1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * This file is part of UBIFS.
4   *
5   * Copyright (C) 2006-2008 Nokia Corporation.
6   *
7   * Authors: Adrian Hunter
8   *          Artem Bityutskiy (Битюцкий Артём)
9   */
10  
11  /*
12   * This file implements functions that manage the running of the commit process.
13   * Each affected module has its own functions to accomplish their part in the
14   * commit and those functions are called here.
15   *
16   * The commit is the process whereby all updates to the index and LEB properties
17   * are written out together and the journal becomes empty. This keeps the
18   * file system consistent - at all times the state can be recreated by reading
19   * the index and LEB properties and then replaying the journal.
20   *
21   * The commit is split into two parts named "commit start" and "commit end".
22   * During commit start, the commit process has exclusive access to the journal
23   * by holding the commit semaphore down for writing. As few I/O operations as
24   * possible are performed during commit start, instead the nodes that are to be
25   * written are merely identified. During commit end, the commit semaphore is no
26   * longer held and the journal is again in operation, allowing users to continue
27   * to use the file system while the bulk of the commit I/O is performed. The
28   * purpose of this two-step approach is to prevent the commit from causing any
29   * latency blips. Note that in any case, the commit does not prevent lookups
30   * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
31   * cache.
32   */
33  
34  #include <linux/freezer.h>
35  #include <linux/kthread.h>
36  #include <linux/slab.h>
37  #include "ubifs.h"
38  
39  /*
40   * nothing_to_commit - check if there is nothing to commit.
41   * @c: UBIFS file-system description object
42   *
43   * This is a helper function which checks if there is anything to commit. It is
44   * used as an optimization to avoid starting the commit if it is not really
45   * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
46   * writing the commit start node to the log), and it is better to avoid doing
47   * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
48   * nothing to commit, it is more optimal to avoid any flash I/O.
49   *
50   * This function has to be called with @c->commit_sem locked for writing -
51   * this function does not take LPT/TNC locks because the @c->commit_sem
52   * guarantees that we have exclusive access to the TNC and LPT data structures.
53   *
54   * This function returns %1 if there is nothing to commit and %0 otherwise.
55   */
nothing_to_commit(struct ubifs_info * c)56  static int nothing_to_commit(struct ubifs_info *c)
57  {
58  	/*
59  	 * During mounting or remounting from R/O mode to R/W mode we may
60  	 * commit for various recovery-related reasons.
61  	 */
62  	if (c->mounting || c->remounting_rw)
63  		return 0;
64  
65  	/*
66  	 * If the root TNC node is dirty, we definitely have something to
67  	 * commit.
68  	 */
69  	if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode))
70  		return 0;
71  
72  	/*
73  	 * Increasing @c->dirty_pn_cnt/@c->dirty_nn_cnt and marking
74  	 * nnodes/pnodes as dirty in run_gc() could race with following
75  	 * checking, which leads inconsistent states between @c->nroot
76  	 * and @c->dirty_pn_cnt/@c->dirty_nn_cnt, holding @c->lp_mutex
77  	 * to avoid that.
78  	 */
79  	mutex_lock(&c->lp_mutex);
80  	/*
81  	 * Even though the TNC is clean, the LPT tree may have dirty nodes. For
82  	 * example, this may happen if the budgeting subsystem invoked GC to
83  	 * make some free space, and the GC found an LEB with only dirty and
84  	 * free space. In this case GC would just change the lprops of this
85  	 * LEB (by turning all space into free space) and unmap it.
86  	 */
87  	if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags)) {
88  		mutex_unlock(&c->lp_mutex);
89  		return 0;
90  	}
91  
92  	ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
93  	ubifs_assert(c, c->dirty_pn_cnt == 0);
94  	ubifs_assert(c, c->dirty_nn_cnt == 0);
95  	mutex_unlock(&c->lp_mutex);
96  
97  	return 1;
98  }
99  
100  /**
101   * do_commit - commit the journal.
102   * @c: UBIFS file-system description object
103   *
104   * This function implements UBIFS commit. It has to be called with commit lock
105   * locked. Returns zero in case of success and a negative error code in case of
106   * failure.
107   */
do_commit(struct ubifs_info * c)108  static int do_commit(struct ubifs_info *c)
109  {
110  	int err, new_ltail_lnum, old_ltail_lnum, i;
111  	struct ubifs_zbranch zroot;
112  	struct ubifs_lp_stats lst;
113  
114  	dbg_cmt("start");
115  	ubifs_assert(c, !c->ro_media && !c->ro_mount);
116  
117  	if (c->ro_error) {
118  		err = -EROFS;
119  		goto out_up;
120  	}
121  
122  	if (nothing_to_commit(c)) {
123  		up_write(&c->commit_sem);
124  		err = 0;
125  		goto out_cancel;
126  	}
127  
128  	/* Sync all write buffers (necessary for recovery) */
129  	for (i = 0; i < c->jhead_cnt; i++) {
130  		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
131  		if (err)
132  			goto out_up;
133  	}
134  
135  	c->cmt_no += 1;
136  	err = ubifs_gc_start_commit(c);
137  	if (err)
138  		goto out_up;
139  	err = dbg_check_lprops(c);
140  	if (err)
141  		goto out_up;
142  	err = ubifs_log_start_commit(c, &new_ltail_lnum);
143  	if (err)
144  		goto out_up;
145  	err = ubifs_tnc_start_commit(c, &zroot);
146  	if (err)
147  		goto out_up;
148  	err = ubifs_lpt_start_commit(c);
149  	if (err)
150  		goto out_up;
151  	err = ubifs_orphan_start_commit(c);
152  	if (err)
153  		goto out_up;
154  
155  	ubifs_get_lp_stats(c, &lst);
156  
157  	up_write(&c->commit_sem);
158  
159  	err = ubifs_tnc_end_commit(c);
160  	if (err)
161  		goto out;
162  	err = ubifs_lpt_end_commit(c);
163  	if (err)
164  		goto out;
165  	err = ubifs_orphan_end_commit(c);
166  	if (err)
167  		goto out;
168  	err = dbg_check_old_index(c, &zroot);
169  	if (err)
170  		goto out;
171  
172  	c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
173  	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
174  	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
175  	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
176  	c->mst_node->root_len    = cpu_to_le32(zroot.len);
177  	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
178  	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
179  	c->mst_node->index_size  = cpu_to_le64(c->bi.old_idx_sz);
180  	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
181  	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
182  	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
183  	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
184  	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
185  	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
186  	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
187  	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
188  	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
189  	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
190  	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
191  	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
192  	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
193  	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
194  	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
195  	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
196  	if (c->no_orphs)
197  		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
198  	else
199  		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
200  
201  	old_ltail_lnum = c->ltail_lnum;
202  	err = ubifs_log_end_commit(c, new_ltail_lnum);
203  	if (err)
204  		goto out;
205  
206  	err = ubifs_log_post_commit(c, old_ltail_lnum);
207  	if (err)
208  		goto out;
209  	err = ubifs_gc_end_commit(c);
210  	if (err)
211  		goto out;
212  	err = ubifs_lpt_post_commit(c);
213  	if (err)
214  		goto out;
215  
216  out_cancel:
217  	spin_lock(&c->cs_lock);
218  	c->cmt_state = COMMIT_RESTING;
219  	wake_up(&c->cmt_wq);
220  	dbg_cmt("commit end");
221  	spin_unlock(&c->cs_lock);
222  	return 0;
223  
224  out_up:
225  	up_write(&c->commit_sem);
226  out:
227  	ubifs_err(c, "commit failed, error %d", err);
228  	spin_lock(&c->cs_lock);
229  	c->cmt_state = COMMIT_BROKEN;
230  	wake_up(&c->cmt_wq);
231  	spin_unlock(&c->cs_lock);
232  	ubifs_ro_mode(c, err);
233  	return err;
234  }
235  
236  /**
237   * run_bg_commit - run background commit if it is needed.
238   * @c: UBIFS file-system description object
239   *
240   * This function runs background commit if it is needed. Returns zero in case
241   * of success and a negative error code in case of failure.
242   */
run_bg_commit(struct ubifs_info * c)243  static int run_bg_commit(struct ubifs_info *c)
244  {
245  	spin_lock(&c->cs_lock);
246  	/*
247  	 * Run background commit only if background commit was requested or if
248  	 * commit is required.
249  	 */
250  	if (c->cmt_state != COMMIT_BACKGROUND &&
251  	    c->cmt_state != COMMIT_REQUIRED)
252  		goto out;
253  	spin_unlock(&c->cs_lock);
254  
255  	down_write(&c->commit_sem);
256  	spin_lock(&c->cs_lock);
257  	if (c->cmt_state == COMMIT_REQUIRED)
258  		c->cmt_state = COMMIT_RUNNING_REQUIRED;
259  	else if (c->cmt_state == COMMIT_BACKGROUND)
260  		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
261  	else
262  		goto out_cmt_unlock;
263  	spin_unlock(&c->cs_lock);
264  
265  	return do_commit(c);
266  
267  out_cmt_unlock:
268  	up_write(&c->commit_sem);
269  out:
270  	spin_unlock(&c->cs_lock);
271  	return 0;
272  }
273  
274  /**
275   * ubifs_bg_thread - UBIFS background thread function.
276   * @info: points to the file-system description object
277   *
278   * This function implements various file-system background activities:
279   * o when a write-buffer timer expires it synchronizes the appropriate
280   *   write-buffer;
281   * o when the journal is about to be full, it starts in-advance commit.
282   *
283   * Note, other stuff like background garbage collection may be added here in
284   * future.
285   */
ubifs_bg_thread(void * info)286  int ubifs_bg_thread(void *info)
287  {
288  	int err;
289  	struct ubifs_info *c = info;
290  
291  	ubifs_msg(c, "background thread \"%s\" started, PID %d",
292  		  c->bgt_name, current->pid);
293  	set_freezable();
294  
295  	while (1) {
296  		if (kthread_should_stop())
297  			break;
298  
299  		if (try_to_freeze())
300  			continue;
301  
302  		set_current_state(TASK_INTERRUPTIBLE);
303  		/* Check if there is something to do */
304  		if (!c->need_bgt) {
305  			/*
306  			 * Nothing prevents us from going sleep now and
307  			 * be never woken up and block the task which
308  			 * could wait in 'kthread_stop()' forever.
309  			 */
310  			if (kthread_should_stop())
311  				break;
312  			schedule();
313  			continue;
314  		} else
315  			__set_current_state(TASK_RUNNING);
316  
317  		c->need_bgt = 0;
318  		err = ubifs_bg_wbufs_sync(c);
319  		if (err)
320  			ubifs_ro_mode(c, err);
321  
322  		run_bg_commit(c);
323  		cond_resched();
324  	}
325  
326  	ubifs_msg(c, "background thread \"%s\" stops", c->bgt_name);
327  	return 0;
328  }
329  
330  /**
331   * ubifs_commit_required - set commit state to "required".
332   * @c: UBIFS file-system description object
333   *
334   * This function is called if a commit is required but cannot be done from the
335   * calling function, so it is just flagged instead.
336   */
ubifs_commit_required(struct ubifs_info * c)337  void ubifs_commit_required(struct ubifs_info *c)
338  {
339  	spin_lock(&c->cs_lock);
340  	switch (c->cmt_state) {
341  	case COMMIT_RESTING:
342  	case COMMIT_BACKGROUND:
343  		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
344  			dbg_cstate(COMMIT_REQUIRED));
345  		c->cmt_state = COMMIT_REQUIRED;
346  		break;
347  	case COMMIT_RUNNING_BACKGROUND:
348  		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
349  			dbg_cstate(COMMIT_RUNNING_REQUIRED));
350  		c->cmt_state = COMMIT_RUNNING_REQUIRED;
351  		break;
352  	case COMMIT_REQUIRED:
353  	case COMMIT_RUNNING_REQUIRED:
354  	case COMMIT_BROKEN:
355  		break;
356  	}
357  	spin_unlock(&c->cs_lock);
358  }
359  
360  /**
361   * ubifs_request_bg_commit - notify the background thread to do a commit.
362   * @c: UBIFS file-system description object
363   *
364   * This function is called if the journal is full enough to make a commit
365   * worthwhile, so background thread is kicked to start it.
366   */
ubifs_request_bg_commit(struct ubifs_info * c)367  void ubifs_request_bg_commit(struct ubifs_info *c)
368  {
369  	spin_lock(&c->cs_lock);
370  	if (c->cmt_state == COMMIT_RESTING) {
371  		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
372  			dbg_cstate(COMMIT_BACKGROUND));
373  		c->cmt_state = COMMIT_BACKGROUND;
374  		spin_unlock(&c->cs_lock);
375  		ubifs_wake_up_bgt(c);
376  	} else
377  		spin_unlock(&c->cs_lock);
378  }
379  
380  /**
381   * wait_for_commit - wait for commit.
382   * @c: UBIFS file-system description object
383   *
384   * This function sleeps until the commit operation is no longer running.
385   */
wait_for_commit(struct ubifs_info * c)386  static int wait_for_commit(struct ubifs_info *c)
387  {
388  	dbg_cmt("pid %d goes sleep", current->pid);
389  
390  	/*
391  	 * The following sleeps if the condition is false, and will be woken
392  	 * when the commit ends. It is possible, although very unlikely, that we
393  	 * will wake up and see the subsequent commit running, rather than the
394  	 * one we were waiting for, and go back to sleep.  However, we will be
395  	 * woken again, so there is no danger of sleeping forever.
396  	 */
397  	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
398  			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
399  	dbg_cmt("commit finished, pid %d woke up", current->pid);
400  	return 0;
401  }
402  
403  /**
404   * ubifs_run_commit - run or wait for commit.
405   * @c: UBIFS file-system description object
406   *
407   * This function runs commit and returns zero in case of success and a negative
408   * error code in case of failure.
409   */
ubifs_run_commit(struct ubifs_info * c)410  int ubifs_run_commit(struct ubifs_info *c)
411  {
412  	int err = 0;
413  
414  	spin_lock(&c->cs_lock);
415  	if (c->cmt_state == COMMIT_BROKEN) {
416  		err = -EROFS;
417  		goto out;
418  	}
419  
420  	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
421  		/*
422  		 * We set the commit state to 'running required' to indicate
423  		 * that we want it to complete as quickly as possible.
424  		 */
425  		c->cmt_state = COMMIT_RUNNING_REQUIRED;
426  
427  	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
428  		spin_unlock(&c->cs_lock);
429  		return wait_for_commit(c);
430  	}
431  	spin_unlock(&c->cs_lock);
432  
433  	/* Ok, the commit is indeed needed */
434  
435  	down_write(&c->commit_sem);
436  	spin_lock(&c->cs_lock);
437  	/*
438  	 * Since we unlocked 'c->cs_lock', the state may have changed, so
439  	 * re-check it.
440  	 */
441  	if (c->cmt_state == COMMIT_BROKEN) {
442  		err = -EROFS;
443  		goto out_cmt_unlock;
444  	}
445  
446  	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
447  		c->cmt_state = COMMIT_RUNNING_REQUIRED;
448  
449  	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
450  		up_write(&c->commit_sem);
451  		spin_unlock(&c->cs_lock);
452  		return wait_for_commit(c);
453  	}
454  	c->cmt_state = COMMIT_RUNNING_REQUIRED;
455  	spin_unlock(&c->cs_lock);
456  
457  	err = do_commit(c);
458  	return err;
459  
460  out_cmt_unlock:
461  	up_write(&c->commit_sem);
462  out:
463  	spin_unlock(&c->cs_lock);
464  	return err;
465  }
466  
467  /**
468   * ubifs_gc_should_commit - determine if it is time for GC to run commit.
469   * @c: UBIFS file-system description object
470   *
471   * This function is called by garbage collection to determine if commit should
472   * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
473   * is full enough to start commit, this function returns true. It is not
474   * absolutely necessary to commit yet, but it feels like this should be better
475   * then to keep doing GC. This function returns %1 if GC has to initiate commit
476   * and %0 if not.
477   */
ubifs_gc_should_commit(struct ubifs_info * c)478  int ubifs_gc_should_commit(struct ubifs_info *c)
479  {
480  	int ret = 0;
481  
482  	spin_lock(&c->cs_lock);
483  	if (c->cmt_state == COMMIT_BACKGROUND) {
484  		dbg_cmt("commit required now");
485  		c->cmt_state = COMMIT_REQUIRED;
486  	} else
487  		dbg_cmt("commit not requested");
488  	if (c->cmt_state == COMMIT_REQUIRED)
489  		ret = 1;
490  	spin_unlock(&c->cs_lock);
491  	return ret;
492  }
493  
494  /*
495   * Everything below is related to debugging.
496   */
497  
498  /**
499   * struct idx_node - hold index nodes during index tree traversal.
500   * @list: list
501   * @iip: index in parent (slot number of this indexing node in the parent
502   *       indexing node)
503   * @upper_key: all keys in this indexing node have to be less or equivalent to
504   *             this key
505   * @idx: index node (8-byte aligned because all node structures must be 8-byte
506   *       aligned)
507   */
508  struct idx_node {
509  	struct list_head list;
510  	int iip;
511  	union ubifs_key upper_key;
512  	struct ubifs_idx_node idx __aligned(8);
513  };
514  
515  /**
516   * dbg_old_index_check_init - get information for the next old index check.
517   * @c: UBIFS file-system description object
518   * @zroot: root of the index
519   *
520   * This function records information about the index that will be needed for the
521   * next old index check i.e. 'dbg_check_old_index()'.
522   *
523   * This function returns %0 on success and a negative error code on failure.
524   */
dbg_old_index_check_init(struct ubifs_info * c,struct ubifs_zbranch * zroot)525  int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
526  {
527  	struct ubifs_idx_node *idx;
528  	int lnum, offs, len, err = 0;
529  	struct ubifs_debug_info *d = c->dbg;
530  
531  	d->old_zroot = *zroot;
532  	lnum = d->old_zroot.lnum;
533  	offs = d->old_zroot.offs;
534  	len = d->old_zroot.len;
535  
536  	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
537  	if (!idx)
538  		return -ENOMEM;
539  
540  	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
541  	if (err)
542  		goto out;
543  
544  	d->old_zroot_level = le16_to_cpu(idx->level);
545  	d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
546  out:
547  	kfree(idx);
548  	return err;
549  }
550  
551  /**
552   * dbg_check_old_index - check the old copy of the index.
553   * @c: UBIFS file-system description object
554   * @zroot: root of the new index
555   *
556   * In order to be able to recover from an unclean unmount, a complete copy of
557   * the index must exist on flash. This is the "old" index. The commit process
558   * must write the "new" index to flash without overwriting or destroying any
559   * part of the old index. This function is run at commit end in order to check
560   * that the old index does indeed exist completely intact.
561   *
562   * This function returns %0 on success and a negative error code on failure.
563   */
dbg_check_old_index(struct ubifs_info * c,struct ubifs_zbranch * zroot)564  int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
565  {
566  	int lnum, offs, len, err = 0, last_level, child_cnt;
567  	int first = 1, iip;
568  	struct ubifs_debug_info *d = c->dbg;
569  	union ubifs_key lower_key, upper_key, l_key, u_key;
570  	unsigned long long last_sqnum;
571  	struct ubifs_idx_node *idx;
572  	struct list_head list;
573  	struct idx_node *i;
574  	size_t sz;
575  
576  	if (!dbg_is_chk_index(c))
577  		return 0;
578  
579  	INIT_LIST_HEAD(&list);
580  
581  	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
582  	     UBIFS_IDX_NODE_SZ;
583  
584  	/* Start at the old zroot */
585  	lnum = d->old_zroot.lnum;
586  	offs = d->old_zroot.offs;
587  	len = d->old_zroot.len;
588  	iip = 0;
589  
590  	/*
591  	 * Traverse the index tree preorder depth-first i.e. do a node and then
592  	 * its subtrees from left to right.
593  	 */
594  	while (1) {
595  		struct ubifs_branch *br;
596  
597  		/* Get the next index node */
598  		i = kmalloc(sz, GFP_NOFS);
599  		if (!i) {
600  			err = -ENOMEM;
601  			goto out_free;
602  		}
603  		i->iip = iip;
604  		/* Keep the index nodes on our path in a linked list */
605  		list_add_tail(&i->list, &list);
606  		/* Read the index node */
607  		idx = &i->idx;
608  		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
609  		if (err)
610  			goto out_free;
611  		/* Validate index node */
612  		child_cnt = le16_to_cpu(idx->child_cnt);
613  		if (child_cnt < 1 || child_cnt > c->fanout) {
614  			err = 1;
615  			goto out_dump;
616  		}
617  		if (first) {
618  			first = 0;
619  			/* Check root level and sqnum */
620  			if (le16_to_cpu(idx->level) != d->old_zroot_level) {
621  				err = 2;
622  				goto out_dump;
623  			}
624  			if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
625  				err = 3;
626  				goto out_dump;
627  			}
628  			/* Set last values as though root had a parent */
629  			last_level = le16_to_cpu(idx->level) + 1;
630  			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
631  			key_read(c, ubifs_idx_key(c, idx), &lower_key);
632  			highest_ino_key(c, &upper_key, INUM_WATERMARK);
633  		}
634  		key_copy(c, &upper_key, &i->upper_key);
635  		if (le16_to_cpu(idx->level) != last_level - 1) {
636  			err = 3;
637  			goto out_dump;
638  		}
639  		/*
640  		 * The index is always written bottom up hence a child's sqnum
641  		 * is always less than the parents.
642  		 */
643  		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
644  			err = 4;
645  			goto out_dump;
646  		}
647  		/* Check key range */
648  		key_read(c, ubifs_idx_key(c, idx), &l_key);
649  		br = ubifs_idx_branch(c, idx, child_cnt - 1);
650  		key_read(c, &br->key, &u_key);
651  		if (keys_cmp(c, &lower_key, &l_key) > 0) {
652  			err = 5;
653  			goto out_dump;
654  		}
655  		if (keys_cmp(c, &upper_key, &u_key) < 0) {
656  			err = 6;
657  			goto out_dump;
658  		}
659  		if (keys_cmp(c, &upper_key, &u_key) == 0)
660  			if (!is_hash_key(c, &u_key)) {
661  				err = 7;
662  				goto out_dump;
663  			}
664  		/* Go to next index node */
665  		if (le16_to_cpu(idx->level) == 0) {
666  			/* At the bottom, so go up until can go right */
667  			while (1) {
668  				/* Drop the bottom of the list */
669  				list_del(&i->list);
670  				kfree(i);
671  				/* No more list means we are done */
672  				if (list_empty(&list))
673  					goto out;
674  				/* Look at the new bottom */
675  				i = list_entry(list.prev, struct idx_node,
676  					       list);
677  				idx = &i->idx;
678  				/* Can we go right */
679  				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
680  					iip = iip + 1;
681  					break;
682  				} else
683  					/* Nope, so go up again */
684  					iip = i->iip;
685  			}
686  		} else
687  			/* Go down left */
688  			iip = 0;
689  		/*
690  		 * We have the parent in 'idx' and now we set up for reading the
691  		 * child pointed to by slot 'iip'.
692  		 */
693  		last_level = le16_to_cpu(idx->level);
694  		last_sqnum = le64_to_cpu(idx->ch.sqnum);
695  		br = ubifs_idx_branch(c, idx, iip);
696  		lnum = le32_to_cpu(br->lnum);
697  		offs = le32_to_cpu(br->offs);
698  		len = le32_to_cpu(br->len);
699  		key_read(c, &br->key, &lower_key);
700  		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
701  			br = ubifs_idx_branch(c, idx, iip + 1);
702  			key_read(c, &br->key, &upper_key);
703  		} else
704  			key_copy(c, &i->upper_key, &upper_key);
705  	}
706  out:
707  	err = dbg_old_index_check_init(c, zroot);
708  	if (err)
709  		goto out_free;
710  
711  	return 0;
712  
713  out_dump:
714  	ubifs_err(c, "dumping index node (iip=%d)", i->iip);
715  	ubifs_dump_node(c, idx, ubifs_idx_node_sz(c, c->fanout));
716  	list_del(&i->list);
717  	kfree(i);
718  	if (!list_empty(&list)) {
719  		i = list_entry(list.prev, struct idx_node, list);
720  		ubifs_err(c, "dumping parent index node");
721  		ubifs_dump_node(c, &i->idx, ubifs_idx_node_sz(c, c->fanout));
722  	}
723  out_free:
724  	while (!list_empty(&list)) {
725  		i = list_entry(list.next, struct idx_node, list);
726  		list_del(&i->list);
727  		kfree(i);
728  	}
729  	ubifs_err(c, "failed, error %d", err);
730  	if (err > 0)
731  		err = -EINVAL;
732  	return err;
733  }
734