
1940  		for (i = 0; i < context->stream_count; i++) {
1941  			if (context->streams[i]->mode_changed)
1942  				continue;
1943  			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1944  			dc->hwss.apply_ctx_for_surface(
1945  				dc, context->streams[i],
1946  				context->stream_status[i].plane_count,
1947  				context); /* use new pipe config in new context */
1948  			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1949  			dc->hwss.post_unlock_program_front_end(dc, context);
1950  		}
1951  	}
1952  
1953  	/* Program hardware */
1954  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1955  		pipe = &context->res_ctx.pipe_ctx[i];
1956  		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1957  	}
1958  
1959  	result = dc->hwss.apply_ctx_to_hw(dc, context);
1960  
1961  	if (result != DC_OK) {
1962  		/* Application of dc_state to hardware stopped. */
1963  		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1964  		return result;
1965  	}
1966  
1967  	dc_trigger_sync(dc, context);
1968  
1969  	/* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1970  	for (i = 0; i < context->stream_count; i++) {
1971  		uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1972  
1973  		context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1974  		context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1975  	}
1976  
1977  	/* Program all planes within new context*/
1978  	if (dc->res_pool->funcs->prepare_mcache_programming)
1979  		dc->res_pool->funcs->prepare_mcache_programming(dc, context);
1980  	if (dc->hwss.program_front_end_for_ctx) {
1981  		dc->hwss.interdependent_update_lock(dc, context, true);
1982  		dc->hwss.program_front_end_for_ctx(dc, context);
1983  		dc->hwss.interdependent_update_lock(dc, context, false);
1984  		dc->hwss.post_unlock_program_front_end(dc, context);
1985  	}
1986  
1987  	if (dc->hwss.commit_subvp_config)
1988  		dc->hwss.commit_subvp_config(dc, context);
1989  	if (dc->hwss.subvp_pipe_control_lock)
1990  		dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1991  	if (dc->hwss.fams2_global_control_lock)
1992  		dc->hwss.fams2_global_control_lock(dc, context, false);
1993  
1994  	for (i = 0; i < context->stream_count; i++) {
1995  		const struct dc_link *link = context->streams[i]->link;
1996  
1997  		if (!context->streams[i]->mode_changed)
1998  			continue;
1999  
2000  		if (dc->hwss.apply_ctx_for_surface) {
2001  			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2002  			dc->hwss.apply_ctx_for_surface(
2003  					dc, context->streams[i],
2004  					context->stream_status[i].plane_count,
2005  					context);
2006  			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2007  			dc->hwss.post_unlock_program_front_end(dc, context);
2008  		}
2009  
2010  		/*
2011  		 * enable stereo
2012  		 * TODO rework dc_enable_stereo call to work with validation sets?
2013  		 */
2014  		for (k = 0; k < MAX_PIPES; k++) {
2015  			pipe = &context->res_ctx.pipe_ctx[k];
2016  
2017  			for (l = 0 ; pipe && l < context->stream_count; l++)  {
2018  				if (context->streams[l] &&
2019  					context->streams[l] == pipe->stream &&
2020  					dc->hwss.setup_stereo)
2021  					dc->hwss.setup_stereo(pipe, dc);
2022  			}
2023  		}
2024  
2025  		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2026  				context->streams[i]->timing.h_addressable,
2027  				context->streams[i]->timing.v_addressable,
2028  				context->streams[i]->timing.h_total,
2029  				context->streams[i]->timing.v_total,
2030  				context->streams[i]->timing.pix_clk_100hz / 10);
2031  	}
2032  
2033  	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2034  
2035  	if (context->stream_count > get_seamless_boot_stream_count(context) ||
2036  		context->stream_count == 0) {
2037  		/* Must wait for no flips to be pending before doing optimize bw */
2038  		hwss_wait_for_no_pipes_pending(dc, context);
2039  		/*
2040  		 * optimized dispclk depends on ODM setup. Need to wait for ODM
2041  		 * update pending complete before optimizing bandwidth.
2042  		 */
2043  		hwss_wait_for_odm_update_pending_complete(dc, context);
2044  		/* pplib is notified if disp_num changed */
2045  		dc->hwss.optimize_bandwidth(dc, context);
2046  		/* Need to do otg sync again as otg could be out of sync due to otg
2047  		 * workaround applied during clock update
2048  		 */
2049  		dc_trigger_sync(dc, context);
2050  	}
2051  
2052  	if (dc->hwss.update_dsc_pg)
2053  		dc->hwss.update_dsc_pg(dc, context, true);
2054  
2055  	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2056  		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2057  	else
2058  		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2059  
2060  	context->stream_mask = get_stream_mask(dc, context);
2061  
2062  	if (context->stream_mask != dc->current_state->stream_mask)
2063  		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2064  
2065  	for (i = 0; i < context->stream_count; i++)
2066  		context->streams[i]->mode_changed = false;
2067  
2068  	/* Clear update flags that were set earlier to avoid redundant programming */
2069  	for (i = 0; i < context->stream_count; i++) {
2070  		context->streams[i]->update_flags.raw = 0x0;
2071  	}
2072  
2073  	old_state = dc->current_state;
2074  	dc->current_state = context;
2075  
2076  	dc_state_release(old_state);
2077  
2078  	dc_state_retain(dc->current_state);
2079  
2080  	return result;
2081  }
2082  
2083  static bool commit_minimal_transition_state(struct dc *dc,
2084  		struct dc_state *transition_base_context);
2085  
2086  /**
2087   * dc_commit_streams - Commit current stream state
2088   *
2089   * @dc: DC object with the commit state to be configured in the hardware
2090   * @params: Parameters for the commit, including the streams to be committed
2091   *
2092   * Function responsible for commit streams change to the hardware.
2093   *
2094   * Return:
2095   * Return DC_OK if everything work as expected, otherwise, return a dc_status
2096   * code.
2097   */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2098  enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2099  {
2100  	int i, j;
2101  	struct dc_state *context;
2102  	enum dc_status res = DC_OK;
2103  	struct dc_validation_set set[MAX_STREAMS] = {0};
2104  	struct pipe_ctx *pipe;
2105  	bool handle_exit_odm2to1 = false;
2106  
2107  	if (!params)
2108  		return DC_ERROR_UNEXPECTED;
2109  
2110  	if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2111  		return res;
2112  
2113  	if (!streams_changed(dc, params->streams, params->stream_count) &&
2114  			dc->current_state->power_source == params->power_source)
2115  		return res;
2116  
2117  	dc_exit_ips_for_hw_access(dc);
2118  
2119  	DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2120  
2121  	for (i = 0; i < params->stream_count; i++) {
2122  		struct dc_stream_state *stream = params->streams[i];
2123  		struct dc_stream_status *status = dc_stream_get_status(stream);
2124  
2125  		dc_stream_log(dc, stream);
2126  
2127  		set[i].stream = stream;
2128  
2129  		if (status) {
2130  			set[i].plane_count = status->plane_count;
2131  			for (j = 0; j < status->plane_count; j++)
2132  				set[i].plane_states[j] = status->plane_states[j];
2133  		}
2134  	}
2135  
2136  	/* ODM Combine 2:1 power optimization is only applied for single stream
2137  	 * scenario, it uses extra pipes than needed to reduce power consumption
2138  	 * We need to switch off this feature to make room for new streams.
2139  	 */
2140  	if (params->stream_count > dc->current_state->stream_count &&
2141  			dc->current_state->stream_count == 1) {
2142  		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2143  			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2144  			if (pipe->next_odm_pipe)
2145  				handle_exit_odm2to1 = true;
2146  		}
2147  	}
2148  
2149  	if (handle_exit_odm2to1)
2150  		res = commit_minimal_transition_state(dc, dc->current_state);
2151  
2152  	context = dc_state_create_current_copy(dc);
2153  	if (!context)
2154  		goto context_alloc_fail;
2155  
2156  	context->power_source = params->power_source;
2157  
2158  	res = dc_validate_with_context(dc, set, params->stream_count, context, false);
2159  	if (res != DC_OK) {
2160  		BREAK_TO_DEBUGGER();
2161  		goto fail;
2162  	}
2163  
2164  	res = dc_commit_state_no_check(dc, context);
2165  
2166  	for (i = 0; i < params->stream_count; i++) {
2167  		for (j = 0; j < context->stream_count; j++) {
2168  			if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2169  				params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2170  
2171  			if (dc_is_embedded_signal(params->streams[i]->signal)) {
2172  				struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2173  
2174  				if (!status)
2175  					continue;
2176  
2177  				if (dc->hwss.is_abm_supported)
2178  					status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2179  				else
2180  					status->is_abm_supported = true;
2181  			}
2182  		}
2183  	}
2184  
2185  fail:
2186  	dc_state_release(context);
2187  
2188  context_alloc_fail:
2189  
2190  	DC_LOG_DC("%s Finished.\n", __func__);
2191  
2192  	return res;
2193  }
2194  
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2195  bool dc_acquire_release_mpc_3dlut(
2196  		struct dc *dc, bool acquire,
2197  		struct dc_stream_state *stream,
2198  		struct dc_3dlut **lut,
2199  		struct dc_transfer_func **shaper)
2200  {
2201  	int pipe_idx;
2202  	bool ret = false;
2203  	bool found_pipe_idx = false;
2204  	const struct resource_pool *pool = dc->res_pool;
2205  	struct resource_context *res_ctx = &dc->current_state->res_ctx;
2206  	int mpcc_id = 0;
2207  
2208  	if (pool && res_ctx) {
2209  		if (acquire) {
2210  			/*find pipe idx for the given stream*/
2211  			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2212  				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2213  					found_pipe_idx = true;
2214  					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2215  					break;
2216  				}
2217  			}
2218  		} else
2219  			found_pipe_idx = true;/*for release pipe_idx is not required*/
2220  
2221  		if (found_pipe_idx) {
2222  			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2223  				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2224  			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2225  				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2226  		}
2227  	}
2228  	return ret;
2229  }
2230  
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2231  static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2232  {
2233  	int i;
2234  	struct pipe_ctx *pipe;
2235  
2236  	for (i = 0; i < MAX_PIPES; i++) {
2237  		pipe = &context->res_ctx.pipe_ctx[i];
2238  
2239  		// Don't check flip pending on phantom pipes
2240  		if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2241  			continue;
2242  
2243  		/* Must set to false to start with, due to OR in update function */
2244  		pipe->plane_state->status.is_flip_pending = false;
2245  		dc->hwss.update_pending_status(pipe);
2246  		if (pipe->plane_state->status.is_flip_pending)
2247  			return true;
2248  	}
2249  	return false;
2250  }
2251  
2252  /* Perform updates here which need to be deferred until next vupdate
2253   *
2254   * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2255   * but forcing lut memory to shutdown state is immediate. This causes
2256   * single frame corruption as lut gets disabled mid-frame unless shutdown
2257   * is deferred until after entering bypass.
2258   */
process_deferred_updates(struct dc * dc)2259  static void process_deferred_updates(struct dc *dc)
2260  {
2261  	int i = 0;
2262  
2263  	if (dc->debug.enable_mem_low_power.bits.cm) {
2264  		ASSERT(dc->dcn_ip->max_num_dpp);
2265  		for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2266  			if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2267  				dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2268  	}
2269  }
2270  
dc_post_update_surfaces_to_stream(struct dc * dc)2271  void dc_post_update_surfaces_to_stream(struct dc *dc)
2272  {
2273  	int i;
2274  	struct dc_state *context = dc->current_state;
2275  
2276  	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2277  		return;
2278  
2279  	post_surface_trace(dc);
2280  
2281  	/*
2282  	 * Only relevant for DCN behavior where we can guarantee the optimization
2283  	 * is safe to apply - retain the legacy behavior for DCE.
2284  	 */
2285  
2286  	if (dc->ctx->dce_version < DCE_VERSION_MAX)
2287  		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2288  	else {
2289  		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2290  
2291  		if (is_flip_pending_in_pipes(dc, context))
2292  			return;
2293  
2294  		for (i = 0; i < dc->res_pool->pipe_count; i++)
2295  			if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2296  					context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2297  				context->res_ctx.pipe_ctx[i].pipe_idx = i;
2298  				dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2299  			}
2300  
2301  		process_deferred_updates(dc);
2302  
2303  		dc->hwss.optimize_bandwidth(dc, context);
2304  
2305  		if (dc->hwss.update_dsc_pg)
2306  			dc->hwss.update_dsc_pg(dc, context, true);
2307  	}
2308  
2309  	dc->optimized_required = false;
2310  	dc->wm_optimized_required = false;
2311  }
2312  
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2313  bool dc_set_generic_gpio_for_stereo(bool enable,
2314  		struct gpio_service *gpio_service)
2315  {
2316  	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2317  	struct gpio_pin_info pin_info;
2318  	struct gpio *generic;
2319  	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2320  			   GFP_KERNEL);
2321  
2322  	if (!config)
2323  		return false;
2324  	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2325  
2326  	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2327  		kfree(config);
2328  		return false;
2329  	} else {
2330  		generic = dal_gpio_service_create_generic_mux(
2331  			gpio_service,
2332  			pin_info.offset,
2333  			pin_info.mask);
2334  	}
2335  
2336  	if (!generic) {
2337  		kfree(config);
2338  		return false;
2339  	}
2340  
2341  	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2342  
2343  	config->enable_output_from_mux = enable;
2344  	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2345  
2346  	if (gpio_result == GPIO_RESULT_OK)
2347  		gpio_result = dal_mux_setup_config(generic, config);
2348  
2349  	if (gpio_result == GPIO_RESULT_OK) {
2350  		dal_gpio_close(generic);
2351  		dal_gpio_destroy_generic_mux(&generic);
2352  		kfree(config);
2353  		return true;
2354  	} else {
2355  		dal_gpio_close(generic);
2356  		dal_gpio_destroy_generic_mux(&generic);
2357  		kfree(config);
2358  		return false;
2359  	}
2360  }
2361  
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2362  static bool is_surface_in_context(
2363  		const struct dc_state *context,
2364  		const struct dc_plane_state *plane_state)
2365  {
2366  	int j;
2367  
2368  	for (j = 0; j < MAX_PIPES; j++) {
2369  		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2370  
2371  		if (plane_state == pipe_ctx->plane_state) {
2372  			return true;
2373  		}
2374  	}
2375  
2376  	return false;
2377  }
2378  
get_plane_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2379  static enum surface_update_type get_plane_info_update_type(const struct dc *dc, const struct dc_surface_update *u)
2380  {
2381  	union surface_update_flags *update_flags = &u->surface->update_flags;
2382  	enum surface_update_type update_type = UPDATE_TYPE_FAST;
2383  
2384  	if (!u->plane_info)
2385  		return UPDATE_TYPE_FAST;
2386  
2387  	if (u->plane_info->color_space != u->surface->color_space) {
2388  		update_flags->bits.color_space_change = 1;
2389  		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2390  	}
2391  
2392  	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2393  		update_flags->bits.horizontal_mirror_change = 1;
2394  		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2395  	}
2396  
2397  	if (u->plane_info->rotation != u->surface->rotation) {
2398  		update_flags->bits.rotation_change = 1;
2399  		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2400  	}
2401  
2402  	if (u->plane_info->format != u->surface->format) {
2403  		update_flags->bits.pixel_format_change = 1;
2404  		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2405  	}
2406  
2407  	if (u->plane_info->stereo_format != u->surface->stereo_format) {
2408  		update_flags->bits.stereo_format_change = 1;
2409  		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2410  	}
2411  
2412  	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2413  		update_flags->bits.per_pixel_alpha_change = 1;
2414  		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2415  	}
2416  
2417  	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2418  		update_flags->bits.global_alpha_change = 1;
2419  		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2420  	}
2421  
2422  	if (u->plane_info->dcc.enable != u->surface->dcc.enable
2423  			|| u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2424  			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2425  		/* During DCC on/off, stutter period is calculated before
2426  		 * DCC has fully transitioned. This results in incorrect
2427  		 * stutter period calculation. Triggering a full update will
2428  		 * recalculate stutter period.
2429  		 */
2430  		update_flags->bits.dcc_change = 1;
2431  		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2432  	}
2433  
2434  	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2435  			resource_pixel_format_to_bpp(u->surface->format)) {
2436  		/* different bytes per element will require full bandwidth
2437  		 * and DML calculation
2438  		 */
2439  		update_flags->bits.bpp_change = 1;
2440  		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2441  	}
2442  
2443  	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2444  			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2445  		update_flags->bits.plane_size_change = 1;
2446  		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2447  	}
2448  
2449  
2450  	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2451  			sizeof(union dc_tiling_info)) != 0) {
2452  		update_flags->bits.swizzle_change = 1;
2453  		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2454  
2455  		/* todo: below are HW dependent, we should add a hook to
2456  		 * DCE/N resource and validated there.
2457  		 */
2458  		if (!dc->debug.skip_full_updated_if_possible) {
2459  			/* swizzled mode requires RQ to be setup properly,
2460  			 * thus need to run DML to calculate RQ settings
2461  			 */
2462  			update_flags->bits.bandwidth_change = 1;
2463  			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2464  		}
2465  	}
2466  
2467  	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
2468  	return update_type;
2469  }
2470  
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2471  static enum surface_update_type get_scaling_info_update_type(
2472  		const struct dc *dc,
2473  		const struct dc_surface_update *u)
2474  {
2475  	union surface_update_flags *update_flags = &u->surface->update_flags;
2476  
2477  	if (!u->scaling_info)
2478  		return UPDATE_TYPE_FAST;
2479  
2480  	if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2481  			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2482  			|| u->scaling_info->scaling_quality.integer_scaling !=
2483  				u->surface->scaling_quality.integer_scaling
2484  			) {
2485  		update_flags->bits.scaling_change = 1;
2486  
2487  		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2488  			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2489  				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2490  					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2491  			/* Making dst rect smaller requires a bandwidth change */
2492  			update_flags->bits.bandwidth_change = 1;
2493  	}
2494  
2495  	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2496  		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2497  
2498  		update_flags->bits.scaling_change = 1;
2499  		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2500  				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
2501  			/* Making src rect bigger requires a bandwidth change */
2502  			update_flags->bits.clock_change = 1;
2503  	}
2504  
2505  	if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2506  		(u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2507  		 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2508  		 /* Changing clip size of a large surface may result in MPC slice count change */
2509  		update_flags->bits.bandwidth_change = 1;
2510  
2511  	if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width ||
2512  			u->scaling_info->clip_rect.height != u->surface->clip_rect.height)
2513  		update_flags->bits.clip_size_change = 1;
2514  
2515  	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2516  			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2517  			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2518  			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2519  			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2520  			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2521  		update_flags->bits.position_change = 1;
2522  
2523  	if (update_flags->bits.clock_change
2524  			|| update_flags->bits.bandwidth_change
2525  			|| update_flags->bits.scaling_change)
2526  		return UPDATE_TYPE_FULL;
2527  
2528  	if (update_flags->bits.position_change ||
2529  			update_flags->bits.clip_size_change)
2530  		return UPDATE_TYPE_MED;
2531  
2532  	return UPDATE_TYPE_FAST;
2533  }
2534  
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2535  static enum surface_update_type det_surface_update(const struct dc *dc,
2536  		const struct dc_surface_update *u)
2537  {
2538  	const struct dc_state *context = dc->current_state;
2539  	enum surface_update_type type;
2540  	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2541  	union surface_update_flags *update_flags = &u->surface->update_flags;
2542  
2543  	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2544  		update_flags->raw = 0xFFFFFFFF;
2545  		return UPDATE_TYPE_FULL;
2546  	}
2547  
2548  	update_flags->raw = 0; // Reset all flags
2549  
2550  	type = get_plane_info_update_type(dc, u);
2551  	elevate_update_type(&overall_type, type);
2552  
2553  	type = get_scaling_info_update_type(dc, u);
2554  	elevate_update_type(&overall_type, type);
2555  
2556  	if (u->flip_addr) {
2557  		update_flags->bits.addr_update = 1;
2558  		if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2559  			update_flags->bits.tmz_changed = 1;
2560  			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2561  		}
2562  	}
2563  	if (u->in_transfer_func)
2564  		update_flags->bits.in_transfer_func_change = 1;
2565  
2566  	if (u->input_csc_color_matrix)
2567  		update_flags->bits.input_csc_change = 1;
2568  
2569  	if (u->coeff_reduction_factor)
2570  		update_flags->bits.coeff_reduction_change = 1;
2571  
2572  	if (u->gamut_remap_matrix)
2573  		update_flags->bits.gamut_remap_change = 1;
2574  
2575  	if (u->blend_tf)
2576  		update_flags->bits.gamma_change = 1;
2577  
2578  	if (u->gamma) {
2579  		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2580  
2581  		if (u->plane_info)
2582  			format = u->plane_info->format;
2583  		else
2584  			format = u->surface->format;
2585  
2586  		if (dce_use_lut(format))
2587  			update_flags->bits.gamma_change = 1;
2588  	}
2589  
2590  	if (u->lut3d_func || u->func_shaper)
2591  		update_flags->bits.lut_3d = 1;
2592  
2593  	if (u->hdr_mult.value)
2594  		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2595  			update_flags->bits.hdr_mult = 1;
2596  			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2597  		}
2598  
2599  	if (u->sdr_white_level_nits)
2600  		if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) {
2601  			update_flags->bits.sdr_white_level_nits = 1;
2602  			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2603  		}
2604  
2605  	if (u->cm2_params) {
2606  		if ((u->cm2_params->component_settings.shaper_3dlut_setting
2607  					!= u->surface->mcm_shaper_3dlut_setting)
2608  				|| (u->cm2_params->component_settings.lut1d_enable
2609  					!= u->surface->mcm_lut1d_enable))
2610  			update_flags->bits.mcm_transfer_function_enable_change = 1;
2611  		if (u->cm2_params->cm2_luts.lut3d_data.lut3d_src
2612  				!= u->surface->mcm_luts.lut3d_data.lut3d_src)
2613  			update_flags->bits.mcm_transfer_function_enable_change = 1;
2614  	}
2615  	if (update_flags->bits.in_transfer_func_change) {
2616  		type = UPDATE_TYPE_MED;
2617  		elevate_update_type(&overall_type, type);
2618  	}
2619  
2620  	if (update_flags->bits.lut_3d) {
2621  		type = UPDATE_TYPE_FULL;
2622  		elevate_update_type(&overall_type, type);
2623  	}
2624  	if (update_flags->bits.mcm_transfer_function_enable_change) {
2625  		type = UPDATE_TYPE_FULL;
2626  		elevate_update_type(&overall_type, type);
2627  	}
2628  
2629  	if (dc->debug.enable_legacy_fast_update &&
2630  			(update_flags->bits.gamma_change ||
2631  			update_flags->bits.gamut_remap_change ||
2632  			update_flags->bits.input_csc_change ||
2633  			update_flags->bits.coeff_reduction_change)) {
2634  		type = UPDATE_TYPE_FULL;
2635  		elevate_update_type(&overall_type, type);
2636  	}
2637  	return overall_type;
2638  }
2639  
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2640  static enum surface_update_type check_update_surfaces_for_stream(
2641  		struct dc *dc,
2642  		struct dc_surface_update *updates,
2643  		int surface_count,
2644  		struct dc_stream_update *stream_update,
2645  		const struct dc_stream_status *stream_status)
2646  {
2647  	int i;
2648  	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2649  
2650  	if (dc->idle_optimizations_allowed)
2651  		overall_type = UPDATE_TYPE_FULL;
2652  
2653  	if (stream_status == NULL || stream_status->plane_count != surface_count)
2654  		overall_type = UPDATE_TYPE_FULL;
2655  
2656  	if (stream_update && stream_update->pending_test_pattern) {
2657  		overall_type = UPDATE_TYPE_FULL;
2658  	}
2659  
2660  	if (stream_update && stream_update->hw_cursor_req) {
2661  		overall_type = UPDATE_TYPE_FULL;
2662  	}
2663  
2664  	/* some stream updates require passive update */
2665  	if (stream_update) {
2666  		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2667  
2668  		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2669  			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2670  			stream_update->integer_scaling_update)
2671  			su_flags->bits.scaling = 1;
2672  
2673  		if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2674  			su_flags->bits.out_tf = 1;
2675  
2676  		if (stream_update->abm_level)
2677  			su_flags->bits.abm_level = 1;
2678  
2679  		if (stream_update->dpms_off)
2680  			su_flags->bits.dpms_off = 1;
2681  
2682  		if (stream_update->gamut_remap)
2683  			su_flags->bits.gamut_remap = 1;
2684  
2685  		if (stream_update->wb_update)
2686  			su_flags->bits.wb_update = 1;
2687  
2688  		if (stream_update->dsc_config)
2689  			su_flags->bits.dsc_changed = 1;
2690  
2691  		if (stream_update->mst_bw_update)
2692  			su_flags->bits.mst_bw = 1;
2693  
2694  		if (stream_update->stream->freesync_on_desktop &&
2695  			(stream_update->vrr_infopacket || stream_update->allow_freesync ||
2696  				stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2697  			su_flags->bits.fams_changed = 1;
2698  
2699  		if (stream_update->scaler_sharpener_update)
2700  			su_flags->bits.scaler_sharpener = 1;
2701  
2702  		if (su_flags->raw != 0)
2703  			overall_type = UPDATE_TYPE_FULL;
2704  
2705  		if (stream_update->output_csc_transform || stream_update->output_color_space)
2706  			su_flags->bits.out_csc = 1;
2707  
2708  		/* Output transfer function changes do not require bandwidth recalculation,
2709  		 * so don't trigger a full update
2710  		 */
2711  		if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2712  			su_flags->bits.out_tf = 1;
2713  	}
2714  
2715  	for (i = 0 ; i < surface_count; i++) {
2716  		enum surface_update_type type =
2717  				det_surface_update(dc, &updates[i]);
2718  
2719  		elevate_update_type(&overall_type, type);
2720  	}
2721  
2722  	return overall_type;
2723  }
2724  
2725  /*
2726   * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2727   *
2728   * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2729   */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2730  enum surface_update_type dc_check_update_surfaces_for_stream(
2731  		struct dc *dc,
2732  		struct dc_surface_update *updates,
2733  		int surface_count,
2734  		struct dc_stream_update *stream_update,
2735  		const struct dc_stream_status *stream_status)
2736  {
2737  	int i;
2738  	enum surface_update_type type;
2739  
2740  	if (stream_update)
2741  		stream_update->stream->update_flags.raw = 0;
2742  	for (i = 0; i < surface_count; i++)
2743  		updates[i].surface->update_flags.raw = 0;
2744  
2745  	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2746  	if (type == UPDATE_TYPE_FULL) {
2747  		if (stream_update) {
2748  			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2749  			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2750  			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2751  		}
2752  		for (i = 0; i < surface_count; i++)
2753  			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2754  	}
2755  
2756  	if (type == UPDATE_TYPE_FAST) {
2757  		// If there's an available clock comparator, we use that.
2758  		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2759  			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2760  				dc->optimized_required = true;
2761  		// Else we fallback to mem compare.
2762  		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2763  			dc->optimized_required = true;
2764  		}
2765  
2766  		dc->optimized_required |= dc->wm_optimized_required;
2767  	}
2768  
2769  	return type;
2770  }
2771  
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2772  static struct dc_stream_status *stream_get_status(
2773  	struct dc_state *ctx,
2774  	struct dc_stream_state *stream)
2775  {
2776  	uint8_t i;
2777  
2778  	for (i = 0; i < ctx->stream_count; i++) {
2779  		if (stream == ctx->streams[i]) {
2780  			return &ctx->stream_status[i];
2781  		}
2782  	}
2783  
2784  	return NULL;
2785  }
2786  
2787  static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2788  
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2789  static void copy_surface_update_to_plane(
2790  		struct dc_plane_state *surface,
2791  		struct dc_surface_update *srf_update)
2792  {
2793  	if (srf_update->flip_addr) {
2794  		surface->address = srf_update->flip_addr->address;
2795  		surface->flip_immediate =
2796  			srf_update->flip_addr->flip_immediate;
2797  		surface->time.time_elapsed_in_us[surface->time.index] =
2798  			srf_update->flip_addr->flip_timestamp_in_us -
2799  				surface->time.prev_update_time_in_us;
2800  		surface->time.prev_update_time_in_us =
2801  			srf_update->flip_addr->flip_timestamp_in_us;
2802  		surface->time.index++;
2803  		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2804  			surface->time.index = 0;
2805  
2806  		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2807  	}
2808  
2809  	if (srf_update->scaling_info) {
2810  		surface->scaling_quality =
2811  				srf_update->scaling_info->scaling_quality;
2812  		surface->dst_rect =
2813  				srf_update->scaling_info->dst_rect;
2814  		surface->src_rect =
2815  				srf_update->scaling_info->src_rect;
2816  		surface->clip_rect =
2817  				srf_update->scaling_info->clip_rect;
2818  	}
2819  
2820  	if (srf_update->plane_info) {
2821  		surface->color_space =
2822  				srf_update->plane_info->color_space;
2823  		surface->format =
2824  				srf_update->plane_info->format;
2825  		surface->plane_size =
2826  				srf_update->plane_info->plane_size;
2827  		surface->rotation =
2828  				srf_update->plane_info->rotation;
2829  		surface->horizontal_mirror =
2830  				srf_update->plane_info->horizontal_mirror;
2831  		surface->stereo_format =
2832  				srf_update->plane_info->stereo_format;
2833  		surface->tiling_info =
2834  				srf_update->plane_info->tiling_info;
2835  		surface->visible =
2836  				srf_update->plane_info->visible;
2837  		surface->per_pixel_alpha =
2838  				srf_update->plane_info->per_pixel_alpha;
2839  		surface->global_alpha =
2840  				srf_update->plane_info->global_alpha;
2841  		surface->global_alpha_value =
2842  				srf_update->plane_info->global_alpha_value;
2843  		surface->dcc =
2844  				srf_update->plane_info->dcc;
2845  		surface->layer_index =
2846  				srf_update->plane_info->layer_index;
2847  	}
2848  
2849  	if (srf_update->gamma) {
2850  		memcpy(&surface->gamma_correction.entries,
2851  			&srf_update->gamma->entries,
2852  			sizeof(struct dc_gamma_entries));
2853  		surface->gamma_correction.is_identity =
2854  			srf_update->gamma->is_identity;
2855  		surface->gamma_correction.num_entries =
2856  			srf_update->gamma->num_entries;
2857  		surface->gamma_correction.type =
2858  			srf_update->gamma->type;
2859  	}
2860  
2861  	if (srf_update->in_transfer_func) {
2862  		surface->in_transfer_func.sdr_ref_white_level =
2863  			srf_update->in_transfer_func->sdr_ref_white_level;
2864  		surface->in_transfer_func.tf =
2865  			srf_update->in_transfer_func->tf;
2866  		surface->in_transfer_func.type =
2867  			srf_update->in_transfer_func->type;
2868  		memcpy(&surface->in_transfer_func.tf_pts,
2869  			&srf_update->in_transfer_func->tf_pts,
2870  			sizeof(struct dc_transfer_func_distributed_points));
2871  	}
2872  
2873  	if (srf_update->func_shaper)
2874  		memcpy(&surface->in_shaper_func, srf_update->func_shaper,
2875  		sizeof(surface->in_shaper_func));
2876  
2877  	if (srf_update->lut3d_func)
2878  		memcpy(&surface->lut3d_func, srf_update->lut3d_func,
2879  		sizeof(surface->lut3d_func));
2880  
2881  	if (srf_update->hdr_mult.value)
2882  		surface->hdr_mult =
2883  				srf_update->hdr_mult;
2884  
2885  	if (srf_update->sdr_white_level_nits)
2886  		surface->sdr_white_level_nits =
2887  				srf_update->sdr_white_level_nits;
2888  
2889  	if (srf_update->blend_tf)
2890  		memcpy(&surface->blend_tf, srf_update->blend_tf,
2891  		sizeof(surface->blend_tf));
2892  
2893  	if (srf_update->input_csc_color_matrix)
2894  		surface->input_csc_color_matrix =
2895  			*srf_update->input_csc_color_matrix;
2896  
2897  	if (srf_update->coeff_reduction_factor)
2898  		surface->coeff_reduction_factor =
2899  			*srf_update->coeff_reduction_factor;
2900  
2901  	if (srf_update->gamut_remap_matrix)
2902  		surface->gamut_remap_matrix =
2903  			*srf_update->gamut_remap_matrix;
2904  	if (srf_update->cm2_params) {
2905  		surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting;
2906  		surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable;
2907  		surface->mcm_luts = srf_update->cm2_params->cm2_luts;
2908  	}
2909  	if (srf_update->cursor_csc_color_matrix)
2910  		surface->cursor_csc_color_matrix =
2911  			*srf_update->cursor_csc_color_matrix;
2912  }
2913  
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2914  static void copy_stream_update_to_stream(struct dc *dc,
2915  					 struct dc_state *context,
2916  					 struct dc_stream_state *stream,
2917  					 struct dc_stream_update *update)
2918  {
2919  	struct dc_context *dc_ctx = dc->ctx;
2920  
2921  	if (update == NULL || stream == NULL)
2922  		return;
2923  
2924  	if (update->src.height && update->src.width)
2925  		stream->src = update->src;
2926  
2927  	if (update->dst.height && update->dst.width)
2928  		stream->dst = update->dst;
2929  
2930  	if (update->out_transfer_func) {
2931  		stream->out_transfer_func.sdr_ref_white_level =
2932  			update->out_transfer_func->sdr_ref_white_level;
2933  		stream->out_transfer_func.tf = update->out_transfer_func->tf;
2934  		stream->out_transfer_func.type =
2935  			update->out_transfer_func->type;
2936  		memcpy(&stream->out_transfer_func.tf_pts,
2937  		       &update->out_transfer_func->tf_pts,
2938  		       sizeof(struct dc_transfer_func_distributed_points));
2939  	}
2940  
2941  	if (update->hdr_static_metadata)
2942  		stream->hdr_static_metadata = *update->hdr_static_metadata;
2943  
2944  	if (update->abm_level)
2945  		stream->abm_level = *update->abm_level;
2946  
2947  	if (update->periodic_interrupt)
2948  		stream->periodic_interrupt = *update->periodic_interrupt;
2949  
2950  	if (update->gamut_remap)
2951  		stream->gamut_remap_matrix = *update->gamut_remap;
2952  
2953  	/* Note: this being updated after mode set is currently not a use case
2954  	 * however if it arises OCSC would need to be reprogrammed at the
2955  	 * minimum
2956  	 */
2957  	if (update->output_color_space)
2958  		stream->output_color_space = *update->output_color_space;
2959  
2960  	if (update->output_csc_transform)
2961  		stream->csc_color_matrix = *update->output_csc_transform;
2962  
2963  	if (update->vrr_infopacket)
2964  		stream->vrr_infopacket = *update->vrr_infopacket;
2965  
2966  	if (update->hw_cursor_req)
2967  		stream->hw_cursor_req = *update->hw_cursor_req;
2968  
2969  	if (update->allow_freesync)
2970  		stream->allow_freesync = *update->allow_freesync;
2971  
2972  	if (update->vrr_active_variable)
2973  		stream->vrr_active_variable = *update->vrr_active_variable;
2974  
2975  	if (update->vrr_active_fixed)
2976  		stream->vrr_active_fixed = *update->vrr_active_fixed;
2977  
2978  	if (update->crtc_timing_adjust)
2979  		stream->adjust = *update->crtc_timing_adjust;
2980  
2981  	if (update->dpms_off)
2982  		stream->dpms_off = *update->dpms_off;
2983  
2984  	if (update->hfvsif_infopacket)
2985  		stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2986  
2987  	if (update->vtem_infopacket)
2988  		stream->vtem_infopacket = *update->vtem_infopacket;
2989  
2990  	if (update->vsc_infopacket)
2991  		stream->vsc_infopacket = *update->vsc_infopacket;
2992  
2993  	if (update->vsp_infopacket)
2994  		stream->vsp_infopacket = *update->vsp_infopacket;
2995  
2996  	if (update->adaptive_sync_infopacket)
2997  		stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2998  
2999  	if (update->dither_option)
3000  		stream->dither_option = *update->dither_option;
3001  
3002  	if (update->pending_test_pattern)
3003  		stream->test_pattern = *update->pending_test_pattern;
3004  	/* update current stream with writeback info */
3005  	if (update->wb_update) {
3006  		int i;
3007  
3008  		stream->num_wb_info = update->wb_update->num_wb_info;
3009  		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3010  		for (i = 0; i < stream->num_wb_info; i++)
3011  			stream->writeback_info[i] =
3012  				update->wb_update->writeback_info[i];
3013  	}
3014  	if (update->dsc_config) {
3015  		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3016  		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3017  		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3018  				       update->dsc_config->num_slices_v != 0);
3019  
3020  		/* Use temporarry context for validating new DSC config */
3021  		struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3022  
3023  		if (dsc_validate_context) {
3024  			stream->timing.dsc_cfg = *update->dsc_config;
3025  			stream->timing.flags.DSC = enable_dsc;
3026  			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
3027  				stream->timing.dsc_cfg = old_dsc_cfg;
3028  				stream->timing.flags.DSC = old_dsc_enabled;
3029  				update->dsc_config = NULL;
3030  			}
3031  
3032  			dc_state_release(dsc_validate_context);
3033  		} else {
3034  			DC_ERROR("Failed to allocate new validate context for DSC change\n");
3035  			update->dsc_config = NULL;
3036  		}
3037  	}
3038  	if (update->scaler_sharpener_update)
3039  		stream->scaler_sharpener_update = *update->scaler_sharpener_update;
3040  }
3041  
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3042  static void backup_planes_and_stream_state(
3043  		struct dc_scratch_space *scratch,
3044  		struct dc_stream_state *stream)
3045  {
3046  	int i;
3047  	struct dc_stream_status *status = dc_stream_get_status(stream);
3048  
3049  	if (!status)
3050  		return;
3051  
3052  	for (i = 0; i < status->plane_count; i++) {
3053  		scratch->plane_states[i] = *status->plane_states[i];
3054  	}
3055  	scratch->stream_state = *stream;
3056  }
3057  
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3058  static void restore_planes_and_stream_state(
3059  		struct dc_scratch_space *scratch,
3060  		struct dc_stream_state *stream)
3061  {
3062  	int i;
3063  	struct dc_stream_status *status = dc_stream_get_status(stream);
3064  
3065  	if (!status)
3066  		return;
3067  
3068  	for (i = 0; i < status->plane_count; i++) {
3069  		*status->plane_states[i] = scratch->plane_states[i];
3070  	}
3071  	*stream = scratch->stream_state;
3072  }
3073  
3074  /**
3075   * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3076   *
3077   * @dc: Current DC state
3078   * @context: New DC state to be programmed
3079   * @surface_count: Number of surfaces that have an updated
3080   * @stream: Corresponding stream to be updated in the current flip
3081   *
3082   * Updating seamless boot flags do not need to be part of the commit sequence. This
3083   * helper function will update the seamless boot flags on each flip (if required)
3084   * outside of the HW commit sequence (fast or slow).
3085   *
3086   * Return: void
3087   */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3088  static void update_seamless_boot_flags(struct dc *dc,
3089  		struct dc_state *context,
3090  		int surface_count,
3091  		struct dc_stream_state *stream)
3092  {
3093  	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3094  		/* Optimize seamless boot flag keeps clocks and watermarks high until
3095  		 * first flip. After first flip, optimization is required to lower
3096  		 * bandwidth. Important to note that it is expected UEFI will
3097  		 * only light up a single display on POST, therefore we only expect
3098  		 * one stream with seamless boot flag set.
3099  		 */
3100  		if (stream->apply_seamless_boot_optimization) {
3101  			stream->apply_seamless_boot_optimization = false;
3102  
3103  			if (get_seamless_boot_stream_count(context) == 0)
3104  				dc->optimized_required = true;
3105  		}
3106  	}
3107  }
3108  
3109  /**
3110   * update_planes_and_stream_state() - The function takes planes and stream
3111   * updates as inputs and determines the appropriate update type. If update type
3112   * is FULL, the function allocates a new context, populates and validates it.
3113   * Otherwise, it updates current dc context. The function will return both
3114   * new_context and new_update_type back to the caller. The function also backs
3115   * up both current and new contexts into corresponding dc state scratch memory.
3116   * TODO: The function does too many things, and even conditionally allocates dc
3117   * context memory implicitly. We should consider to break it down.
3118   *
3119   * @dc: Current DC state
3120   * @srf_updates: an array of surface updates
3121   * @surface_count: surface update count
3122   * @stream: Corresponding stream to be updated
3123   * @stream_update: stream update
3124   * @new_update_type: [out] determined update type by the function
3125   * @new_context: [out] new context allocated and validated if update type is
3126   * FULL, reference to current context if update type is less than FULL.
3127   *
3128   * Return: true if a valid update is populated into new_context, false
3129   * otherwise.
3130   */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3131  static bool update_planes_and_stream_state(struct dc *dc,
3132  		struct dc_surface_update *srf_updates, int surface_count,
3133  		struct dc_stream_state *stream,
3134  		struct dc_stream_update *stream_update,
3135  		enum surface_update_type *new_update_type,
3136  		struct dc_state **new_context)
3137  {
3138  	struct dc_state *context;
3139  	int i, j;
3140  	enum surface_update_type update_type;
3141  	const struct dc_stream_status *stream_status;
3142  	struct dc_context *dc_ctx = dc->ctx;
3143  
3144  	stream_status = dc_stream_get_status(stream);
3145  
3146  	if (!stream_status) {
3147  		if (surface_count) /* Only an error condition if surf_count non-zero*/
3148  			ASSERT(false);
3149  
3150  		return false; /* Cannot commit surface to stream that is not committed */
3151  	}
3152  
3153  	context = dc->current_state;
3154  	update_type = dc_check_update_surfaces_for_stream(
3155  			dc, srf_updates, surface_count, stream_update, stream_status);
3156  	if (update_type == UPDATE_TYPE_FULL)
3157  		backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3158  
3159  	/* update current stream with the new updates */
3160  	copy_stream_update_to_stream(dc, context, stream, stream_update);
3161  
3162  	/* do not perform surface update if surface has invalid dimensions
3163  	 * (all zero) and no scaling_info is provided
3164  	 */
3165  	if (surface_count > 0) {
3166  		for (i = 0; i < surface_count; i++) {
3167  			if ((srf_updates[i].surface->src_rect.width == 0 ||
3168  				 srf_updates[i].surface->src_rect.height == 0 ||
3169  				 srf_updates[i].surface->dst_rect.width == 0 ||
3170  				 srf_updates[i].surface->dst_rect.height == 0) &&
3171  				(!srf_updates[i].scaling_info ||
3172  				  srf_updates[i].scaling_info->src_rect.width == 0 ||
3173  				  srf_updates[i].scaling_info->src_rect.height == 0 ||
3174  				  srf_updates[i].scaling_info->dst_rect.width == 0 ||
3175  				  srf_updates[i].scaling_info->dst_rect.height == 0)) {
3176  				DC_ERROR("Invalid src/dst rects in surface update!\n");
3177  				return false;
3178  			}
3179  		}
3180  	}
3181  
3182  	if (update_type >= update_surface_trace_level)
3183  		update_surface_trace(dc, srf_updates, surface_count);
3184  
3185  	for (i = 0; i < surface_count; i++)
3186  		copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3187  
3188  	if (update_type >= UPDATE_TYPE_FULL) {
3189  		struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3190  
3191  		for (i = 0; i < surface_count; i++)
3192  			new_planes[i] = srf_updates[i].surface;
3193  
3194  		/* initialize scratch memory for building context */
3195  		context = dc_state_create_copy(dc->current_state);
3196  		if (context == NULL) {
3197  			DC_ERROR("Failed to allocate new validate context!\n");
3198  			return false;
3199  		}
3200  
3201  		/* For each full update, remove all existing phantom pipes first.
3202  		 * Ensures that we have enough pipes for newly added MPO planes
3203  		 */
3204  		dc_state_remove_phantom_streams_and_planes(dc, context);
3205  		dc_state_release_phantom_streams_and_planes(dc, context);
3206  
3207  		/*remove old surfaces from context */
3208  		if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3209  
3210  			BREAK_TO_DEBUGGER();
3211  			goto fail;
3212  		}
3213  
3214  		/* add surface to context */
3215  		if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3216  
3217  			BREAK_TO_DEBUGGER();
3218  			goto fail;
3219  		}
3220  	}
3221  
3222  	/* save update parameters into surface */
3223  	for (i = 0; i < surface_count; i++) {
3224  		struct dc_plane_state *surface = srf_updates[i].surface;
3225  
3226  		if (update_type != UPDATE_TYPE_MED)
3227  			continue;
3228  		if (surface->update_flags.bits.clip_size_change ||
3229  				surface->update_flags.bits.position_change) {
3230  			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3231  				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3232  
3233  				if (pipe_ctx->plane_state != surface)
3234  					continue;
3235  
3236  				resource_build_scaling_params(pipe_ctx);
3237  			}
3238  		}
3239  	}
3240  
3241  	if (update_type == UPDATE_TYPE_FULL) {
3242  		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3243  			BREAK_TO_DEBUGGER();
3244  			goto fail;
3245  		}
3246  	}
3247  	update_seamless_boot_flags(dc, context, surface_count, stream);
3248  
3249  	*new_context = context;
3250  	*new_update_type = update_type;
3251  	if (update_type == UPDATE_TYPE_FULL)
3252  		backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3253  
3254  	return true;
3255  
3256  fail:
3257  	dc_state_release(context);
3258  
3259  	return false;
3260  
3261  }
3262  
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3263  static void commit_planes_do_stream_update(struct dc *dc,
3264  		struct dc_stream_state *stream,
3265  		struct dc_stream_update *stream_update,
3266  		enum surface_update_type update_type,
3267  		struct dc_state *context)
3268  {
3269  	int j;
3270  
3271  	// Stream updates
3272  	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3273  		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3274  
3275  		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3276  
3277  			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3278  				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3279  
3280  			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3281  					stream_update->vrr_infopacket ||
3282  					stream_update->vsc_infopacket ||
3283  					stream_update->vsp_infopacket ||
3284  					stream_update->hfvsif_infopacket ||
3285  					stream_update->adaptive_sync_infopacket ||
3286  					stream_update->vtem_infopacket) {
3287  				resource_build_info_frame(pipe_ctx);
3288  				dc->hwss.update_info_frame(pipe_ctx);
3289  
3290  				if (dc_is_dp_signal(pipe_ctx->stream->signal))
3291  					dc->link_srv->dp_trace_source_sequence(
3292  							pipe_ctx->stream->link,
3293  							DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3294  			}
3295  
3296  			if (stream_update->hdr_static_metadata &&
3297  					stream->use_dynamic_meta &&
3298  					dc->hwss.set_dmdata_attributes &&
3299  					pipe_ctx->stream->dmdata_address.quad_part != 0)
3300  				dc->hwss.set_dmdata_attributes(pipe_ctx);
3301  
3302  			if (stream_update->gamut_remap)
3303  				dc_stream_set_gamut_remap(dc, stream);
3304  
3305  			if (stream_update->output_csc_transform)
3306  				dc_stream_program_csc_matrix(dc, stream);
3307  
3308  			if (stream_update->dither_option) {
3309  				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3310  				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3311  									&pipe_ctx->stream->bit_depth_params);
3312  				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3313  						&stream->bit_depth_params,
3314  						&stream->clamping);
3315  				while (odm_pipe) {
3316  					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3317  							&stream->bit_depth_params,
3318  							&stream->clamping);
3319  					odm_pipe = odm_pipe->next_odm_pipe;
3320  				}
3321  			}
3322  
3323  			if (stream_update->cursor_attributes)
3324  				program_cursor_attributes(dc, stream);
3325  
3326  			if (stream_update->cursor_position)
3327  				program_cursor_position(dc, stream);
3328  
3329  			/* Full fe update*/
3330  			if (update_type == UPDATE_TYPE_FAST)
3331  				continue;
3332  
3333  			if (stream_update->dsc_config)
3334  				dc->link_srv->update_dsc_config(pipe_ctx);
3335  
3336  			if (stream_update->mst_bw_update) {
3337  				if (stream_update->mst_bw_update->is_increase)
3338  					dc->link_srv->increase_mst_payload(pipe_ctx,
3339  							stream_update->mst_bw_update->mst_stream_bw);
3340  				else
3341  					dc->link_srv->reduce_mst_payload(pipe_ctx,
3342  							stream_update->mst_bw_update->mst_stream_bw);
3343  			}
3344  
3345  			if (stream_update->pending_test_pattern) {
3346  				/*
3347  				 * test pattern params depends on ODM topology
3348  				 * changes that we could be applying to front
3349  				 * end. Since at the current stage front end
3350  				 * changes are not yet applied. We can only
3351  				 * apply test pattern in hw based on current
3352  				 * state and populate the final test pattern
3353  				 * params in new state. If current and new test
3354  				 * pattern params are different as result of
3355  				 * different ODM topology being used, it will be
3356  				 * detected and handle during front end
3357  				 * programming update.
3358  				 */
3359  				dc->link_srv->dp_set_test_pattern(stream->link,
3360  					stream->test_pattern.type,
3361  					stream->test_pattern.color_space,
3362  					stream->test_pattern.p_link_settings,
3363  					stream->test_pattern.p_custom_pattern,
3364  					stream->test_pattern.cust_pattern_size);
3365  				resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3366  			}
3367  
3368  			if (stream_update->dpms_off) {
3369  				if (*stream_update->dpms_off) {
3370  					dc->link_srv->set_dpms_off(pipe_ctx);
3371  					/* for dpms, keep acquired resources*/
3372  					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3373  						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3374  
3375  					dc->optimized_required = true;
3376  
3377  				} else {
3378  					if (get_seamless_boot_stream_count(context) == 0)
3379  						dc->hwss.prepare_bandwidth(dc, dc->current_state);
3380  					dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3381  				}
3382  			} else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3383  					&& !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3384  				/*
3385  				 * Workaround for firmware issue in some receivers where they don't pick up
3386  				 * correct output color space unless DP link is disabled/re-enabled
3387  				 */
3388  				dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3389  			}
3390  
3391  			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3392  				bool should_program_abm = true;
3393  
3394  				// if otg funcs defined check if blanked before programming
3395  				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3396  					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3397  						should_program_abm = false;
3398  
3399  				if (should_program_abm) {
3400  					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3401  						dc->hwss.set_abm_immediate_disable(pipe_ctx);
3402  					} else {
3403  						pipe_ctx->stream_res.abm->funcs->set_abm_level(
3404  							pipe_ctx->stream_res.abm, stream->abm_level);
3405  					}
3406  				}
3407  			}
3408  		}
3409  	}
3410  }
3411  
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3412  static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3413  {
3414  	if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3415  			|| stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3416  			&& stream->ctx->dce_version >= DCN_VERSION_3_1)
3417  		return true;
3418  
3419  	if (stream->link->replay_settings.config.replay_supported)
3420  		return true;
3421  
3422  	if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3423  		return true;
3424  
3425  	return false;
3426  }
3427  
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3428  void dc_dmub_update_dirty_rect(struct dc *dc,
3429  			       int surface_count,
3430  			       struct dc_stream_state *stream,
3431  			       struct dc_surface_update *srf_updates,
3432  			       struct dc_state *context)
3433  {
3434  	union dmub_rb_cmd cmd;
3435  	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3436  	unsigned int i, j;
3437  	unsigned int panel_inst = 0;
3438  
3439  	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3440  		return;
3441  
3442  	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3443  		return;
3444  
3445  	memset(&cmd, 0x0, sizeof(cmd));
3446  	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3447  	cmd.update_dirty_rect.header.sub_type = 0;
3448  	cmd.update_dirty_rect.header.payload_bytes =
3449  		sizeof(cmd.update_dirty_rect) -
3450  		sizeof(cmd.update_dirty_rect.header);
3451  	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3452  	for (i = 0; i < surface_count; i++) {
3453  		struct dc_plane_state *plane_state = srf_updates[i].surface;
3454  		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3455  
3456  		if (!srf_updates[i].surface || !flip_addr)
3457  			continue;
3458  		/* Do not send in immediate flip mode */
3459  		if (srf_updates[i].surface->flip_immediate)
3460  			continue;
3461  
3462  		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3463  		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3464  		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3465  				sizeof(flip_addr->dirty_rects));
3466  		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3467  			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3468  
3469  			if (pipe_ctx->stream != stream)
3470  				continue;
3471  			if (pipe_ctx->plane_state != plane_state)
3472  				continue;
3473  
3474  			update_dirty_rect->panel_inst = panel_inst;
3475  			update_dirty_rect->pipe_idx = j;
3476  			dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3477  		}
3478  	}
3479  }
3480  
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3481  static void build_dmub_update_dirty_rect(
3482  		struct dc *dc,
3483  		int surface_count,
3484  		struct dc_stream_state *stream,
3485  		struct dc_surface_update *srf_updates,
3486  		struct dc_state *context,
3487  		struct dc_dmub_cmd dc_dmub_cmd[],
3488  		unsigned int *dmub_cmd_count)
3489  {
3490  	union dmub_rb_cmd cmd;
3491  	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3492  	unsigned int i, j;
3493  	unsigned int panel_inst = 0;
3494  
3495  	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3496  		return;
3497  
3498  	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3499  		return;
3500  
3501  	memset(&cmd, 0x0, sizeof(cmd));
3502  	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3503  	cmd.update_dirty_rect.header.sub_type = 0;
3504  	cmd.update_dirty_rect.header.payload_bytes =
3505  		sizeof(cmd.update_dirty_rect) -
3506  		sizeof(cmd.update_dirty_rect.header);
3507  	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3508  	for (i = 0; i < surface_count; i++) {
3509  		struct dc_plane_state *plane_state = srf_updates[i].surface;
3510  		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3511  
3512  		if (!srf_updates[i].surface || !flip_addr)
3513  			continue;
3514  		/* Do not send in immediate flip mode */
3515  		if (srf_updates[i].surface->flip_immediate)
3516  			continue;
3517  		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3518  		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3519  		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3520  				sizeof(flip_addr->dirty_rects));
3521  		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3522  			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3523  
3524  			if (pipe_ctx->stream != stream)
3525  				continue;
3526  			if (pipe_ctx->plane_state != plane_state)
3527  				continue;
3528  			update_dirty_rect->panel_inst = panel_inst;
3529  			update_dirty_rect->pipe_idx = j;
3530  			dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3531  			dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3532  			(*dmub_cmd_count)++;
3533  		}
3534  	}
3535  }
3536  
check_address_only_update(union surface_update_flags update_flags)3537  static bool check_address_only_update(union surface_update_flags update_flags)
3538  {
3539  	union surface_update_flags addr_only_update_flags;
3540  	addr_only_update_flags.raw = 0;
3541  	addr_only_update_flags.bits.addr_update = 1;
3542  
3543  	return update_flags.bits.addr_update &&
3544  			!(update_flags.raw & ~addr_only_update_flags.raw);
3545  }
3546  
3547  /**
3548   * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3549   *
3550   * @dc: Current DC state
3551   * @srf_updates: Array of surface updates
3552   * @surface_count: Number of surfaces that have an updated
3553   * @stream: Corresponding stream to be updated in the current flip
3554   * @context: New DC state to be programmed
3555   *
3556   * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3557   * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3558   *
3559   * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3560   * to build an array of commands and have them sent while the OTG lock is acquired.
3561   *
3562   * Return: void
3563   */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3564  static void build_dmub_cmd_list(struct dc *dc,
3565  		struct dc_surface_update *srf_updates,
3566  		int surface_count,
3567  		struct dc_stream_state *stream,
3568  		struct dc_state *context,
3569  		struct dc_dmub_cmd dc_dmub_cmd[],
3570  		unsigned int *dmub_cmd_count)
3571  {
3572  	// Initialize cmd count to 0
3573  	*dmub_cmd_count = 0;
3574  	build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3575  }
3576  
commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3577  static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc,
3578  		struct dc_surface_update *srf_updates,
3579  		int surface_count,
3580  		struct dc_stream_state *stream,
3581  		struct dc_state *context)
3582  {
3583  	int i, j;
3584  
3585  	/* update dirty rect for PSR */
3586  	dc_dmub_update_dirty_rect(dc, surface_count, stream,
3587  			srf_updates, context);
3588  
3589  	/* Perform requested Updates */
3590  	for (i = 0; i < surface_count; i++) {
3591  		struct dc_plane_state *plane_state = srf_updates[i].surface;
3592  
3593  		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3594  			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3595  
3596  			if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3597  				continue;
3598  
3599  			if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3600  				continue;
3601  
3602  			/* update pipe context for plane */
3603  			if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3604  				dc->hwss.update_plane_addr(dc, pipe_ctx);
3605  		}
3606  	}
3607  
3608  	/* Send commands to DMCUB */
3609  	dc_dmub_srv_fams2_passthrough_flip(dc,
3610  				context,
3611  				stream,
3612  				srf_updates,
3613  				surface_count);
3614  }
3615  
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3616  static void commit_planes_for_stream_fast(struct dc *dc,
3617  		struct dc_surface_update *srf_updates,
3618  		int surface_count,
3619  		struct dc_stream_state *stream,
3620  		struct dc_stream_update *stream_update,
3621  		enum surface_update_type update_type,
3622  		struct dc_state *context)
3623  {
3624  	int i, j;
3625  	struct pipe_ctx *top_pipe_to_program = NULL;
3626  	struct dc_stream_status *stream_status = NULL;
3627  	bool should_offload_fams2_flip = false;
3628  
3629  	if (dc->debug.fams2_config.bits.enable &&
3630  			dc->debug.fams2_config.bits.enable_offload_flip &&
3631  			dc_state_is_fams2_in_use(dc, context)) {
3632  		/* if not offloading to HWFQ, offload to FAMS2 if needed */
3633  		should_offload_fams2_flip = true;
3634  		for (i = 0; i < surface_count; i++) {
3635  			if (srf_updates[i].surface &&
3636  					srf_updates[i].surface->update_flags.raw &&
3637  					!check_address_only_update(srf_updates[i].surface->update_flags)) {
3638  				/* more than address update, need to acquire FAMS2 lock */
3639  				should_offload_fams2_flip = false;
3640  				break;
3641  			}
3642  		}
3643  		if (stream_update) {
3644  			/* more than address update, need to acquire FAMS2 lock */
3645  			should_offload_fams2_flip = false;
3646  		}
3647  	}
3648  
3649  	dc_exit_ips_for_hw_access(dc);
3650  
3651  	dc_z10_restore(dc);
3652  
3653  	top_pipe_to_program = resource_get_otg_master_for_stream(
3654  			&context->res_ctx,
3655  			stream);
3656  
3657  	if (!top_pipe_to_program)
3658  		return;
3659  
3660  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3661  		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3662  
3663  		if (pipe->stream && pipe->plane_state) {
3664  			if (!dc->debug.using_dml2)
3665  				set_p_state_switch_method(dc, context, pipe);
3666  
3667  			if (dc->debug.visual_confirm)
3668  				dc_update_visual_confirm_color(dc, context, pipe);
3669  		}
3670  	}
3671  
3672  	for (i = 0; i < surface_count; i++) {
3673  		struct dc_plane_state *plane_state = srf_updates[i].surface;
3674  		/*set logical flag for lock/unlock use*/
3675  		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3676  			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3677  
3678  			if (!pipe_ctx->plane_state)
3679  				continue;
3680  			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3681  				continue;
3682  			pipe_ctx->plane_state->triplebuffer_flips = false;
3683  			if (update_type == UPDATE_TYPE_FAST &&
3684  			    dc->hwss.program_triplebuffer != NULL &&
3685  			    !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3686  				/*triple buffer for VUpdate  only*/
3687  				pipe_ctx->plane_state->triplebuffer_flips = true;
3688  			}
3689  		}
3690  	}
3691  
3692  	stream_status = dc_state_get_stream_status(context, stream);
3693  
3694  	if (should_offload_fams2_flip) {
3695  		commit_plane_for_stream_offload_fams2_flip(dc,
3696  				srf_updates,
3697  				surface_count,
3698  				stream,
3699  				context);
3700  	} else if (stream_status) {
3701  		build_dmub_cmd_list(dc,
3702  				srf_updates,
3703  				surface_count,
3704  				stream,
3705  				context,
3706  				context->dc_dmub_cmd,
3707  				&(context->dmub_cmd_count));
3708  		hwss_build_fast_sequence(dc,
3709  				context->dc_dmub_cmd,
3710  				context->dmub_cmd_count,
3711  				context->block_sequence,
3712  				&(context->block_sequence_steps),
3713  				top_pipe_to_program,
3714  				stream_status,
3715  				context);
3716  		hwss_execute_sequence(dc,
3717  				context->block_sequence,
3718  				context->block_sequence_steps);
3719  	}
3720  
3721  	/* Clear update flags so next flip doesn't have redundant programming
3722  	 * (if there's no stream update, the update flags are not cleared).
3723  	 * Surface updates are cleared unconditionally at the beginning of each flip,
3724  	 * so no need to clear here.
3725  	 */
3726  	if (top_pipe_to_program->stream)
3727  		top_pipe_to_program->stream->update_flags.raw = 0;
3728  }
3729  
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3730  static void commit_planes_for_stream(struct dc *dc,
3731  		struct dc_surface_update *srf_updates,
3732  		int surface_count,
3733  		struct dc_stream_state *stream,
3734  		struct dc_stream_update *stream_update,
3735  		enum surface_update_type update_type,
3736  		struct dc_state *context)
3737  {
3738  	int i, j;
3739  	struct pipe_ctx *top_pipe_to_program = NULL;
3740  	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3741  	bool subvp_prev_use = false;
3742  	bool subvp_curr_use = false;
3743  	uint8_t current_stream_mask = 0;
3744  
3745  	// Once we apply the new subvp context to hardware it won't be in the
3746  	// dc->current_state anymore, so we have to cache it before we apply
3747  	// the new SubVP context
3748  	subvp_prev_use = false;
3749  	dc_exit_ips_for_hw_access(dc);
3750  
3751  	dc_z10_restore(dc);
3752  	if (update_type == UPDATE_TYPE_FULL)
3753  		hwss_process_outstanding_hw_updates(dc, dc->current_state);
3754  
3755  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3756  		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3757  
3758  		if (pipe->stream && pipe->plane_state) {
3759  			if (!dc->debug.using_dml2)
3760  				set_p_state_switch_method(dc, context, pipe);
3761  
3762  			if (dc->debug.visual_confirm)
3763  				dc_update_visual_confirm_color(dc, context, pipe);
3764  		}
3765  	}
3766  
3767  	if (update_type == UPDATE_TYPE_FULL) {
3768  		dc_allow_idle_optimizations(dc, false);
3769  
3770  		if (get_seamless_boot_stream_count(context) == 0)
3771  			dc->hwss.prepare_bandwidth(dc, context);
3772  
3773  		if (dc->hwss.update_dsc_pg)
3774  			dc->hwss.update_dsc_pg(dc, context, false);
3775  
3776  		context_clock_trace(dc, context);
3777  	}
3778  
3779  	top_pipe_to_program = resource_get_otg_master_for_stream(
3780  				&context->res_ctx,
3781  				stream);
3782  	ASSERT(top_pipe_to_program != NULL);
3783  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3784  		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3785  
3786  		// Check old context for SubVP
3787  		subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
3788  		if (subvp_prev_use)
3789  			break;
3790  	}
3791  
3792  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3793  		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3794  
3795  		if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
3796  			subvp_curr_use = true;
3797  			break;
3798  		}
3799  	}
3800  
3801  	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3802  		struct pipe_ctx *mpcc_pipe;
3803  		struct pipe_ctx *odm_pipe;
3804  
3805  		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3806  			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3807  				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3808  	}
3809  
3810  	if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming)
3811  		dc->res_pool->funcs->prepare_mcache_programming(dc, context);
3812  
3813  	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3814  		if (top_pipe_to_program &&
3815  			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3816  			if (should_use_dmub_lock(stream->link)) {
3817  				union dmub_hw_lock_flags hw_locks = { 0 };
3818  				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3819  
3820  				hw_locks.bits.lock_dig = 1;
3821  				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3822  
3823  				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3824  							true,
3825  							&hw_locks,
3826  							&inst_flags);
3827  			} else
3828  				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3829  						top_pipe_to_program->stream_res.tg);
3830  		}
3831  
3832  	if (dc->hwss.wait_for_dcc_meta_propagation) {
3833  		dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program);
3834  	}
3835  
3836  	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3837  		if (dc->hwss.subvp_pipe_control_lock)
3838  			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3839  
3840  		if (dc->hwss.fams2_global_control_lock)
3841  			dc->hwss.fams2_global_control_lock(dc, context, true);
3842  
3843  		dc->hwss.interdependent_update_lock(dc, context, true);
3844  	} else {
3845  		if (dc->hwss.subvp_pipe_control_lock)
3846  			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3847  
3848  		if (dc->hwss.fams2_global_control_lock)
3849  			dc->hwss.fams2_global_control_lock(dc, context, true);
3850  
3851  		/* Lock the top pipe while updating plane addrs, since freesync requires
3852  		 *  plane addr update event triggers to be synchronized.
3853  		 *  top_pipe_to_program is expected to never be NULL
3854  		 */
3855  		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3856  	}
3857  
3858  	dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3859  
3860  	// Stream updates
3861  	if (stream_update)
3862  		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3863  
3864  	if (surface_count == 0) {
3865  		/*
3866  		 * In case of turning off screen, no need to program front end a second time.
3867  		 * just return after program blank.
3868  		 */
3869  		if (dc->hwss.apply_ctx_for_surface)
3870  			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3871  		if (dc->hwss.program_front_end_for_ctx)
3872  			dc->hwss.program_front_end_for_ctx(dc, context);
3873  
3874  		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3875  			dc->hwss.interdependent_update_lock(dc, context, false);
3876  		} else {
3877  			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3878  		}
3879  		dc->hwss.post_unlock_program_front_end(dc, context);
3880  
3881  		if (update_type != UPDATE_TYPE_FAST)
3882  			if (dc->hwss.commit_subvp_config)
3883  				dc->hwss.commit_subvp_config(dc, context);
3884  
3885  		/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3886  		 * move the SubVP lock to after the phantom pipes have been setup
3887  		 */
3888  		if (dc->hwss.subvp_pipe_control_lock)
3889  			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3890  							 NULL, subvp_prev_use);
3891  
3892  		if (dc->hwss.fams2_global_control_lock)
3893  			dc->hwss.fams2_global_control_lock(dc, context, false);
3894  
3895  		return;
3896  	}
3897  
3898  	if (update_type != UPDATE_TYPE_FAST) {
3899  		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3900  			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3901  
3902  			if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3903  				dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3904  				pipe_ctx->stream && pipe_ctx->plane_state) {
3905  				/* Only update visual confirm for SUBVP and Mclk switching here.
3906  				 * The bar appears on all pipes, so we need to update the bar on all displays,
3907  				 * so the information doesn't get stale.
3908  				 */
3909  				dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3910  						pipe_ctx->plane_res.hubp->inst);
3911  			}
3912  		}
3913  	}
3914  
3915  	for (i = 0; i < surface_count; i++) {
3916  		struct dc_plane_state *plane_state = srf_updates[i].surface;
3917  
3918  		/*set logical flag for lock/unlock use*/
3919  		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3920  			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3921  			if (!pipe_ctx->plane_state)
3922  				continue;
3923  			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3924  				continue;
3925  			pipe_ctx->plane_state->triplebuffer_flips = false;
3926  			if (update_type == UPDATE_TYPE_FAST &&
3927  				dc->hwss.program_triplebuffer != NULL &&
3928  				!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3929  					/*triple buffer for VUpdate  only*/
3930  					pipe_ctx->plane_state->triplebuffer_flips = true;
3931  			}
3932  		}
3933  		if (update_type == UPDATE_TYPE_FULL) {
3934  			/* force vsync flip when reconfiguring pipes to prevent underflow */
3935  			plane_state->flip_immediate = false;
3936  		}
3937  	}
3938  
3939  	// Update Type FULL, Surface updates
3940  	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3941  		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3942  
3943  		if (!pipe_ctx->top_pipe &&
3944  			!pipe_ctx->prev_odm_pipe &&
3945  			should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3946  			struct dc_stream_status *stream_status = NULL;
3947  
3948  			if (!pipe_ctx->plane_state)
3949  				continue;
3950  
3951  			/* Full fe update*/
3952  			if (update_type == UPDATE_TYPE_FAST)
3953  				continue;
3954  
3955  			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3956  
3957  			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3958  				/*turn off triple buffer for full update*/
3959  				dc->hwss.program_triplebuffer(
3960  					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3961  			}
3962  			stream_status =
3963  				stream_get_status(context, pipe_ctx->stream);
3964  
3965  			if (dc->hwss.apply_ctx_for_surface && stream_status)
3966  				dc->hwss.apply_ctx_for_surface(
3967  					dc, pipe_ctx->stream, stream_status->plane_count, context);
3968  		}
3969  	}
3970  	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3971  		dc->hwss.program_front_end_for_ctx(dc, context);
3972  		if (dc->debug.validate_dml_output) {
3973  			for (i = 0; i < dc->res_pool->pipe_count; i++) {
3974  				struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3975  				if (cur_pipe->stream == NULL)
3976  					continue;
3977  
3978  				cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3979  						cur_pipe->plane_res.hubp, dc->ctx,
3980  						&context->res_ctx.pipe_ctx[i].rq_regs,
3981  						&context->res_ctx.pipe_ctx[i].dlg_regs,
3982  						&context->res_ctx.pipe_ctx[i].ttu_regs);
3983  			}
3984  		}
3985  	}
3986  
3987  	// Update Type FAST, Surface updates
3988  	if (update_type == UPDATE_TYPE_FAST) {
3989  		if (dc->hwss.set_flip_control_gsl)
3990  			for (i = 0; i < surface_count; i++) {
3991  				struct dc_plane_state *plane_state = srf_updates[i].surface;
3992  
3993  				for (j = 0; j < dc->res_pool->pipe_count; j++) {
3994  					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3995  
3996  					if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3997  						continue;
3998  
3999  					if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4000  						continue;
4001  
4002  					// GSL has to be used for flip immediate
4003  					dc->hwss.set_flip_control_gsl(pipe_ctx,
4004  							pipe_ctx->plane_state->flip_immediate);
4005  				}
4006  			}
4007  
4008  		/* Perform requested Updates */
4009  		for (i = 0; i < surface_count; i++) {
4010  			struct dc_plane_state *plane_state = srf_updates[i].surface;
4011  
4012  			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4013  				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4014  
4015  				if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4016  					continue;
4017  
4018  				if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4019  					continue;
4020  
4021  				if (srf_updates[i].cm2_params &&
4022  						srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src ==
4023  								DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM &&
4024  						srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting ==
4025  								DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT &&
4026  						dc->hwss.trigger_3dlut_dma_load)
4027  					dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx);
4028  
4029  				/*program triple buffer after lock based on flip type*/
4030  				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4031  					/*only enable triplebuffer for  fast_update*/
4032  					dc->hwss.program_triplebuffer(
4033  						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4034  				}
4035  				if (pipe_ctx->plane_state->update_flags.bits.addr_update)
4036  					dc->hwss.update_plane_addr(dc, pipe_ctx);
4037  			}
4038  		}
4039  	}
4040  
4041  	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4042  		dc->hwss.interdependent_update_lock(dc, context, false);
4043  	} else {
4044  		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4045  	}
4046  
4047  	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4048  		if (top_pipe_to_program &&
4049  		    top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4050  			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4051  				top_pipe_to_program->stream_res.tg,
4052  				CRTC_STATE_VACTIVE);
4053  			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4054  				top_pipe_to_program->stream_res.tg,
4055  				CRTC_STATE_VBLANK);
4056  			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4057  				top_pipe_to_program->stream_res.tg,
4058  				CRTC_STATE_VACTIVE);
4059  
4060  			if (should_use_dmub_lock(stream->link)) {
4061  				union dmub_hw_lock_flags hw_locks = { 0 };
4062  				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4063  
4064  				hw_locks.bits.lock_dig = 1;
4065  				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4066  
4067  				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4068  							false,
4069  							&hw_locks,
4070  							&inst_flags);
4071  			} else
4072  				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
4073  					top_pipe_to_program->stream_res.tg);
4074  		}
4075  
4076  	if (subvp_curr_use) {
4077  		/* If enabling subvp or transitioning from subvp->subvp, enable the
4078  		 * phantom streams before we program front end for the phantom pipes.
4079  		 */
4080  		if (update_type != UPDATE_TYPE_FAST) {
4081  			if (dc->hwss.enable_phantom_streams)
4082  				dc->hwss.enable_phantom_streams(dc, context);
4083  		}
4084  	}
4085  
4086  	if (update_type != UPDATE_TYPE_FAST)
4087  		dc->hwss.post_unlock_program_front_end(dc, context);
4088  
4089  	if (subvp_prev_use && !subvp_curr_use) {
4090  		/* If disabling subvp, disable phantom streams after front end
4091  		 * programming has completed (we turn on phantom OTG in order
4092  		 * to complete the plane disable for phantom pipes).
4093  		 */
4094  
4095  		if (dc->hwss.disable_phantom_streams)
4096  			dc->hwss.disable_phantom_streams(dc, context);
4097  	}
4098  
4099  	if (update_type != UPDATE_TYPE_FAST)
4100  		if (dc->hwss.commit_subvp_config)
4101  			dc->hwss.commit_subvp_config(dc, context);
4102  	/* Since phantom pipe programming is moved to post_unlock_program_front_end,
4103  	 * move the SubVP lock to after the phantom pipes have been setup
4104  	 */
4105  	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4106  		if (dc->hwss.subvp_pipe_control_lock)
4107  			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4108  		if (dc->hwss.fams2_global_control_lock)
4109  			dc->hwss.fams2_global_control_lock(dc, context, false);
4110  	} else {
4111  		if (dc->hwss.subvp_pipe_control_lock)
4112  			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4113  		if (dc->hwss.fams2_global_control_lock)
4114  			dc->hwss.fams2_global_control_lock(dc, context, false);
4115  	}
4116  
4117  	// Fire manual trigger only when bottom plane is flipped
4118  	for (j = 0; j < dc->res_pool->pipe_count; j++) {
4119  		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4120  
4121  		if (!pipe_ctx->plane_state)
4122  			continue;
4123  
4124  		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4125  				!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4126  				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
4127  				pipe_ctx->plane_state->skip_manual_trigger)
4128  			continue;
4129  
4130  		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4131  			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4132  	}
4133  
4134  	current_stream_mask = get_stream_mask(dc, context);
4135  	if (current_stream_mask != context->stream_mask) {
4136  		context->stream_mask = current_stream_mask;
4137  		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4138  	}
4139  }
4140  
4141  /**
4142   * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4143   *
4144   * @dc: Used to get the current state status
4145   * @stream: Target stream, which we want to remove the attached planes
4146   * @srf_updates: Array of surface updates
4147   * @surface_count: Number of surface update
4148   * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4149   *
4150   * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4151   * the MPO if used simultaneously in some specific configurations (e.g.,
4152   * 4k@144). This function checks if the incoming context requires applying a
4153   * transition state with unnecessary pipe splitting and ODM disabled to
4154   * circumvent our hardware limitations to prevent this edge case. If the OPP
4155   * associated with an MPCC might change due to plane additions, this function
4156   * returns true.
4157   *
4158   * Return:
4159   * Return true if OPP and MPCC might change, otherwise, return false.
4160   */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4161  static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4162  		struct dc_stream_state *stream,
4163  		struct dc_surface_update *srf_updates,
4164  		int surface_count,
4165  		bool *is_plane_addition)
4166  {
4167  
4168  	struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4169  	bool force_minimal_pipe_splitting = false;
4170  	bool subvp_active = false;
4171  	uint32_t i;
4172  
4173  	*is_plane_addition = false;
4174  
4175  	if (cur_stream_status &&
4176  			dc->current_state->stream_count > 0 &&
4177  			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4178  		/* determine if minimal transition is required due to MPC*/
4179  		if (surface_count > 0) {
4180  			if (cur_stream_status->plane_count > surface_count) {
4181  				force_minimal_pipe_splitting = true;
4182  			} else if (cur_stream_status->plane_count < surface_count) {
4183  				force_minimal_pipe_splitting = true;
4184  				*is_plane_addition = true;
4185  			}
4186  		}
4187  	}
4188  
4189  	if (cur_stream_status &&
4190  			dc->current_state->stream_count == 1 &&
4191  			dc->debug.enable_single_display_2to1_odm_policy) {
4192  		/* determine if minimal transition is required due to dynamic ODM*/
4193  		if (surface_count > 0) {
4194  			if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4195  				force_minimal_pipe_splitting = true;
4196  			} else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4197  				force_minimal_pipe_splitting = true;
4198  				*is_plane_addition = true;
4199  			}
4200  		}
4201  	}
4202  
4203  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4204  		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4205  
4206  		if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4207  			subvp_active = true;
4208  			break;
4209  		}
4210  	}
4211  
4212  	/* For SubVP when adding or removing planes we need to add a minimal transition
4213  	 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4214  	 * must use the minimal transition path to disable the pipe correctly.
4215  	 *
4216  	 * We want to use the minimal transition whenever subvp is active, not only if
4217  	 * a plane is being added / removed from a subvp stream (MPO plane can be added
4218  	 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4219  	 * a min transition to disable subvp.
4220  	 */
4221  	if (cur_stream_status && subvp_active) {
4222  		/* determine if minimal transition is required due to SubVP*/
4223  		if (cur_stream_status->plane_count > surface_count) {
4224  			force_minimal_pipe_splitting = true;
4225  		} else if (cur_stream_status->plane_count < surface_count) {
4226  			force_minimal_pipe_splitting = true;
4227  			*is_plane_addition = true;
4228  		}
4229  	}
4230  
4231  	return force_minimal_pipe_splitting;
4232  }
4233  
4234  struct pipe_split_policy_backup {
4235  	bool dynamic_odm_policy;
4236  	bool subvp_policy;
4237  	enum pipe_split_policy mpc_policy;
4238  	char force_odm[MAX_PIPES];
4239  };
4240  
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4241  static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4242  		struct dc_state *context,
4243  		struct pipe_split_policy_backup *policy)
4244  {
4245  	int i;
4246  
4247  	if (!dc->config.is_vmin_only_asic) {
4248  		policy->mpc_policy = dc->debug.pipe_split_policy;
4249  		dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4250  	}
4251  	policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4252  	dc->debug.enable_single_display_2to1_odm_policy = false;
4253  	policy->subvp_policy = dc->debug.force_disable_subvp;
4254  	dc->debug.force_disable_subvp = true;
4255  	for (i = 0; i < context->stream_count; i++) {
4256  		policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4257  		if (context->streams[i]->debug.allow_transition_for_forced_odm)
4258  			context->streams[i]->debug.force_odm_combine_segments = 0;
4259  	}
4260  }
4261  
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4262  static void restore_minimal_pipe_split_policy(struct dc *dc,
4263  		struct dc_state *context,
4264  		struct pipe_split_policy_backup *policy)
4265  {
4266  	uint8_t i;
4267  
4268  	if (!dc->config.is_vmin_only_asic)
4269  		dc->debug.pipe_split_policy = policy->mpc_policy;
4270  	dc->debug.enable_single_display_2to1_odm_policy =
4271  			policy->dynamic_odm_policy;
4272  	dc->debug.force_disable_subvp = policy->subvp_policy;
4273  	for (i = 0; i < context->stream_count; i++)
4274  		context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4275  }
4276  
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4277  static void release_minimal_transition_state(struct dc *dc,
4278  		struct dc_state *minimal_transition_context,
4279  		struct dc_state *base_context,
4280  		struct pipe_split_policy_backup *policy)
4281  {
4282  	restore_minimal_pipe_split_policy(dc, base_context, policy);
4283  	dc_state_release(minimal_transition_context);
4284  }
4285  
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4286  static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4287  {
4288  	uint8_t i;
4289  	int j;
4290  	struct dc_stream_status *stream_status;
4291  
4292  	for (i = 0; i < context->stream_count; i++) {
4293  		stream_status = &context->stream_status[i];
4294  
4295  		for (j = 0; j < stream_status->plane_count; j++)
4296  			stream_status->plane_states[j]->flip_immediate = false;
4297  	}
4298  }
4299  
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4300  static struct dc_state *create_minimal_transition_state(struct dc *dc,
4301  		struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4302  {
4303  	struct dc_state *minimal_transition_context = NULL;
4304  
4305  	minimal_transition_context = dc_state_create_copy(base_context);
4306  	if (!minimal_transition_context)
4307  		return NULL;
4308  
4309  	backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4310  	/* commit minimal state */
4311  	if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false)) {
4312  		/* prevent underflow and corruption when reconfiguring pipes */
4313  		force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4314  	} else {
4315  		/*
4316  		 * This should never happen, minimal transition state should
4317  		 * always be validated first before adding pipe split features.
4318  		 */
4319  		release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4320  		BREAK_TO_DEBUGGER();
4321  		minimal_transition_context = NULL;
4322  	}
4323  	return minimal_transition_context;
4324  }
4325  
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4326  static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4327  		struct dc *dc,
4328  		struct dc_state *initial_state,
4329  		struct dc_state *intermediate_state,
4330  		struct dc_state *final_state)
4331  {
4332  	return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4333  			intermediate_state) &&
4334  			dc->hwss.is_pipe_topology_transition_seamless(dc,
4335  					intermediate_state, final_state);
4336  }
4337  
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4338  static void swap_and_release_current_context(struct dc *dc,
4339  		struct dc_state *new_context, struct dc_stream_state *stream)
4340  {
4341  
4342  	int i;
4343  	struct dc_state *old = dc->current_state;
4344  	struct pipe_ctx *pipe_ctx;
4345  
4346  	/* Since memory free requires elevated IRQ, an interrupt
4347  	 * request is generated by mem free. If this happens
4348  	 * between freeing and reassigning the context, our vsync
4349  	 * interrupt will call into dc and cause a memory
4350  	 * corruption. Hence, we first reassign the context,
4351  	 * then free the old context.
4352  	 */
4353  	dc->current_state = new_context;
4354  	dc_state_release(old);
4355  
4356  	// clear any forced full updates
4357  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4358  		pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4359  
4360  		if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4361  			pipe_ctx->plane_state->force_full_update = false;
4362  	}
4363  }
4364  
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4365  static int initialize_empty_surface_updates(
4366  		struct dc_stream_state *stream,
4367  		struct dc_surface_update *srf_updates)
4368  {
4369  	struct dc_stream_status *status = dc_stream_get_status(stream);
4370  	int i;
4371  
4372  	if (!status)
4373  		return 0;
4374  
4375  	for (i = 0; i < status->plane_count; i++)
4376  		srf_updates[i].surface = status->plane_states[i];
4377  
4378  	return status->plane_count;
4379  }
4380  
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4381  static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4382  		struct dc_state *new_context,
4383  		struct dc_stream_state *stream,
4384  		struct dc_surface_update *srf_updates,
4385  		int surface_count)
4386  {
4387  	bool success = false;
4388  	struct pipe_split_policy_backup policy;
4389  	struct dc_state *intermediate_context =
4390  			create_minimal_transition_state(dc, new_context,
4391  					&policy);
4392  
4393  	if (intermediate_context) {
4394  		if (is_pipe_topology_transition_seamless_with_intermediate_step(
4395  				dc,
4396  				dc->current_state,
4397  				intermediate_context,
4398  				new_context)) {
4399  			DC_LOG_DC("commit minimal transition state: base = new state\n");
4400  			commit_planes_for_stream(dc, srf_updates,
4401  					surface_count, stream, NULL,
4402  					UPDATE_TYPE_FULL, intermediate_context);
4403  			swap_and_release_current_context(
4404  					dc, intermediate_context, stream);
4405  			dc_state_retain(dc->current_state);
4406  			success = true;
4407  		}
4408  		release_minimal_transition_state(
4409  				dc, intermediate_context, new_context, &policy);
4410  	}
4411  	return success;
4412  }
4413  
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4414  static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4415  		struct dc_state *new_context, struct dc_stream_state *stream)
4416  {
4417  	bool success = false;
4418  	struct pipe_split_policy_backup policy;
4419  	struct dc_state *intermediate_context;
4420  	struct dc_state *old_current_state = dc->current_state;
4421  	struct dc_surface_update srf_updates[MAX_SURFACE_NUM] = {0};
4422  	int surface_count;
4423  
4424  	/*
4425  	 * Both current and new contexts share the same stream and plane state
4426  	 * pointers. When new context is validated, stream and planes get
4427  	 * populated with new updates such as new plane addresses. This makes
4428  	 * the current context no longer valid because stream and planes are
4429  	 * modified from the original. We backup current stream and plane states
4430  	 * into scratch space whenever we are populating new context. So we can
4431  	 * restore the original values back by calling the restore function now.
4432  	 * This restores back the original stream and plane states associated
4433  	 * with the current state.
4434  	 */
4435  	restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4436  	dc_state_retain(old_current_state);
4437  	intermediate_context = create_minimal_transition_state(dc,
4438  			old_current_state, &policy);
4439  
4440  	if (intermediate_context) {
4441  		if (is_pipe_topology_transition_seamless_with_intermediate_step(
4442  				dc,
4443  				dc->current_state,
4444  				intermediate_context,
4445  				new_context)) {
4446  			DC_LOG_DC("commit minimal transition state: base = current state\n");
4447  			surface_count = initialize_empty_surface_updates(
4448  					stream, srf_updates);
4449  			commit_planes_for_stream(dc, srf_updates,
4450  					surface_count, stream, NULL,
4451  					UPDATE_TYPE_FULL, intermediate_context);
4452  			swap_and_release_current_context(
4453  					dc, intermediate_context, stream);
4454  			dc_state_retain(dc->current_state);
4455  			success = true;
4456  		}
4457  		release_minimal_transition_state(dc, intermediate_context,
4458  				old_current_state, &policy);
4459  	}
4460  	dc_state_release(old_current_state);
4461  	/*
4462  	 * Restore stream and plane states back to the values associated with
4463  	 * new context.
4464  	 */
4465  	restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4466  	return success;
4467  }
4468  
4469  /**
4470   * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4471   * on current or new context
4472   *
4473   * @dc: DC structure, used to get the current state
4474   * @new_context: New context
4475   * @stream: Stream getting the update for the flip
4476   * @srf_updates: Surface updates
4477   * @surface_count: Number of surfaces
4478   *
4479   * The function takes in current state and new state and determine a minimal
4480   * transition state as the intermediate step which could make the transition
4481   * between current and new states seamless. If found, it will commit the minimal
4482   * transition state and update current state to this minimal transition state
4483   * and return true, if not, it will return false.
4484   *
4485   * Return:
4486   * Return True if the minimal transition succeeded, false otherwise
4487   */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4488  static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4489  		struct dc_state *new_context,
4490  		struct dc_stream_state *stream,
4491  		struct dc_surface_update *srf_updates,
4492  		int surface_count)
4493  {
4494  	bool success = commit_minimal_transition_based_on_new_context(
4495  				dc, new_context, stream, srf_updates,
4496  				surface_count);
4497  	if (!success)
4498  		success = commit_minimal_transition_based_on_current_context(dc,
4499  				new_context, stream);
4500  	if (!success)
4501  		DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4502  	return success;
4503  }
4504  
4505  /**
4506   * commit_minimal_transition_state - Create a transition pipe split state
4507   *
4508   * @dc: Used to get the current state status
4509   * @transition_base_context: New transition state
4510   *
4511   * In some specific configurations, such as pipe split on multi-display with
4512   * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4513   * programming when moving to new planes. To mitigate those types of problems,
4514   * this function adds a transition state that minimizes pipe usage before
4515   * programming the new configuration. When adding a new plane, the current
4516   * state requires the least pipes, so it is applied without splitting. When
4517   * removing a plane, the new state requires the least pipes, so it is applied
4518   * without splitting.
4519   *
4520   * Return:
4521   * Return false if something is wrong in the transition state.
4522   */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4523  static bool commit_minimal_transition_state(struct dc *dc,
4524  		struct dc_state *transition_base_context)
4525  {
4526  	struct dc_state *transition_context;
4527  	struct pipe_split_policy_backup policy;
4528  	enum dc_status ret = DC_ERROR_UNEXPECTED;
4529  	unsigned int i, j;
4530  	unsigned int pipe_in_use = 0;
4531  	bool subvp_in_use = false;
4532  	bool odm_in_use = false;
4533  
4534  	/* check current pipes in use*/
4535  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4536  		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4537  
4538  		if (pipe->plane_state)
4539  			pipe_in_use++;
4540  	}
4541  
4542  	/* If SubVP is enabled and we are adding or removing planes from any main subvp
4543  	 * pipe, we must use the minimal transition.
4544  	 */
4545  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4546  		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4547  
4548  		if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4549  			subvp_in_use = true;
4550  			break;
4551  		}
4552  	}
4553  
4554  	/* If ODM is enabled and we are adding or removing planes from any ODM
4555  	 * pipe, we must use the minimal transition.
4556  	 */
4557  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4558  		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4559  
4560  		if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4561  			odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4562  			break;
4563  		}
4564  	}
4565  
4566  	/* When the OS add a new surface if we have been used all of pipes with odm combine
4567  	 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4568  	 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4569  	 * call it again. Otherwise return true to skip.
4570  	 *
4571  	 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4572  	 * enter/exit MPO when DCN still have enough resources.
4573  	 */
4574  	if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4575  		return true;
4576  
4577  	DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4578  			dc->current_state == transition_base_context ? "current" : "new",
4579  			subvp_in_use ? "Subvp In Use" :
4580  			odm_in_use ? "ODM in Use" :
4581  			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4582  			"Unknown");
4583  
4584  	dc_state_retain(transition_base_context);
4585  	transition_context = create_minimal_transition_state(dc,
4586  			transition_base_context, &policy);
4587  	if (transition_context) {
4588  		ret = dc_commit_state_no_check(dc, transition_context);
4589  		release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4590  	}
4591  	dc_state_release(transition_base_context);
4592  
4593  	if (ret != DC_OK) {
4594  		/* this should never happen */
4595  		BREAK_TO_DEBUGGER();
4596  		return false;
4597  	}
4598  
4599  	/* force full surface update */
4600  	for (i = 0; i < dc->current_state->stream_count; i++) {
4601  		for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4602  			dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4603  		}
4604  	}
4605  
4606  	return true;
4607  }
4608  
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4609  void populate_fast_updates(struct dc_fast_update *fast_update,
4610  		struct dc_surface_update *srf_updates,
4611  		int surface_count,
4612  		struct dc_stream_update *stream_update)
4613  {
4614  	int i = 0;
4615  
4616  	if (stream_update) {
4617  		fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4618  		fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4619  	} else {
4620  		fast_update[0].out_transfer_func = NULL;
4621  		fast_update[0].output_csc_transform = NULL;
4622  	}
4623  
4624  	for (i = 0; i < surface_count; i++) {
4625  		fast_update[i].flip_addr = srf_updates[i].flip_addr;
4626  		fast_update[i].gamma = srf_updates[i].gamma;
4627  		fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4628  		fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4629  		fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4630  		fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix;
4631  	}
4632  }
4633  
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4634  static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4635  {
4636  	int i;
4637  
4638  	if (fast_update[0].out_transfer_func ||
4639  		fast_update[0].output_csc_transform)
4640  		return true;
4641  
4642  	for (i = 0; i < surface_count; i++) {
4643  		if (fast_update[i].flip_addr ||
4644  				fast_update[i].gamma ||
4645  				fast_update[i].gamut_remap_matrix ||
4646  				fast_update[i].input_csc_color_matrix ||
4647  				fast_update[i].cursor_csc_color_matrix ||
4648  				fast_update[i].coeff_reduction_factor)
4649  			return true;
4650  	}
4651  
4652  	return false;
4653  }
4654  
fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)4655  bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4656  {
4657  	int i;
4658  
4659  	if (fast_update[0].out_transfer_func ||
4660  		fast_update[0].output_csc_transform)
4661  		return true;
4662  
4663  	for (i = 0; i < surface_count; i++) {
4664  		if (fast_update[i].input_csc_color_matrix ||
4665  				fast_update[i].gamma ||
4666  				fast_update[i].gamut_remap_matrix ||
4667  				fast_update[i].coeff_reduction_factor ||
4668  				fast_update[i].cursor_csc_color_matrix)
4669  			return true;
4670  	}
4671  
4672  	return false;
4673  }
4674  
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4675  static bool full_update_required(struct dc *dc,
4676  		struct dc_surface_update *srf_updates,
4677  		int surface_count,
4678  		struct dc_stream_update *stream_update,
4679  		struct dc_stream_state *stream)
4680  {
4681  
4682  	int i;
4683  	struct dc_stream_status *stream_status;
4684  	const struct dc_state *context = dc->current_state;
4685  
4686  	for (i = 0; i < surface_count; i++) {
4687  		if (srf_updates &&
4688  				(srf_updates[i].plane_info ||
4689  				srf_updates[i].scaling_info ||
4690  				(srf_updates[i].hdr_mult.value &&
4691  				srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4692  				(srf_updates[i].sdr_white_level_nits &&
4693  				srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) ||
4694  				srf_updates[i].in_transfer_func ||
4695  				srf_updates[i].func_shaper ||
4696  				srf_updates[i].lut3d_func ||
4697  				srf_updates[i].surface->force_full_update ||
4698  				(srf_updates[i].flip_addr &&
4699  				srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4700  				(srf_updates[i].cm2_params &&
4701  				 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting ||
4702  				  srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable)) ||
4703  				!is_surface_in_context(context, srf_updates[i].surface)))
4704  			return true;
4705  	}
4706  
4707  	if (stream_update &&
4708  			(((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4709  			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4710  			stream_update->integer_scaling_update) ||
4711  			stream_update->hdr_static_metadata ||
4712  			stream_update->abm_level ||
4713  			stream_update->periodic_interrupt ||
4714  			stream_update->vrr_infopacket ||
4715  			stream_update->vsc_infopacket ||
4716  			stream_update->vsp_infopacket ||
4717  			stream_update->hfvsif_infopacket ||
4718  			stream_update->vtem_infopacket ||
4719  			stream_update->adaptive_sync_infopacket ||
4720  			stream_update->dpms_off ||
4721  			stream_update->allow_freesync ||
4722  			stream_update->vrr_active_variable ||
4723  			stream_update->vrr_active_fixed ||
4724  			stream_update->gamut_remap ||
4725  			stream_update->output_color_space ||
4726  			stream_update->dither_option ||
4727  			stream_update->wb_update ||
4728  			stream_update->dsc_config ||
4729  			stream_update->mst_bw_update ||
4730  			stream_update->func_shaper ||
4731  			stream_update->lut3d_func ||
4732  			stream_update->pending_test_pattern ||
4733  			stream_update->crtc_timing_adjust ||
4734  			stream_update->scaler_sharpener_update))
4735  		return true;
4736  
4737  	if (stream) {
4738  		stream_status = dc_stream_get_status(stream);
4739  		if (stream_status == NULL || stream_status->plane_count != surface_count)
4740  			return true;
4741  	}
4742  	if (dc->idle_optimizations_allowed)
4743  		return true;
4744  
4745  	return false;
4746  }
4747  
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4748  static bool fast_update_only(struct dc *dc,
4749  		struct dc_fast_update *fast_update,
4750  		struct dc_surface_update *srf_updates,
4751  		int surface_count,
4752  		struct dc_stream_update *stream_update,
4753  		struct dc_stream_state *stream)
4754  {
4755  	return fast_updates_exist(fast_update, surface_count)
4756  			&& !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4757  }
4758  
update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4759  static bool update_planes_and_stream_v1(struct dc *dc,
4760  		struct dc_surface_update *srf_updates, int surface_count,
4761  		struct dc_stream_state *stream,
4762  		struct dc_stream_update *stream_update,
4763  		struct dc_state *state)
4764  {
4765  	const struct dc_stream_status *stream_status;
4766  	enum surface_update_type update_type;
4767  	struct dc_state *context;
4768  	struct dc_context *dc_ctx = dc->ctx;
4769  	int i, j;
4770  	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4771  
4772  	dc_exit_ips_for_hw_access(dc);
4773  
4774  	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4775  	stream_status = dc_stream_get_status(stream);
4776  	context = dc->current_state;
4777  
4778  	update_type = dc_check_update_surfaces_for_stream(
4779  				dc, srf_updates, surface_count, stream_update, stream_status);
4780  
4781  	if (update_type >= UPDATE_TYPE_FULL) {
4782  
4783  		/* initialize scratch memory for building context */
4784  		context = dc_state_create_copy(state);
4785  		if (context == NULL) {
4786  			DC_ERROR("Failed to allocate new validate context!\n");
4787  			return false;
4788  		}
4789  
4790  		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4791  			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4792  			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4793  
4794  			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4795  				new_pipe->plane_state->force_full_update = true;
4796  		}
4797  	} else if (update_type == UPDATE_TYPE_FAST) {
4798  		/*
4799  		 * Previous frame finished and HW is ready for optimization.
4800  		 */
4801  		dc_post_update_surfaces_to_stream(dc);
4802  	}
4803  
4804  	for (i = 0; i < surface_count; i++) {
4805  		struct dc_plane_state *surface = srf_updates[i].surface;
4806  
4807  		copy_surface_update_to_plane(surface, &srf_updates[i]);
4808  
4809  		if (update_type >= UPDATE_TYPE_MED) {
4810  			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4811  				struct pipe_ctx *pipe_ctx =
4812  					&context->res_ctx.pipe_ctx[j];
4813  
4814  				if (pipe_ctx->plane_state != surface)
4815  					continue;
4816  
4817  				resource_build_scaling_params(pipe_ctx);
4818  			}
4819  		}
4820  	}
4821  
4822  	copy_stream_update_to_stream(dc, context, stream, stream_update);
4823  
4824  	if (update_type >= UPDATE_TYPE_FULL) {
4825  		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4826  			DC_ERROR("Mode validation failed for stream update!\n");
4827  			dc_state_release(context);
4828  			return false;
4829  		}
4830  	}
4831  
4832  	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4833  
4834  	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4835  			!dc->debug.enable_legacy_fast_update) {
4836  		commit_planes_for_stream_fast(dc,
4837  				srf_updates,
4838  				surface_count,
4839  				stream,
4840  				stream_update,
4841  				update_type,
4842  				context);
4843  	} else {
4844  		commit_planes_for_stream(
4845  				dc,
4846  				srf_updates,
4847  				surface_count,
4848  				stream,
4849  				stream_update,
4850  				update_type,
4851  				context);
4852  	}
4853  	/*update current_State*/
4854  	if (dc->current_state != context) {
4855  
4856  		struct dc_state *old = dc->current_state;
4857  
4858  		dc->current_state = context;
4859  		dc_state_release(old);
4860  
4861  		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4862  			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4863  
4864  			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4865  				pipe_ctx->plane_state->force_full_update = false;
4866  		}
4867  	}
4868  
4869  	/* Legacy optimization path for DCE. */
4870  	if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4871  		dc_post_update_surfaces_to_stream(dc);
4872  		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4873  	}
4874  	return true;
4875  }
4876  
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4877  static bool update_planes_and_stream_v2(struct dc *dc,
4878  		struct dc_surface_update *srf_updates, int surface_count,
4879  		struct dc_stream_state *stream,
4880  		struct dc_stream_update *stream_update)
4881  {
4882  	struct dc_state *context;
4883  	enum surface_update_type update_type;
4884  	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4885  
4886  	/* In cases where MPO and split or ODM are used transitions can
4887  	 * cause underflow. Apply stream configuration with minimal pipe
4888  	 * split first to avoid unsupported transitions for active pipes.
4889  	 */
4890  	bool force_minimal_pipe_splitting = 0;
4891  	bool is_plane_addition = 0;
4892  	bool is_fast_update_only;
4893  
4894  	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4895  	is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
4896  			surface_count, stream_update, stream);
4897  	force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4898  			dc,
4899  			stream,
4900  			srf_updates,
4901  			surface_count,
4902  			&is_plane_addition);
4903  
4904  	/* on plane addition, minimal state is the current one */
4905  	if (force_minimal_pipe_splitting && is_plane_addition &&
4906  		!commit_minimal_transition_state(dc, dc->current_state))
4907  		return false;
4908  
4909  	if (!update_planes_and_stream_state(
4910  			dc,
4911  			srf_updates,
4912  			surface_count,
4913  			stream,
4914  			stream_update,
4915  			&update_type,
4916  			&context))
4917  		return false;
4918  
4919  	/* on plane removal, minimal state is the new one */
4920  	if (force_minimal_pipe_splitting && !is_plane_addition) {
4921  		if (!commit_minimal_transition_state(dc, context)) {
4922  			dc_state_release(context);
4923  			return false;
4924  		}
4925  		update_type = UPDATE_TYPE_FULL;
4926  	}
4927  
4928  	if (dc->hwss.is_pipe_topology_transition_seamless &&
4929  			!dc->hwss.is_pipe_topology_transition_seamless(
4930  					dc, dc->current_state, context))
4931  		commit_minimal_transition_state_in_dc_update(dc, context, stream,
4932  				srf_updates, surface_count);
4933  
4934  	if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
4935  		commit_planes_for_stream_fast(dc,
4936  				srf_updates,
4937  				surface_count,
4938  				stream,
4939  				stream_update,
4940  				update_type,
4941  				context);
4942  	} else {
4943  		if (!stream_update &&
4944  				dc->hwss.is_pipe_topology_transition_seamless &&
4945  				!dc->hwss.is_pipe_topology_transition_seamless(
4946  						dc, dc->current_state, context)) {
4947  			DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
4948  			BREAK_TO_DEBUGGER();
4949  		}
4950  		commit_planes_for_stream(
4951  				dc,
4952  				srf_updates,
4953  				surface_count,
4954  				stream,
4955  				stream_update,
4956  				update_type,
4957  				context);
4958  	}
4959  	if (dc->current_state != context)
4960  		swap_and_release_current_context(dc, context, stream);
4961  	return true;
4962  }
4963  
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)4964  static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
4965  		struct dc_surface_update *srf_updates, int surface_count,
4966  		struct dc_stream_state *stream,
4967  		struct dc_stream_update *stream_update,
4968  		enum surface_update_type update_type)
4969  {
4970  	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4971  
4972  	ASSERT(update_type < UPDATE_TYPE_FULL);
4973  	populate_fast_updates(fast_update, srf_updates, surface_count,
4974  			stream_update);
4975  	if (fast_update_only(dc, fast_update, srf_updates, surface_count,
4976  			stream_update, stream) &&
4977  			!dc->debug.enable_legacy_fast_update)
4978  		commit_planes_for_stream_fast(dc,
4979  				srf_updates,
4980  				surface_count,
4981  				stream,
4982  				stream_update,
4983  				update_type,
4984  				dc->current_state);
4985  	else
4986  		commit_planes_for_stream(
4987  				dc,
4988  				srf_updates,
4989  				surface_count,
4990  				stream,
4991  				stream_update,
4992  				update_type,
4993  				dc->current_state);
4994  }
4995  
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)4996  static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
4997  		struct dc_surface_update *srf_updates, int surface_count,
4998  		struct dc_stream_state *stream,
4999  		struct dc_stream_update *stream_update,
5000  		enum surface_update_type update_type,
5001  		struct dc_state *new_context)
5002  {
5003  	ASSERT(update_type >= UPDATE_TYPE_FULL);
5004  	if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
5005  			dc->current_state, new_context))
5006  		/*
5007  		 * It is required by the feature design that all pipe topologies
5008  		 * using extra free pipes for power saving purposes such as
5009  		 * dynamic ODM or SubVp shall only be enabled when it can be
5010  		 * transitioned seamlessly to AND from its minimal transition
5011  		 * state. A minimal transition state is defined as the same dc
5012  		 * state but with all power saving features disabled. So it uses
5013  		 * the minimum pipe topology. When we can't seamlessly
5014  		 * transition from state A to state B, we will insert the
5015  		 * minimal transition state A' or B' in between so seamless
5016  		 * transition between A and B can be made possible.
5017  		 */
5018  		commit_minimal_transition_state_in_dc_update(dc, new_context,
5019  				stream, srf_updates, surface_count);
5020  
5021  	commit_planes_for_stream(
5022  			dc,
5023  			srf_updates,
5024  			surface_count,
5025  			stream,
5026  			stream_update,
5027  			update_type,
5028  			new_context);
5029  }
5030  
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5031  static bool update_planes_and_stream_v3(struct dc *dc,
5032  		struct dc_surface_update *srf_updates, int surface_count,
5033  		struct dc_stream_state *stream,
5034  		struct dc_stream_update *stream_update)
5035  {
5036  	struct dc_state *new_context;
5037  	enum surface_update_type update_type;
5038  
5039  	/*
5040  	 * When this function returns true and new_context is not equal to
5041  	 * current state, the function allocates and validates a new dc state
5042  	 * and assigns it to new_context. The function expects that the caller
5043  	 * is responsible to free this memory when new_context is no longer
5044  	 * used. We swap current with new context and free current instead. So
5045  	 * new_context's memory will live until the next full update after it is
5046  	 * replaced by a newer context. Refer to the use of
5047  	 * swap_and_free_current_context below.
5048  	 */
5049  	if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
5050  				stream, stream_update, &update_type,
5051  				&new_context))
5052  		return false;
5053  
5054  	if (new_context == dc->current_state) {
5055  		commit_planes_and_stream_update_on_current_context(dc,
5056  				srf_updates, surface_count, stream,
5057  				stream_update, update_type);
5058  	} else {
5059  		commit_planes_and_stream_update_with_new_context(dc,
5060  				srf_updates, surface_count, stream,
5061  				stream_update, update_type, new_context);
5062  		swap_and_release_current_context(dc, new_context, stream);
5063  	}
5064  
5065  	return true;
5066  }
5067  
clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5068  static void clear_update_flags(struct dc_surface_update *srf_updates,
5069  	int surface_count, struct dc_stream_state *stream)
5070  {
5071  	int i;
5072  
5073  	if (stream)
5074  		stream->update_flags.raw = 0;
5075  
5076  	for (i = 0; i < surface_count; i++)
5077  		if (srf_updates[i].surface)
5078  			srf_updates[i].surface->update_flags.raw = 0;
5079  }
5080  
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5081  bool dc_update_planes_and_stream(struct dc *dc,
5082  		struct dc_surface_update *srf_updates, int surface_count,
5083  		struct dc_stream_state *stream,
5084  		struct dc_stream_update *stream_update)
5085  {
5086  	bool ret = false;
5087  
5088  	dc_exit_ips_for_hw_access(dc);
5089  	/*
5090  	 * update planes and stream version 3 separates FULL and FAST updates
5091  	 * to their own sequences. It aims to clean up frequent checks for
5092  	 * update type resulting unnecessary branching in logic flow. It also
5093  	 * adds a new commit minimal transition sequence, which detects the need
5094  	 * for minimal transition based on the actual comparison of current and
5095  	 * new states instead of "predicting" it based on per feature software
5096  	 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
5097  	 * minimal transition sequence is made universal to any power saving
5098  	 * features that would use extra free pipes such as Dynamic ODM/MPC
5099  	 * Combine, MPO or SubVp. Therefore there is no longer a need to
5100  	 * specially handle compatibility problems with transitions among those
5101  	 * features as they are now transparent to the new sequence.
5102  	 */
5103  	if (dc->ctx->dce_version >= DCN_VERSION_4_01)
5104  		ret = update_planes_and_stream_v3(dc, srf_updates,
5105  				surface_count, stream, stream_update);
5106  	else
5107  		ret = update_planes_and_stream_v2(dc, srf_updates,
5108  			surface_count, stream, stream_update);
5109  
5110  	if (ret)
5111  		clear_update_flags(srf_updates, surface_count, stream);
5112  
5113  	return ret;
5114  }
5115  
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5116  void dc_commit_updates_for_stream(struct dc *dc,
5117  		struct dc_surface_update *srf_updates,
5118  		int surface_count,
5119  		struct dc_stream_state *stream,
5120  		struct dc_stream_update *stream_update,
5121  		struct dc_state *state)
5122  {
5123  	bool ret = false;
5124  
5125  	dc_exit_ips_for_hw_access(dc);
5126  	/* TODO: Since change commit sequence can have a huge impact,
5127  	 * we decided to only enable it for DCN3x. However, as soon as
5128  	 * we get more confident about this change we'll need to enable
5129  	 * the new sequence for all ASICs.
5130  	 */
5131  	if (dc->ctx->dce_version >= DCN_VERSION_4_01) {
5132  		ret = update_planes_and_stream_v3(dc, srf_updates, surface_count,
5133  				stream, stream_update);
5134  	} else if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
5135  		ret = update_planes_and_stream_v2(dc, srf_updates, surface_count,
5136  				stream, stream_update);
5137  	} else
5138  		ret = update_planes_and_stream_v1(dc, srf_updates, surface_count, stream,
5139  				stream_update, state);
5140  
5141  	if (ret)
5142  		clear_update_flags(srf_updates, surface_count, stream);
5143  }
5144  
dc_get_current_stream_count(struct dc * dc)5145  uint8_t dc_get_current_stream_count(struct dc *dc)
5146  {
5147  	return dc->current_state->stream_count;
5148  }
5149  
dc_get_stream_at_index(struct dc * dc,uint8_t i)5150  struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5151  {
5152  	if (i < dc->current_state->stream_count)
5153  		return dc->current_state->streams[i];
5154  	return NULL;
5155  }
5156  
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5157  enum dc_irq_source dc_interrupt_to_irq_source(
5158  		struct dc *dc,
5159  		uint32_t src_id,
5160  		uint32_t ext_id)
5161  {
5162  	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5163  }
5164  
5165  /*
5166   * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5167   */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5168  bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5169  {
5170  
5171  	if (dc == NULL)
5172  		return false;
5173  
5174  	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5175  }
5176  
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5177  void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5178  {
5179  	dal_irq_service_ack(dc->res_pool->irqs, src);
5180  }
5181  
dc_power_down_on_boot(struct dc * dc)5182  void dc_power_down_on_boot(struct dc *dc)
5183  {
5184  	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5185  	    dc->hwss.power_down_on_boot) {
5186  		if (dc->caps.ips_support)
5187  			dc_exit_ips_for_hw_access(dc);
5188  		dc->hwss.power_down_on_boot(dc);
5189  	}
5190  }
5191  
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5192  void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state)
5193  {
5194  	if (!dc->current_state)
5195  		return;
5196  
5197  	switch (power_state) {
5198  	case DC_ACPI_CM_POWER_STATE_D0:
5199  		dc_state_construct(dc, dc->current_state);
5200  
5201  		dc_exit_ips_for_hw_access(dc);
5202  
5203  		dc_z10_restore(dc);
5204  
5205  		dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5206  
5207  		dc->hwss.init_hw(dc);
5208  
5209  		if (dc->hwss.init_sys_ctx != NULL &&
5210  			dc->vm_pa_config.valid) {
5211  			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5212  		}
5213  
5214  		break;
5215  	default:
5216  		ASSERT(dc->current_state->stream_count == 0);
5217  
5218  		dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5219  
5220  		dc_state_destruct(dc->current_state);
5221  
5222  		break;
5223  	}
5224  }
5225  
dc_resume(struct dc * dc)5226  void dc_resume(struct dc *dc)
5227  {
5228  	uint32_t i;
5229  
5230  	for (i = 0; i < dc->link_count; i++)
5231  		dc->link_srv->resume(dc->links[i]);
5232  }
5233  
dc_is_dmcu_initialized(struct dc * dc)5234  bool dc_is_dmcu_initialized(struct dc *dc)
5235  {
5236  	struct dmcu *dmcu = dc->res_pool->dmcu;
5237  
5238  	if (dmcu)
5239  		return dmcu->funcs->is_dmcu_initialized(dmcu);
5240  	return false;
5241  }
5242  
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)5243  void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
5244  {
5245  	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
5246  	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
5247  	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
5248  	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
5249  	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
5250  	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
5251  	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
5252  	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
5253  	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
5254  }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5255  enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5256  {
5257  	if (dc->hwss.set_clock)
5258  		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5259  	return DC_ERROR_UNEXPECTED;
5260  }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5261  void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5262  {
5263  	if (dc->hwss.get_clock)
5264  		dc->hwss.get_clock(dc, clock_type, clock_cfg);
5265  }
5266  
5267  /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5268  bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5269  {
5270  	int i;
5271  	bool allow_active;
5272  
5273  	for (i = 0; i < dc->current_state->stream_count ; i++) {
5274  		struct dc_link *link;
5275  		struct dc_stream_state *stream = dc->current_state->streams[i];
5276  
5277  		link = stream->link;
5278  		if (!link)
5279  			continue;
5280  
5281  		if (link->psr_settings.psr_feature_enabled) {
5282  			if (enable && !link->psr_settings.psr_allow_active) {
5283  				allow_active = true;
5284  				if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5285  					return false;
5286  			} else if (!enable && link->psr_settings.psr_allow_active) {
5287  				allow_active = false;
5288  				if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5289  					return false;
5290  			}
5291  		}
5292  	}
5293  
5294  	return true;
5295  }
5296  
5297  /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5298  bool dc_set_replay_allow_active(struct dc *dc, bool active)
5299  {
5300  	int i;
5301  	bool allow_active;
5302  
5303  	for (i = 0; i < dc->current_state->stream_count; i++) {
5304  		struct dc_link *link;
5305  		struct dc_stream_state *stream = dc->current_state->streams[i];
5306  
5307  		link = stream->link;
5308  		if (!link)
5309  			continue;
5310  
5311  		if (link->replay_settings.replay_feature_enabled) {
5312  			if (active && !link->replay_settings.replay_allow_active) {
5313  				allow_active = true;
5314  				if (!dc_link_set_replay_allow_active(link, &allow_active,
5315  					false, false, NULL))
5316  					return false;
5317  			} else if (!active && link->replay_settings.replay_allow_active) {
5318  				allow_active = false;
5319  				if (!dc_link_set_replay_allow_active(link, &allow_active,
5320  					true, false, NULL))
5321  					return false;
5322  			}
5323  		}
5324  	}
5325  
5326  	return true;
5327  }
5328  
5329  /* set IPS disable state */
dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5330  bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips)
5331  {
5332  	dc_exit_ips_for_hw_access(dc);
5333  
5334  	dc->config.disable_ips = disable_ips;
5335  
5336  	return true;
5337  }
5338  
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5339  void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5340  {
5341  	if (dc->debug.disable_idle_power_optimizations)
5342  		return;
5343  
5344  	if (allow != dc->idle_optimizations_allowed)
5345  		DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5346  			   dc->idle_optimizations_allowed, allow, caller_name);
5347  
5348  	if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5349  		return;
5350  
5351  	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5352  		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5353  			return;
5354  
5355  	if (allow == dc->idle_optimizations_allowed)
5356  		return;
5357  
5358  	if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
5359  	    dc->hwss.apply_idle_power_optimizations(dc, allow))
5360  		dc->idle_optimizations_allowed = allow;
5361  }
5362  
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5363  void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5364  {
5365  	if (dc->caps.ips_support)
5366  		dc_allow_idle_optimizations_internal(dc, false, caller_name);
5367  }
5368  
dc_dmub_is_ips_idle_state(struct dc * dc)5369  bool dc_dmub_is_ips_idle_state(struct dc *dc)
5370  {
5371  	if (dc->debug.disable_idle_power_optimizations)
5372  		return false;
5373  
5374  	if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5375  		return false;
5376  
5377  	if (!dc->ctx->dmub_srv)
5378  		return false;
5379  
5380  	return dc->ctx->dmub_srv->idle_allowed;
5381  }
5382  
5383  /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5384  void dc_unlock_memory_clock_frequency(struct dc *dc)
5385  {
5386  	if (dc->clk_mgr->funcs->set_hard_min_memclk)
5387  		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5388  
5389  	if (dc->clk_mgr->funcs->set_hard_max_memclk)
5390  		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5391  }
5392  
5393  /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5394  void dc_lock_memory_clock_frequency(struct dc *dc)
5395  {
5396  	if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5397  		dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5398  
5399  	if (dc->clk_mgr->funcs->set_hard_min_memclk)
5400  		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5401  
5402  	if (dc->clk_mgr->funcs->set_hard_max_memclk)
5403  		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5404  }
5405  
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5406  static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5407  {
5408  	struct dc_state *context = dc->current_state;
5409  	struct hubp *hubp;
5410  	struct pipe_ctx *pipe;
5411  	int i;
5412  
5413  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
5414  		pipe = &context->res_ctx.pipe_ctx[i];
5415  
5416  		if (pipe->stream != NULL) {
5417  			dc->hwss.disable_pixel_data(dc, pipe, true);
5418  
5419  			// wait for double buffer
5420  			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5421  			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5422  			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5423  
5424  			hubp = pipe->plane_res.hubp;
5425  			hubp->funcs->set_blank_regs(hubp, true);
5426  		}
5427  	}
5428  	if (dc->clk_mgr->funcs->set_max_memclk)
5429  		dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5430  	if (dc->clk_mgr->funcs->set_min_memclk)
5431  		dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5432  
5433  	for (i = 0; i < dc->res_pool->pipe_count; i++) {
5434  		pipe = &context->res_ctx.pipe_ctx[i];
5435  
5436  		if (pipe->stream != NULL) {
5437  			dc->hwss.disable_pixel_data(dc, pipe, false);
5438  
5439  			hubp = pipe->plane_res.hubp;
5440  			hubp->funcs->set_blank_regs(hubp, false);
5441  		}
5442  	}
5443  }
5444  
5445  
5446  /**
5447   * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5448   * @dc: pointer to dc of the dm calling this
5449   * @enable: True = transition to DC mode, false = transition back to AC mode
5450   *
5451   * Some SoCs define additional clock limits when in DC mode, DM should
5452   * invoke this function when the platform undergoes a power source transition
5453   * so DC can apply/unapply the limit. This interface may be disruptive to
5454   * the onscreen content.
5455   *
5456   * Context: Triggered by OS through DM interface, or manually by escape calls.
5457   * Need to hold a dclock when doing so.
5458   *
5459   * Return: none (void function)
5460   *
5461   */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5462  void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5463  {
5464  	unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5465  	bool p_state_change_support;
5466  
5467  	if (!dc->config.dc_mode_clk_limit_support)
5468  		return;
5469  
5470  	softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5471  	for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5472  		if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5473  			maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5474  	}
5475  	funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5476  	p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5477  
5478  	if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5479  		if (p_state_change_support) {
5480  			if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5481  				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5482  			// else: No-Op
5483  		} else {
5484  			if (funcMin <= softMax)
5485  				blank_and_force_memclk(dc, true, softMax);
5486  			// else: No-Op
5487  		}
5488  	} else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5489  		if (p_state_change_support) {
5490  			if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5491  				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5492  			// else: No-Op
5493  		} else {
5494  			if (funcMin <= softMax)
5495  				blank_and_force_memclk(dc, true, maxDPM);
5496  			// else: No-Op
5497  		}
5498  	}
5499  	dc->clk_mgr->dc_mode_softmax_enabled = enable;
5500  }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5501  bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5502  		unsigned int pitch,
5503  		unsigned int height,
5504  		enum surface_pixel_format format,
5505  		struct dc_cursor_attributes *cursor_attr)
5506  {
5507  	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5508  		return true;
5509  	return false;
5510  }
5511  
5512  /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5513  void dc_hardware_release(struct dc *dc)
5514  {
5515  	dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5516  
5517  	if (dc->hwss.hardware_release)
5518  		dc->hwss.hardware_release(dc);
5519  }
5520  
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5521  void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5522  {
5523  	if (dc->current_state)
5524  		dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5525  }
5526  
5527  /**
5528   * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5529   *
5530   * @dc: [in] dc structure
5531   *
5532   * Checks whether DMUB FW supports outbox notifications, if supported DM
5533   * should register outbox interrupt prior to actually enabling interrupts
5534   * via dc_enable_dmub_outbox
5535   *
5536   * Return:
5537   * True if DMUB FW supports outbox notifications, False otherwise
5538   */
dc_is_dmub_outbox_supported(struct dc * dc)5539  bool dc_is_dmub_outbox_supported(struct dc *dc)
5540  {
5541  	if (!dc->caps.dmcub_support)
5542  		return false;
5543  
5544  	switch (dc->ctx->asic_id.chip_family) {
5545  
5546  	case FAMILY_YELLOW_CARP:
5547  		/* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5548  		if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5549  		    !dc->debug.dpia_debug.bits.disable_dpia)
5550  			return true;
5551  	break;
5552  
5553  	case AMDGPU_FAMILY_GC_11_0_1:
5554  	case AMDGPU_FAMILY_GC_11_5_0:
5555  		if (!dc->debug.dpia_debug.bits.disable_dpia)
5556  			return true;
5557  	break;
5558  
5559  	default:
5560  		break;
5561  	}
5562  
5563  	/* dmub aux needs dmub notifications to be enabled */
5564  	return dc->debug.enable_dmub_aux_for_legacy_ddc;
5565  
5566  }
5567  
5568  /**
5569   * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5570   *
5571   * @dc: [in] dc structure
5572   *
5573   * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5574   * notifications. All DMs shall switch to dc_is_dmub_outbox_supported.  This
5575   * API shall be removed after switching.
5576   *
5577   * Return:
5578   * True if DMUB FW supports outbox notifications, False otherwise
5579   */
dc_enable_dmub_notifications(struct dc * dc)5580  bool dc_enable_dmub_notifications(struct dc *dc)
5581  {
5582  	return dc_is_dmub_outbox_supported(dc);
5583  }
5584  
5585  /**
5586   * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5587   *
5588   * @dc: [in] dc structure
5589   *
5590   * Enables DMUB unsolicited notifications to x86 via outbox.
5591   */
dc_enable_dmub_outbox(struct dc * dc)5592  void dc_enable_dmub_outbox(struct dc *dc)
5593  {
5594  	struct dc_context *dc_ctx = dc->ctx;
5595  
5596  	dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5597  	DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5598  }
5599  
5600  /**
5601   * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5602   *                                      Sets port index appropriately for legacy DDC
5603   * @dc: dc structure
5604   * @link_index: link index
5605   * @payload: aux payload
5606   *
5607   * Returns: True if successful, False if failure
5608   */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5609  bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5610  				uint32_t link_index,
5611  				struct aux_payload *payload)
5612  {
5613  	uint8_t action;
5614  	union dmub_rb_cmd cmd = {0};
5615  
5616  	ASSERT(payload->length <= 16);
5617  
5618  	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5619  	cmd.dp_aux_access.header.payload_bytes = 0;
5620  	/* For dpia, ddc_pin is set to NULL */
5621  	if (!dc->links[link_index]->ddc->ddc_pin)
5622  		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5623  	else
5624  		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5625  
5626  	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5627  	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5628  	cmd.dp_aux_access.aux_control.timeout = 0;
5629  	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5630  	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5631  	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5632  
5633  	/* set aux action */
5634  	if (payload->i2c_over_aux) {
5635  		if (payload->write) {
5636  			if (payload->mot)
5637  				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5638  			else
5639  				action = DP_AUX_REQ_ACTION_I2C_WRITE;
5640  		} else {
5641  			if (payload->mot)
5642  				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
5643  			else
5644  				action = DP_AUX_REQ_ACTION_I2C_READ;
5645  			}
5646  	} else {
5647  		if (payload->write)
5648  			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
5649  		else
5650  			action = DP_AUX_REQ_ACTION_DPCD_READ;
5651  	}
5652  
5653  	cmd.dp_aux_access.aux_control.dpaux.action = action;
5654  
5655  	if (payload->length && payload->write) {
5656  		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
5657  			payload->data,
5658  			payload->length
5659  			);
5660  	}
5661  
5662  	dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5663  
5664  	return true;
5665  }
5666  
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)5667  uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5668  					    uint8_t dpia_port_index)
5669  {
5670  	uint8_t index, link_index = 0xFF;
5671  
5672  	for (index = 0; index < dc->link_count; index++) {
5673  		/* ddc_hw_inst has dpia port index for dpia links
5674  		 * and ddc instance for legacy links
5675  		 */
5676  		if (!dc->links[index]->ddc->ddc_pin) {
5677  			if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5678  				link_index = index;
5679  				break;
5680  			}
5681  		}
5682  	}
5683  	ASSERT(link_index != 0xFF);
5684  	return link_index;
5685  }
5686  
5687  /**
5688   * dc_process_dmub_set_config_async - Submits set_config command
5689   *
5690   * @dc: [in] dc structure
5691   * @link_index: [in] link_index: link index
5692   * @payload: [in] aux payload
5693   * @notify: [out] set_config immediate reply
5694   *
5695   * Submits set_config command to dmub via inbox message.
5696   *
5697   * Return:
5698   * True if successful, False if failure
5699   */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5700  bool dc_process_dmub_set_config_async(struct dc *dc,
5701  				uint32_t link_index,
5702  				struct set_config_cmd_payload *payload,
5703  				struct dmub_notification *notify)
5704  {
5705  	union dmub_rb_cmd cmd = {0};
5706  	bool is_cmd_complete = true;
5707  
5708  	/* prepare SET_CONFIG command */
5709  	cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5710  	cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5711  
5712  	cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5713  	cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5714  	cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5715  
5716  	if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5717  		/* command is not processed by dmub */
5718  		notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5719  		return is_cmd_complete;
5720  	}
5721  
5722  	/* command processed by dmub, if ret_status is 1, it is completed instantly */
5723  	if (cmd.set_config_access.header.ret_status == 1)
5724  		notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5725  	else
5726  		/* cmd pending, will receive notification via outbox */
5727  		is_cmd_complete = false;
5728  
5729  	return is_cmd_complete;
5730  }
5731  
5732  /**
5733   * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5734   *
5735   * @dc: [in] dc structure
5736   * @link_index: [in] link index
5737   * @mst_alloc_slots: [in] mst slots to be allotted
5738   * @mst_slots_in_use: [out] mst slots in use returned in failure case
5739   *
5740   * Submits mst slot allocation command to dmub via inbox message
5741   *
5742   * Return:
5743   * DC_OK if successful, DC_ERROR if failure
5744   */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5745  enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5746  				uint32_t link_index,
5747  				uint8_t mst_alloc_slots,
5748  				uint8_t *mst_slots_in_use)
5749  {
5750  	union dmub_rb_cmd cmd = {0};
5751  
5752  	/* prepare MST_ALLOC_SLOTS command */
5753  	cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5754  	cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5755  
5756  	cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5757  	cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5758  
5759  	if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5760  		/* command is not processed by dmub */
5761  		return DC_ERROR_UNEXPECTED;
5762  
5763  	/* command processed by dmub, if ret_status is 1 */
5764  	if (cmd.set_config_access.header.ret_status != 1)
5765  		/* command processing error */
5766  		return DC_ERROR_UNEXPECTED;
5767  
5768  	/* command processed and we have a status of 2, mst not enabled in dpia */
5769  	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5770  		return DC_FAIL_UNSUPPORTED_1;
5771  
5772  	/* previously configured mst alloc and used slots did not match */
5773  	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5774  		*mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5775  		return DC_NOT_SUPPORTED;
5776  	}
5777  
5778  	return DC_OK;
5779  }
5780  
5781  /**
5782   * dc_process_dmub_dpia_set_tps_notification - Submits tps notification
5783   *
5784   * @dc: [in] dc structure
5785   * @link_index: [in] link index
5786   * @tps: [in] request tps
5787   *
5788   * Submits set_tps_notification command to dmub via inbox message
5789   */
dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)5790  void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps)
5791  {
5792  	union dmub_rb_cmd cmd = {0};
5793  
5794  	cmd.set_tps_notification.header.type = DMUB_CMD__DPIA;
5795  	cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION;
5796  	cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst;
5797  	cmd.set_tps_notification.tps_notification.tps = tps;
5798  
5799  	dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5800  }
5801  
5802  /**
5803   * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5804   *
5805   * @dc: [in] dc structure
5806   * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5807   *
5808   * Submits dpia hpd int enable command to dmub via inbox message
5809   */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)5810  void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5811  				uint32_t hpd_int_enable)
5812  {
5813  	union dmub_rb_cmd cmd = {0};
5814  
5815  	cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5816  	cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5817  
5818  	dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5819  
5820  	DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5821  }
5822  
5823  /**
5824   * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5825   *
5826   * @dc: [in] dc structure
5827   *
5828   *
5829   */
dc_print_dmub_diagnostic_data(const struct dc * dc)5830  void dc_print_dmub_diagnostic_data(const struct dc *dc)
5831  {
5832  	dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5833  }
5834  
5835  /**
5836   * dc_disable_accelerated_mode - disable accelerated mode
5837   * @dc: dc structure
5838   */
dc_disable_accelerated_mode(struct dc * dc)5839  void dc_disable_accelerated_mode(struct dc *dc)
5840  {
5841  	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5842  }
5843  
5844  
5845  /**
5846   *  dc_notify_vsync_int_state - notifies vsync enable/disable state
5847   *  @dc: dc structure
5848   *  @stream: stream where vsync int state changed
5849   *  @enable: whether vsync is enabled or disabled
5850   *
5851   *  Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5852   *  interrupts after steady state is reached.
5853   */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)5854  void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5855  {
5856  	int i;
5857  	int edp_num;
5858  	struct pipe_ctx *pipe = NULL;
5859  	struct dc_link *link = stream->sink->link;
5860  	struct dc_link *edp_links[MAX_NUM_EDP];
5861  
5862  
5863  	if (link->psr_settings.psr_feature_enabled)
5864  		return;
5865  
5866  	if (link->replay_settings.replay_feature_enabled)
5867  		return;
5868  
5869  	/*find primary pipe associated with stream*/
5870  	for (i = 0; i < MAX_PIPES; i++) {
5871  		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5872  
5873  		if (pipe->stream == stream && pipe->stream_res.tg)
5874  			break;
5875  	}
5876  
5877  	if (i == MAX_PIPES) {
5878  		ASSERT(0);
5879  		return;
5880  	}
5881  
5882  	dc_get_edp_links(dc, edp_links, &edp_num);
5883  
5884  	/* Determine panel inst */
5885  	for (i = 0; i < edp_num; i++) {
5886  		if (edp_links[i] == link)
5887  			break;
5888  	}
5889  
5890  	if (i == edp_num) {
5891  		return;
5892  	}
5893  
5894  	if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5895  		pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5896  }
5897  
5898  /*****************************************************************************
5899   *  dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5900   *                          ABM
5901   *  @dc: dc structure
5902   *	@stream: stream where vsync int state changed
5903   *  @pData: abm hw states
5904   *
5905   ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)5906  bool dc_abm_save_restore(
5907  		struct dc *dc,
5908  		struct dc_stream_state *stream,
5909  		struct abm_save_restore *pData)
5910  {
5911  	int i;
5912  	int edp_num;
5913  	struct pipe_ctx *pipe = NULL;
5914  	struct dc_link *link = stream->sink->link;
5915  	struct dc_link *edp_links[MAX_NUM_EDP];
5916  
5917  	if (link->replay_settings.replay_feature_enabled)
5918  		return false;
5919  
5920  	/*find primary pipe associated with stream*/
5921  	for (i = 0; i < MAX_PIPES; i++) {
5922  		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5923  
5924  		if (pipe->stream == stream && pipe->stream_res.tg)
5925  			break;
5926  	}
5927  
5928  	if (i == MAX_PIPES) {
5929  		ASSERT(0);
5930  		return false;
5931  	}
5932  
5933  	dc_get_edp_links(dc, edp_links, &edp_num);
5934  
5935  	/* Determine panel inst */
5936  	for (i = 0; i < edp_num; i++)
5937  		if (edp_links[i] == link)
5938  			break;
5939  
5940  	if (i == edp_num)
5941  		return false;
5942  
5943  	if (pipe->stream_res.abm &&
5944  		pipe->stream_res.abm->funcs->save_restore)
5945  		return pipe->stream_res.abm->funcs->save_restore(
5946  				pipe->stream_res.abm,
5947  				i,
5948  				pData);
5949  	return false;
5950  }
5951  
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)5952  void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5953  {
5954  	unsigned int i;
5955  	bool subvp_sw_cursor_req = false;
5956  
5957  	for (i = 0; i < dc->current_state->stream_count; i++) {
5958  		if (check_subvp_sw_cursor_fallback_req(dc, dc->current_state->streams[i])) {
5959  			subvp_sw_cursor_req = true;
5960  			break;
5961  		}
5962  	}
5963  	properties->cursor_size_limit = subvp_sw_cursor_req ? 64 : dc->caps.max_cursor_size;
5964  }
5965  
5966  /**
5967   * dc_set_edp_power() - DM controls eDP power to be ON/OFF
5968   *
5969   * Called when DM wants to power on/off eDP.
5970   *     Only work on links with flag skip_implict_edp_power_control is set.
5971   *
5972   * @dc: Current DC state
5973   * @edp_link: a link with eDP connector signal type
5974   * @powerOn: power on/off eDP
5975   *
5976   * Return: void
5977   */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)5978  void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
5979  				 bool powerOn)
5980  {
5981  	if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
5982  		return;
5983  
5984  	if (edp_link->skip_implict_edp_power_control == false)
5985  		return;
5986  
5987  	edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
5988  }
5989  
5990  /*
5991   *****************************************************************************
5992   * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
5993   *
5994   * Called when DM wants to make power policy decisions based on dc_state
5995   *
5996   *****************************************************************************
5997   */
dc_get_power_profile_for_dc_state(const struct dc_state * context)5998  struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
5999  {
6000  	struct dc_power_profile profile = { 0 };
6001  
6002  	profile.power_level += !context->bw_ctx.bw.dcn.clk.p_state_change_support;
6003  
6004  	return profile;
6005  }
6006