1  /*
2   * Copyright 2012-15 Advanced Micro Devices, Inc.
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice shall be included in
12   * all copies or substantial portions of the Software.
13   *
14   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17   * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18   * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19   * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20   * OTHER DEALINGS IN THE SOFTWARE.
21   *
22   * Authors: AMD
23   *
24   */
25  
26  #ifndef __DAL_FIXED31_32_H__
27  #define __DAL_FIXED31_32_H__
28  
29  #ifndef LLONG_MAX
30  #define LLONG_MAX 9223372036854775807ll
31  #endif
32  #ifndef LLONG_MIN
33  #define LLONG_MIN (-LLONG_MAX - 1ll)
34  #endif
35  
36  #define FIXED31_32_BITS_PER_FRACTIONAL_PART 32
37  #ifndef LLONG_MIN
38  #define LLONG_MIN (1LL<<63)
39  #endif
40  #ifndef LLONG_MAX
41  #define LLONG_MAX (-1LL>>1)
42  #endif
43  
44  /*
45   * @brief
46   * Arithmetic operations on real numbers
47   * represented as fixed-point numbers.
48   * There are: 1 bit for sign,
49   * 31 bit for integer part,
50   * 32 bits for fractional part.
51   *
52   * @note
53   * Currently, overflows and underflows are asserted;
54   * no special result returned.
55   */
56  
57  struct fixed31_32 {
58  	long long value;
59  };
60  
61  
62  /*
63   * @brief
64   * Useful constants
65   */
66  
67  static const struct fixed31_32 dc_fixpt_zero = { 0 };
68  static const struct fixed31_32 dc_fixpt_epsilon = { 1LL };
69  static const struct fixed31_32 dc_fixpt_half = { 0x80000000LL };
70  static const struct fixed31_32 dc_fixpt_one = { 0x100000000LL };
71  
72  /*
73   * @brief
74   * Initialization routines
75   */
76  
77  /*
78   * @brief
79   * result = numerator / denominator
80   */
81  struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator);
82  
83  /*
84   * @brief
85   * result = arg
86   */
dc_fixpt_from_int(int arg)87  static inline struct fixed31_32 dc_fixpt_from_int(int arg)
88  {
89  	struct fixed31_32 res;
90  
91  	res.value = (long long) arg << FIXED31_32_BITS_PER_FRACTIONAL_PART;
92  
93  	return res;
94  }
95  
96  /*
97   * @brief
98   * Unary operators
99   */
100  
101  /*
102   * @brief
103   * result = -arg
104   */
dc_fixpt_neg(struct fixed31_32 arg)105  static inline struct fixed31_32 dc_fixpt_neg(struct fixed31_32 arg)
106  {
107  	struct fixed31_32 res;
108  
109  	res.value = -arg.value;
110  
111  	return res;
112  }
113  
114  /*
115   * @brief
116   * result = abs(arg) := (arg >= 0) ? arg : -arg
117   */
dc_fixpt_abs(struct fixed31_32 arg)118  static inline struct fixed31_32 dc_fixpt_abs(struct fixed31_32 arg)
119  {
120  	if (arg.value < 0)
121  		return dc_fixpt_neg(arg);
122  	else
123  		return arg;
124  }
125  
126  /*
127   * @brief
128   * Binary relational operators
129   */
130  
131  /*
132   * @brief
133   * result = arg1 < arg2
134   */
dc_fixpt_lt(struct fixed31_32 arg1,struct fixed31_32 arg2)135  static inline bool dc_fixpt_lt(struct fixed31_32 arg1, struct fixed31_32 arg2)
136  {
137  	return arg1.value < arg2.value;
138  }
139  
140  /*
141   * @brief
142   * result = arg1 <= arg2
143   */
dc_fixpt_le(struct fixed31_32 arg1,struct fixed31_32 arg2)144  static inline bool dc_fixpt_le(struct fixed31_32 arg1, struct fixed31_32 arg2)
145  {
146  	return arg1.value <= arg2.value;
147  }
148  
149  /*
150   * @brief
151   * result = arg1 == arg2
152   */
dc_fixpt_eq(struct fixed31_32 arg1,struct fixed31_32 arg2)153  static inline bool dc_fixpt_eq(struct fixed31_32 arg1, struct fixed31_32 arg2)
154  {
155  	return arg1.value == arg2.value;
156  }
157  
158  /*
159   * @brief
160   * result = min(arg1, arg2) := (arg1 <= arg2) ? arg1 : arg2
161   */
dc_fixpt_min(struct fixed31_32 arg1,struct fixed31_32 arg2)162  static inline struct fixed31_32 dc_fixpt_min(struct fixed31_32 arg1, struct fixed31_32 arg2)
163  {
164  	if (arg1.value <= arg2.value)
165  		return arg1;
166  	else
167  		return arg2;
168  }
169  
170  /*
171   * @brief
172   * result = max(arg1, arg2) := (arg1 <= arg2) ? arg2 : arg1
173   */
dc_fixpt_max(struct fixed31_32 arg1,struct fixed31_32 arg2)174  static inline struct fixed31_32 dc_fixpt_max(struct fixed31_32 arg1, struct fixed31_32 arg2)
175  {
176  	if (arg1.value <= arg2.value)
177  		return arg2;
178  	else
179  		return arg1;
180  }
181  
182  /*
183   * @brief
184   *          | min_value, when arg <= min_value
185   * result = | arg, when min_value < arg < max_value
186   *          | max_value, when arg >= max_value
187   */
dc_fixpt_clamp(struct fixed31_32 arg,struct fixed31_32 min_value,struct fixed31_32 max_value)188  static inline struct fixed31_32 dc_fixpt_clamp(
189  	struct fixed31_32 arg,
190  	struct fixed31_32 min_value,
191  	struct fixed31_32 max_value)
192  {
193  	if (dc_fixpt_le(arg, min_value))
194  		return min_value;
195  	else if (dc_fixpt_le(max_value, arg))
196  		return max_value;
197  	else
198  		return arg;
199  }
200  
201  /*
202   * @brief
203   * Binary shift operators
204   */
205  
206  /*
207   * @brief
208   * result = arg << shift
209   */
dc_fixpt_shl(struct fixed31_32 arg,unsigned char shift)210  static inline struct fixed31_32 dc_fixpt_shl(struct fixed31_32 arg, unsigned char shift)
211  {
212  	ASSERT(((arg.value >= 0) && (arg.value <= LLONG_MAX >> shift)) ||
213  		((arg.value < 0) && (arg.value >= ~(LLONG_MAX >> shift))));
214  
215  	arg.value = arg.value << shift;
216  
217  	return arg;
218  }
219  
220  /*
221   * @brief
222   * result = arg >> shift
223   */
dc_fixpt_shr(struct fixed31_32 arg,unsigned char shift)224  static inline struct fixed31_32 dc_fixpt_shr(struct fixed31_32 arg, unsigned char shift)
225  {
226  	bool negative = arg.value < 0;
227  
228  	if (negative)
229  		arg.value = -arg.value;
230  	arg.value = arg.value >> shift;
231  	if (negative)
232  		arg.value = -arg.value;
233  	return arg;
234  }
235  
236  /*
237   * @brief
238   * Binary additive operators
239   */
240  
241  /*
242   * @brief
243   * result = arg1 + arg2
244   */
dc_fixpt_add(struct fixed31_32 arg1,struct fixed31_32 arg2)245  static inline struct fixed31_32 dc_fixpt_add(struct fixed31_32 arg1, struct fixed31_32 arg2)
246  {
247  	struct fixed31_32 res;
248  
249  	ASSERT(((arg1.value >= 0) && (LLONG_MAX - arg1.value >= arg2.value)) ||
250  		((arg1.value < 0) && (LLONG_MIN - arg1.value <= arg2.value)));
251  
252  	res.value = arg1.value + arg2.value;
253  
254  	return res;
255  }
256  
257  /*
258   * @brief
259   * result = arg1 + arg2
260   */
dc_fixpt_add_int(struct fixed31_32 arg1,int arg2)261  static inline struct fixed31_32 dc_fixpt_add_int(struct fixed31_32 arg1, int arg2)
262  {
263  	return dc_fixpt_add(arg1, dc_fixpt_from_int(arg2));
264  }
265  
266  /*
267   * @brief
268   * result = arg1 - arg2
269   */
dc_fixpt_sub(struct fixed31_32 arg1,struct fixed31_32 arg2)270  static inline struct fixed31_32 dc_fixpt_sub(struct fixed31_32 arg1, struct fixed31_32 arg2)
271  {
272  	struct fixed31_32 res;
273  
274  	ASSERT(((arg2.value >= 0) && (LLONG_MIN + arg2.value <= arg1.value)) ||
275  		((arg2.value < 0) && (LLONG_MAX + arg2.value >= arg1.value)));
276  
277  	res.value = arg1.value - arg2.value;
278  
279  	return res;
280  }
281  
282  /*
283   * @brief
284   * result = arg1 - arg2
285   */
dc_fixpt_sub_int(struct fixed31_32 arg1,int arg2)286  static inline struct fixed31_32 dc_fixpt_sub_int(struct fixed31_32 arg1, int arg2)
287  {
288  	return dc_fixpt_sub(arg1, dc_fixpt_from_int(arg2));
289  }
290  
291  
292  /*
293   * @brief
294   * Binary multiplicative operators
295   */
296  
297  /*
298   * @brief
299   * result = arg1 * arg2
300   */
301  struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2);
302  
303  
304  /*
305   * @brief
306   * result = arg1 * arg2
307   */
dc_fixpt_mul_int(struct fixed31_32 arg1,int arg2)308  static inline struct fixed31_32 dc_fixpt_mul_int(struct fixed31_32 arg1, int arg2)
309  {
310  	return dc_fixpt_mul(arg1, dc_fixpt_from_int(arg2));
311  }
312  
313  /*
314   * @brief
315   * result = square(arg) := arg * arg
316   */
317  struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg);
318  
319  /*
320   * @brief
321   * result = arg1 / arg2
322   */
dc_fixpt_div_int(struct fixed31_32 arg1,long long arg2)323  static inline struct fixed31_32 dc_fixpt_div_int(struct fixed31_32 arg1, long long arg2)
324  {
325  	return dc_fixpt_from_fraction(arg1.value, dc_fixpt_from_int((int)arg2).value);
326  }
327  
328  /*
329   * @brief
330   * result = arg1 / arg2
331   */
dc_fixpt_div(struct fixed31_32 arg1,struct fixed31_32 arg2)332  static inline struct fixed31_32 dc_fixpt_div(struct fixed31_32 arg1, struct fixed31_32 arg2)
333  {
334  	return dc_fixpt_from_fraction(arg1.value, arg2.value);
335  }
336  
337  /*
338   * @brief
339   * Reciprocal function
340   */
341  
342  /*
343   * @brief
344   * result = reciprocal(arg) := 1 / arg
345   *
346   * @note
347   * No special actions taken in case argument is zero.
348   */
349  struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg);
350  
351  /*
352   * @brief
353   * Trigonometric functions
354   */
355  
356  /*
357   * @brief
358   * result = sinc(arg) := sin(arg) / arg
359   *
360   * @note
361   * Argument specified in radians,
362   * internally it's normalized to [-2pi...2pi] range.
363   */
364  struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg);
365  
366  /*
367   * @brief
368   * result = sin(arg)
369   *
370   * @note
371   * Argument specified in radians,
372   * internally it's normalized to [-2pi...2pi] range.
373   */
374  struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg);
375  
376  /*
377   * @brief
378   * result = cos(arg)
379   *
380   * @note
381   * Argument specified in radians
382   * and should be in [-2pi...2pi] range -
383   * passing arguments outside that range
384   * will cause incorrect result!
385   */
386  struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg);
387  
388  /*
389   * @brief
390   * Transcendent functions
391   */
392  
393  /*
394   * @brief
395   * result = exp(arg)
396   *
397   * @note
398   * Currently, function is verified for abs(arg) <= 1.
399   */
400  struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg);
401  
402  /*
403   * @brief
404   * result = log(arg)
405   *
406   * @note
407   * Currently, abs(arg) should be less than 1.
408   * No normalization is done.
409   * Currently, no special actions taken
410   * in case of invalid argument(s). Take care!
411   */
412  struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg);
413  
414  /*
415   * @brief
416   * Power function
417   */
418  
419  /*
420   * @brief
421   * result = pow(arg1, arg2)
422   *
423   * @note
424   * Currently, abs(arg1) should be less than 1. Take care!
425   */
dc_fixpt_pow(struct fixed31_32 arg1,struct fixed31_32 arg2)426  static inline struct fixed31_32 dc_fixpt_pow(struct fixed31_32 arg1, struct fixed31_32 arg2)
427  {
428  	if (arg1.value == 0)
429  		return arg2.value == 0 ? dc_fixpt_one : dc_fixpt_zero;
430  
431  	return dc_fixpt_exp(
432  		dc_fixpt_mul(
433  			dc_fixpt_log(arg1),
434  			arg2));
435  }
436  
437  /*
438   * @brief
439   * Rounding functions
440   */
441  
442  /*
443   * @brief
444   * result = floor(arg) := greatest integer lower than or equal to arg
445   */
dc_fixpt_floor(struct fixed31_32 arg)446  static inline int dc_fixpt_floor(struct fixed31_32 arg)
447  {
448  	unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value;
449  
450  	if (arg.value >= 0)
451  		return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
452  	else
453  		return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
454  }
455  
456  /*
457   * @brief
458   * result = round(arg) := integer nearest to arg
459   */
dc_fixpt_round(struct fixed31_32 arg)460  static inline int dc_fixpt_round(struct fixed31_32 arg)
461  {
462  	unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value;
463  
464  	const long long summand = dc_fixpt_half.value;
465  
466  	ASSERT(LLONG_MAX - (long long)arg_value >= summand);
467  
468  	arg_value += summand;
469  
470  	if (arg.value >= 0)
471  		return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
472  	else
473  		return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
474  }
475  
476  /*
477   * @brief
478   * result = ceil(arg) := lowest integer greater than or equal to arg
479   */
dc_fixpt_ceil(struct fixed31_32 arg)480  static inline int dc_fixpt_ceil(struct fixed31_32 arg)
481  {
482  	unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value;
483  
484  	const long long summand = dc_fixpt_one.value -
485  		dc_fixpt_epsilon.value;
486  
487  	ASSERT(LLONG_MAX - (long long)arg_value >= summand);
488  
489  	arg_value += summand;
490  
491  	if (arg.value >= 0)
492  		return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
493  	else
494  		return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
495  }
496  
497  /* the following two function are used in scaler hw programming to convert fixed
498   * point value to format 2 bits from integer part and 19 bits from fractional
499   * part. The same applies for u0d19, 0 bits from integer part and 19 bits from
500   * fractional
501   */
502  
503  unsigned int dc_fixpt_u4d19(struct fixed31_32 arg);
504  
505  unsigned int dc_fixpt_u3d19(struct fixed31_32 arg);
506  
507  unsigned int dc_fixpt_u2d19(struct fixed31_32 arg);
508  
509  unsigned int dc_fixpt_u0d19(struct fixed31_32 arg);
510  
511  unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg);
512  
513  unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg);
514  
515  int dc_fixpt_s4d19(struct fixed31_32 arg);
516  
dc_fixpt_truncate(struct fixed31_32 arg,unsigned int frac_bits)517  static inline struct fixed31_32 dc_fixpt_truncate(struct fixed31_32 arg, unsigned int frac_bits)
518  {
519  	bool negative = arg.value < 0;
520  
521  	if (frac_bits >= FIXED31_32_BITS_PER_FRACTIONAL_PART) {
522  		ASSERT(frac_bits == FIXED31_32_BITS_PER_FRACTIONAL_PART);
523  		return arg;
524  	}
525  
526  	if (negative)
527  		arg.value = -arg.value;
528  	arg.value &= (~0ULL) << (FIXED31_32_BITS_PER_FRACTIONAL_PART - frac_bits);
529  	if (negative)
530  		arg.value = -arg.value;
531  	return arg;
532  }
533  
534  struct fixed31_32 dc_fixpt_from_ux_dy(unsigned int value, unsigned int integer_bits, unsigned int fractional_bits);
535  struct fixed31_32 dc_fixpt_from_int_dy(unsigned int int_value,
536  		unsigned int frac_value,
537  		unsigned int integer_bits,
538  		unsigned int fractional_bits);
539  
540  #endif
541