1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2017 Intel Corporation. All rights reserved.
4  */
5 #include <linux/pagemap.h>
6 #include <linux/module.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include <linux/pfn_t.h>
11 #include <linux/cdev.h>
12 #include <linux/slab.h>
13 #include <linux/uio.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/cacheinfo.h>
17 #include "dax-private.h"
18 
19 /**
20  * struct dax_device - anchor object for dax services
21  * @inode: core vfs
22  * @cdev: optional character interface for "device dax"
23  * @private: dax driver private data
24  * @flags: state and boolean properties
25  * @ops: operations for this device
26  * @holder_data: holder of a dax_device: could be filesystem or mapped device
27  * @holder_ops: operations for the inner holder
28  */
29 struct dax_device {
30 	struct inode inode;
31 	struct cdev cdev;
32 	void *private;
33 	unsigned long flags;
34 	const struct dax_operations *ops;
35 	void *holder_data;
36 	const struct dax_holder_operations *holder_ops;
37 };
38 
39 static dev_t dax_devt;
40 DEFINE_STATIC_SRCU(dax_srcu);
41 static struct vfsmount *dax_mnt;
42 static DEFINE_IDA(dax_minor_ida);
43 static struct kmem_cache *dax_cache __read_mostly;
44 static struct super_block *dax_superblock __read_mostly;
45 
dax_read_lock(void)46 int dax_read_lock(void)
47 {
48 	return srcu_read_lock(&dax_srcu);
49 }
50 EXPORT_SYMBOL_GPL(dax_read_lock);
51 
dax_read_unlock(int id)52 void dax_read_unlock(int id)
53 {
54 	srcu_read_unlock(&dax_srcu, id);
55 }
56 EXPORT_SYMBOL_GPL(dax_read_unlock);
57 
58 #if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX)
59 #include <linux/blkdev.h>
60 
61 static DEFINE_XARRAY(dax_hosts);
62 
dax_add_host(struct dax_device * dax_dev,struct gendisk * disk)63 int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk)
64 {
65 	return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL);
66 }
67 EXPORT_SYMBOL_GPL(dax_add_host);
68 
dax_remove_host(struct gendisk * disk)69 void dax_remove_host(struct gendisk *disk)
70 {
71 	xa_erase(&dax_hosts, (unsigned long)disk);
72 }
73 EXPORT_SYMBOL_GPL(dax_remove_host);
74 
75 /**
76  * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax
77  * @bdev: block device to find a dax_device for
78  * @start_off: returns the byte offset into the dax_device that @bdev starts
79  * @holder: filesystem or mapped device inside the dax_device
80  * @ops: operations for the inner holder
81  */
fs_dax_get_by_bdev(struct block_device * bdev,u64 * start_off,void * holder,const struct dax_holder_operations * ops)82 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off,
83 		void *holder, const struct dax_holder_operations *ops)
84 {
85 	struct dax_device *dax_dev;
86 	u64 part_size;
87 	int id;
88 
89 	if (!blk_queue_dax(bdev->bd_disk->queue))
90 		return NULL;
91 
92 	*start_off = get_start_sect(bdev) * SECTOR_SIZE;
93 	part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE;
94 	if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) {
95 		pr_info("%pg: error: unaligned partition for dax\n", bdev);
96 		return NULL;
97 	}
98 
99 	id = dax_read_lock();
100 	dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk);
101 	if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode))
102 		dax_dev = NULL;
103 	else if (holder) {
104 		if (!cmpxchg(&dax_dev->holder_data, NULL, holder))
105 			dax_dev->holder_ops = ops;
106 		else
107 			dax_dev = NULL;
108 	}
109 	dax_read_unlock(id);
110 
111 	return dax_dev;
112 }
113 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev);
114 
fs_put_dax(struct dax_device * dax_dev,void * holder)115 void fs_put_dax(struct dax_device *dax_dev, void *holder)
116 {
117 	if (dax_dev && holder &&
118 	    cmpxchg(&dax_dev->holder_data, holder, NULL) == holder)
119 		dax_dev->holder_ops = NULL;
120 	put_dax(dax_dev);
121 }
122 EXPORT_SYMBOL_GPL(fs_put_dax);
123 #endif /* CONFIG_BLOCK && CONFIG_FS_DAX */
124 
125 enum dax_device_flags {
126 	/* !alive + rcu grace period == no new operations / mappings */
127 	DAXDEV_ALIVE,
128 	/* gate whether dax_flush() calls the low level flush routine */
129 	DAXDEV_WRITE_CACHE,
130 	/* flag to check if device supports synchronous flush */
131 	DAXDEV_SYNC,
132 	/* do not leave the caches dirty after writes */
133 	DAXDEV_NOCACHE,
134 	/* handle CPU fetch exceptions during reads */
135 	DAXDEV_NOMC,
136 };
137 
138 /**
139  * dax_direct_access() - translate a device pgoff to an absolute pfn
140  * @dax_dev: a dax_device instance representing the logical memory range
141  * @pgoff: offset in pages from the start of the device to translate
142  * @nr_pages: number of consecutive pages caller can handle relative to @pfn
143  * @mode: indicator on normal access or recovery write
144  * @kaddr: output parameter that returns a virtual address mapping of pfn
145  * @pfn: output parameter that returns an absolute pfn translation of @pgoff
146  *
147  * Return: negative errno if an error occurs, otherwise the number of
148  * pages accessible at the device relative @pgoff.
149  */
dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)150 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
151 		enum dax_access_mode mode, void **kaddr, pfn_t *pfn)
152 {
153 	long avail;
154 
155 	if (!dax_dev)
156 		return -EOPNOTSUPP;
157 
158 	if (!dax_alive(dax_dev))
159 		return -ENXIO;
160 
161 	if (nr_pages < 0)
162 		return -EINVAL;
163 
164 	avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages,
165 			mode, kaddr, pfn);
166 	if (!avail)
167 		return -ERANGE;
168 	return min(avail, nr_pages);
169 }
170 EXPORT_SYMBOL_GPL(dax_direct_access);
171 
dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)172 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
173 		size_t bytes, struct iov_iter *i)
174 {
175 	if (!dax_alive(dax_dev))
176 		return 0;
177 
178 	/*
179 	 * The userspace address for the memory copy has already been validated
180 	 * via access_ok() in vfs_write, so use the 'no check' version to bypass
181 	 * the HARDENED_USERCOPY overhead.
182 	 */
183 	if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags))
184 		return _copy_from_iter_flushcache(addr, bytes, i);
185 	return _copy_from_iter(addr, bytes, i);
186 }
187 
dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)188 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
189 		size_t bytes, struct iov_iter *i)
190 {
191 	if (!dax_alive(dax_dev))
192 		return 0;
193 
194 	/*
195 	 * The userspace address for the memory copy has already been validated
196 	 * via access_ok() in vfs_red, so use the 'no check' version to bypass
197 	 * the HARDENED_USERCOPY overhead.
198 	 */
199 	if (test_bit(DAXDEV_NOMC, &dax_dev->flags))
200 		return _copy_mc_to_iter(addr, bytes, i);
201 	return _copy_to_iter(addr, bytes, i);
202 }
203 
dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)204 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
205 			size_t nr_pages)
206 {
207 	int ret;
208 
209 	if (!dax_alive(dax_dev))
210 		return -ENXIO;
211 	/*
212 	 * There are no callers that want to zero more than one page as of now.
213 	 * Once users are there, this check can be removed after the
214 	 * device mapper code has been updated to split ranges across targets.
215 	 */
216 	if (nr_pages != 1)
217 		return -EIO;
218 
219 	ret = dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages);
220 	return dax_mem2blk_err(ret);
221 }
222 EXPORT_SYMBOL_GPL(dax_zero_page_range);
223 
dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * iter)224 size_t dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
225 		void *addr, size_t bytes, struct iov_iter *iter)
226 {
227 	if (!dax_dev->ops->recovery_write)
228 		return 0;
229 	return dax_dev->ops->recovery_write(dax_dev, pgoff, addr, bytes, iter);
230 }
231 EXPORT_SYMBOL_GPL(dax_recovery_write);
232 
dax_holder_notify_failure(struct dax_device * dax_dev,u64 off,u64 len,int mf_flags)233 int dax_holder_notify_failure(struct dax_device *dax_dev, u64 off,
234 			      u64 len, int mf_flags)
235 {
236 	int rc, id;
237 
238 	id = dax_read_lock();
239 	if (!dax_alive(dax_dev)) {
240 		rc = -ENXIO;
241 		goto out;
242 	}
243 
244 	if (!dax_dev->holder_ops) {
245 		rc = -EOPNOTSUPP;
246 		goto out;
247 	}
248 
249 	rc = dax_dev->holder_ops->notify_failure(dax_dev, off, len, mf_flags);
250 out:
251 	dax_read_unlock(id);
252 	return rc;
253 }
254 EXPORT_SYMBOL_GPL(dax_holder_notify_failure);
255 
256 #ifdef CONFIG_ARCH_HAS_PMEM_API
257 void arch_wb_cache_pmem(void *addr, size_t size);
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)258 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
259 {
260 	if (unlikely(!dax_write_cache_enabled(dax_dev)))
261 		return;
262 
263 	arch_wb_cache_pmem(addr, size);
264 }
265 #else
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)266 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
267 {
268 }
269 #endif
270 EXPORT_SYMBOL_GPL(dax_flush);
271 
dax_write_cache(struct dax_device * dax_dev,bool wc)272 void dax_write_cache(struct dax_device *dax_dev, bool wc)
273 {
274 	if (wc)
275 		set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
276 	else
277 		clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
278 }
279 EXPORT_SYMBOL_GPL(dax_write_cache);
280 
dax_write_cache_enabled(struct dax_device * dax_dev)281 bool dax_write_cache_enabled(struct dax_device *dax_dev)
282 {
283 	return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
284 }
285 EXPORT_SYMBOL_GPL(dax_write_cache_enabled);
286 
dax_synchronous(struct dax_device * dax_dev)287 bool dax_synchronous(struct dax_device *dax_dev)
288 {
289 	return test_bit(DAXDEV_SYNC, &dax_dev->flags);
290 }
291 EXPORT_SYMBOL_GPL(dax_synchronous);
292 
set_dax_synchronous(struct dax_device * dax_dev)293 void set_dax_synchronous(struct dax_device *dax_dev)
294 {
295 	set_bit(DAXDEV_SYNC, &dax_dev->flags);
296 }
297 EXPORT_SYMBOL_GPL(set_dax_synchronous);
298 
set_dax_nocache(struct dax_device * dax_dev)299 void set_dax_nocache(struct dax_device *dax_dev)
300 {
301 	set_bit(DAXDEV_NOCACHE, &dax_dev->flags);
302 }
303 EXPORT_SYMBOL_GPL(set_dax_nocache);
304 
set_dax_nomc(struct dax_device * dax_dev)305 void set_dax_nomc(struct dax_device *dax_dev)
306 {
307 	set_bit(DAXDEV_NOMC, &dax_dev->flags);
308 }
309 EXPORT_SYMBOL_GPL(set_dax_nomc);
310 
dax_alive(struct dax_device * dax_dev)311 bool dax_alive(struct dax_device *dax_dev)
312 {
313 	lockdep_assert_held(&dax_srcu);
314 	return test_bit(DAXDEV_ALIVE, &dax_dev->flags);
315 }
316 EXPORT_SYMBOL_GPL(dax_alive);
317 
318 /*
319  * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring
320  * that any fault handlers or operations that might have seen
321  * dax_alive(), have completed.  Any operations that start after
322  * synchronize_srcu() has run will abort upon seeing !dax_alive().
323  *
324  * Note, because alloc_dax() returns an ERR_PTR() on error, callers
325  * typically store its result into a local variable in order to check
326  * the result. Therefore, care must be taken to populate the struct
327  * device dax_dev field make sure the dax_dev is not leaked.
328  */
kill_dax(struct dax_device * dax_dev)329 void kill_dax(struct dax_device *dax_dev)
330 {
331 	if (!dax_dev)
332 		return;
333 
334 	if (dax_dev->holder_data != NULL)
335 		dax_holder_notify_failure(dax_dev, 0, U64_MAX,
336 				MF_MEM_PRE_REMOVE);
337 
338 	clear_bit(DAXDEV_ALIVE, &dax_dev->flags);
339 	synchronize_srcu(&dax_srcu);
340 
341 	/* clear holder data */
342 	dax_dev->holder_ops = NULL;
343 	dax_dev->holder_data = NULL;
344 }
345 EXPORT_SYMBOL_GPL(kill_dax);
346 
run_dax(struct dax_device * dax_dev)347 void run_dax(struct dax_device *dax_dev)
348 {
349 	set_bit(DAXDEV_ALIVE, &dax_dev->flags);
350 }
351 EXPORT_SYMBOL_GPL(run_dax);
352 
dax_alloc_inode(struct super_block * sb)353 static struct inode *dax_alloc_inode(struct super_block *sb)
354 {
355 	struct dax_device *dax_dev;
356 	struct inode *inode;
357 
358 	dax_dev = alloc_inode_sb(sb, dax_cache, GFP_KERNEL);
359 	if (!dax_dev)
360 		return NULL;
361 
362 	inode = &dax_dev->inode;
363 	inode->i_rdev = 0;
364 	return inode;
365 }
366 
to_dax_dev(struct inode * inode)367 static struct dax_device *to_dax_dev(struct inode *inode)
368 {
369 	return container_of(inode, struct dax_device, inode);
370 }
371 
dax_free_inode(struct inode * inode)372 static void dax_free_inode(struct inode *inode)
373 {
374 	struct dax_device *dax_dev = to_dax_dev(inode);
375 	if (inode->i_rdev)
376 		ida_free(&dax_minor_ida, iminor(inode));
377 	kmem_cache_free(dax_cache, dax_dev);
378 }
379 
dax_destroy_inode(struct inode * inode)380 static void dax_destroy_inode(struct inode *inode)
381 {
382 	struct dax_device *dax_dev = to_dax_dev(inode);
383 	WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags),
384 			"kill_dax() must be called before final iput()\n");
385 }
386 
387 static const struct super_operations dax_sops = {
388 	.statfs = simple_statfs,
389 	.alloc_inode = dax_alloc_inode,
390 	.destroy_inode = dax_destroy_inode,
391 	.free_inode = dax_free_inode,
392 	.drop_inode = generic_delete_inode,
393 };
394 
dax_init_fs_context(struct fs_context * fc)395 static int dax_init_fs_context(struct fs_context *fc)
396 {
397 	struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC);
398 	if (!ctx)
399 		return -ENOMEM;
400 	ctx->ops = &dax_sops;
401 	return 0;
402 }
403 
404 static struct file_system_type dax_fs_type = {
405 	.name		= "dax",
406 	.init_fs_context = dax_init_fs_context,
407 	.kill_sb	= kill_anon_super,
408 };
409 
dax_test(struct inode * inode,void * data)410 static int dax_test(struct inode *inode, void *data)
411 {
412 	dev_t devt = *(dev_t *) data;
413 
414 	return inode->i_rdev == devt;
415 }
416 
dax_set(struct inode * inode,void * data)417 static int dax_set(struct inode *inode, void *data)
418 {
419 	dev_t devt = *(dev_t *) data;
420 
421 	inode->i_rdev = devt;
422 	return 0;
423 }
424 
dax_dev_get(dev_t devt)425 static struct dax_device *dax_dev_get(dev_t devt)
426 {
427 	struct dax_device *dax_dev;
428 	struct inode *inode;
429 
430 	inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31),
431 			dax_test, dax_set, &devt);
432 
433 	if (!inode)
434 		return NULL;
435 
436 	dax_dev = to_dax_dev(inode);
437 	if (inode->i_state & I_NEW) {
438 		set_bit(DAXDEV_ALIVE, &dax_dev->flags);
439 		inode->i_cdev = &dax_dev->cdev;
440 		inode->i_mode = S_IFCHR;
441 		inode->i_flags = S_DAX;
442 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
443 		unlock_new_inode(inode);
444 	}
445 
446 	return dax_dev;
447 }
448 
alloc_dax(void * private,const struct dax_operations * ops)449 struct dax_device *alloc_dax(void *private, const struct dax_operations *ops)
450 {
451 	struct dax_device *dax_dev;
452 	dev_t devt;
453 	int minor;
454 
455 	/*
456 	 * Unavailable on architectures with virtually aliased data caches,
457 	 * except for device-dax (NULL operations pointer), which does
458 	 * not use aliased mappings from the kernel.
459 	 */
460 	if (ops && cpu_dcache_is_aliasing())
461 		return ERR_PTR(-EOPNOTSUPP);
462 
463 	if (WARN_ON_ONCE(ops && !ops->zero_page_range))
464 		return ERR_PTR(-EINVAL);
465 
466 	minor = ida_alloc_max(&dax_minor_ida, MINORMASK, GFP_KERNEL);
467 	if (minor < 0)
468 		return ERR_PTR(-ENOMEM);
469 
470 	devt = MKDEV(MAJOR(dax_devt), minor);
471 	dax_dev = dax_dev_get(devt);
472 	if (!dax_dev)
473 		goto err_dev;
474 
475 	dax_dev->ops = ops;
476 	dax_dev->private = private;
477 	return dax_dev;
478 
479  err_dev:
480 	ida_free(&dax_minor_ida, minor);
481 	return ERR_PTR(-ENOMEM);
482 }
483 EXPORT_SYMBOL_GPL(alloc_dax);
484 
put_dax(struct dax_device * dax_dev)485 void put_dax(struct dax_device *dax_dev)
486 {
487 	if (!dax_dev)
488 		return;
489 	iput(&dax_dev->inode);
490 }
491 EXPORT_SYMBOL_GPL(put_dax);
492 
493 /**
494  * dax_holder() - obtain the holder of a dax device
495  * @dax_dev: a dax_device instance
496  *
497  * Return: the holder's data which represents the holder if registered,
498  * otherwize NULL.
499  */
dax_holder(struct dax_device * dax_dev)500 void *dax_holder(struct dax_device *dax_dev)
501 {
502 	return dax_dev->holder_data;
503 }
504 EXPORT_SYMBOL_GPL(dax_holder);
505 
506 /**
507  * inode_dax: convert a public inode into its dax_dev
508  * @inode: An inode with i_cdev pointing to a dax_dev
509  *
510  * Note this is not equivalent to to_dax_dev() which is for private
511  * internal use where we know the inode filesystem type == dax_fs_type.
512  */
inode_dax(struct inode * inode)513 struct dax_device *inode_dax(struct inode *inode)
514 {
515 	struct cdev *cdev = inode->i_cdev;
516 
517 	return container_of(cdev, struct dax_device, cdev);
518 }
519 EXPORT_SYMBOL_GPL(inode_dax);
520 
dax_inode(struct dax_device * dax_dev)521 struct inode *dax_inode(struct dax_device *dax_dev)
522 {
523 	return &dax_dev->inode;
524 }
525 EXPORT_SYMBOL_GPL(dax_inode);
526 
dax_get_private(struct dax_device * dax_dev)527 void *dax_get_private(struct dax_device *dax_dev)
528 {
529 	if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags))
530 		return NULL;
531 	return dax_dev->private;
532 }
533 EXPORT_SYMBOL_GPL(dax_get_private);
534 
init_once(void * _dax_dev)535 static void init_once(void *_dax_dev)
536 {
537 	struct dax_device *dax_dev = _dax_dev;
538 	struct inode *inode = &dax_dev->inode;
539 
540 	memset(dax_dev, 0, sizeof(*dax_dev));
541 	inode_init_once(inode);
542 }
543 
dax_fs_init(void)544 static int dax_fs_init(void)
545 {
546 	int rc;
547 
548 	dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0,
549 			SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
550 			init_once);
551 	if (!dax_cache)
552 		return -ENOMEM;
553 
554 	dax_mnt = kern_mount(&dax_fs_type);
555 	if (IS_ERR(dax_mnt)) {
556 		rc = PTR_ERR(dax_mnt);
557 		goto err_mount;
558 	}
559 	dax_superblock = dax_mnt->mnt_sb;
560 
561 	return 0;
562 
563  err_mount:
564 	kmem_cache_destroy(dax_cache);
565 
566 	return rc;
567 }
568 
dax_fs_exit(void)569 static void dax_fs_exit(void)
570 {
571 	kern_unmount(dax_mnt);
572 	rcu_barrier();
573 	kmem_cache_destroy(dax_cache);
574 }
575 
dax_core_init(void)576 static int __init dax_core_init(void)
577 {
578 	int rc;
579 
580 	rc = dax_fs_init();
581 	if (rc)
582 		return rc;
583 
584 	rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax");
585 	if (rc)
586 		goto err_chrdev;
587 
588 	rc = dax_bus_init();
589 	if (rc)
590 		goto err_bus;
591 	return 0;
592 
593 err_bus:
594 	unregister_chrdev_region(dax_devt, MINORMASK+1);
595 err_chrdev:
596 	dax_fs_exit();
597 	return 0;
598 }
599 
dax_core_exit(void)600 static void __exit dax_core_exit(void)
601 {
602 	dax_bus_exit();
603 	unregister_chrdev_region(dax_devt, MINORMASK+1);
604 	ida_destroy(&dax_minor_ida);
605 	dax_fs_exit();
606 }
607 
608 MODULE_AUTHOR("Intel Corporation");
609 MODULE_DESCRIPTION("DAX: direct access to differentiated memory");
610 MODULE_LICENSE("GPL v2");
611 subsys_initcall(dax_core_init);
612 module_exit(dax_core_exit);
613