1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright(c) 2017 Intel Corporation. All rights reserved.
4   */
5  #include <linux/pagemap.h>
6  #include <linux/module.h>
7  #include <linux/mount.h>
8  #include <linux/pseudo_fs.h>
9  #include <linux/magic.h>
10  #include <linux/pfn_t.h>
11  #include <linux/cdev.h>
12  #include <linux/slab.h>
13  #include <linux/uio.h>
14  #include <linux/dax.h>
15  #include <linux/fs.h>
16  #include <linux/cacheinfo.h>
17  #include "dax-private.h"
18  
19  /**
20   * struct dax_device - anchor object for dax services
21   * @inode: core vfs
22   * @cdev: optional character interface for "device dax"
23   * @private: dax driver private data
24   * @flags: state and boolean properties
25   * @ops: operations for this device
26   * @holder_data: holder of a dax_device: could be filesystem or mapped device
27   * @holder_ops: operations for the inner holder
28   */
29  struct dax_device {
30  	struct inode inode;
31  	struct cdev cdev;
32  	void *private;
33  	unsigned long flags;
34  	const struct dax_operations *ops;
35  	void *holder_data;
36  	const struct dax_holder_operations *holder_ops;
37  };
38  
39  static dev_t dax_devt;
40  DEFINE_STATIC_SRCU(dax_srcu);
41  static struct vfsmount *dax_mnt;
42  static DEFINE_IDA(dax_minor_ida);
43  static struct kmem_cache *dax_cache __read_mostly;
44  static struct super_block *dax_superblock __read_mostly;
45  
dax_read_lock(void)46  int dax_read_lock(void)
47  {
48  	return srcu_read_lock(&dax_srcu);
49  }
50  EXPORT_SYMBOL_GPL(dax_read_lock);
51  
dax_read_unlock(int id)52  void dax_read_unlock(int id)
53  {
54  	srcu_read_unlock(&dax_srcu, id);
55  }
56  EXPORT_SYMBOL_GPL(dax_read_unlock);
57  
58  #if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX)
59  #include <linux/blkdev.h>
60  
61  static DEFINE_XARRAY(dax_hosts);
62  
dax_add_host(struct dax_device * dax_dev,struct gendisk * disk)63  int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk)
64  {
65  	return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL);
66  }
67  EXPORT_SYMBOL_GPL(dax_add_host);
68  
dax_remove_host(struct gendisk * disk)69  void dax_remove_host(struct gendisk *disk)
70  {
71  	xa_erase(&dax_hosts, (unsigned long)disk);
72  }
73  EXPORT_SYMBOL_GPL(dax_remove_host);
74  
75  /**
76   * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax
77   * @bdev: block device to find a dax_device for
78   * @start_off: returns the byte offset into the dax_device that @bdev starts
79   * @holder: filesystem or mapped device inside the dax_device
80   * @ops: operations for the inner holder
81   */
fs_dax_get_by_bdev(struct block_device * bdev,u64 * start_off,void * holder,const struct dax_holder_operations * ops)82  struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off,
83  		void *holder, const struct dax_holder_operations *ops)
84  {
85  	struct dax_device *dax_dev;
86  	u64 part_size;
87  	int id;
88  
89  	if (!blk_queue_dax(bdev->bd_disk->queue))
90  		return NULL;
91  
92  	*start_off = get_start_sect(bdev) * SECTOR_SIZE;
93  	part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE;
94  	if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) {
95  		pr_info("%pg: error: unaligned partition for dax\n", bdev);
96  		return NULL;
97  	}
98  
99  	id = dax_read_lock();
100  	dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk);
101  	if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode))
102  		dax_dev = NULL;
103  	else if (holder) {
104  		if (!cmpxchg(&dax_dev->holder_data, NULL, holder))
105  			dax_dev->holder_ops = ops;
106  		else
107  			dax_dev = NULL;
108  	}
109  	dax_read_unlock(id);
110  
111  	return dax_dev;
112  }
113  EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev);
114  
fs_put_dax(struct dax_device * dax_dev,void * holder)115  void fs_put_dax(struct dax_device *dax_dev, void *holder)
116  {
117  	if (dax_dev && holder &&
118  	    cmpxchg(&dax_dev->holder_data, holder, NULL) == holder)
119  		dax_dev->holder_ops = NULL;
120  	put_dax(dax_dev);
121  }
122  EXPORT_SYMBOL_GPL(fs_put_dax);
123  #endif /* CONFIG_BLOCK && CONFIG_FS_DAX */
124  
125  enum dax_device_flags {
126  	/* !alive + rcu grace period == no new operations / mappings */
127  	DAXDEV_ALIVE,
128  	/* gate whether dax_flush() calls the low level flush routine */
129  	DAXDEV_WRITE_CACHE,
130  	/* flag to check if device supports synchronous flush */
131  	DAXDEV_SYNC,
132  	/* do not leave the caches dirty after writes */
133  	DAXDEV_NOCACHE,
134  	/* handle CPU fetch exceptions during reads */
135  	DAXDEV_NOMC,
136  };
137  
138  /**
139   * dax_direct_access() - translate a device pgoff to an absolute pfn
140   * @dax_dev: a dax_device instance representing the logical memory range
141   * @pgoff: offset in pages from the start of the device to translate
142   * @nr_pages: number of consecutive pages caller can handle relative to @pfn
143   * @mode: indicator on normal access or recovery write
144   * @kaddr: output parameter that returns a virtual address mapping of pfn
145   * @pfn: output parameter that returns an absolute pfn translation of @pgoff
146   *
147   * Return: negative errno if an error occurs, otherwise the number of
148   * pages accessible at the device relative @pgoff.
149   */
dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)150  long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
151  		enum dax_access_mode mode, void **kaddr, pfn_t *pfn)
152  {
153  	long avail;
154  
155  	if (!dax_dev)
156  		return -EOPNOTSUPP;
157  
158  	if (!dax_alive(dax_dev))
159  		return -ENXIO;
160  
161  	if (nr_pages < 0)
162  		return -EINVAL;
163  
164  	avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages,
165  			mode, kaddr, pfn);
166  	if (!avail)
167  		return -ERANGE;
168  	return min(avail, nr_pages);
169  }
170  EXPORT_SYMBOL_GPL(dax_direct_access);
171  
dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)172  size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
173  		size_t bytes, struct iov_iter *i)
174  {
175  	if (!dax_alive(dax_dev))
176  		return 0;
177  
178  	/*
179  	 * The userspace address for the memory copy has already been validated
180  	 * via access_ok() in vfs_write, so use the 'no check' version to bypass
181  	 * the HARDENED_USERCOPY overhead.
182  	 */
183  	if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags))
184  		return _copy_from_iter_flushcache(addr, bytes, i);
185  	return _copy_from_iter(addr, bytes, i);
186  }
187  
dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)188  size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
189  		size_t bytes, struct iov_iter *i)
190  {
191  	if (!dax_alive(dax_dev))
192  		return 0;
193  
194  	/*
195  	 * The userspace address for the memory copy has already been validated
196  	 * via access_ok() in vfs_red, so use the 'no check' version to bypass
197  	 * the HARDENED_USERCOPY overhead.
198  	 */
199  	if (test_bit(DAXDEV_NOMC, &dax_dev->flags))
200  		return _copy_mc_to_iter(addr, bytes, i);
201  	return _copy_to_iter(addr, bytes, i);
202  }
203  
dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)204  int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
205  			size_t nr_pages)
206  {
207  	int ret;
208  
209  	if (!dax_alive(dax_dev))
210  		return -ENXIO;
211  	/*
212  	 * There are no callers that want to zero more than one page as of now.
213  	 * Once users are there, this check can be removed after the
214  	 * device mapper code has been updated to split ranges across targets.
215  	 */
216  	if (nr_pages != 1)
217  		return -EIO;
218  
219  	ret = dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages);
220  	return dax_mem2blk_err(ret);
221  }
222  EXPORT_SYMBOL_GPL(dax_zero_page_range);
223  
dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * iter)224  size_t dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
225  		void *addr, size_t bytes, struct iov_iter *iter)
226  {
227  	if (!dax_dev->ops->recovery_write)
228  		return 0;
229  	return dax_dev->ops->recovery_write(dax_dev, pgoff, addr, bytes, iter);
230  }
231  EXPORT_SYMBOL_GPL(dax_recovery_write);
232  
dax_holder_notify_failure(struct dax_device * dax_dev,u64 off,u64 len,int mf_flags)233  int dax_holder_notify_failure(struct dax_device *dax_dev, u64 off,
234  			      u64 len, int mf_flags)
235  {
236  	int rc, id;
237  
238  	id = dax_read_lock();
239  	if (!dax_alive(dax_dev)) {
240  		rc = -ENXIO;
241  		goto out;
242  	}
243  
244  	if (!dax_dev->holder_ops) {
245  		rc = -EOPNOTSUPP;
246  		goto out;
247  	}
248  
249  	rc = dax_dev->holder_ops->notify_failure(dax_dev, off, len, mf_flags);
250  out:
251  	dax_read_unlock(id);
252  	return rc;
253  }
254  EXPORT_SYMBOL_GPL(dax_holder_notify_failure);
255  
256  #ifdef CONFIG_ARCH_HAS_PMEM_API
257  void arch_wb_cache_pmem(void *addr, size_t size);
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)258  void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
259  {
260  	if (unlikely(!dax_write_cache_enabled(dax_dev)))
261  		return;
262  
263  	arch_wb_cache_pmem(addr, size);
264  }
265  #else
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)266  void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
267  {
268  }
269  #endif
270  EXPORT_SYMBOL_GPL(dax_flush);
271  
dax_write_cache(struct dax_device * dax_dev,bool wc)272  void dax_write_cache(struct dax_device *dax_dev, bool wc)
273  {
274  	if (wc)
275  		set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
276  	else
277  		clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
278  }
279  EXPORT_SYMBOL_GPL(dax_write_cache);
280  
dax_write_cache_enabled(struct dax_device * dax_dev)281  bool dax_write_cache_enabled(struct dax_device *dax_dev)
282  {
283  	return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
284  }
285  EXPORT_SYMBOL_GPL(dax_write_cache_enabled);
286  
dax_synchronous(struct dax_device * dax_dev)287  bool dax_synchronous(struct dax_device *dax_dev)
288  {
289  	return test_bit(DAXDEV_SYNC, &dax_dev->flags);
290  }
291  EXPORT_SYMBOL_GPL(dax_synchronous);
292  
set_dax_synchronous(struct dax_device * dax_dev)293  void set_dax_synchronous(struct dax_device *dax_dev)
294  {
295  	set_bit(DAXDEV_SYNC, &dax_dev->flags);
296  }
297  EXPORT_SYMBOL_GPL(set_dax_synchronous);
298  
set_dax_nocache(struct dax_device * dax_dev)299  void set_dax_nocache(struct dax_device *dax_dev)
300  {
301  	set_bit(DAXDEV_NOCACHE, &dax_dev->flags);
302  }
303  EXPORT_SYMBOL_GPL(set_dax_nocache);
304  
set_dax_nomc(struct dax_device * dax_dev)305  void set_dax_nomc(struct dax_device *dax_dev)
306  {
307  	set_bit(DAXDEV_NOMC, &dax_dev->flags);
308  }
309  EXPORT_SYMBOL_GPL(set_dax_nomc);
310  
dax_alive(struct dax_device * dax_dev)311  bool dax_alive(struct dax_device *dax_dev)
312  {
313  	lockdep_assert_held(&dax_srcu);
314  	return test_bit(DAXDEV_ALIVE, &dax_dev->flags);
315  }
316  EXPORT_SYMBOL_GPL(dax_alive);
317  
318  /*
319   * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring
320   * that any fault handlers or operations that might have seen
321   * dax_alive(), have completed.  Any operations that start after
322   * synchronize_srcu() has run will abort upon seeing !dax_alive().
323   *
324   * Note, because alloc_dax() returns an ERR_PTR() on error, callers
325   * typically store its result into a local variable in order to check
326   * the result. Therefore, care must be taken to populate the struct
327   * device dax_dev field make sure the dax_dev is not leaked.
328   */
kill_dax(struct dax_device * dax_dev)329  void kill_dax(struct dax_device *dax_dev)
330  {
331  	if (!dax_dev)
332  		return;
333  
334  	if (dax_dev->holder_data != NULL)
335  		dax_holder_notify_failure(dax_dev, 0, U64_MAX,
336  				MF_MEM_PRE_REMOVE);
337  
338  	clear_bit(DAXDEV_ALIVE, &dax_dev->flags);
339  	synchronize_srcu(&dax_srcu);
340  
341  	/* clear holder data */
342  	dax_dev->holder_ops = NULL;
343  	dax_dev->holder_data = NULL;
344  }
345  EXPORT_SYMBOL_GPL(kill_dax);
346  
run_dax(struct dax_device * dax_dev)347  void run_dax(struct dax_device *dax_dev)
348  {
349  	set_bit(DAXDEV_ALIVE, &dax_dev->flags);
350  }
351  EXPORT_SYMBOL_GPL(run_dax);
352  
dax_alloc_inode(struct super_block * sb)353  static struct inode *dax_alloc_inode(struct super_block *sb)
354  {
355  	struct dax_device *dax_dev;
356  	struct inode *inode;
357  
358  	dax_dev = alloc_inode_sb(sb, dax_cache, GFP_KERNEL);
359  	if (!dax_dev)
360  		return NULL;
361  
362  	inode = &dax_dev->inode;
363  	inode->i_rdev = 0;
364  	return inode;
365  }
366  
to_dax_dev(struct inode * inode)367  static struct dax_device *to_dax_dev(struct inode *inode)
368  {
369  	return container_of(inode, struct dax_device, inode);
370  }
371  
dax_free_inode(struct inode * inode)372  static void dax_free_inode(struct inode *inode)
373  {
374  	struct dax_device *dax_dev = to_dax_dev(inode);
375  	if (inode->i_rdev)
376  		ida_free(&dax_minor_ida, iminor(inode));
377  	kmem_cache_free(dax_cache, dax_dev);
378  }
379  
dax_destroy_inode(struct inode * inode)380  static void dax_destroy_inode(struct inode *inode)
381  {
382  	struct dax_device *dax_dev = to_dax_dev(inode);
383  	WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags),
384  			"kill_dax() must be called before final iput()\n");
385  }
386  
387  static const struct super_operations dax_sops = {
388  	.statfs = simple_statfs,
389  	.alloc_inode = dax_alloc_inode,
390  	.destroy_inode = dax_destroy_inode,
391  	.free_inode = dax_free_inode,
392  	.drop_inode = generic_delete_inode,
393  };
394  
dax_init_fs_context(struct fs_context * fc)395  static int dax_init_fs_context(struct fs_context *fc)
396  {
397  	struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC);
398  	if (!ctx)
399  		return -ENOMEM;
400  	ctx->ops = &dax_sops;
401  	return 0;
402  }
403  
404  static struct file_system_type dax_fs_type = {
405  	.name		= "dax",
406  	.init_fs_context = dax_init_fs_context,
407  	.kill_sb	= kill_anon_super,
408  };
409  
dax_test(struct inode * inode,void * data)410  static int dax_test(struct inode *inode, void *data)
411  {
412  	dev_t devt = *(dev_t *) data;
413  
414  	return inode->i_rdev == devt;
415  }
416  
dax_set(struct inode * inode,void * data)417  static int dax_set(struct inode *inode, void *data)
418  {
419  	dev_t devt = *(dev_t *) data;
420  
421  	inode->i_rdev = devt;
422  	return 0;
423  }
424  
dax_dev_get(dev_t devt)425  static struct dax_device *dax_dev_get(dev_t devt)
426  {
427  	struct dax_device *dax_dev;
428  	struct inode *inode;
429  
430  	inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31),
431  			dax_test, dax_set, &devt);
432  
433  	if (!inode)
434  		return NULL;
435  
436  	dax_dev = to_dax_dev(inode);
437  	if (inode->i_state & I_NEW) {
438  		set_bit(DAXDEV_ALIVE, &dax_dev->flags);
439  		inode->i_cdev = &dax_dev->cdev;
440  		inode->i_mode = S_IFCHR;
441  		inode->i_flags = S_DAX;
442  		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
443  		unlock_new_inode(inode);
444  	}
445  
446  	return dax_dev;
447  }
448  
alloc_dax(void * private,const struct dax_operations * ops)449  struct dax_device *alloc_dax(void *private, const struct dax_operations *ops)
450  {
451  	struct dax_device *dax_dev;
452  	dev_t devt;
453  	int minor;
454  
455  	/*
456  	 * Unavailable on architectures with virtually aliased data caches,
457  	 * except for device-dax (NULL operations pointer), which does
458  	 * not use aliased mappings from the kernel.
459  	 */
460  	if (ops && cpu_dcache_is_aliasing())
461  		return ERR_PTR(-EOPNOTSUPP);
462  
463  	if (WARN_ON_ONCE(ops && !ops->zero_page_range))
464  		return ERR_PTR(-EINVAL);
465  
466  	minor = ida_alloc_max(&dax_minor_ida, MINORMASK, GFP_KERNEL);
467  	if (minor < 0)
468  		return ERR_PTR(-ENOMEM);
469  
470  	devt = MKDEV(MAJOR(dax_devt), minor);
471  	dax_dev = dax_dev_get(devt);
472  	if (!dax_dev)
473  		goto err_dev;
474  
475  	dax_dev->ops = ops;
476  	dax_dev->private = private;
477  	return dax_dev;
478  
479   err_dev:
480  	ida_free(&dax_minor_ida, minor);
481  	return ERR_PTR(-ENOMEM);
482  }
483  EXPORT_SYMBOL_GPL(alloc_dax);
484  
put_dax(struct dax_device * dax_dev)485  void put_dax(struct dax_device *dax_dev)
486  {
487  	if (!dax_dev)
488  		return;
489  	iput(&dax_dev->inode);
490  }
491  EXPORT_SYMBOL_GPL(put_dax);
492  
493  /**
494   * dax_holder() - obtain the holder of a dax device
495   * @dax_dev: a dax_device instance
496   *
497   * Return: the holder's data which represents the holder if registered,
498   * otherwize NULL.
499   */
dax_holder(struct dax_device * dax_dev)500  void *dax_holder(struct dax_device *dax_dev)
501  {
502  	return dax_dev->holder_data;
503  }
504  EXPORT_SYMBOL_GPL(dax_holder);
505  
506  /**
507   * inode_dax: convert a public inode into its dax_dev
508   * @inode: An inode with i_cdev pointing to a dax_dev
509   *
510   * Note this is not equivalent to to_dax_dev() which is for private
511   * internal use where we know the inode filesystem type == dax_fs_type.
512   */
inode_dax(struct inode * inode)513  struct dax_device *inode_dax(struct inode *inode)
514  {
515  	struct cdev *cdev = inode->i_cdev;
516  
517  	return container_of(cdev, struct dax_device, cdev);
518  }
519  EXPORT_SYMBOL_GPL(inode_dax);
520  
dax_inode(struct dax_device * dax_dev)521  struct inode *dax_inode(struct dax_device *dax_dev)
522  {
523  	return &dax_dev->inode;
524  }
525  EXPORT_SYMBOL_GPL(dax_inode);
526  
dax_get_private(struct dax_device * dax_dev)527  void *dax_get_private(struct dax_device *dax_dev)
528  {
529  	if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags))
530  		return NULL;
531  	return dax_dev->private;
532  }
533  EXPORT_SYMBOL_GPL(dax_get_private);
534  
init_once(void * _dax_dev)535  static void init_once(void *_dax_dev)
536  {
537  	struct dax_device *dax_dev = _dax_dev;
538  	struct inode *inode = &dax_dev->inode;
539  
540  	memset(dax_dev, 0, sizeof(*dax_dev));
541  	inode_init_once(inode);
542  }
543  
dax_fs_init(void)544  static int dax_fs_init(void)
545  {
546  	int rc;
547  
548  	dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0,
549  			SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
550  			init_once);
551  	if (!dax_cache)
552  		return -ENOMEM;
553  
554  	dax_mnt = kern_mount(&dax_fs_type);
555  	if (IS_ERR(dax_mnt)) {
556  		rc = PTR_ERR(dax_mnt);
557  		goto err_mount;
558  	}
559  	dax_superblock = dax_mnt->mnt_sb;
560  
561  	return 0;
562  
563   err_mount:
564  	kmem_cache_destroy(dax_cache);
565  
566  	return rc;
567  }
568  
dax_fs_exit(void)569  static void dax_fs_exit(void)
570  {
571  	kern_unmount(dax_mnt);
572  	rcu_barrier();
573  	kmem_cache_destroy(dax_cache);
574  }
575  
dax_core_init(void)576  static int __init dax_core_init(void)
577  {
578  	int rc;
579  
580  	rc = dax_fs_init();
581  	if (rc)
582  		return rc;
583  
584  	rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax");
585  	if (rc)
586  		goto err_chrdev;
587  
588  	rc = dax_bus_init();
589  	if (rc)
590  		goto err_bus;
591  	return 0;
592  
593  err_bus:
594  	unregister_chrdev_region(dax_devt, MINORMASK+1);
595  err_chrdev:
596  	dax_fs_exit();
597  	return 0;
598  }
599  
dax_core_exit(void)600  static void __exit dax_core_exit(void)
601  {
602  	dax_bus_exit();
603  	unregister_chrdev_region(dax_devt, MINORMASK+1);
604  	ida_destroy(&dax_minor_ida);
605  	dax_fs_exit();
606  }
607  
608  MODULE_AUTHOR("Intel Corporation");
609  MODULE_DESCRIPTION("DAX: direct access to differentiated memory");
610  MODULE_LICENSE("GPL v2");
611  subsys_initcall(dax_core_init);
612  module_exit(dax_core_exit);
613