1  /*
2   * Copyright 2012-15 Advanced Micro Devices, Inc.
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice shall be included in
12   * all copies or substantial portions of the Software.
13   *
14   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17   * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18   * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19   * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20   * OTHER DEALINGS IN THE SOFTWARE.
21   *
22   * Authors: AMD
23   *
24   */
25  
26  #include "dm_services.h"
27  #include "include/fixed31_32.h"
28  
29  static const struct fixed31_32 dc_fixpt_two_pi = { 26986075409LL };
30  static const struct fixed31_32 dc_fixpt_ln2 = { 2977044471LL };
31  static const struct fixed31_32 dc_fixpt_ln2_div_2 = { 1488522236LL };
32  
abs_i64(long long arg)33  static inline unsigned long long abs_i64(
34  	long long arg)
35  {
36  	if (arg > 0)
37  		return (unsigned long long)arg;
38  	else
39  		return (unsigned long long)(-arg);
40  }
41  
42  /*
43   * @brief
44   * result = dividend / divisor
45   * *remainder = dividend % divisor
46   */
complete_integer_division_u64(unsigned long long dividend,unsigned long long divisor,unsigned long long * remainder)47  static inline unsigned long long complete_integer_division_u64(
48  	unsigned long long dividend,
49  	unsigned long long divisor,
50  	unsigned long long *remainder)
51  {
52  	unsigned long long result;
53  
54  	ASSERT(divisor);
55  
56  	result = div64_u64_rem(dividend, divisor, remainder);
57  
58  	return result;
59  }
60  
61  
62  #define FRACTIONAL_PART_MASK \
63  	((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
64  
65  #define GET_INTEGER_PART(x) \
66  	((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
67  
68  #define GET_FRACTIONAL_PART(x) \
69  	(FRACTIONAL_PART_MASK & (x))
70  
dc_fixpt_from_fraction(long long numerator,long long denominator)71  struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator)
72  {
73  	struct fixed31_32 res;
74  
75  	bool arg1_negative = numerator < 0;
76  	bool arg2_negative = denominator < 0;
77  
78  	unsigned long long arg1_value = arg1_negative ? -numerator : numerator;
79  	unsigned long long arg2_value = arg2_negative ? -denominator : denominator;
80  
81  	unsigned long long remainder;
82  
83  	/* determine integer part */
84  
85  	unsigned long long res_value = complete_integer_division_u64(
86  		arg1_value, arg2_value, &remainder);
87  
88  	ASSERT(res_value <= LONG_MAX);
89  
90  	/* determine fractional part */
91  	{
92  		unsigned int i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
93  
94  		do {
95  			remainder <<= 1;
96  
97  			res_value <<= 1;
98  
99  			if (remainder >= arg2_value) {
100  				res_value |= 1;
101  				remainder -= arg2_value;
102  			}
103  		} while (--i != 0);
104  	}
105  
106  	/* round up LSB */
107  	{
108  		unsigned long long summand = (remainder << 1) >= arg2_value;
109  
110  		ASSERT(res_value <= LLONG_MAX - summand);
111  
112  		res_value += summand;
113  	}
114  
115  	res.value = (long long)res_value;
116  
117  	if (arg1_negative ^ arg2_negative)
118  		res.value = -res.value;
119  
120  	return res;
121  }
122  
dc_fixpt_mul(struct fixed31_32 arg1,struct fixed31_32 arg2)123  struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2)
124  {
125  	struct fixed31_32 res;
126  
127  	bool arg1_negative = arg1.value < 0;
128  	bool arg2_negative = arg2.value < 0;
129  
130  	unsigned long long arg1_value = arg1_negative ? -arg1.value : arg1.value;
131  	unsigned long long arg2_value = arg2_negative ? -arg2.value : arg2.value;
132  
133  	unsigned long long arg1_int = GET_INTEGER_PART(arg1_value);
134  	unsigned long long arg2_int = GET_INTEGER_PART(arg2_value);
135  
136  	unsigned long long arg1_fra = GET_FRACTIONAL_PART(arg1_value);
137  	unsigned long long arg2_fra = GET_FRACTIONAL_PART(arg2_value);
138  
139  	unsigned long long tmp;
140  
141  	res.value = arg1_int * arg2_int;
142  
143  	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
144  
145  	tmp = arg1_int * arg2_fra;
146  
147  	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
148  
149  	res.value += tmp;
150  
151  	tmp = arg2_int * arg1_fra;
152  
153  	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
154  
155  	res.value += tmp;
156  
157  	tmp = arg1_fra * arg2_fra;
158  
159  	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
160  		(tmp >= (unsigned long long)dc_fixpt_half.value);
161  
162  	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
163  
164  	res.value += tmp;
165  
166  	if (arg1_negative ^ arg2_negative)
167  		res.value = -res.value;
168  
169  	return res;
170  }
171  
dc_fixpt_sqr(struct fixed31_32 arg)172  struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg)
173  {
174  	struct fixed31_32 res;
175  
176  	unsigned long long arg_value = abs_i64(arg.value);
177  
178  	unsigned long long arg_int = GET_INTEGER_PART(arg_value);
179  
180  	unsigned long long arg_fra = GET_FRACTIONAL_PART(arg_value);
181  
182  	unsigned long long tmp;
183  
184  	res.value = arg_int * arg_int;
185  
186  	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
187  
188  	tmp = arg_int * arg_fra;
189  
190  	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
191  
192  	res.value += tmp;
193  
194  	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
195  
196  	res.value += tmp;
197  
198  	tmp = arg_fra * arg_fra;
199  
200  	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
201  		(tmp >= (unsigned long long)dc_fixpt_half.value);
202  
203  	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
204  
205  	res.value += tmp;
206  
207  	return res;
208  }
209  
dc_fixpt_recip(struct fixed31_32 arg)210  struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg)
211  {
212  	/*
213  	 * @note
214  	 * Good idea to use Newton's method
215  	 */
216  
217  	ASSERT(arg.value);
218  
219  	return dc_fixpt_from_fraction(
220  		dc_fixpt_one.value,
221  		arg.value);
222  }
223  
dc_fixpt_sinc(struct fixed31_32 arg)224  struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg)
225  {
226  	struct fixed31_32 square;
227  
228  	struct fixed31_32 res = dc_fixpt_one;
229  
230  	int n = 27;
231  
232  	struct fixed31_32 arg_norm = arg;
233  
234  	if (dc_fixpt_le(
235  		dc_fixpt_two_pi,
236  		dc_fixpt_abs(arg))) {
237  		arg_norm = dc_fixpt_sub(
238  			arg_norm,
239  			dc_fixpt_mul_int(
240  				dc_fixpt_two_pi,
241  				(int)div64_s64(
242  					arg_norm.value,
243  					dc_fixpt_two_pi.value)));
244  	}
245  
246  	square = dc_fixpt_sqr(arg_norm);
247  
248  	do {
249  		res = dc_fixpt_sub(
250  			dc_fixpt_one,
251  			dc_fixpt_div_int(
252  				dc_fixpt_mul(
253  					square,
254  					res),
255  				n * (n - 1)));
256  
257  		n -= 2;
258  	} while (n > 2);
259  
260  	if (arg.value != arg_norm.value)
261  		res = dc_fixpt_div(
262  			dc_fixpt_mul(res, arg_norm),
263  			arg);
264  
265  	return res;
266  }
267  
dc_fixpt_sin(struct fixed31_32 arg)268  struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg)
269  {
270  	return dc_fixpt_mul(
271  		arg,
272  		dc_fixpt_sinc(arg));
273  }
274  
dc_fixpt_cos(struct fixed31_32 arg)275  struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg)
276  {
277  	/* TODO implement argument normalization */
278  
279  	const struct fixed31_32 square = dc_fixpt_sqr(arg);
280  
281  	struct fixed31_32 res = dc_fixpt_one;
282  
283  	int n = 26;
284  
285  	do {
286  		res = dc_fixpt_sub(
287  			dc_fixpt_one,
288  			dc_fixpt_div_int(
289  				dc_fixpt_mul(
290  					square,
291  					res),
292  				n * (n - 1)));
293  
294  		n -= 2;
295  	} while (n != 0);
296  
297  	return res;
298  }
299  
300  /*
301   * @brief
302   * result = exp(arg),
303   * where abs(arg) < 1
304   *
305   * Calculated as Taylor series.
306   */
fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)307  static struct fixed31_32 fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)
308  {
309  	unsigned int n = 9;
310  
311  	struct fixed31_32 res = dc_fixpt_from_fraction(
312  		n + 2,
313  		n + 1);
314  	/* TODO find correct res */
315  
316  	ASSERT(dc_fixpt_lt(arg, dc_fixpt_one));
317  
318  	do
319  		res = dc_fixpt_add(
320  			dc_fixpt_one,
321  			dc_fixpt_div_int(
322  				dc_fixpt_mul(
323  					arg,
324  					res),
325  				n));
326  	while (--n != 1);
327  
328  	return dc_fixpt_add(
329  		dc_fixpt_one,
330  		dc_fixpt_mul(
331  			arg,
332  			res));
333  }
334  
dc_fixpt_exp(struct fixed31_32 arg)335  struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg)
336  {
337  	/*
338  	 * @brief
339  	 * Main equation is:
340  	 * exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
341  	 * where m = round(x / ln(2)), r = x - m * ln(2)
342  	 */
343  
344  	if (dc_fixpt_le(
345  		dc_fixpt_ln2_div_2,
346  		dc_fixpt_abs(arg))) {
347  		int m = dc_fixpt_round(
348  			dc_fixpt_div(
349  				arg,
350  				dc_fixpt_ln2));
351  
352  		struct fixed31_32 r = dc_fixpt_sub(
353  			arg,
354  			dc_fixpt_mul_int(
355  				dc_fixpt_ln2,
356  				m));
357  
358  		ASSERT(m != 0);
359  
360  		ASSERT(dc_fixpt_lt(
361  			dc_fixpt_abs(r),
362  			dc_fixpt_one));
363  
364  		if (m > 0)
365  			return dc_fixpt_shl(
366  				fixed31_32_exp_from_taylor_series(r),
367  				(unsigned char)m);
368  		else
369  			return dc_fixpt_div_int(
370  				fixed31_32_exp_from_taylor_series(r),
371  				1LL << -m);
372  	} else if (arg.value != 0)
373  		return fixed31_32_exp_from_taylor_series(arg);
374  	else
375  		return dc_fixpt_one;
376  }
377  
dc_fixpt_log(struct fixed31_32 arg)378  struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg)
379  {
380  	struct fixed31_32 res = dc_fixpt_neg(dc_fixpt_one);
381  	/* TODO improve 1st estimation */
382  
383  	struct fixed31_32 error;
384  
385  	ASSERT(arg.value > 0);
386  	/* TODO if arg is negative, return NaN */
387  	/* TODO if arg is zero, return -INF */
388  
389  	do {
390  		struct fixed31_32 res1 = dc_fixpt_add(
391  			dc_fixpt_sub(
392  				res,
393  				dc_fixpt_one),
394  			dc_fixpt_div(
395  				arg,
396  				dc_fixpt_exp(res)));
397  
398  		error = dc_fixpt_sub(
399  			res,
400  			res1);
401  
402  		res = res1;
403  		/* TODO determine max_allowed_error based on quality of exp() */
404  	} while (abs_i64(error.value) > 100ULL);
405  
406  	return res;
407  }
408  
409  
410  /* this function is a generic helper to translate fixed point value to
411   * specified integer format that will consist of integer_bits integer part and
412   * fractional_bits fractional part. For example it is used in
413   * dc_fixpt_u2d19 to receive 2 bits integer part and 19 bits fractional
414   * part in 32 bits. It is used in hw programming (scaler)
415   */
416  
ux_dy(long long value,unsigned int integer_bits,unsigned int fractional_bits)417  static inline unsigned int ux_dy(
418  	long long value,
419  	unsigned int integer_bits,
420  	unsigned int fractional_bits)
421  {
422  	/* 1. create mask of integer part */
423  	unsigned int result = (1 << integer_bits) - 1;
424  	/* 2. mask out fractional part */
425  	unsigned int fractional_part = FRACTIONAL_PART_MASK & value;
426  	/* 3. shrink fixed point integer part to be of integer_bits width*/
427  	result &= GET_INTEGER_PART(value);
428  	/* 4. make space for fractional part to be filled in after integer */
429  	result <<= fractional_bits;
430  	/* 5. shrink fixed point fractional part to of fractional_bits width*/
431  	fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
432  	/* 6. merge the result */
433  	return result | fractional_part;
434  }
435  
clamp_ux_dy(long long value,unsigned int integer_bits,unsigned int fractional_bits,unsigned int min_clamp)436  static inline unsigned int clamp_ux_dy(
437  	long long value,
438  	unsigned int integer_bits,
439  	unsigned int fractional_bits,
440  	unsigned int min_clamp)
441  {
442  	unsigned int truncated_val = ux_dy(value, integer_bits, fractional_bits);
443  
444  	if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
445  		return (1 << (integer_bits + fractional_bits)) - 1;
446  	else if (truncated_val > min_clamp)
447  		return truncated_val;
448  	else
449  		return min_clamp;
450  }
451  
dc_fixpt_u4d19(struct fixed31_32 arg)452  unsigned int dc_fixpt_u4d19(struct fixed31_32 arg)
453  {
454  	return ux_dy(arg.value, 4, 19);
455  }
456  
dc_fixpt_u3d19(struct fixed31_32 arg)457  unsigned int dc_fixpt_u3d19(struct fixed31_32 arg)
458  {
459  	return ux_dy(arg.value, 3, 19);
460  }
461  
dc_fixpt_u2d19(struct fixed31_32 arg)462  unsigned int dc_fixpt_u2d19(struct fixed31_32 arg)
463  {
464  	return ux_dy(arg.value, 2, 19);
465  }
466  
dc_fixpt_u0d19(struct fixed31_32 arg)467  unsigned int dc_fixpt_u0d19(struct fixed31_32 arg)
468  {
469  	return ux_dy(arg.value, 0, 19);
470  }
471  
dc_fixpt_clamp_u0d14(struct fixed31_32 arg)472  unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg)
473  {
474  	return clamp_ux_dy(arg.value, 0, 14, 1);
475  }
476  
dc_fixpt_clamp_u0d10(struct fixed31_32 arg)477  unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg)
478  {
479  	return clamp_ux_dy(arg.value, 0, 10, 1);
480  }
481  
dc_fixpt_s4d19(struct fixed31_32 arg)482  int dc_fixpt_s4d19(struct fixed31_32 arg)
483  {
484  	if (arg.value < 0)
485  		return -(int)ux_dy(dc_fixpt_abs(arg).value, 4, 19);
486  	else
487  		return ux_dy(arg.value, 4, 19);
488  }
489  
dc_fixpt_from_ux_dy(unsigned int value,unsigned int integer_bits,unsigned int fractional_bits)490  struct fixed31_32 dc_fixpt_from_ux_dy(unsigned int value,
491  	unsigned int integer_bits,
492  	unsigned int fractional_bits)
493  {
494  	struct fixed31_32 fixpt_value = dc_fixpt_zero;
495  	struct fixed31_32 fixpt_int_value = dc_fixpt_zero;
496  	long long frac_mask = ((long long)1 << (long long)integer_bits) - 1;
497  
498  	fixpt_value.value = (long long)value << (FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits);
499  	frac_mask = frac_mask << fractional_bits;
500  	fixpt_int_value.value = value & frac_mask;
501  	fixpt_int_value.value <<= (FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits);
502  	fixpt_value.value |= fixpt_int_value.value;
503  	return fixpt_value;
504  }
505  
dc_fixpt_from_int_dy(unsigned int int_value,unsigned int frac_value,unsigned int integer_bits,unsigned int fractional_bits)506  struct fixed31_32 dc_fixpt_from_int_dy(unsigned int int_value,
507  	unsigned int frac_value,
508  	unsigned int integer_bits,
509  	unsigned int fractional_bits)
510  {
511  	struct fixed31_32 fixpt_value = dc_fixpt_from_int(int_value);
512  
513  	fixpt_value.value |= (long long)frac_value << (FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits);
514  	return fixpt_value;
515  }
516