1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66 
67 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
68 					 MAX_CFTYPE_NAME + 2)
69 /* let's not notify more than 100 times per second */
70 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
71 
72 /*
73  * To avoid confusing the compiler (and generating warnings) with code
74  * that attempts to access what would be a 0-element array (i.e. sized
75  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76  * constant expression can be added.
77  */
78 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
79 
80 /*
81  * cgroup_mutex is the master lock.  Any modification to cgroup or its
82  * hierarchy must be performed while holding it.
83  *
84  * css_set_lock protects task->cgroups pointer, the list of css_set
85  * objects, and the chain of tasks off each css_set.
86  *
87  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88  * cgroup.h can use them for lockdep annotations.
89  */
90 DEFINE_MUTEX(cgroup_mutex);
91 DEFINE_SPINLOCK(css_set_lock);
92 
93 #ifdef CONFIG_PROVE_RCU
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #endif
97 
98 DEFINE_SPINLOCK(trace_cgroup_path_lock);
99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100 static bool cgroup_debug __read_mostly;
101 
102 /*
103  * Protects cgroup_idr and css_idr so that IDs can be released without
104  * grabbing cgroup_mutex.
105  */
106 static DEFINE_SPINLOCK(cgroup_idr_lock);
107 
108 /*
109  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
110  * against file removal/re-creation across css hiding.
111  */
112 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113 
114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115 
116 #define cgroup_assert_mutex_or_rcu_locked()				\
117 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
118 			   !lockdep_is_held(&cgroup_mutex),		\
119 			   "cgroup_mutex or RCU read lock required");
120 
121 /*
122  * cgroup destruction makes heavy use of work items and there can be a lot
123  * of concurrent destructions.  Use a separate workqueue so that cgroup
124  * destruction work items don't end up filling up max_active of system_wq
125  * which may lead to deadlock.
126  */
127 static struct workqueue_struct *cgroup_destroy_wq;
128 
129 /* generate an array of cgroup subsystem pointers */
130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131 struct cgroup_subsys *cgroup_subsys[] = {
132 #include <linux/cgroup_subsys.h>
133 };
134 #undef SUBSYS
135 
136 /* array of cgroup subsystem names */
137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138 static const char *cgroup_subsys_name[] = {
139 #include <linux/cgroup_subsys.h>
140 };
141 #undef SUBSYS
142 
143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144 #define SUBSYS(_x)								\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
146 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
148 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149 #include <linux/cgroup_subsys.h>
150 #undef SUBSYS
151 
152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153 static struct static_key_true *cgroup_subsys_enabled_key[] = {
154 #include <linux/cgroup_subsys.h>
155 };
156 #undef SUBSYS
157 
158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160 #include <linux/cgroup_subsys.h>
161 };
162 #undef SUBSYS
163 
164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165 
166 /* the default hierarchy */
167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169 
170 /*
171  * The default hierarchy always exists but is hidden until mounted for the
172  * first time.  This is for backward compatibility.
173  */
174 static bool cgrp_dfl_visible;
175 
176 /* some controllers are not supported in the default hierarchy */
177 static u16 cgrp_dfl_inhibit_ss_mask;
178 
179 /* some controllers are implicitly enabled on the default hierarchy */
180 static u16 cgrp_dfl_implicit_ss_mask;
181 
182 /* some controllers can be threaded on the default hierarchy */
183 static u16 cgrp_dfl_threaded_ss_mask;
184 
185 /* The list of hierarchy roots */
186 LIST_HEAD(cgroup_roots);
187 static int cgroup_root_count;
188 
189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190 static DEFINE_IDR(cgroup_hierarchy_idr);
191 
192 /*
193  * Assign a monotonically increasing serial number to csses.  It guarantees
194  * cgroups with bigger numbers are newer than those with smaller numbers.
195  * Also, as csses are always appended to the parent's ->children list, it
196  * guarantees that sibling csses are always sorted in the ascending serial
197  * number order on the list.  Protected by cgroup_mutex.
198  */
199 static u64 css_serial_nr_next = 1;
200 
201 /*
202  * These bitmasks identify subsystems with specific features to avoid
203  * having to do iterative checks repeatedly.
204  */
205 static u16 have_fork_callback __read_mostly;
206 static u16 have_exit_callback __read_mostly;
207 static u16 have_release_callback __read_mostly;
208 static u16 have_canfork_callback __read_mostly;
209 
210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
211 
212 /* cgroup namespace for init task */
213 struct cgroup_namespace init_cgroup_ns = {
214 	.ns.count	= REFCOUNT_INIT(2),
215 	.user_ns	= &init_user_ns,
216 	.ns.ops		= &cgroupns_operations,
217 	.ns.inum	= PROC_CGROUP_INIT_INO,
218 	.root_cset	= &init_css_set,
219 };
220 
221 static struct file_system_type cgroup2_fs_type;
222 static struct cftype cgroup_base_files[];
223 static struct cftype cgroup_psi_files[];
224 
225 /* cgroup optional features */
226 enum cgroup_opt_features {
227 #ifdef CONFIG_PSI
228 	OPT_FEATURE_PRESSURE,
229 #endif
230 	OPT_FEATURE_COUNT
231 };
232 
233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
234 #ifdef CONFIG_PSI
235 	"pressure",
236 #endif
237 };
238 
239 static u16 cgroup_feature_disable_mask __read_mostly;
240 
241 static int cgroup_apply_control(struct cgroup *cgrp);
242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
243 static void css_task_iter_skip(struct css_task_iter *it,
244 			       struct task_struct *task);
245 static int cgroup_destroy_locked(struct cgroup *cgrp);
246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 					      struct cgroup_subsys *ss);
248 static void css_release(struct percpu_ref *ref);
249 static void kill_css(struct cgroup_subsys_state *css);
250 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 			      struct cgroup *cgrp, struct cftype cfts[],
252 			      bool is_add);
253 
254 #ifdef CONFIG_DEBUG_CGROUP_REF
255 #define CGROUP_REF_FN_ATTRS	noinline
256 #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
257 #include <linux/cgroup_refcnt.h>
258 #endif
259 
260 /**
261  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
262  * @ssid: subsys ID of interest
263  *
264  * cgroup_subsys_enabled() can only be used with literal subsys names which
265  * is fine for individual subsystems but unsuitable for cgroup core.  This
266  * is slower static_key_enabled() based test indexed by @ssid.
267  */
cgroup_ssid_enabled(int ssid)268 bool cgroup_ssid_enabled(int ssid)
269 {
270 	if (!CGROUP_HAS_SUBSYS_CONFIG)
271 		return false;
272 
273 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
274 }
275 
276 /**
277  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
278  * @cgrp: the cgroup of interest
279  *
280  * The default hierarchy is the v2 interface of cgroup and this function
281  * can be used to test whether a cgroup is on the default hierarchy for
282  * cases where a subsystem should behave differently depending on the
283  * interface version.
284  *
285  * List of changed behaviors:
286  *
287  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288  *   and "name" are disallowed.
289  *
290  * - When mounting an existing superblock, mount options should match.
291  *
292  * - rename(2) is disallowed.
293  *
294  * - "tasks" is removed.  Everything should be at process granularity.  Use
295  *   "cgroup.procs" instead.
296  *
297  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
298  *   recycled in-between reads.
299  *
300  * - "release_agent" and "notify_on_release" are removed.  Replacement
301  *   notification mechanism will be implemented.
302  *
303  * - "cgroup.clone_children" is removed.
304  *
305  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
306  *   and its descendants contain no task; otherwise, 1.  The file also
307  *   generates kernfs notification which can be monitored through poll and
308  *   [di]notify when the value of the file changes.
309  *
310  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311  *   take masks of ancestors with non-empty cpus/mems, instead of being
312  *   moved to an ancestor.
313  *
314  * - cpuset: a task can be moved into an empty cpuset, and again it takes
315  *   masks of ancestors.
316  *
317  * - blkcg: blk-throttle becomes properly hierarchical.
318  */
cgroup_on_dfl(const struct cgroup * cgrp)319 bool cgroup_on_dfl(const struct cgroup *cgrp)
320 {
321 	return cgrp->root == &cgrp_dfl_root;
322 }
323 
324 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
326 			    gfp_t gfp_mask)
327 {
328 	int ret;
329 
330 	idr_preload(gfp_mask);
331 	spin_lock_bh(&cgroup_idr_lock);
332 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
333 	spin_unlock_bh(&cgroup_idr_lock);
334 	idr_preload_end();
335 	return ret;
336 }
337 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
339 {
340 	void *ret;
341 
342 	spin_lock_bh(&cgroup_idr_lock);
343 	ret = idr_replace(idr, ptr, id);
344 	spin_unlock_bh(&cgroup_idr_lock);
345 	return ret;
346 }
347 
cgroup_idr_remove(struct idr * idr,int id)348 static void cgroup_idr_remove(struct idr *idr, int id)
349 {
350 	spin_lock_bh(&cgroup_idr_lock);
351 	idr_remove(idr, id);
352 	spin_unlock_bh(&cgroup_idr_lock);
353 }
354 
cgroup_has_tasks(struct cgroup * cgrp)355 static bool cgroup_has_tasks(struct cgroup *cgrp)
356 {
357 	return cgrp->nr_populated_csets;
358 }
359 
cgroup_is_threaded(struct cgroup * cgrp)360 static bool cgroup_is_threaded(struct cgroup *cgrp)
361 {
362 	return cgrp->dom_cgrp != cgrp;
363 }
364 
365 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)366 static bool cgroup_is_mixable(struct cgroup *cgrp)
367 {
368 	/*
369 	 * Root isn't under domain level resource control exempting it from
370 	 * the no-internal-process constraint, so it can serve as a thread
371 	 * root and a parent of resource domains at the same time.
372 	 */
373 	return !cgroup_parent(cgrp);
374 }
375 
376 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
378 {
379 	/* mixables don't care */
380 	if (cgroup_is_mixable(cgrp))
381 		return true;
382 
383 	/* domain roots can't be nested under threaded */
384 	if (cgroup_is_threaded(cgrp))
385 		return false;
386 
387 	/* can only have either domain or threaded children */
388 	if (cgrp->nr_populated_domain_children)
389 		return false;
390 
391 	/* and no domain controllers can be enabled */
392 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
393 		return false;
394 
395 	return true;
396 }
397 
398 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)399 static bool cgroup_is_thread_root(struct cgroup *cgrp)
400 {
401 	/* thread root should be a domain */
402 	if (cgroup_is_threaded(cgrp))
403 		return false;
404 
405 	/* a domain w/ threaded children is a thread root */
406 	if (cgrp->nr_threaded_children)
407 		return true;
408 
409 	/*
410 	 * A domain which has tasks and explicit threaded controllers
411 	 * enabled is a thread root.
412 	 */
413 	if (cgroup_has_tasks(cgrp) &&
414 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
415 		return true;
416 
417 	return false;
418 }
419 
420 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)421 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
422 {
423 	/* the cgroup itself can be a thread root */
424 	if (cgroup_is_threaded(cgrp))
425 		return false;
426 
427 	/* but the ancestors can't be unless mixable */
428 	while ((cgrp = cgroup_parent(cgrp))) {
429 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
430 			return false;
431 		if (cgroup_is_threaded(cgrp))
432 			return false;
433 	}
434 
435 	return true;
436 }
437 
438 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)439 static u16 cgroup_control(struct cgroup *cgrp)
440 {
441 	struct cgroup *parent = cgroup_parent(cgrp);
442 	u16 root_ss_mask = cgrp->root->subsys_mask;
443 
444 	if (parent) {
445 		u16 ss_mask = parent->subtree_control;
446 
447 		/* threaded cgroups can only have threaded controllers */
448 		if (cgroup_is_threaded(cgrp))
449 			ss_mask &= cgrp_dfl_threaded_ss_mask;
450 		return ss_mask;
451 	}
452 
453 	if (cgroup_on_dfl(cgrp))
454 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
455 				  cgrp_dfl_implicit_ss_mask);
456 	return root_ss_mask;
457 }
458 
459 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)460 static u16 cgroup_ss_mask(struct cgroup *cgrp)
461 {
462 	struct cgroup *parent = cgroup_parent(cgrp);
463 
464 	if (parent) {
465 		u16 ss_mask = parent->subtree_ss_mask;
466 
467 		/* threaded cgroups can only have threaded controllers */
468 		if (cgroup_is_threaded(cgrp))
469 			ss_mask &= cgrp_dfl_threaded_ss_mask;
470 		return ss_mask;
471 	}
472 
473 	return cgrp->root->subsys_mask;
474 }
475 
476 /**
477  * cgroup_css - obtain a cgroup's css for the specified subsystem
478  * @cgrp: the cgroup of interest
479  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
480  *
481  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
482  * function must be called either under cgroup_mutex or rcu_read_lock() and
483  * the caller is responsible for pinning the returned css if it wants to
484  * keep accessing it outside the said locks.  This function may return
485  * %NULL if @cgrp doesn't have @subsys_id enabled.
486  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
488 					      struct cgroup_subsys *ss)
489 {
490 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
491 		return rcu_dereference_check(cgrp->subsys[ss->id],
492 					lockdep_is_held(&cgroup_mutex));
493 	else
494 		return &cgrp->self;
495 }
496 
497 /**
498  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499  * @cgrp: the cgroup of interest
500  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501  *
502  * Similar to cgroup_css() but returns the effective css, which is defined
503  * as the matching css of the nearest ancestor including self which has @ss
504  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
505  * function is guaranteed to return non-NULL css.
506  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 							struct cgroup_subsys *ss)
509 {
510 	lockdep_assert_held(&cgroup_mutex);
511 
512 	if (!ss)
513 		return &cgrp->self;
514 
515 	/*
516 	 * This function is used while updating css associations and thus
517 	 * can't test the csses directly.  Test ss_mask.
518 	 */
519 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 		cgrp = cgroup_parent(cgrp);
521 		if (!cgrp)
522 			return NULL;
523 	}
524 
525 	return cgroup_css(cgrp, ss);
526 }
527 
528 /**
529  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530  * @cgrp: the cgroup of interest
531  * @ss: the subsystem of interest
532  *
533  * Find and get the effective css of @cgrp for @ss.  The effective css is
534  * defined as the matching css of the nearest ancestor including self which
535  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
536  * the root css is returned, so this function always returns a valid css.
537  *
538  * The returned css is not guaranteed to be online, and therefore it is the
539  * callers responsibility to try get a reference for it.
540  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 					 struct cgroup_subsys *ss)
543 {
544 	struct cgroup_subsys_state *css;
545 
546 	if (!CGROUP_HAS_SUBSYS_CONFIG)
547 		return NULL;
548 
549 	do {
550 		css = cgroup_css(cgrp, ss);
551 
552 		if (css)
553 			return css;
554 		cgrp = cgroup_parent(cgrp);
555 	} while (cgrp);
556 
557 	return init_css_set.subsys[ss->id];
558 }
559 
560 /**
561  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
562  * @cgrp: the cgroup of interest
563  * @ss: the subsystem of interest
564  *
565  * Find and get the effective css of @cgrp for @ss.  The effective css is
566  * defined as the matching css of the nearest ancestor including self which
567  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
568  * the root css is returned, so this function always returns a valid css.
569  * The returned css must be put using css_put().
570  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
572 					     struct cgroup_subsys *ss)
573 {
574 	struct cgroup_subsys_state *css;
575 
576 	if (!CGROUP_HAS_SUBSYS_CONFIG)
577 		return NULL;
578 
579 	rcu_read_lock();
580 
581 	do {
582 		css = cgroup_css(cgrp, ss);
583 
584 		if (css && css_tryget_online(css))
585 			goto out_unlock;
586 		cgrp = cgroup_parent(cgrp);
587 	} while (cgrp);
588 
589 	css = init_css_set.subsys[ss->id];
590 	css_get(css);
591 out_unlock:
592 	rcu_read_unlock();
593 	return css;
594 }
595 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
596 
cgroup_get_live(struct cgroup * cgrp)597 static void cgroup_get_live(struct cgroup *cgrp)
598 {
599 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
600 	cgroup_get(cgrp);
601 }
602 
603 /**
604  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
605  * is responsible for taking the css_set_lock.
606  * @cgrp: the cgroup in question
607  */
__cgroup_task_count(const struct cgroup * cgrp)608 int __cgroup_task_count(const struct cgroup *cgrp)
609 {
610 	int count = 0;
611 	struct cgrp_cset_link *link;
612 
613 	lockdep_assert_held(&css_set_lock);
614 
615 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
616 		count += link->cset->nr_tasks;
617 
618 	return count;
619 }
620 
621 /**
622  * cgroup_task_count - count the number of tasks in a cgroup.
623  * @cgrp: the cgroup in question
624  */
cgroup_task_count(const struct cgroup * cgrp)625 int cgroup_task_count(const struct cgroup *cgrp)
626 {
627 	int count;
628 
629 	spin_lock_irq(&css_set_lock);
630 	count = __cgroup_task_count(cgrp);
631 	spin_unlock_irq(&css_set_lock);
632 
633 	return count;
634 }
635 
of_css(struct kernfs_open_file * of)636 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
637 {
638 	struct cgroup *cgrp = of->kn->parent->priv;
639 	struct cftype *cft = of_cft(of);
640 
641 	/*
642 	 * This is open and unprotected implementation of cgroup_css().
643 	 * seq_css() is only called from a kernfs file operation which has
644 	 * an active reference on the file.  Because all the subsystem
645 	 * files are drained before a css is disassociated with a cgroup,
646 	 * the matching css from the cgroup's subsys table is guaranteed to
647 	 * be and stay valid until the enclosing operation is complete.
648 	 */
649 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
650 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
651 	else
652 		return &cgrp->self;
653 }
654 EXPORT_SYMBOL_GPL(of_css);
655 
656 /**
657  * for_each_css - iterate all css's of a cgroup
658  * @css: the iteration cursor
659  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
660  * @cgrp: the target cgroup to iterate css's of
661  *
662  * Should be called under cgroup_mutex.
663  */
664 #define for_each_css(css, ssid, cgrp)					\
665 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
666 		if (!((css) = rcu_dereference_check(			\
667 				(cgrp)->subsys[(ssid)],			\
668 				lockdep_is_held(&cgroup_mutex)))) { }	\
669 		else
670 
671 /**
672  * do_each_subsys_mask - filter for_each_subsys with a bitmask
673  * @ss: the iteration cursor
674  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
675  * @ss_mask: the bitmask
676  *
677  * The block will only run for cases where the ssid-th bit (1 << ssid) of
678  * @ss_mask is set.
679  */
680 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
681 	unsigned long __ss_mask = (ss_mask);				\
682 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
683 		(ssid) = 0;						\
684 		break;							\
685 	}								\
686 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
687 		(ss) = cgroup_subsys[ssid];				\
688 		{
689 
690 #define while_each_subsys_mask()					\
691 		}							\
692 	}								\
693 } while (false)
694 
695 /* iterate over child cgrps, lock should be held throughout iteration */
696 #define cgroup_for_each_live_child(child, cgrp)				\
697 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
698 		if (({ lockdep_assert_held(&cgroup_mutex);		\
699 		       cgroup_is_dead(child); }))			\
700 			;						\
701 		else
702 
703 /* walk live descendants in pre order */
704 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
705 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
706 		if (({ lockdep_assert_held(&cgroup_mutex);		\
707 		       (dsct) = (d_css)->cgroup;			\
708 		       cgroup_is_dead(dsct); }))			\
709 			;						\
710 		else
711 
712 /* walk live descendants in postorder */
713 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
714 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
715 		if (({ lockdep_assert_held(&cgroup_mutex);		\
716 		       (dsct) = (d_css)->cgroup;			\
717 		       cgroup_is_dead(dsct); }))			\
718 			;						\
719 		else
720 
721 /*
722  * The default css_set - used by init and its children prior to any
723  * hierarchies being mounted. It contains a pointer to the root state
724  * for each subsystem. Also used to anchor the list of css_sets. Not
725  * reference-counted, to improve performance when child cgroups
726  * haven't been created.
727  */
728 struct css_set init_css_set = {
729 	.refcount		= REFCOUNT_INIT(1),
730 	.dom_cset		= &init_css_set,
731 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
732 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
733 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
734 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
735 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
736 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
737 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
738 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
739 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
740 
741 	/*
742 	 * The following field is re-initialized when this cset gets linked
743 	 * in cgroup_init().  However, let's initialize the field
744 	 * statically too so that the default cgroup can be accessed safely
745 	 * early during boot.
746 	 */
747 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
748 };
749 
750 static int css_set_count	= 1;	/* 1 for init_css_set */
751 
css_set_threaded(struct css_set * cset)752 static bool css_set_threaded(struct css_set *cset)
753 {
754 	return cset->dom_cset != cset;
755 }
756 
757 /**
758  * css_set_populated - does a css_set contain any tasks?
759  * @cset: target css_set
760  *
761  * css_set_populated() should be the same as !!cset->nr_tasks at steady
762  * state. However, css_set_populated() can be called while a task is being
763  * added to or removed from the linked list before the nr_tasks is
764  * properly updated. Hence, we can't just look at ->nr_tasks here.
765  */
css_set_populated(struct css_set * cset)766 static bool css_set_populated(struct css_set *cset)
767 {
768 	lockdep_assert_held(&css_set_lock);
769 
770 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
771 }
772 
773 /**
774  * cgroup_update_populated - update the populated count of a cgroup
775  * @cgrp: the target cgroup
776  * @populated: inc or dec populated count
777  *
778  * One of the css_sets associated with @cgrp is either getting its first
779  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
780  * count is propagated towards root so that a given cgroup's
781  * nr_populated_children is zero iff none of its descendants contain any
782  * tasks.
783  *
784  * @cgrp's interface file "cgroup.populated" is zero if both
785  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
786  * 1 otherwise.  When the sum changes from or to zero, userland is notified
787  * that the content of the interface file has changed.  This can be used to
788  * detect when @cgrp and its descendants become populated or empty.
789  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)790 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
791 {
792 	struct cgroup *child = NULL;
793 	int adj = populated ? 1 : -1;
794 
795 	lockdep_assert_held(&css_set_lock);
796 
797 	do {
798 		bool was_populated = cgroup_is_populated(cgrp);
799 
800 		if (!child) {
801 			cgrp->nr_populated_csets += adj;
802 		} else {
803 			if (cgroup_is_threaded(child))
804 				cgrp->nr_populated_threaded_children += adj;
805 			else
806 				cgrp->nr_populated_domain_children += adj;
807 		}
808 
809 		if (was_populated == cgroup_is_populated(cgrp))
810 			break;
811 
812 		cgroup1_check_for_release(cgrp);
813 		TRACE_CGROUP_PATH(notify_populated, cgrp,
814 				  cgroup_is_populated(cgrp));
815 		cgroup_file_notify(&cgrp->events_file);
816 
817 		child = cgrp;
818 		cgrp = cgroup_parent(cgrp);
819 	} while (cgrp);
820 }
821 
822 /**
823  * css_set_update_populated - update populated state of a css_set
824  * @cset: target css_set
825  * @populated: whether @cset is populated or depopulated
826  *
827  * @cset is either getting the first task or losing the last.  Update the
828  * populated counters of all associated cgroups accordingly.
829  */
css_set_update_populated(struct css_set * cset,bool populated)830 static void css_set_update_populated(struct css_set *cset, bool populated)
831 {
832 	struct cgrp_cset_link *link;
833 
834 	lockdep_assert_held(&css_set_lock);
835 
836 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
837 		cgroup_update_populated(link->cgrp, populated);
838 }
839 
840 /*
841  * @task is leaving, advance task iterators which are pointing to it so
842  * that they can resume at the next position.  Advancing an iterator might
843  * remove it from the list, use safe walk.  See css_task_iter_skip() for
844  * details.
845  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)846 static void css_set_skip_task_iters(struct css_set *cset,
847 				    struct task_struct *task)
848 {
849 	struct css_task_iter *it, *pos;
850 
851 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
852 		css_task_iter_skip(it, task);
853 }
854 
855 /**
856  * css_set_move_task - move a task from one css_set to another
857  * @task: task being moved
858  * @from_cset: css_set @task currently belongs to (may be NULL)
859  * @to_cset: new css_set @task is being moved to (may be NULL)
860  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
861  *
862  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
863  * css_set, @from_cset can be NULL.  If @task is being disassociated
864  * instead of moved, @to_cset can be NULL.
865  *
866  * This function automatically handles populated counter updates and
867  * css_task_iter adjustments but the caller is responsible for managing
868  * @from_cset and @to_cset's reference counts.
869  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)870 static void css_set_move_task(struct task_struct *task,
871 			      struct css_set *from_cset, struct css_set *to_cset,
872 			      bool use_mg_tasks)
873 {
874 	lockdep_assert_held(&css_set_lock);
875 
876 	if (to_cset && !css_set_populated(to_cset))
877 		css_set_update_populated(to_cset, true);
878 
879 	if (from_cset) {
880 		WARN_ON_ONCE(list_empty(&task->cg_list));
881 
882 		css_set_skip_task_iters(from_cset, task);
883 		list_del_init(&task->cg_list);
884 		if (!css_set_populated(from_cset))
885 			css_set_update_populated(from_cset, false);
886 	} else {
887 		WARN_ON_ONCE(!list_empty(&task->cg_list));
888 	}
889 
890 	if (to_cset) {
891 		/*
892 		 * We are synchronized through cgroup_threadgroup_rwsem
893 		 * against PF_EXITING setting such that we can't race
894 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
895 		 */
896 		WARN_ON_ONCE(task->flags & PF_EXITING);
897 
898 		cgroup_move_task(task, to_cset);
899 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
900 							     &to_cset->tasks);
901 	}
902 }
903 
904 /*
905  * hash table for cgroup groups. This improves the performance to find
906  * an existing css_set. This hash doesn't (currently) take into
907  * account cgroups in empty hierarchies.
908  */
909 #define CSS_SET_HASH_BITS	7
910 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
911 
css_set_hash(struct cgroup_subsys_state ** css)912 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
913 {
914 	unsigned long key = 0UL;
915 	struct cgroup_subsys *ss;
916 	int i;
917 
918 	for_each_subsys(ss, i)
919 		key += (unsigned long)css[i];
920 	key = (key >> 16) ^ key;
921 
922 	return key;
923 }
924 
put_css_set_locked(struct css_set * cset)925 void put_css_set_locked(struct css_set *cset)
926 {
927 	struct cgrp_cset_link *link, *tmp_link;
928 	struct cgroup_subsys *ss;
929 	int ssid;
930 
931 	lockdep_assert_held(&css_set_lock);
932 
933 	if (!refcount_dec_and_test(&cset->refcount))
934 		return;
935 
936 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
937 
938 	/* This css_set is dead. Unlink it and release cgroup and css refs */
939 	for_each_subsys(ss, ssid) {
940 		list_del(&cset->e_cset_node[ssid]);
941 		css_put(cset->subsys[ssid]);
942 	}
943 	hash_del(&cset->hlist);
944 	css_set_count--;
945 
946 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
947 		list_del(&link->cset_link);
948 		list_del(&link->cgrp_link);
949 		if (cgroup_parent(link->cgrp))
950 			cgroup_put(link->cgrp);
951 		kfree(link);
952 	}
953 
954 	if (css_set_threaded(cset)) {
955 		list_del(&cset->threaded_csets_node);
956 		put_css_set_locked(cset->dom_cset);
957 	}
958 
959 	kfree_rcu(cset, rcu_head);
960 }
961 
962 /**
963  * compare_css_sets - helper function for find_existing_css_set().
964  * @cset: candidate css_set being tested
965  * @old_cset: existing css_set for a task
966  * @new_cgrp: cgroup that's being entered by the task
967  * @template: desired set of css pointers in css_set (pre-calculated)
968  *
969  * Returns true if "cset" matches "old_cset" except for the hierarchy
970  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
971  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])972 static bool compare_css_sets(struct css_set *cset,
973 			     struct css_set *old_cset,
974 			     struct cgroup *new_cgrp,
975 			     struct cgroup_subsys_state *template[])
976 {
977 	struct cgroup *new_dfl_cgrp;
978 	struct list_head *l1, *l2;
979 
980 	/*
981 	 * On the default hierarchy, there can be csets which are
982 	 * associated with the same set of cgroups but different csses.
983 	 * Let's first ensure that csses match.
984 	 */
985 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
986 		return false;
987 
988 
989 	/* @cset's domain should match the default cgroup's */
990 	if (cgroup_on_dfl(new_cgrp))
991 		new_dfl_cgrp = new_cgrp;
992 	else
993 		new_dfl_cgrp = old_cset->dfl_cgrp;
994 
995 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
996 		return false;
997 
998 	/*
999 	 * Compare cgroup pointers in order to distinguish between
1000 	 * different cgroups in hierarchies.  As different cgroups may
1001 	 * share the same effective css, this comparison is always
1002 	 * necessary.
1003 	 */
1004 	l1 = &cset->cgrp_links;
1005 	l2 = &old_cset->cgrp_links;
1006 	while (1) {
1007 		struct cgrp_cset_link *link1, *link2;
1008 		struct cgroup *cgrp1, *cgrp2;
1009 
1010 		l1 = l1->next;
1011 		l2 = l2->next;
1012 		/* See if we reached the end - both lists are equal length. */
1013 		if (l1 == &cset->cgrp_links) {
1014 			BUG_ON(l2 != &old_cset->cgrp_links);
1015 			break;
1016 		} else {
1017 			BUG_ON(l2 == &old_cset->cgrp_links);
1018 		}
1019 		/* Locate the cgroups associated with these links. */
1020 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1021 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1022 		cgrp1 = link1->cgrp;
1023 		cgrp2 = link2->cgrp;
1024 		/* Hierarchies should be linked in the same order. */
1025 		BUG_ON(cgrp1->root != cgrp2->root);
1026 
1027 		/*
1028 		 * If this hierarchy is the hierarchy of the cgroup
1029 		 * that's changing, then we need to check that this
1030 		 * css_set points to the new cgroup; if it's any other
1031 		 * hierarchy, then this css_set should point to the
1032 		 * same cgroup as the old css_set.
1033 		 */
1034 		if (cgrp1->root == new_cgrp->root) {
1035 			if (cgrp1 != new_cgrp)
1036 				return false;
1037 		} else {
1038 			if (cgrp1 != cgrp2)
1039 				return false;
1040 		}
1041 	}
1042 	return true;
1043 }
1044 
1045 /**
1046  * find_existing_css_set - init css array and find the matching css_set
1047  * @old_cset: the css_set that we're using before the cgroup transition
1048  * @cgrp: the cgroup that we're moving into
1049  * @template: out param for the new set of csses, should be clear on entry
1050  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state ** template)1051 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1052 					struct cgroup *cgrp,
1053 					struct cgroup_subsys_state **template)
1054 {
1055 	struct cgroup_root *root = cgrp->root;
1056 	struct cgroup_subsys *ss;
1057 	struct css_set *cset;
1058 	unsigned long key;
1059 	int i;
1060 
1061 	/*
1062 	 * Build the set of subsystem state objects that we want to see in the
1063 	 * new css_set. While subsystems can change globally, the entries here
1064 	 * won't change, so no need for locking.
1065 	 */
1066 	for_each_subsys(ss, i) {
1067 		if (root->subsys_mask & (1UL << i)) {
1068 			/*
1069 			 * @ss is in this hierarchy, so we want the
1070 			 * effective css from @cgrp.
1071 			 */
1072 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1073 		} else {
1074 			/*
1075 			 * @ss is not in this hierarchy, so we don't want
1076 			 * to change the css.
1077 			 */
1078 			template[i] = old_cset->subsys[i];
1079 		}
1080 	}
1081 
1082 	key = css_set_hash(template);
1083 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1084 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1085 			continue;
1086 
1087 		/* This css_set matches what we need */
1088 		return cset;
1089 	}
1090 
1091 	/* No existing cgroup group matched */
1092 	return NULL;
1093 }
1094 
free_cgrp_cset_links(struct list_head * links_to_free)1095 static void free_cgrp_cset_links(struct list_head *links_to_free)
1096 {
1097 	struct cgrp_cset_link *link, *tmp_link;
1098 
1099 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1100 		list_del(&link->cset_link);
1101 		kfree(link);
1102 	}
1103 }
1104 
1105 /**
1106  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1107  * @count: the number of links to allocate
1108  * @tmp_links: list_head the allocated links are put on
1109  *
1110  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1111  * through ->cset_link.  Returns 0 on success or -errno.
1112  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1113 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1114 {
1115 	struct cgrp_cset_link *link;
1116 	int i;
1117 
1118 	INIT_LIST_HEAD(tmp_links);
1119 
1120 	for (i = 0; i < count; i++) {
1121 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1122 		if (!link) {
1123 			free_cgrp_cset_links(tmp_links);
1124 			return -ENOMEM;
1125 		}
1126 		list_add(&link->cset_link, tmp_links);
1127 	}
1128 	return 0;
1129 }
1130 
1131 /**
1132  * link_css_set - a helper function to link a css_set to a cgroup
1133  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1134  * @cset: the css_set to be linked
1135  * @cgrp: the destination cgroup
1136  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1137 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1138 			 struct cgroup *cgrp)
1139 {
1140 	struct cgrp_cset_link *link;
1141 
1142 	BUG_ON(list_empty(tmp_links));
1143 
1144 	if (cgroup_on_dfl(cgrp))
1145 		cset->dfl_cgrp = cgrp;
1146 
1147 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1148 	link->cset = cset;
1149 	link->cgrp = cgrp;
1150 
1151 	/*
1152 	 * Always add links to the tail of the lists so that the lists are
1153 	 * in chronological order.
1154 	 */
1155 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1156 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1157 
1158 	if (cgroup_parent(cgrp))
1159 		cgroup_get_live(cgrp);
1160 }
1161 
1162 /**
1163  * find_css_set - return a new css_set with one cgroup updated
1164  * @old_cset: the baseline css_set
1165  * @cgrp: the cgroup to be updated
1166  *
1167  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1168  * substituted into the appropriate hierarchy.
1169  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1170 static struct css_set *find_css_set(struct css_set *old_cset,
1171 				    struct cgroup *cgrp)
1172 {
1173 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1174 	struct css_set *cset;
1175 	struct list_head tmp_links;
1176 	struct cgrp_cset_link *link;
1177 	struct cgroup_subsys *ss;
1178 	unsigned long key;
1179 	int ssid;
1180 
1181 	lockdep_assert_held(&cgroup_mutex);
1182 
1183 	/* First see if we already have a cgroup group that matches
1184 	 * the desired set */
1185 	spin_lock_irq(&css_set_lock);
1186 	cset = find_existing_css_set(old_cset, cgrp, template);
1187 	if (cset)
1188 		get_css_set(cset);
1189 	spin_unlock_irq(&css_set_lock);
1190 
1191 	if (cset)
1192 		return cset;
1193 
1194 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1195 	if (!cset)
1196 		return NULL;
1197 
1198 	/* Allocate all the cgrp_cset_link objects that we'll need */
1199 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1200 		kfree(cset);
1201 		return NULL;
1202 	}
1203 
1204 	refcount_set(&cset->refcount, 1);
1205 	cset->dom_cset = cset;
1206 	INIT_LIST_HEAD(&cset->tasks);
1207 	INIT_LIST_HEAD(&cset->mg_tasks);
1208 	INIT_LIST_HEAD(&cset->dying_tasks);
1209 	INIT_LIST_HEAD(&cset->task_iters);
1210 	INIT_LIST_HEAD(&cset->threaded_csets);
1211 	INIT_HLIST_NODE(&cset->hlist);
1212 	INIT_LIST_HEAD(&cset->cgrp_links);
1213 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1214 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1215 	INIT_LIST_HEAD(&cset->mg_node);
1216 
1217 	/* Copy the set of subsystem state objects generated in
1218 	 * find_existing_css_set() */
1219 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1220 
1221 	spin_lock_irq(&css_set_lock);
1222 	/* Add reference counts and links from the new css_set. */
1223 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 		struct cgroup *c = link->cgrp;
1225 
1226 		if (c->root == cgrp->root)
1227 			c = cgrp;
1228 		link_css_set(&tmp_links, cset, c);
1229 	}
1230 
1231 	BUG_ON(!list_empty(&tmp_links));
1232 
1233 	css_set_count++;
1234 
1235 	/* Add @cset to the hash table */
1236 	key = css_set_hash(cset->subsys);
1237 	hash_add(css_set_table, &cset->hlist, key);
1238 
1239 	for_each_subsys(ss, ssid) {
1240 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1241 
1242 		list_add_tail(&cset->e_cset_node[ssid],
1243 			      &css->cgroup->e_csets[ssid]);
1244 		css_get(css);
1245 	}
1246 
1247 	spin_unlock_irq(&css_set_lock);
1248 
1249 	/*
1250 	 * If @cset should be threaded, look up the matching dom_cset and
1251 	 * link them up.  We first fully initialize @cset then look for the
1252 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253 	 * to stay empty until we return.
1254 	 */
1255 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256 		struct css_set *dcset;
1257 
1258 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259 		if (!dcset) {
1260 			put_css_set(cset);
1261 			return NULL;
1262 		}
1263 
1264 		spin_lock_irq(&css_set_lock);
1265 		cset->dom_cset = dcset;
1266 		list_add_tail(&cset->threaded_csets_node,
1267 			      &dcset->threaded_csets);
1268 		spin_unlock_irq(&css_set_lock);
1269 	}
1270 
1271 	return cset;
1272 }
1273 
cgroup_root_from_kf(struct kernfs_root * kf_root)1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1277 
1278 	return root_cgrp->root;
1279 }
1280 
cgroup_favor_dynmods(struct cgroup_root * root,bool favor)1281 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1282 {
1283 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1284 
1285 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1286 	if (favor && !favoring) {
1287 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1288 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1289 	} else if (!favor && favoring) {
1290 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1291 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1292 	}
1293 }
1294 
cgroup_init_root_id(struct cgroup_root * root)1295 static int cgroup_init_root_id(struct cgroup_root *root)
1296 {
1297 	int id;
1298 
1299 	lockdep_assert_held(&cgroup_mutex);
1300 
1301 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1302 	if (id < 0)
1303 		return id;
1304 
1305 	root->hierarchy_id = id;
1306 	return 0;
1307 }
1308 
cgroup_exit_root_id(struct cgroup_root * root)1309 static void cgroup_exit_root_id(struct cgroup_root *root)
1310 {
1311 	lockdep_assert_held(&cgroup_mutex);
1312 
1313 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1314 }
1315 
cgroup_free_root(struct cgroup_root * root)1316 void cgroup_free_root(struct cgroup_root *root)
1317 {
1318 	kfree_rcu(root, rcu);
1319 }
1320 
cgroup_destroy_root(struct cgroup_root * root)1321 static void cgroup_destroy_root(struct cgroup_root *root)
1322 {
1323 	struct cgroup *cgrp = &root->cgrp;
1324 	struct cgrp_cset_link *link, *tmp_link;
1325 
1326 	trace_cgroup_destroy_root(root);
1327 
1328 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1329 
1330 	BUG_ON(atomic_read(&root->nr_cgrps));
1331 	BUG_ON(!list_empty(&cgrp->self.children));
1332 
1333 	/* Rebind all subsystems back to the default hierarchy */
1334 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1335 
1336 	/*
1337 	 * Release all the links from cset_links to this hierarchy's
1338 	 * root cgroup
1339 	 */
1340 	spin_lock_irq(&css_set_lock);
1341 
1342 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1343 		list_del(&link->cset_link);
1344 		list_del(&link->cgrp_link);
1345 		kfree(link);
1346 	}
1347 
1348 	spin_unlock_irq(&css_set_lock);
1349 
1350 	WARN_ON_ONCE(list_empty(&root->root_list));
1351 	list_del_rcu(&root->root_list);
1352 	cgroup_root_count--;
1353 
1354 	if (!have_favordynmods)
1355 		cgroup_favor_dynmods(root, false);
1356 
1357 	cgroup_exit_root_id(root);
1358 
1359 	cgroup_unlock();
1360 
1361 	cgroup_rstat_exit(cgrp);
1362 	kernfs_destroy_root(root->kf_root);
1363 	cgroup_free_root(root);
1364 }
1365 
1366 /*
1367  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1368  */
__cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1369 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1370 					    struct cgroup_root *root)
1371 {
1372 	struct cgroup *res_cgroup = NULL;
1373 
1374 	if (cset == &init_css_set) {
1375 		res_cgroup = &root->cgrp;
1376 	} else if (root == &cgrp_dfl_root) {
1377 		res_cgroup = cset->dfl_cgrp;
1378 	} else {
1379 		struct cgrp_cset_link *link;
1380 		lockdep_assert_held(&css_set_lock);
1381 
1382 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1383 			struct cgroup *c = link->cgrp;
1384 
1385 			if (c->root == root) {
1386 				res_cgroup = c;
1387 				break;
1388 			}
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1394 	 * before we remove the cgroup root from the root_list. Consequently,
1395 	 * when accessing a cgroup root, the cset_link may have already been
1396 	 * freed, resulting in a NULL res_cgroup. However, by holding the
1397 	 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1398 	 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1399 	 * check.
1400 	 */
1401 	return res_cgroup;
1402 }
1403 
1404 /*
1405  * look up cgroup associated with current task's cgroup namespace on the
1406  * specified hierarchy
1407  */
1408 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1409 current_cgns_cgroup_from_root(struct cgroup_root *root)
1410 {
1411 	struct cgroup *res = NULL;
1412 	struct css_set *cset;
1413 
1414 	lockdep_assert_held(&css_set_lock);
1415 
1416 	rcu_read_lock();
1417 
1418 	cset = current->nsproxy->cgroup_ns->root_cset;
1419 	res = __cset_cgroup_from_root(cset, root);
1420 
1421 	rcu_read_unlock();
1422 
1423 	/*
1424 	 * The namespace_sem is held by current, so the root cgroup can't
1425 	 * be umounted. Therefore, we can ensure that the res is non-NULL.
1426 	 */
1427 	WARN_ON_ONCE(!res);
1428 	return res;
1429 }
1430 
1431 /*
1432  * Look up cgroup associated with current task's cgroup namespace on the default
1433  * hierarchy.
1434  *
1435  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1436  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1437  *   pointers.
1438  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1439  * - As a bonus returned cgrp is pinned with the current because it cannot
1440  *   switch cgroup_ns asynchronously.
1441  */
current_cgns_cgroup_dfl(void)1442 static struct cgroup *current_cgns_cgroup_dfl(void)
1443 {
1444 	struct css_set *cset;
1445 
1446 	if (current->nsproxy) {
1447 		cset = current->nsproxy->cgroup_ns->root_cset;
1448 		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1449 	} else {
1450 		/*
1451 		 * NOTE: This function may be called from bpf_cgroup_from_id()
1452 		 * on a task which has already passed exit_task_namespaces() and
1453 		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1454 		 * cgroups visible for lookups.
1455 		 */
1456 		return &cgrp_dfl_root.cgrp;
1457 	}
1458 }
1459 
1460 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1461 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1462 					    struct cgroup_root *root)
1463 {
1464 	lockdep_assert_held(&css_set_lock);
1465 
1466 	return __cset_cgroup_from_root(cset, root);
1467 }
1468 
1469 /*
1470  * Return the cgroup for "task" from the given hierarchy. Must be
1471  * called with css_set_lock held to prevent task's groups from being modified.
1472  * Must be called with either cgroup_mutex or rcu read lock to prevent the
1473  * cgroup root from being destroyed.
1474  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1475 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1476 				     struct cgroup_root *root)
1477 {
1478 	/*
1479 	 * No need to lock the task - since we hold css_set_lock the
1480 	 * task can't change groups.
1481 	 */
1482 	return cset_cgroup_from_root(task_css_set(task), root);
1483 }
1484 
1485 /*
1486  * A task must hold cgroup_mutex to modify cgroups.
1487  *
1488  * Any task can increment and decrement the count field without lock.
1489  * So in general, code holding cgroup_mutex can't rely on the count
1490  * field not changing.  However, if the count goes to zero, then only
1491  * cgroup_attach_task() can increment it again.  Because a count of zero
1492  * means that no tasks are currently attached, therefore there is no
1493  * way a task attached to that cgroup can fork (the other way to
1494  * increment the count).  So code holding cgroup_mutex can safely
1495  * assume that if the count is zero, it will stay zero. Similarly, if
1496  * a task holds cgroup_mutex on a cgroup with zero count, it
1497  * knows that the cgroup won't be removed, as cgroup_rmdir()
1498  * needs that mutex.
1499  *
1500  * A cgroup can only be deleted if both its 'count' of using tasks
1501  * is zero, and its list of 'children' cgroups is empty.  Since all
1502  * tasks in the system use _some_ cgroup, and since there is always at
1503  * least one task in the system (init, pid == 1), therefore, root cgroup
1504  * always has either children cgroups and/or using tasks.  So we don't
1505  * need a special hack to ensure that root cgroup cannot be deleted.
1506  *
1507  * P.S.  One more locking exception.  RCU is used to guard the
1508  * update of a tasks cgroup pointer by cgroup_attach_task()
1509  */
1510 
1511 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1512 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1513 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1514 			      char *buf)
1515 {
1516 	struct cgroup_subsys *ss = cft->ss;
1517 
1518 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1519 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1520 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1521 
1522 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1523 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1524 			 cft->name);
1525 	} else {
1526 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1527 	}
1528 	return buf;
1529 }
1530 
1531 /**
1532  * cgroup_file_mode - deduce file mode of a control file
1533  * @cft: the control file in question
1534  *
1535  * S_IRUGO for read, S_IWUSR for write.
1536  */
cgroup_file_mode(const struct cftype * cft)1537 static umode_t cgroup_file_mode(const struct cftype *cft)
1538 {
1539 	umode_t mode = 0;
1540 
1541 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1542 		mode |= S_IRUGO;
1543 
1544 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1545 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1546 			mode |= S_IWUGO;
1547 		else
1548 			mode |= S_IWUSR;
1549 	}
1550 
1551 	return mode;
1552 }
1553 
1554 /**
1555  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1556  * @subtree_control: the new subtree_control mask to consider
1557  * @this_ss_mask: available subsystems
1558  *
1559  * On the default hierarchy, a subsystem may request other subsystems to be
1560  * enabled together through its ->depends_on mask.  In such cases, more
1561  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1562  *
1563  * This function calculates which subsystems need to be enabled if
1564  * @subtree_control is to be applied while restricted to @this_ss_mask.
1565  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1566 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1567 {
1568 	u16 cur_ss_mask = subtree_control;
1569 	struct cgroup_subsys *ss;
1570 	int ssid;
1571 
1572 	lockdep_assert_held(&cgroup_mutex);
1573 
1574 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1575 
1576 	while (true) {
1577 		u16 new_ss_mask = cur_ss_mask;
1578 
1579 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1580 			new_ss_mask |= ss->depends_on;
1581 		} while_each_subsys_mask();
1582 
1583 		/*
1584 		 * Mask out subsystems which aren't available.  This can
1585 		 * happen only if some depended-upon subsystems were bound
1586 		 * to non-default hierarchies.
1587 		 */
1588 		new_ss_mask &= this_ss_mask;
1589 
1590 		if (new_ss_mask == cur_ss_mask)
1591 			break;
1592 		cur_ss_mask = new_ss_mask;
1593 	}
1594 
1595 	return cur_ss_mask;
1596 }
1597 
1598 /**
1599  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1600  * @kn: the kernfs_node being serviced
1601  *
1602  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1603  * the method finishes if locking succeeded.  Note that once this function
1604  * returns the cgroup returned by cgroup_kn_lock_live() may become
1605  * inaccessible any time.  If the caller intends to continue to access the
1606  * cgroup, it should pin it before invoking this function.
1607  */
cgroup_kn_unlock(struct kernfs_node * kn)1608 void cgroup_kn_unlock(struct kernfs_node *kn)
1609 {
1610 	struct cgroup *cgrp;
1611 
1612 	if (kernfs_type(kn) == KERNFS_DIR)
1613 		cgrp = kn->priv;
1614 	else
1615 		cgrp = kn->parent->priv;
1616 
1617 	cgroup_unlock();
1618 
1619 	kernfs_unbreak_active_protection(kn);
1620 	cgroup_put(cgrp);
1621 }
1622 
1623 /**
1624  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1625  * @kn: the kernfs_node being serviced
1626  * @drain_offline: perform offline draining on the cgroup
1627  *
1628  * This helper is to be used by a cgroup kernfs method currently servicing
1629  * @kn.  It breaks the active protection, performs cgroup locking and
1630  * verifies that the associated cgroup is alive.  Returns the cgroup if
1631  * alive; otherwise, %NULL.  A successful return should be undone by a
1632  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1633  * cgroup is drained of offlining csses before return.
1634  *
1635  * Any cgroup kernfs method implementation which requires locking the
1636  * associated cgroup should use this helper.  It avoids nesting cgroup
1637  * locking under kernfs active protection and allows all kernfs operations
1638  * including self-removal.
1639  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1640 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1641 {
1642 	struct cgroup *cgrp;
1643 
1644 	if (kernfs_type(kn) == KERNFS_DIR)
1645 		cgrp = kn->priv;
1646 	else
1647 		cgrp = kn->parent->priv;
1648 
1649 	/*
1650 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1651 	 * active_ref.  cgroup liveliness check alone provides enough
1652 	 * protection against removal.  Ensure @cgrp stays accessible and
1653 	 * break the active_ref protection.
1654 	 */
1655 	if (!cgroup_tryget(cgrp))
1656 		return NULL;
1657 	kernfs_break_active_protection(kn);
1658 
1659 	if (drain_offline)
1660 		cgroup_lock_and_drain_offline(cgrp);
1661 	else
1662 		cgroup_lock();
1663 
1664 	if (!cgroup_is_dead(cgrp))
1665 		return cgrp;
1666 
1667 	cgroup_kn_unlock(kn);
1668 	return NULL;
1669 }
1670 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1671 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1672 {
1673 	char name[CGROUP_FILE_NAME_MAX];
1674 
1675 	lockdep_assert_held(&cgroup_mutex);
1676 
1677 	if (cft->file_offset) {
1678 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1679 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1680 
1681 		spin_lock_irq(&cgroup_file_kn_lock);
1682 		cfile->kn = NULL;
1683 		spin_unlock_irq(&cgroup_file_kn_lock);
1684 
1685 		del_timer_sync(&cfile->notify_timer);
1686 	}
1687 
1688 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1689 }
1690 
1691 /**
1692  * css_clear_dir - remove subsys files in a cgroup directory
1693  * @css: target css
1694  */
css_clear_dir(struct cgroup_subsys_state * css)1695 static void css_clear_dir(struct cgroup_subsys_state *css)
1696 {
1697 	struct cgroup *cgrp = css->cgroup;
1698 	struct cftype *cfts;
1699 
1700 	if (!(css->flags & CSS_VISIBLE))
1701 		return;
1702 
1703 	css->flags &= ~CSS_VISIBLE;
1704 
1705 	if (!css->ss) {
1706 		if (cgroup_on_dfl(cgrp)) {
1707 			cgroup_addrm_files(css, cgrp,
1708 					   cgroup_base_files, false);
1709 			if (cgroup_psi_enabled())
1710 				cgroup_addrm_files(css, cgrp,
1711 						   cgroup_psi_files, false);
1712 		} else {
1713 			cgroup_addrm_files(css, cgrp,
1714 					   cgroup1_base_files, false);
1715 		}
1716 	} else {
1717 		list_for_each_entry(cfts, &css->ss->cfts, node)
1718 			cgroup_addrm_files(css, cgrp, cfts, false);
1719 	}
1720 }
1721 
1722 /**
1723  * css_populate_dir - create subsys files in a cgroup directory
1724  * @css: target css
1725  *
1726  * On failure, no file is added.
1727  */
css_populate_dir(struct cgroup_subsys_state * css)1728 static int css_populate_dir(struct cgroup_subsys_state *css)
1729 {
1730 	struct cgroup *cgrp = css->cgroup;
1731 	struct cftype *cfts, *failed_cfts;
1732 	int ret;
1733 
1734 	if (css->flags & CSS_VISIBLE)
1735 		return 0;
1736 
1737 	if (!css->ss) {
1738 		if (cgroup_on_dfl(cgrp)) {
1739 			ret = cgroup_addrm_files(css, cgrp,
1740 						 cgroup_base_files, true);
1741 			if (ret < 0)
1742 				return ret;
1743 
1744 			if (cgroup_psi_enabled()) {
1745 				ret = cgroup_addrm_files(css, cgrp,
1746 							 cgroup_psi_files, true);
1747 				if (ret < 0) {
1748 					cgroup_addrm_files(css, cgrp,
1749 							   cgroup_base_files, false);
1750 					return ret;
1751 				}
1752 			}
1753 		} else {
1754 			ret = cgroup_addrm_files(css, cgrp,
1755 						 cgroup1_base_files, true);
1756 			if (ret < 0)
1757 				return ret;
1758 		}
1759 	} else {
1760 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1761 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1762 			if (ret < 0) {
1763 				failed_cfts = cfts;
1764 				goto err;
1765 			}
1766 		}
1767 	}
1768 
1769 	css->flags |= CSS_VISIBLE;
1770 
1771 	return 0;
1772 err:
1773 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1774 		if (cfts == failed_cfts)
1775 			break;
1776 		cgroup_addrm_files(css, cgrp, cfts, false);
1777 	}
1778 	return ret;
1779 }
1780 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1781 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1782 {
1783 	struct cgroup *dcgrp = &dst_root->cgrp;
1784 	struct cgroup_subsys *ss;
1785 	int ssid, ret;
1786 	u16 dfl_disable_ss_mask = 0;
1787 
1788 	lockdep_assert_held(&cgroup_mutex);
1789 
1790 	do_each_subsys_mask(ss, ssid, ss_mask) {
1791 		/*
1792 		 * If @ss has non-root csses attached to it, can't move.
1793 		 * If @ss is an implicit controller, it is exempt from this
1794 		 * rule and can be stolen.
1795 		 */
1796 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1797 		    !ss->implicit_on_dfl)
1798 			return -EBUSY;
1799 
1800 		/* can't move between two non-dummy roots either */
1801 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1802 			return -EBUSY;
1803 
1804 		/*
1805 		 * Collect ssid's that need to be disabled from default
1806 		 * hierarchy.
1807 		 */
1808 		if (ss->root == &cgrp_dfl_root)
1809 			dfl_disable_ss_mask |= 1 << ssid;
1810 
1811 	} while_each_subsys_mask();
1812 
1813 	if (dfl_disable_ss_mask) {
1814 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1815 
1816 		/*
1817 		 * Controllers from default hierarchy that need to be rebound
1818 		 * are all disabled together in one go.
1819 		 */
1820 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1821 		WARN_ON(cgroup_apply_control(scgrp));
1822 		cgroup_finalize_control(scgrp, 0);
1823 	}
1824 
1825 	do_each_subsys_mask(ss, ssid, ss_mask) {
1826 		struct cgroup_root *src_root = ss->root;
1827 		struct cgroup *scgrp = &src_root->cgrp;
1828 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1829 		struct css_set *cset, *cset_pos;
1830 		struct css_task_iter *it;
1831 
1832 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1833 
1834 		if (src_root != &cgrp_dfl_root) {
1835 			/* disable from the source */
1836 			src_root->subsys_mask &= ~(1 << ssid);
1837 			WARN_ON(cgroup_apply_control(scgrp));
1838 			cgroup_finalize_control(scgrp, 0);
1839 		}
1840 
1841 		/* rebind */
1842 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1843 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1844 		ss->root = dst_root;
1845 
1846 		spin_lock_irq(&css_set_lock);
1847 		css->cgroup = dcgrp;
1848 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1849 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1850 					 e_cset_node[ss->id]) {
1851 			list_move_tail(&cset->e_cset_node[ss->id],
1852 				       &dcgrp->e_csets[ss->id]);
1853 			/*
1854 			 * all css_sets of scgrp together in same order to dcgrp,
1855 			 * patch in-flight iterators to preserve correct iteration.
1856 			 * since the iterator is always advanced right away and
1857 			 * finished when it->cset_pos meets it->cset_head, so only
1858 			 * update it->cset_head is enough here.
1859 			 */
1860 			list_for_each_entry(it, &cset->task_iters, iters_node)
1861 				if (it->cset_head == &scgrp->e_csets[ss->id])
1862 					it->cset_head = &dcgrp->e_csets[ss->id];
1863 		}
1864 		spin_unlock_irq(&css_set_lock);
1865 
1866 		if (ss->css_rstat_flush) {
1867 			list_del_rcu(&css->rstat_css_node);
1868 			synchronize_rcu();
1869 			list_add_rcu(&css->rstat_css_node,
1870 				     &dcgrp->rstat_css_list);
1871 		}
1872 
1873 		/* default hierarchy doesn't enable controllers by default */
1874 		dst_root->subsys_mask |= 1 << ssid;
1875 		if (dst_root == &cgrp_dfl_root) {
1876 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1877 		} else {
1878 			dcgrp->subtree_control |= 1 << ssid;
1879 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1880 		}
1881 
1882 		ret = cgroup_apply_control(dcgrp);
1883 		if (ret)
1884 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1885 				ss->name, ret);
1886 
1887 		if (ss->bind)
1888 			ss->bind(css);
1889 	} while_each_subsys_mask();
1890 
1891 	kernfs_activate(dcgrp->kn);
1892 	return 0;
1893 }
1894 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1895 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1896 		     struct kernfs_root *kf_root)
1897 {
1898 	int len = 0;
1899 	char *buf = NULL;
1900 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1901 	struct cgroup *ns_cgroup;
1902 
1903 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1904 	if (!buf)
1905 		return -ENOMEM;
1906 
1907 	spin_lock_irq(&css_set_lock);
1908 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1909 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1910 	spin_unlock_irq(&css_set_lock);
1911 
1912 	if (len == -E2BIG)
1913 		len = -ERANGE;
1914 	else if (len > 0) {
1915 		seq_escape(sf, buf, " \t\n\\");
1916 		len = 0;
1917 	}
1918 	kfree(buf);
1919 	return len;
1920 }
1921 
1922 enum cgroup2_param {
1923 	Opt_nsdelegate,
1924 	Opt_favordynmods,
1925 	Opt_memory_localevents,
1926 	Opt_memory_recursiveprot,
1927 	Opt_memory_hugetlb_accounting,
1928 	Opt_pids_localevents,
1929 	nr__cgroup2_params
1930 };
1931 
1932 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1933 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1934 	fsparam_flag("favordynmods",		Opt_favordynmods),
1935 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1936 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1937 	fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1938 	fsparam_flag("pids_localevents",	Opt_pids_localevents),
1939 	{}
1940 };
1941 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1942 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1943 {
1944 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1945 	struct fs_parse_result result;
1946 	int opt;
1947 
1948 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1949 	if (opt < 0)
1950 		return opt;
1951 
1952 	switch (opt) {
1953 	case Opt_nsdelegate:
1954 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1955 		return 0;
1956 	case Opt_favordynmods:
1957 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1958 		return 0;
1959 	case Opt_memory_localevents:
1960 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1961 		return 0;
1962 	case Opt_memory_recursiveprot:
1963 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1964 		return 0;
1965 	case Opt_memory_hugetlb_accounting:
1966 		ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1967 		return 0;
1968 	case Opt_pids_localevents:
1969 		ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
1970 		return 0;
1971 	}
1972 	return -EINVAL;
1973 }
1974 
of_peak(struct kernfs_open_file * of)1975 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
1976 {
1977 	struct cgroup_file_ctx *ctx = of->priv;
1978 
1979 	return &ctx->peak;
1980 }
1981 
apply_cgroup_root_flags(unsigned int root_flags)1982 static void apply_cgroup_root_flags(unsigned int root_flags)
1983 {
1984 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1985 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1986 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1987 		else
1988 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1989 
1990 		cgroup_favor_dynmods(&cgrp_dfl_root,
1991 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1992 
1993 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1994 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1995 		else
1996 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1997 
1998 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1999 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2000 		else
2001 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2002 
2003 		if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2004 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2005 		else
2006 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2007 
2008 		if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2009 			cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2010 		else
2011 			cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2012 	}
2013 }
2014 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)2015 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2016 {
2017 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2018 		seq_puts(seq, ",nsdelegate");
2019 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2020 		seq_puts(seq, ",favordynmods");
2021 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2022 		seq_puts(seq, ",memory_localevents");
2023 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2024 		seq_puts(seq, ",memory_recursiveprot");
2025 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2026 		seq_puts(seq, ",memory_hugetlb_accounting");
2027 	if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2028 		seq_puts(seq, ",pids_localevents");
2029 	return 0;
2030 }
2031 
cgroup_reconfigure(struct fs_context * fc)2032 static int cgroup_reconfigure(struct fs_context *fc)
2033 {
2034 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2035 
2036 	apply_cgroup_root_flags(ctx->flags);
2037 	return 0;
2038 }
2039 
init_cgroup_housekeeping(struct cgroup * cgrp)2040 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2041 {
2042 	struct cgroup_subsys *ss;
2043 	int ssid;
2044 
2045 	INIT_LIST_HEAD(&cgrp->self.sibling);
2046 	INIT_LIST_HEAD(&cgrp->self.children);
2047 	INIT_LIST_HEAD(&cgrp->cset_links);
2048 	INIT_LIST_HEAD(&cgrp->pidlists);
2049 	mutex_init(&cgrp->pidlist_mutex);
2050 	cgrp->self.cgroup = cgrp;
2051 	cgrp->self.flags |= CSS_ONLINE;
2052 	cgrp->dom_cgrp = cgrp;
2053 	cgrp->max_descendants = INT_MAX;
2054 	cgrp->max_depth = INT_MAX;
2055 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2056 	prev_cputime_init(&cgrp->prev_cputime);
2057 
2058 	for_each_subsys(ss, ssid)
2059 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2060 
2061 	init_waitqueue_head(&cgrp->offline_waitq);
2062 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2063 }
2064 
init_cgroup_root(struct cgroup_fs_context * ctx)2065 void init_cgroup_root(struct cgroup_fs_context *ctx)
2066 {
2067 	struct cgroup_root *root = ctx->root;
2068 	struct cgroup *cgrp = &root->cgrp;
2069 
2070 	INIT_LIST_HEAD_RCU(&root->root_list);
2071 	atomic_set(&root->nr_cgrps, 1);
2072 	cgrp->root = root;
2073 	init_cgroup_housekeeping(cgrp);
2074 
2075 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2076 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2077 	if (ctx->release_agent)
2078 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2079 	if (ctx->name)
2080 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2081 	if (ctx->cpuset_clone_children)
2082 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2083 }
2084 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2085 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2086 {
2087 	LIST_HEAD(tmp_links);
2088 	struct cgroup *root_cgrp = &root->cgrp;
2089 	struct kernfs_syscall_ops *kf_sops;
2090 	struct css_set *cset;
2091 	int i, ret;
2092 
2093 	lockdep_assert_held(&cgroup_mutex);
2094 
2095 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2096 			      0, GFP_KERNEL);
2097 	if (ret)
2098 		goto out;
2099 
2100 	/*
2101 	 * We're accessing css_set_count without locking css_set_lock here,
2102 	 * but that's OK - it can only be increased by someone holding
2103 	 * cgroup_lock, and that's us.  Later rebinding may disable
2104 	 * controllers on the default hierarchy and thus create new csets,
2105 	 * which can't be more than the existing ones.  Allocate 2x.
2106 	 */
2107 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2108 	if (ret)
2109 		goto cancel_ref;
2110 
2111 	ret = cgroup_init_root_id(root);
2112 	if (ret)
2113 		goto cancel_ref;
2114 
2115 	kf_sops = root == &cgrp_dfl_root ?
2116 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2117 
2118 	root->kf_root = kernfs_create_root(kf_sops,
2119 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2120 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2121 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2122 					   root_cgrp);
2123 	if (IS_ERR(root->kf_root)) {
2124 		ret = PTR_ERR(root->kf_root);
2125 		goto exit_root_id;
2126 	}
2127 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2128 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2129 	root_cgrp->ancestors[0] = root_cgrp;
2130 
2131 	ret = css_populate_dir(&root_cgrp->self);
2132 	if (ret)
2133 		goto destroy_root;
2134 
2135 	ret = cgroup_rstat_init(root_cgrp);
2136 	if (ret)
2137 		goto destroy_root;
2138 
2139 	ret = rebind_subsystems(root, ss_mask);
2140 	if (ret)
2141 		goto exit_stats;
2142 
2143 	ret = cgroup_bpf_inherit(root_cgrp);
2144 	WARN_ON_ONCE(ret);
2145 
2146 	trace_cgroup_setup_root(root);
2147 
2148 	/*
2149 	 * There must be no failure case after here, since rebinding takes
2150 	 * care of subsystems' refcounts, which are explicitly dropped in
2151 	 * the failure exit path.
2152 	 */
2153 	list_add_rcu(&root->root_list, &cgroup_roots);
2154 	cgroup_root_count++;
2155 
2156 	/*
2157 	 * Link the root cgroup in this hierarchy into all the css_set
2158 	 * objects.
2159 	 */
2160 	spin_lock_irq(&css_set_lock);
2161 	hash_for_each(css_set_table, i, cset, hlist) {
2162 		link_css_set(&tmp_links, cset, root_cgrp);
2163 		if (css_set_populated(cset))
2164 			cgroup_update_populated(root_cgrp, true);
2165 	}
2166 	spin_unlock_irq(&css_set_lock);
2167 
2168 	BUG_ON(!list_empty(&root_cgrp->self.children));
2169 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2170 
2171 	ret = 0;
2172 	goto out;
2173 
2174 exit_stats:
2175 	cgroup_rstat_exit(root_cgrp);
2176 destroy_root:
2177 	kernfs_destroy_root(root->kf_root);
2178 	root->kf_root = NULL;
2179 exit_root_id:
2180 	cgroup_exit_root_id(root);
2181 cancel_ref:
2182 	percpu_ref_exit(&root_cgrp->self.refcnt);
2183 out:
2184 	free_cgrp_cset_links(&tmp_links);
2185 	return ret;
2186 }
2187 
cgroup_do_get_tree(struct fs_context * fc)2188 int cgroup_do_get_tree(struct fs_context *fc)
2189 {
2190 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2191 	int ret;
2192 
2193 	ctx->kfc.root = ctx->root->kf_root;
2194 	if (fc->fs_type == &cgroup2_fs_type)
2195 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2196 	else
2197 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2198 	ret = kernfs_get_tree(fc);
2199 
2200 	/*
2201 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2202 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2203 	 */
2204 	if (!ret && ctx->ns != &init_cgroup_ns) {
2205 		struct dentry *nsdentry;
2206 		struct super_block *sb = fc->root->d_sb;
2207 		struct cgroup *cgrp;
2208 
2209 		cgroup_lock();
2210 		spin_lock_irq(&css_set_lock);
2211 
2212 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2213 
2214 		spin_unlock_irq(&css_set_lock);
2215 		cgroup_unlock();
2216 
2217 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2218 		dput(fc->root);
2219 		if (IS_ERR(nsdentry)) {
2220 			deactivate_locked_super(sb);
2221 			ret = PTR_ERR(nsdentry);
2222 			nsdentry = NULL;
2223 		}
2224 		fc->root = nsdentry;
2225 	}
2226 
2227 	if (!ctx->kfc.new_sb_created)
2228 		cgroup_put(&ctx->root->cgrp);
2229 
2230 	return ret;
2231 }
2232 
2233 /*
2234  * Destroy a cgroup filesystem context.
2235  */
cgroup_fs_context_free(struct fs_context * fc)2236 static void cgroup_fs_context_free(struct fs_context *fc)
2237 {
2238 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2239 
2240 	kfree(ctx->name);
2241 	kfree(ctx->release_agent);
2242 	put_cgroup_ns(ctx->ns);
2243 	kernfs_free_fs_context(fc);
2244 	kfree(ctx);
2245 }
2246 
cgroup_get_tree(struct fs_context * fc)2247 static int cgroup_get_tree(struct fs_context *fc)
2248 {
2249 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2250 	int ret;
2251 
2252 	WRITE_ONCE(cgrp_dfl_visible, true);
2253 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2254 	ctx->root = &cgrp_dfl_root;
2255 
2256 	ret = cgroup_do_get_tree(fc);
2257 	if (!ret)
2258 		apply_cgroup_root_flags(ctx->flags);
2259 	return ret;
2260 }
2261 
2262 static const struct fs_context_operations cgroup_fs_context_ops = {
2263 	.free		= cgroup_fs_context_free,
2264 	.parse_param	= cgroup2_parse_param,
2265 	.get_tree	= cgroup_get_tree,
2266 	.reconfigure	= cgroup_reconfigure,
2267 };
2268 
2269 static const struct fs_context_operations cgroup1_fs_context_ops = {
2270 	.free		= cgroup_fs_context_free,
2271 	.parse_param	= cgroup1_parse_param,
2272 	.get_tree	= cgroup1_get_tree,
2273 	.reconfigure	= cgroup1_reconfigure,
2274 };
2275 
2276 /*
2277  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2278  * we select the namespace we're going to use.
2279  */
cgroup_init_fs_context(struct fs_context * fc)2280 static int cgroup_init_fs_context(struct fs_context *fc)
2281 {
2282 	struct cgroup_fs_context *ctx;
2283 
2284 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2285 	if (!ctx)
2286 		return -ENOMEM;
2287 
2288 	ctx->ns = current->nsproxy->cgroup_ns;
2289 	get_cgroup_ns(ctx->ns);
2290 	fc->fs_private = &ctx->kfc;
2291 	if (fc->fs_type == &cgroup2_fs_type)
2292 		fc->ops = &cgroup_fs_context_ops;
2293 	else
2294 		fc->ops = &cgroup1_fs_context_ops;
2295 	put_user_ns(fc->user_ns);
2296 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2297 	fc->global = true;
2298 
2299 	if (have_favordynmods)
2300 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2301 
2302 	return 0;
2303 }
2304 
cgroup_kill_sb(struct super_block * sb)2305 static void cgroup_kill_sb(struct super_block *sb)
2306 {
2307 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2308 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2309 
2310 	/*
2311 	 * If @root doesn't have any children, start killing it.
2312 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2313 	 *
2314 	 * And don't kill the default root.
2315 	 */
2316 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2317 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2318 		cgroup_bpf_offline(&root->cgrp);
2319 		percpu_ref_kill(&root->cgrp.self.refcnt);
2320 	}
2321 	cgroup_put(&root->cgrp);
2322 	kernfs_kill_sb(sb);
2323 }
2324 
2325 struct file_system_type cgroup_fs_type = {
2326 	.name			= "cgroup",
2327 	.init_fs_context	= cgroup_init_fs_context,
2328 	.parameters		= cgroup1_fs_parameters,
2329 	.kill_sb		= cgroup_kill_sb,
2330 	.fs_flags		= FS_USERNS_MOUNT,
2331 };
2332 
2333 static struct file_system_type cgroup2_fs_type = {
2334 	.name			= "cgroup2",
2335 	.init_fs_context	= cgroup_init_fs_context,
2336 	.parameters		= cgroup2_fs_parameters,
2337 	.kill_sb		= cgroup_kill_sb,
2338 	.fs_flags		= FS_USERNS_MOUNT,
2339 };
2340 
2341 #ifdef CONFIG_CPUSETS_V1
2342 static const struct fs_context_operations cpuset_fs_context_ops = {
2343 	.get_tree	= cgroup1_get_tree,
2344 	.free		= cgroup_fs_context_free,
2345 };
2346 
2347 /*
2348  * This is ugly, but preserves the userspace API for existing cpuset
2349  * users. If someone tries to mount the "cpuset" filesystem, we
2350  * silently switch it to mount "cgroup" instead
2351  */
cpuset_init_fs_context(struct fs_context * fc)2352 static int cpuset_init_fs_context(struct fs_context *fc)
2353 {
2354 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2355 	struct cgroup_fs_context *ctx;
2356 	int err;
2357 
2358 	err = cgroup_init_fs_context(fc);
2359 	if (err) {
2360 		kfree(agent);
2361 		return err;
2362 	}
2363 
2364 	fc->ops = &cpuset_fs_context_ops;
2365 
2366 	ctx = cgroup_fc2context(fc);
2367 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2368 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2369 	ctx->release_agent = agent;
2370 
2371 	get_filesystem(&cgroup_fs_type);
2372 	put_filesystem(fc->fs_type);
2373 	fc->fs_type = &cgroup_fs_type;
2374 
2375 	return 0;
2376 }
2377 
2378 static struct file_system_type cpuset_fs_type = {
2379 	.name			= "cpuset",
2380 	.init_fs_context	= cpuset_init_fs_context,
2381 	.fs_flags		= FS_USERNS_MOUNT,
2382 };
2383 #endif
2384 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2385 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2386 			  struct cgroup_namespace *ns)
2387 {
2388 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2389 
2390 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2391 }
2392 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2393 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2394 		   struct cgroup_namespace *ns)
2395 {
2396 	int ret;
2397 
2398 	cgroup_lock();
2399 	spin_lock_irq(&css_set_lock);
2400 
2401 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2402 
2403 	spin_unlock_irq(&css_set_lock);
2404 	cgroup_unlock();
2405 
2406 	return ret;
2407 }
2408 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2409 
2410 /**
2411  * cgroup_attach_lock - Lock for ->attach()
2412  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2413  *
2414  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2415  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2416  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2417  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2418  * lead to deadlocks.
2419  *
2420  * Bringing up a CPU may involve creating and destroying tasks which requires
2421  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2422  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2423  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2424  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2425  * the threadgroup_rwsem to be released to create new tasks. For more details:
2426  *
2427  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2428  *
2429  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2430  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2431  * CPU hotplug is disabled on entry.
2432  */
cgroup_attach_lock(bool lock_threadgroup)2433 void cgroup_attach_lock(bool lock_threadgroup)
2434 {
2435 	cpus_read_lock();
2436 	if (lock_threadgroup)
2437 		percpu_down_write(&cgroup_threadgroup_rwsem);
2438 }
2439 
2440 /**
2441  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2442  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2443  */
cgroup_attach_unlock(bool lock_threadgroup)2444 void cgroup_attach_unlock(bool lock_threadgroup)
2445 {
2446 	if (lock_threadgroup)
2447 		percpu_up_write(&cgroup_threadgroup_rwsem);
2448 	cpus_read_unlock();
2449 }
2450 
2451 /**
2452  * cgroup_migrate_add_task - add a migration target task to a migration context
2453  * @task: target task
2454  * @mgctx: target migration context
2455  *
2456  * Add @task, which is a migration target, to @mgctx->tset.  This function
2457  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2458  * should have been added as a migration source and @task->cg_list will be
2459  * moved from the css_set's tasks list to mg_tasks one.
2460  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2461 static void cgroup_migrate_add_task(struct task_struct *task,
2462 				    struct cgroup_mgctx *mgctx)
2463 {
2464 	struct css_set *cset;
2465 
2466 	lockdep_assert_held(&css_set_lock);
2467 
2468 	/* @task either already exited or can't exit until the end */
2469 	if (task->flags & PF_EXITING)
2470 		return;
2471 
2472 	/* cgroup_threadgroup_rwsem protects racing against forks */
2473 	WARN_ON_ONCE(list_empty(&task->cg_list));
2474 
2475 	cset = task_css_set(task);
2476 	if (!cset->mg_src_cgrp)
2477 		return;
2478 
2479 	mgctx->tset.nr_tasks++;
2480 
2481 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2482 	if (list_empty(&cset->mg_node))
2483 		list_add_tail(&cset->mg_node,
2484 			      &mgctx->tset.src_csets);
2485 	if (list_empty(&cset->mg_dst_cset->mg_node))
2486 		list_add_tail(&cset->mg_dst_cset->mg_node,
2487 			      &mgctx->tset.dst_csets);
2488 }
2489 
2490 /**
2491  * cgroup_taskset_first - reset taskset and return the first task
2492  * @tset: taskset of interest
2493  * @dst_cssp: output variable for the destination css
2494  *
2495  * @tset iteration is initialized and the first task is returned.
2496  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2497 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2498 					 struct cgroup_subsys_state **dst_cssp)
2499 {
2500 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2501 	tset->cur_task = NULL;
2502 
2503 	return cgroup_taskset_next(tset, dst_cssp);
2504 }
2505 
2506 /**
2507  * cgroup_taskset_next - iterate to the next task in taskset
2508  * @tset: taskset of interest
2509  * @dst_cssp: output variable for the destination css
2510  *
2511  * Return the next task in @tset.  Iteration must have been initialized
2512  * with cgroup_taskset_first().
2513  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2514 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2515 					struct cgroup_subsys_state **dst_cssp)
2516 {
2517 	struct css_set *cset = tset->cur_cset;
2518 	struct task_struct *task = tset->cur_task;
2519 
2520 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2521 		if (!task)
2522 			task = list_first_entry(&cset->mg_tasks,
2523 						struct task_struct, cg_list);
2524 		else
2525 			task = list_next_entry(task, cg_list);
2526 
2527 		if (&task->cg_list != &cset->mg_tasks) {
2528 			tset->cur_cset = cset;
2529 			tset->cur_task = task;
2530 
2531 			/*
2532 			 * This function may be called both before and
2533 			 * after cgroup_migrate_execute().  The two cases
2534 			 * can be distinguished by looking at whether @cset
2535 			 * has its ->mg_dst_cset set.
2536 			 */
2537 			if (cset->mg_dst_cset)
2538 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2539 			else
2540 				*dst_cssp = cset->subsys[tset->ssid];
2541 
2542 			return task;
2543 		}
2544 
2545 		cset = list_next_entry(cset, mg_node);
2546 		task = NULL;
2547 	}
2548 
2549 	return NULL;
2550 }
2551 
2552 /**
2553  * cgroup_migrate_execute - migrate a taskset
2554  * @mgctx: migration context
2555  *
2556  * Migrate tasks in @mgctx as setup by migration preparation functions.
2557  * This function fails iff one of the ->can_attach callbacks fails and
2558  * guarantees that either all or none of the tasks in @mgctx are migrated.
2559  * @mgctx is consumed regardless of success.
2560  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2561 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2562 {
2563 	struct cgroup_taskset *tset = &mgctx->tset;
2564 	struct cgroup_subsys *ss;
2565 	struct task_struct *task, *tmp_task;
2566 	struct css_set *cset, *tmp_cset;
2567 	int ssid, failed_ssid, ret;
2568 
2569 	/* check that we can legitimately attach to the cgroup */
2570 	if (tset->nr_tasks) {
2571 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2572 			if (ss->can_attach) {
2573 				tset->ssid = ssid;
2574 				ret = ss->can_attach(tset);
2575 				if (ret) {
2576 					failed_ssid = ssid;
2577 					goto out_cancel_attach;
2578 				}
2579 			}
2580 		} while_each_subsys_mask();
2581 	}
2582 
2583 	/*
2584 	 * Now that we're guaranteed success, proceed to move all tasks to
2585 	 * the new cgroup.  There are no failure cases after here, so this
2586 	 * is the commit point.
2587 	 */
2588 	spin_lock_irq(&css_set_lock);
2589 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2590 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2591 			struct css_set *from_cset = task_css_set(task);
2592 			struct css_set *to_cset = cset->mg_dst_cset;
2593 
2594 			get_css_set(to_cset);
2595 			to_cset->nr_tasks++;
2596 			css_set_move_task(task, from_cset, to_cset, true);
2597 			from_cset->nr_tasks--;
2598 			/*
2599 			 * If the source or destination cgroup is frozen,
2600 			 * the task might require to change its state.
2601 			 */
2602 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2603 						    to_cset->dfl_cgrp);
2604 			put_css_set_locked(from_cset);
2605 
2606 		}
2607 	}
2608 	spin_unlock_irq(&css_set_lock);
2609 
2610 	/*
2611 	 * Migration is committed, all target tasks are now on dst_csets.
2612 	 * Nothing is sensitive to fork() after this point.  Notify
2613 	 * controllers that migration is complete.
2614 	 */
2615 	tset->csets = &tset->dst_csets;
2616 
2617 	if (tset->nr_tasks) {
2618 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2619 			if (ss->attach) {
2620 				tset->ssid = ssid;
2621 				ss->attach(tset);
2622 			}
2623 		} while_each_subsys_mask();
2624 	}
2625 
2626 	ret = 0;
2627 	goto out_release_tset;
2628 
2629 out_cancel_attach:
2630 	if (tset->nr_tasks) {
2631 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2632 			if (ssid == failed_ssid)
2633 				break;
2634 			if (ss->cancel_attach) {
2635 				tset->ssid = ssid;
2636 				ss->cancel_attach(tset);
2637 			}
2638 		} while_each_subsys_mask();
2639 	}
2640 out_release_tset:
2641 	spin_lock_irq(&css_set_lock);
2642 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2643 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2644 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2645 		list_del_init(&cset->mg_node);
2646 	}
2647 	spin_unlock_irq(&css_set_lock);
2648 
2649 	/*
2650 	 * Re-initialize the cgroup_taskset structure in case it is reused
2651 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2652 	 * iteration.
2653 	 */
2654 	tset->nr_tasks = 0;
2655 	tset->csets    = &tset->src_csets;
2656 	return ret;
2657 }
2658 
2659 /**
2660  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2661  * @dst_cgrp: destination cgroup to test
2662  *
2663  * On the default hierarchy, except for the mixable, (possible) thread root
2664  * and threaded cgroups, subtree_control must be zero for migration
2665  * destination cgroups with tasks so that child cgroups don't compete
2666  * against tasks.
2667  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2668 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2669 {
2670 	/* v1 doesn't have any restriction */
2671 	if (!cgroup_on_dfl(dst_cgrp))
2672 		return 0;
2673 
2674 	/* verify @dst_cgrp can host resources */
2675 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2676 		return -EOPNOTSUPP;
2677 
2678 	/*
2679 	 * If @dst_cgrp is already or can become a thread root or is
2680 	 * threaded, it doesn't matter.
2681 	 */
2682 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2683 		return 0;
2684 
2685 	/* apply no-internal-process constraint */
2686 	if (dst_cgrp->subtree_control)
2687 		return -EBUSY;
2688 
2689 	return 0;
2690 }
2691 
2692 /**
2693  * cgroup_migrate_finish - cleanup after attach
2694  * @mgctx: migration context
2695  *
2696  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2697  * those functions for details.
2698  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2699 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2700 {
2701 	struct css_set *cset, *tmp_cset;
2702 
2703 	lockdep_assert_held(&cgroup_mutex);
2704 
2705 	spin_lock_irq(&css_set_lock);
2706 
2707 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2708 				 mg_src_preload_node) {
2709 		cset->mg_src_cgrp = NULL;
2710 		cset->mg_dst_cgrp = NULL;
2711 		cset->mg_dst_cset = NULL;
2712 		list_del_init(&cset->mg_src_preload_node);
2713 		put_css_set_locked(cset);
2714 	}
2715 
2716 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2717 				 mg_dst_preload_node) {
2718 		cset->mg_src_cgrp = NULL;
2719 		cset->mg_dst_cgrp = NULL;
2720 		cset->mg_dst_cset = NULL;
2721 		list_del_init(&cset->mg_dst_preload_node);
2722 		put_css_set_locked(cset);
2723 	}
2724 
2725 	spin_unlock_irq(&css_set_lock);
2726 }
2727 
2728 /**
2729  * cgroup_migrate_add_src - add a migration source css_set
2730  * @src_cset: the source css_set to add
2731  * @dst_cgrp: the destination cgroup
2732  * @mgctx: migration context
2733  *
2734  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2735  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2736  * up by cgroup_migrate_finish().
2737  *
2738  * This function may be called without holding cgroup_threadgroup_rwsem
2739  * even if the target is a process.  Threads may be created and destroyed
2740  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2741  * into play and the preloaded css_sets are guaranteed to cover all
2742  * migrations.
2743  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2744 void cgroup_migrate_add_src(struct css_set *src_cset,
2745 			    struct cgroup *dst_cgrp,
2746 			    struct cgroup_mgctx *mgctx)
2747 {
2748 	struct cgroup *src_cgrp;
2749 
2750 	lockdep_assert_held(&cgroup_mutex);
2751 	lockdep_assert_held(&css_set_lock);
2752 
2753 	/*
2754 	 * If ->dead, @src_set is associated with one or more dead cgroups
2755 	 * and doesn't contain any migratable tasks.  Ignore it early so
2756 	 * that the rest of migration path doesn't get confused by it.
2757 	 */
2758 	if (src_cset->dead)
2759 		return;
2760 
2761 	if (!list_empty(&src_cset->mg_src_preload_node))
2762 		return;
2763 
2764 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2765 
2766 	WARN_ON(src_cset->mg_src_cgrp);
2767 	WARN_ON(src_cset->mg_dst_cgrp);
2768 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2769 	WARN_ON(!list_empty(&src_cset->mg_node));
2770 
2771 	src_cset->mg_src_cgrp = src_cgrp;
2772 	src_cset->mg_dst_cgrp = dst_cgrp;
2773 	get_css_set(src_cset);
2774 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2775 }
2776 
2777 /**
2778  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2779  * @mgctx: migration context
2780  *
2781  * Tasks are about to be moved and all the source css_sets have been
2782  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2783  * pins all destination css_sets, links each to its source, and append them
2784  * to @mgctx->preloaded_dst_csets.
2785  *
2786  * This function must be called after cgroup_migrate_add_src() has been
2787  * called on each migration source css_set.  After migration is performed
2788  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2789  * @mgctx.
2790  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2791 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2792 {
2793 	struct css_set *src_cset, *tmp_cset;
2794 
2795 	lockdep_assert_held(&cgroup_mutex);
2796 
2797 	/* look up the dst cset for each src cset and link it to src */
2798 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2799 				 mg_src_preload_node) {
2800 		struct css_set *dst_cset;
2801 		struct cgroup_subsys *ss;
2802 		int ssid;
2803 
2804 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2805 		if (!dst_cset)
2806 			return -ENOMEM;
2807 
2808 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2809 
2810 		/*
2811 		 * If src cset equals dst, it's noop.  Drop the src.
2812 		 * cgroup_migrate() will skip the cset too.  Note that we
2813 		 * can't handle src == dst as some nodes are used by both.
2814 		 */
2815 		if (src_cset == dst_cset) {
2816 			src_cset->mg_src_cgrp = NULL;
2817 			src_cset->mg_dst_cgrp = NULL;
2818 			list_del_init(&src_cset->mg_src_preload_node);
2819 			put_css_set(src_cset);
2820 			put_css_set(dst_cset);
2821 			continue;
2822 		}
2823 
2824 		src_cset->mg_dst_cset = dst_cset;
2825 
2826 		if (list_empty(&dst_cset->mg_dst_preload_node))
2827 			list_add_tail(&dst_cset->mg_dst_preload_node,
2828 				      &mgctx->preloaded_dst_csets);
2829 		else
2830 			put_css_set(dst_cset);
2831 
2832 		for_each_subsys(ss, ssid)
2833 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2834 				mgctx->ss_mask |= 1 << ssid;
2835 	}
2836 
2837 	return 0;
2838 }
2839 
2840 /**
2841  * cgroup_migrate - migrate a process or task to a cgroup
2842  * @leader: the leader of the process or the task to migrate
2843  * @threadgroup: whether @leader points to the whole process or a single task
2844  * @mgctx: migration context
2845  *
2846  * Migrate a process or task denoted by @leader.  If migrating a process,
2847  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2848  * responsible for invoking cgroup_migrate_add_src() and
2849  * cgroup_migrate_prepare_dst() on the targets before invoking this
2850  * function and following up with cgroup_migrate_finish().
2851  *
2852  * As long as a controller's ->can_attach() doesn't fail, this function is
2853  * guaranteed to succeed.  This means that, excluding ->can_attach()
2854  * failure, when migrating multiple targets, the success or failure can be
2855  * decided for all targets by invoking group_migrate_prepare_dst() before
2856  * actually starting migrating.
2857  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2858 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2859 		   struct cgroup_mgctx *mgctx)
2860 {
2861 	struct task_struct *task;
2862 
2863 	/*
2864 	 * The following thread iteration should be inside an RCU critical
2865 	 * section to prevent tasks from being freed while taking the snapshot.
2866 	 * spin_lock_irq() implies RCU critical section here.
2867 	 */
2868 	spin_lock_irq(&css_set_lock);
2869 	task = leader;
2870 	do {
2871 		cgroup_migrate_add_task(task, mgctx);
2872 		if (!threadgroup)
2873 			break;
2874 	} while_each_thread(leader, task);
2875 	spin_unlock_irq(&css_set_lock);
2876 
2877 	return cgroup_migrate_execute(mgctx);
2878 }
2879 
2880 /**
2881  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2882  * @dst_cgrp: the cgroup to attach to
2883  * @leader: the task or the leader of the threadgroup to be attached
2884  * @threadgroup: attach the whole threadgroup?
2885  *
2886  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2887  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2888 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2889 		       bool threadgroup)
2890 {
2891 	DEFINE_CGROUP_MGCTX(mgctx);
2892 	struct task_struct *task;
2893 	int ret = 0;
2894 
2895 	/* look up all src csets */
2896 	spin_lock_irq(&css_set_lock);
2897 	rcu_read_lock();
2898 	task = leader;
2899 	do {
2900 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2901 		if (!threadgroup)
2902 			break;
2903 	} while_each_thread(leader, task);
2904 	rcu_read_unlock();
2905 	spin_unlock_irq(&css_set_lock);
2906 
2907 	/* prepare dst csets and commit */
2908 	ret = cgroup_migrate_prepare_dst(&mgctx);
2909 	if (!ret)
2910 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2911 
2912 	cgroup_migrate_finish(&mgctx);
2913 
2914 	if (!ret)
2915 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2916 
2917 	return ret;
2918 }
2919 
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2920 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2921 					     bool *threadgroup_locked)
2922 {
2923 	struct task_struct *tsk;
2924 	pid_t pid;
2925 
2926 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2927 		return ERR_PTR(-EINVAL);
2928 
2929 	/*
2930 	 * If we migrate a single thread, we don't care about threadgroup
2931 	 * stability. If the thread is `current`, it won't exit(2) under our
2932 	 * hands or change PID through exec(2). We exclude
2933 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2934 	 * callers by cgroup_mutex.
2935 	 * Therefore, we can skip the global lock.
2936 	 */
2937 	lockdep_assert_held(&cgroup_mutex);
2938 	*threadgroup_locked = pid || threadgroup;
2939 	cgroup_attach_lock(*threadgroup_locked);
2940 
2941 	rcu_read_lock();
2942 	if (pid) {
2943 		tsk = find_task_by_vpid(pid);
2944 		if (!tsk) {
2945 			tsk = ERR_PTR(-ESRCH);
2946 			goto out_unlock_threadgroup;
2947 		}
2948 	} else {
2949 		tsk = current;
2950 	}
2951 
2952 	if (threadgroup)
2953 		tsk = tsk->group_leader;
2954 
2955 	/*
2956 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2957 	 * If userland migrates such a kthread to a non-root cgroup, it can
2958 	 * become trapped in a cpuset, or RT kthread may be born in a
2959 	 * cgroup with no rt_runtime allocated.  Just say no.
2960 	 */
2961 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2962 		tsk = ERR_PTR(-EINVAL);
2963 		goto out_unlock_threadgroup;
2964 	}
2965 
2966 	get_task_struct(tsk);
2967 	goto out_unlock_rcu;
2968 
2969 out_unlock_threadgroup:
2970 	cgroup_attach_unlock(*threadgroup_locked);
2971 	*threadgroup_locked = false;
2972 out_unlock_rcu:
2973 	rcu_read_unlock();
2974 	return tsk;
2975 }
2976 
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2977 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2978 {
2979 	struct cgroup_subsys *ss;
2980 	int ssid;
2981 
2982 	/* release reference from cgroup_procs_write_start() */
2983 	put_task_struct(task);
2984 
2985 	cgroup_attach_unlock(threadgroup_locked);
2986 
2987 	for_each_subsys(ss, ssid)
2988 		if (ss->post_attach)
2989 			ss->post_attach();
2990 }
2991 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2992 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2993 {
2994 	struct cgroup_subsys *ss;
2995 	bool printed = false;
2996 	int ssid;
2997 
2998 	do_each_subsys_mask(ss, ssid, ss_mask) {
2999 		if (printed)
3000 			seq_putc(seq, ' ');
3001 		seq_puts(seq, ss->name);
3002 		printed = true;
3003 	} while_each_subsys_mask();
3004 	if (printed)
3005 		seq_putc(seq, '\n');
3006 }
3007 
3008 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3009 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3010 {
3011 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3012 
3013 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3014 	return 0;
3015 }
3016 
3017 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3018 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3019 {
3020 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3021 
3022 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3023 	return 0;
3024 }
3025 
3026 /**
3027  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3028  * @cgrp: root of the subtree to update csses for
3029  *
3030  * @cgrp's control masks have changed and its subtree's css associations
3031  * need to be updated accordingly.  This function looks up all css_sets
3032  * which are attached to the subtree, creates the matching updated css_sets
3033  * and migrates the tasks to the new ones.
3034  */
cgroup_update_dfl_csses(struct cgroup * cgrp)3035 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3036 {
3037 	DEFINE_CGROUP_MGCTX(mgctx);
3038 	struct cgroup_subsys_state *d_css;
3039 	struct cgroup *dsct;
3040 	struct css_set *src_cset;
3041 	bool has_tasks;
3042 	int ret;
3043 
3044 	lockdep_assert_held(&cgroup_mutex);
3045 
3046 	/* look up all csses currently attached to @cgrp's subtree */
3047 	spin_lock_irq(&css_set_lock);
3048 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3049 		struct cgrp_cset_link *link;
3050 
3051 		/*
3052 		 * As cgroup_update_dfl_csses() is only called by
3053 		 * cgroup_apply_control(). The csses associated with the
3054 		 * given cgrp will not be affected by changes made to
3055 		 * its subtree_control file. We can skip them.
3056 		 */
3057 		if (dsct == cgrp)
3058 			continue;
3059 
3060 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3061 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3062 	}
3063 	spin_unlock_irq(&css_set_lock);
3064 
3065 	/*
3066 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3067 	 * However, if there are no source csets for @cgrp, changing its
3068 	 * controllers isn't gonna produce any task migrations and the
3069 	 * write-locking can be skipped safely.
3070 	 */
3071 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3072 	cgroup_attach_lock(has_tasks);
3073 
3074 	/* NULL dst indicates self on default hierarchy */
3075 	ret = cgroup_migrate_prepare_dst(&mgctx);
3076 	if (ret)
3077 		goto out_finish;
3078 
3079 	spin_lock_irq(&css_set_lock);
3080 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3081 			    mg_src_preload_node) {
3082 		struct task_struct *task, *ntask;
3083 
3084 		/* all tasks in src_csets need to be migrated */
3085 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3086 			cgroup_migrate_add_task(task, &mgctx);
3087 	}
3088 	spin_unlock_irq(&css_set_lock);
3089 
3090 	ret = cgroup_migrate_execute(&mgctx);
3091 out_finish:
3092 	cgroup_migrate_finish(&mgctx);
3093 	cgroup_attach_unlock(has_tasks);
3094 	return ret;
3095 }
3096 
3097 /**
3098  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3099  * @cgrp: root of the target subtree
3100  *
3101  * Because css offlining is asynchronous, userland may try to re-enable a
3102  * controller while the previous css is still around.  This function grabs
3103  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3104  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3105 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3106 	__acquires(&cgroup_mutex)
3107 {
3108 	struct cgroup *dsct;
3109 	struct cgroup_subsys_state *d_css;
3110 	struct cgroup_subsys *ss;
3111 	int ssid;
3112 
3113 restart:
3114 	cgroup_lock();
3115 
3116 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3117 		for_each_subsys(ss, ssid) {
3118 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3119 			DEFINE_WAIT(wait);
3120 
3121 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3122 				continue;
3123 
3124 			cgroup_get_live(dsct);
3125 			prepare_to_wait(&dsct->offline_waitq, &wait,
3126 					TASK_UNINTERRUPTIBLE);
3127 
3128 			cgroup_unlock();
3129 			schedule();
3130 			finish_wait(&dsct->offline_waitq, &wait);
3131 
3132 			cgroup_put(dsct);
3133 			goto restart;
3134 		}
3135 	}
3136 }
3137 
3138 /**
3139  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3140  * @cgrp: root of the target subtree
3141  *
3142  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3143  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3144  * itself.
3145  */
cgroup_save_control(struct cgroup * cgrp)3146 static void cgroup_save_control(struct cgroup *cgrp)
3147 {
3148 	struct cgroup *dsct;
3149 	struct cgroup_subsys_state *d_css;
3150 
3151 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3152 		dsct->old_subtree_control = dsct->subtree_control;
3153 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3154 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3155 	}
3156 }
3157 
3158 /**
3159  * cgroup_propagate_control - refresh control masks of a subtree
3160  * @cgrp: root of the target subtree
3161  *
3162  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3163  * ->subtree_control and propagate controller availability through the
3164  * subtree so that descendants don't have unavailable controllers enabled.
3165  */
cgroup_propagate_control(struct cgroup * cgrp)3166 static void cgroup_propagate_control(struct cgroup *cgrp)
3167 {
3168 	struct cgroup *dsct;
3169 	struct cgroup_subsys_state *d_css;
3170 
3171 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3172 		dsct->subtree_control &= cgroup_control(dsct);
3173 		dsct->subtree_ss_mask =
3174 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3175 						    cgroup_ss_mask(dsct));
3176 	}
3177 }
3178 
3179 /**
3180  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3181  * @cgrp: root of the target subtree
3182  *
3183  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3184  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3185  * itself.
3186  */
cgroup_restore_control(struct cgroup * cgrp)3187 static void cgroup_restore_control(struct cgroup *cgrp)
3188 {
3189 	struct cgroup *dsct;
3190 	struct cgroup_subsys_state *d_css;
3191 
3192 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3193 		dsct->subtree_control = dsct->old_subtree_control;
3194 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3195 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3196 	}
3197 }
3198 
css_visible(struct cgroup_subsys_state * css)3199 static bool css_visible(struct cgroup_subsys_state *css)
3200 {
3201 	struct cgroup_subsys *ss = css->ss;
3202 	struct cgroup *cgrp = css->cgroup;
3203 
3204 	if (cgroup_control(cgrp) & (1 << ss->id))
3205 		return true;
3206 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3207 		return false;
3208 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3209 }
3210 
3211 /**
3212  * cgroup_apply_control_enable - enable or show csses according to control
3213  * @cgrp: root of the target subtree
3214  *
3215  * Walk @cgrp's subtree and create new csses or make the existing ones
3216  * visible.  A css is created invisible if it's being implicitly enabled
3217  * through dependency.  An invisible css is made visible when the userland
3218  * explicitly enables it.
3219  *
3220  * Returns 0 on success, -errno on failure.  On failure, csses which have
3221  * been processed already aren't cleaned up.  The caller is responsible for
3222  * cleaning up with cgroup_apply_control_disable().
3223  */
cgroup_apply_control_enable(struct cgroup * cgrp)3224 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3225 {
3226 	struct cgroup *dsct;
3227 	struct cgroup_subsys_state *d_css;
3228 	struct cgroup_subsys *ss;
3229 	int ssid, ret;
3230 
3231 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3232 		for_each_subsys(ss, ssid) {
3233 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3234 
3235 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3236 				continue;
3237 
3238 			if (!css) {
3239 				css = css_create(dsct, ss);
3240 				if (IS_ERR(css))
3241 					return PTR_ERR(css);
3242 			}
3243 
3244 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3245 
3246 			if (css_visible(css)) {
3247 				ret = css_populate_dir(css);
3248 				if (ret)
3249 					return ret;
3250 			}
3251 		}
3252 	}
3253 
3254 	return 0;
3255 }
3256 
3257 /**
3258  * cgroup_apply_control_disable - kill or hide csses according to control
3259  * @cgrp: root of the target subtree
3260  *
3261  * Walk @cgrp's subtree and kill and hide csses so that they match
3262  * cgroup_ss_mask() and cgroup_visible_mask().
3263  *
3264  * A css is hidden when the userland requests it to be disabled while other
3265  * subsystems are still depending on it.  The css must not actively control
3266  * resources and be in the vanilla state if it's made visible again later.
3267  * Controllers which may be depended upon should provide ->css_reset() for
3268  * this purpose.
3269  */
cgroup_apply_control_disable(struct cgroup * cgrp)3270 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3271 {
3272 	struct cgroup *dsct;
3273 	struct cgroup_subsys_state *d_css;
3274 	struct cgroup_subsys *ss;
3275 	int ssid;
3276 
3277 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3278 		for_each_subsys(ss, ssid) {
3279 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3280 
3281 			if (!css)
3282 				continue;
3283 
3284 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3285 
3286 			if (css->parent &&
3287 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3288 				kill_css(css);
3289 			} else if (!css_visible(css)) {
3290 				css_clear_dir(css);
3291 				if (ss->css_reset)
3292 					ss->css_reset(css);
3293 			}
3294 		}
3295 	}
3296 }
3297 
3298 /**
3299  * cgroup_apply_control - apply control mask updates to the subtree
3300  * @cgrp: root of the target subtree
3301  *
3302  * subsystems can be enabled and disabled in a subtree using the following
3303  * steps.
3304  *
3305  * 1. Call cgroup_save_control() to stash the current state.
3306  * 2. Update ->subtree_control masks in the subtree as desired.
3307  * 3. Call cgroup_apply_control() to apply the changes.
3308  * 4. Optionally perform other related operations.
3309  * 5. Call cgroup_finalize_control() to finish up.
3310  *
3311  * This function implements step 3 and propagates the mask changes
3312  * throughout @cgrp's subtree, updates csses accordingly and perform
3313  * process migrations.
3314  */
cgroup_apply_control(struct cgroup * cgrp)3315 static int cgroup_apply_control(struct cgroup *cgrp)
3316 {
3317 	int ret;
3318 
3319 	cgroup_propagate_control(cgrp);
3320 
3321 	ret = cgroup_apply_control_enable(cgrp);
3322 	if (ret)
3323 		return ret;
3324 
3325 	/*
3326 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3327 	 * making the following cgroup_update_dfl_csses() properly update
3328 	 * css associations of all tasks in the subtree.
3329 	 */
3330 	return cgroup_update_dfl_csses(cgrp);
3331 }
3332 
3333 /**
3334  * cgroup_finalize_control - finalize control mask update
3335  * @cgrp: root of the target subtree
3336  * @ret: the result of the update
3337  *
3338  * Finalize control mask update.  See cgroup_apply_control() for more info.
3339  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3340 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3341 {
3342 	if (ret) {
3343 		cgroup_restore_control(cgrp);
3344 		cgroup_propagate_control(cgrp);
3345 	}
3346 
3347 	cgroup_apply_control_disable(cgrp);
3348 }
3349 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3350 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3351 {
3352 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3353 
3354 	/* if nothing is getting enabled, nothing to worry about */
3355 	if (!enable)
3356 		return 0;
3357 
3358 	/* can @cgrp host any resources? */
3359 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3360 		return -EOPNOTSUPP;
3361 
3362 	/* mixables don't care */
3363 	if (cgroup_is_mixable(cgrp))
3364 		return 0;
3365 
3366 	if (domain_enable) {
3367 		/* can't enable domain controllers inside a thread subtree */
3368 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3369 			return -EOPNOTSUPP;
3370 	} else {
3371 		/*
3372 		 * Threaded controllers can handle internal competitions
3373 		 * and are always allowed inside a (prospective) thread
3374 		 * subtree.
3375 		 */
3376 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3377 			return 0;
3378 	}
3379 
3380 	/*
3381 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3382 	 * child cgroups competing against tasks.
3383 	 */
3384 	if (cgroup_has_tasks(cgrp))
3385 		return -EBUSY;
3386 
3387 	return 0;
3388 }
3389 
3390 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3391 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3392 					    char *buf, size_t nbytes,
3393 					    loff_t off)
3394 {
3395 	u16 enable = 0, disable = 0;
3396 	struct cgroup *cgrp, *child;
3397 	struct cgroup_subsys *ss;
3398 	char *tok;
3399 	int ssid, ret;
3400 
3401 	/*
3402 	 * Parse input - space separated list of subsystem names prefixed
3403 	 * with either + or -.
3404 	 */
3405 	buf = strstrip(buf);
3406 	while ((tok = strsep(&buf, " "))) {
3407 		if (tok[0] == '\0')
3408 			continue;
3409 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3410 			if (!cgroup_ssid_enabled(ssid) ||
3411 			    strcmp(tok + 1, ss->name))
3412 				continue;
3413 
3414 			if (*tok == '+') {
3415 				enable |= 1 << ssid;
3416 				disable &= ~(1 << ssid);
3417 			} else if (*tok == '-') {
3418 				disable |= 1 << ssid;
3419 				enable &= ~(1 << ssid);
3420 			} else {
3421 				return -EINVAL;
3422 			}
3423 			break;
3424 		} while_each_subsys_mask();
3425 		if (ssid == CGROUP_SUBSYS_COUNT)
3426 			return -EINVAL;
3427 	}
3428 
3429 	cgrp = cgroup_kn_lock_live(of->kn, true);
3430 	if (!cgrp)
3431 		return -ENODEV;
3432 
3433 	for_each_subsys(ss, ssid) {
3434 		if (enable & (1 << ssid)) {
3435 			if (cgrp->subtree_control & (1 << ssid)) {
3436 				enable &= ~(1 << ssid);
3437 				continue;
3438 			}
3439 
3440 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3441 				ret = -ENOENT;
3442 				goto out_unlock;
3443 			}
3444 		} else if (disable & (1 << ssid)) {
3445 			if (!(cgrp->subtree_control & (1 << ssid))) {
3446 				disable &= ~(1 << ssid);
3447 				continue;
3448 			}
3449 
3450 			/* a child has it enabled? */
3451 			cgroup_for_each_live_child(child, cgrp) {
3452 				if (child->subtree_control & (1 << ssid)) {
3453 					ret = -EBUSY;
3454 					goto out_unlock;
3455 				}
3456 			}
3457 		}
3458 	}
3459 
3460 	if (!enable && !disable) {
3461 		ret = 0;
3462 		goto out_unlock;
3463 	}
3464 
3465 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3466 	if (ret)
3467 		goto out_unlock;
3468 
3469 	/* save and update control masks and prepare csses */
3470 	cgroup_save_control(cgrp);
3471 
3472 	cgrp->subtree_control |= enable;
3473 	cgrp->subtree_control &= ~disable;
3474 
3475 	ret = cgroup_apply_control(cgrp);
3476 	cgroup_finalize_control(cgrp, ret);
3477 	if (ret)
3478 		goto out_unlock;
3479 
3480 	kernfs_activate(cgrp->kn);
3481 out_unlock:
3482 	cgroup_kn_unlock(of->kn);
3483 	return ret ?: nbytes;
3484 }
3485 
3486 /**
3487  * cgroup_enable_threaded - make @cgrp threaded
3488  * @cgrp: the target cgroup
3489  *
3490  * Called when "threaded" is written to the cgroup.type interface file and
3491  * tries to make @cgrp threaded and join the parent's resource domain.
3492  * This function is never called on the root cgroup as cgroup.type doesn't
3493  * exist on it.
3494  */
cgroup_enable_threaded(struct cgroup * cgrp)3495 static int cgroup_enable_threaded(struct cgroup *cgrp)
3496 {
3497 	struct cgroup *parent = cgroup_parent(cgrp);
3498 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3499 	struct cgroup *dsct;
3500 	struct cgroup_subsys_state *d_css;
3501 	int ret;
3502 
3503 	lockdep_assert_held(&cgroup_mutex);
3504 
3505 	/* noop if already threaded */
3506 	if (cgroup_is_threaded(cgrp))
3507 		return 0;
3508 
3509 	/*
3510 	 * If @cgroup is populated or has domain controllers enabled, it
3511 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3512 	 * test can catch the same conditions, that's only when @parent is
3513 	 * not mixable, so let's check it explicitly.
3514 	 */
3515 	if (cgroup_is_populated(cgrp) ||
3516 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3517 		return -EOPNOTSUPP;
3518 
3519 	/* we're joining the parent's domain, ensure its validity */
3520 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3521 	    !cgroup_can_be_thread_root(dom_cgrp))
3522 		return -EOPNOTSUPP;
3523 
3524 	/*
3525 	 * The following shouldn't cause actual migrations and should
3526 	 * always succeed.
3527 	 */
3528 	cgroup_save_control(cgrp);
3529 
3530 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3531 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3532 			dsct->dom_cgrp = dom_cgrp;
3533 
3534 	ret = cgroup_apply_control(cgrp);
3535 	if (!ret)
3536 		parent->nr_threaded_children++;
3537 
3538 	cgroup_finalize_control(cgrp, ret);
3539 	return ret;
3540 }
3541 
cgroup_type_show(struct seq_file * seq,void * v)3542 static int cgroup_type_show(struct seq_file *seq, void *v)
3543 {
3544 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3545 
3546 	if (cgroup_is_threaded(cgrp))
3547 		seq_puts(seq, "threaded\n");
3548 	else if (!cgroup_is_valid_domain(cgrp))
3549 		seq_puts(seq, "domain invalid\n");
3550 	else if (cgroup_is_thread_root(cgrp))
3551 		seq_puts(seq, "domain threaded\n");
3552 	else
3553 		seq_puts(seq, "domain\n");
3554 
3555 	return 0;
3556 }
3557 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3558 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3559 				 size_t nbytes, loff_t off)
3560 {
3561 	struct cgroup *cgrp;
3562 	int ret;
3563 
3564 	/* only switching to threaded mode is supported */
3565 	if (strcmp(strstrip(buf), "threaded"))
3566 		return -EINVAL;
3567 
3568 	/* drain dying csses before we re-apply (threaded) subtree control */
3569 	cgrp = cgroup_kn_lock_live(of->kn, true);
3570 	if (!cgrp)
3571 		return -ENOENT;
3572 
3573 	/* threaded can only be enabled */
3574 	ret = cgroup_enable_threaded(cgrp);
3575 
3576 	cgroup_kn_unlock(of->kn);
3577 	return ret ?: nbytes;
3578 }
3579 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3580 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3581 {
3582 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3583 	int descendants = READ_ONCE(cgrp->max_descendants);
3584 
3585 	if (descendants == INT_MAX)
3586 		seq_puts(seq, "max\n");
3587 	else
3588 		seq_printf(seq, "%d\n", descendants);
3589 
3590 	return 0;
3591 }
3592 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3593 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3594 					   char *buf, size_t nbytes, loff_t off)
3595 {
3596 	struct cgroup *cgrp;
3597 	int descendants;
3598 	ssize_t ret;
3599 
3600 	buf = strstrip(buf);
3601 	if (!strcmp(buf, "max")) {
3602 		descendants = INT_MAX;
3603 	} else {
3604 		ret = kstrtoint(buf, 0, &descendants);
3605 		if (ret)
3606 			return ret;
3607 	}
3608 
3609 	if (descendants < 0)
3610 		return -ERANGE;
3611 
3612 	cgrp = cgroup_kn_lock_live(of->kn, false);
3613 	if (!cgrp)
3614 		return -ENOENT;
3615 
3616 	cgrp->max_descendants = descendants;
3617 
3618 	cgroup_kn_unlock(of->kn);
3619 
3620 	return nbytes;
3621 }
3622 
cgroup_max_depth_show(struct seq_file * seq,void * v)3623 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3624 {
3625 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3626 	int depth = READ_ONCE(cgrp->max_depth);
3627 
3628 	if (depth == INT_MAX)
3629 		seq_puts(seq, "max\n");
3630 	else
3631 		seq_printf(seq, "%d\n", depth);
3632 
3633 	return 0;
3634 }
3635 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3636 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3637 				      char *buf, size_t nbytes, loff_t off)
3638 {
3639 	struct cgroup *cgrp;
3640 	ssize_t ret;
3641 	int depth;
3642 
3643 	buf = strstrip(buf);
3644 	if (!strcmp(buf, "max")) {
3645 		depth = INT_MAX;
3646 	} else {
3647 		ret = kstrtoint(buf, 0, &depth);
3648 		if (ret)
3649 			return ret;
3650 	}
3651 
3652 	if (depth < 0)
3653 		return -ERANGE;
3654 
3655 	cgrp = cgroup_kn_lock_live(of->kn, false);
3656 	if (!cgrp)
3657 		return -ENOENT;
3658 
3659 	cgrp->max_depth = depth;
3660 
3661 	cgroup_kn_unlock(of->kn);
3662 
3663 	return nbytes;
3664 }
3665 
cgroup_events_show(struct seq_file * seq,void * v)3666 static int cgroup_events_show(struct seq_file *seq, void *v)
3667 {
3668 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3669 
3670 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3671 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3672 
3673 	return 0;
3674 }
3675 
cgroup_stat_show(struct seq_file * seq,void * v)3676 static int cgroup_stat_show(struct seq_file *seq, void *v)
3677 {
3678 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3679 	struct cgroup_subsys_state *css;
3680 	int dying_cnt[CGROUP_SUBSYS_COUNT];
3681 	int ssid;
3682 
3683 	seq_printf(seq, "nr_descendants %d\n",
3684 		   cgroup->nr_descendants);
3685 
3686 	/*
3687 	 * Show the number of live and dying csses associated with each of
3688 	 * non-inhibited cgroup subsystems that is bound to cgroup v2.
3689 	 *
3690 	 * Without proper lock protection, racing is possible. So the
3691 	 * numbers may not be consistent when that happens.
3692 	 */
3693 	rcu_read_lock();
3694 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3695 		dying_cnt[ssid] = -1;
3696 		if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3697 		    (cgroup_subsys[ssid]->root !=  &cgrp_dfl_root))
3698 			continue;
3699 		css = rcu_dereference_raw(cgroup->subsys[ssid]);
3700 		dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3701 		seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3702 			   css ? (css->nr_descendants + 1) : 0);
3703 	}
3704 
3705 	seq_printf(seq, "nr_dying_descendants %d\n",
3706 		   cgroup->nr_dying_descendants);
3707 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3708 		if (dying_cnt[ssid] >= 0)
3709 			seq_printf(seq, "nr_dying_subsys_%s %d\n",
3710 				   cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3711 	}
3712 	rcu_read_unlock();
3713 	return 0;
3714 }
3715 
3716 #ifdef CONFIG_CGROUP_SCHED
3717 /**
3718  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3719  * @cgrp: the cgroup of interest
3720  * @ss: the subsystem of interest
3721  *
3722  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
3723  * or is offline, %NULL is returned.
3724  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)3725 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3726 						     struct cgroup_subsys *ss)
3727 {
3728 	struct cgroup_subsys_state *css;
3729 
3730 	rcu_read_lock();
3731 	css = cgroup_css(cgrp, ss);
3732 	if (css && !css_tryget_online(css))
3733 		css = NULL;
3734 	rcu_read_unlock();
3735 
3736 	return css;
3737 }
3738 
cgroup_extra_stat_show(struct seq_file * seq,int ssid)3739 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3740 {
3741 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3742 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3743 	struct cgroup_subsys_state *css;
3744 	int ret;
3745 
3746 	if (!ss->css_extra_stat_show)
3747 		return 0;
3748 
3749 	css = cgroup_tryget_css(cgrp, ss);
3750 	if (!css)
3751 		return 0;
3752 
3753 	ret = ss->css_extra_stat_show(seq, css);
3754 	css_put(css);
3755 	return ret;
3756 }
3757 
cgroup_local_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3758 static int cgroup_local_stat_show(struct seq_file *seq,
3759 				  struct cgroup *cgrp, int ssid)
3760 {
3761 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3762 	struct cgroup_subsys_state *css;
3763 	int ret;
3764 
3765 	if (!ss->css_local_stat_show)
3766 		return 0;
3767 
3768 	css = cgroup_tryget_css(cgrp, ss);
3769 	if (!css)
3770 		return 0;
3771 
3772 	ret = ss->css_local_stat_show(seq, css);
3773 	css_put(css);
3774 	return ret;
3775 }
3776 #endif
3777 
cpu_stat_show(struct seq_file * seq,void * v)3778 static int cpu_stat_show(struct seq_file *seq, void *v)
3779 {
3780 	int ret = 0;
3781 
3782 	cgroup_base_stat_cputime_show(seq);
3783 #ifdef CONFIG_CGROUP_SCHED
3784 	ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3785 #endif
3786 	return ret;
3787 }
3788 
cpu_local_stat_show(struct seq_file * seq,void * v)3789 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3790 {
3791 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3792 	int ret = 0;
3793 
3794 #ifdef CONFIG_CGROUP_SCHED
3795 	ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3796 #endif
3797 	return ret;
3798 }
3799 
3800 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3801 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3802 {
3803 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3804 	struct psi_group *psi = cgroup_psi(cgrp);
3805 
3806 	return psi_show(seq, psi, PSI_IO);
3807 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3808 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3809 {
3810 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3811 	struct psi_group *psi = cgroup_psi(cgrp);
3812 
3813 	return psi_show(seq, psi, PSI_MEM);
3814 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3815 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3816 {
3817 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3818 	struct psi_group *psi = cgroup_psi(cgrp);
3819 
3820 	return psi_show(seq, psi, PSI_CPU);
3821 }
3822 
pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3823 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3824 			      size_t nbytes, enum psi_res res)
3825 {
3826 	struct cgroup_file_ctx *ctx = of->priv;
3827 	struct psi_trigger *new;
3828 	struct cgroup *cgrp;
3829 	struct psi_group *psi;
3830 
3831 	cgrp = cgroup_kn_lock_live(of->kn, false);
3832 	if (!cgrp)
3833 		return -ENODEV;
3834 
3835 	cgroup_get(cgrp);
3836 	cgroup_kn_unlock(of->kn);
3837 
3838 	/* Allow only one trigger per file descriptor */
3839 	if (ctx->psi.trigger) {
3840 		cgroup_put(cgrp);
3841 		return -EBUSY;
3842 	}
3843 
3844 	psi = cgroup_psi(cgrp);
3845 	new = psi_trigger_create(psi, buf, res, of->file, of);
3846 	if (IS_ERR(new)) {
3847 		cgroup_put(cgrp);
3848 		return PTR_ERR(new);
3849 	}
3850 
3851 	smp_store_release(&ctx->psi.trigger, new);
3852 	cgroup_put(cgrp);
3853 
3854 	return nbytes;
3855 }
3856 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3857 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3858 					  char *buf, size_t nbytes,
3859 					  loff_t off)
3860 {
3861 	return pressure_write(of, buf, nbytes, PSI_IO);
3862 }
3863 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3864 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3865 					  char *buf, size_t nbytes,
3866 					  loff_t off)
3867 {
3868 	return pressure_write(of, buf, nbytes, PSI_MEM);
3869 }
3870 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3871 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3872 					  char *buf, size_t nbytes,
3873 					  loff_t off)
3874 {
3875 	return pressure_write(of, buf, nbytes, PSI_CPU);
3876 }
3877 
3878 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
cgroup_irq_pressure_show(struct seq_file * seq,void * v)3879 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3880 {
3881 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3882 	struct psi_group *psi = cgroup_psi(cgrp);
3883 
3884 	return psi_show(seq, psi, PSI_IRQ);
3885 }
3886 
cgroup_irq_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3887 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3888 					 char *buf, size_t nbytes,
3889 					 loff_t off)
3890 {
3891 	return pressure_write(of, buf, nbytes, PSI_IRQ);
3892 }
3893 #endif
3894 
cgroup_pressure_show(struct seq_file * seq,void * v)3895 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3896 {
3897 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3898 	struct psi_group *psi = cgroup_psi(cgrp);
3899 
3900 	seq_printf(seq, "%d\n", psi->enabled);
3901 
3902 	return 0;
3903 }
3904 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3905 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3906 				     char *buf, size_t nbytes,
3907 				     loff_t off)
3908 {
3909 	ssize_t ret;
3910 	int enable;
3911 	struct cgroup *cgrp;
3912 	struct psi_group *psi;
3913 
3914 	ret = kstrtoint(strstrip(buf), 0, &enable);
3915 	if (ret)
3916 		return ret;
3917 
3918 	if (enable < 0 || enable > 1)
3919 		return -ERANGE;
3920 
3921 	cgrp = cgroup_kn_lock_live(of->kn, false);
3922 	if (!cgrp)
3923 		return -ENOENT;
3924 
3925 	psi = cgroup_psi(cgrp);
3926 	if (psi->enabled != enable) {
3927 		int i;
3928 
3929 		/* show or hide {cpu,memory,io,irq}.pressure files */
3930 		for (i = 0; i < NR_PSI_RESOURCES; i++)
3931 			cgroup_file_show(&cgrp->psi_files[i], enable);
3932 
3933 		psi->enabled = enable;
3934 		if (enable)
3935 			psi_cgroup_restart(psi);
3936 	}
3937 
3938 	cgroup_kn_unlock(of->kn);
3939 
3940 	return nbytes;
3941 }
3942 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3943 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3944 					  poll_table *pt)
3945 {
3946 	struct cgroup_file_ctx *ctx = of->priv;
3947 
3948 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3949 }
3950 
cgroup_pressure_release(struct kernfs_open_file * of)3951 static void cgroup_pressure_release(struct kernfs_open_file *of)
3952 {
3953 	struct cgroup_file_ctx *ctx = of->priv;
3954 
3955 	psi_trigger_destroy(ctx->psi.trigger);
3956 }
3957 
cgroup_psi_enabled(void)3958 bool cgroup_psi_enabled(void)
3959 {
3960 	if (static_branch_likely(&psi_disabled))
3961 		return false;
3962 
3963 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3964 }
3965 
3966 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)3967 bool cgroup_psi_enabled(void)
3968 {
3969 	return false;
3970 }
3971 
3972 #endif /* CONFIG_PSI */
3973 
cgroup_freeze_show(struct seq_file * seq,void * v)3974 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3975 {
3976 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3977 
3978 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3979 
3980 	return 0;
3981 }
3982 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3983 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3984 				   char *buf, size_t nbytes, loff_t off)
3985 {
3986 	struct cgroup *cgrp;
3987 	ssize_t ret;
3988 	int freeze;
3989 
3990 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3991 	if (ret)
3992 		return ret;
3993 
3994 	if (freeze < 0 || freeze > 1)
3995 		return -ERANGE;
3996 
3997 	cgrp = cgroup_kn_lock_live(of->kn, false);
3998 	if (!cgrp)
3999 		return -ENOENT;
4000 
4001 	cgroup_freeze(cgrp, freeze);
4002 
4003 	cgroup_kn_unlock(of->kn);
4004 
4005 	return nbytes;
4006 }
4007 
__cgroup_kill(struct cgroup * cgrp)4008 static void __cgroup_kill(struct cgroup *cgrp)
4009 {
4010 	struct css_task_iter it;
4011 	struct task_struct *task;
4012 
4013 	lockdep_assert_held(&cgroup_mutex);
4014 
4015 	spin_lock_irq(&css_set_lock);
4016 	set_bit(CGRP_KILL, &cgrp->flags);
4017 	spin_unlock_irq(&css_set_lock);
4018 
4019 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4020 	while ((task = css_task_iter_next(&it))) {
4021 		/* Ignore kernel threads here. */
4022 		if (task->flags & PF_KTHREAD)
4023 			continue;
4024 
4025 		/* Skip tasks that are already dying. */
4026 		if (__fatal_signal_pending(task))
4027 			continue;
4028 
4029 		send_sig(SIGKILL, task, 0);
4030 	}
4031 	css_task_iter_end(&it);
4032 
4033 	spin_lock_irq(&css_set_lock);
4034 	clear_bit(CGRP_KILL, &cgrp->flags);
4035 	spin_unlock_irq(&css_set_lock);
4036 }
4037 
cgroup_kill(struct cgroup * cgrp)4038 static void cgroup_kill(struct cgroup *cgrp)
4039 {
4040 	struct cgroup_subsys_state *css;
4041 	struct cgroup *dsct;
4042 
4043 	lockdep_assert_held(&cgroup_mutex);
4044 
4045 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4046 		__cgroup_kill(dsct);
4047 }
4048 
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4049 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4050 				 size_t nbytes, loff_t off)
4051 {
4052 	ssize_t ret = 0;
4053 	int kill;
4054 	struct cgroup *cgrp;
4055 
4056 	ret = kstrtoint(strstrip(buf), 0, &kill);
4057 	if (ret)
4058 		return ret;
4059 
4060 	if (kill != 1)
4061 		return -ERANGE;
4062 
4063 	cgrp = cgroup_kn_lock_live(of->kn, false);
4064 	if (!cgrp)
4065 		return -ENOENT;
4066 
4067 	/*
4068 	 * Killing is a process directed operation, i.e. the whole thread-group
4069 	 * is taken down so act like we do for cgroup.procs and only make this
4070 	 * writable in non-threaded cgroups.
4071 	 */
4072 	if (cgroup_is_threaded(cgrp))
4073 		ret = -EOPNOTSUPP;
4074 	else
4075 		cgroup_kill(cgrp);
4076 
4077 	cgroup_kn_unlock(of->kn);
4078 
4079 	return ret ?: nbytes;
4080 }
4081 
cgroup_file_open(struct kernfs_open_file * of)4082 static int cgroup_file_open(struct kernfs_open_file *of)
4083 {
4084 	struct cftype *cft = of_cft(of);
4085 	struct cgroup_file_ctx *ctx;
4086 	int ret;
4087 
4088 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4089 	if (!ctx)
4090 		return -ENOMEM;
4091 
4092 	ctx->ns = current->nsproxy->cgroup_ns;
4093 	get_cgroup_ns(ctx->ns);
4094 	of->priv = ctx;
4095 
4096 	if (!cft->open)
4097 		return 0;
4098 
4099 	ret = cft->open(of);
4100 	if (ret) {
4101 		put_cgroup_ns(ctx->ns);
4102 		kfree(ctx);
4103 	}
4104 	return ret;
4105 }
4106 
cgroup_file_release(struct kernfs_open_file * of)4107 static void cgroup_file_release(struct kernfs_open_file *of)
4108 {
4109 	struct cftype *cft = of_cft(of);
4110 	struct cgroup_file_ctx *ctx = of->priv;
4111 
4112 	if (cft->release)
4113 		cft->release(of);
4114 	put_cgroup_ns(ctx->ns);
4115 	kfree(ctx);
4116 }
4117 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4118 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4119 				 size_t nbytes, loff_t off)
4120 {
4121 	struct cgroup_file_ctx *ctx = of->priv;
4122 	struct cgroup *cgrp = of->kn->parent->priv;
4123 	struct cftype *cft = of_cft(of);
4124 	struct cgroup_subsys_state *css;
4125 	int ret;
4126 
4127 	if (!nbytes)
4128 		return 0;
4129 
4130 	/*
4131 	 * If namespaces are delegation boundaries, disallow writes to
4132 	 * files in an non-init namespace root from inside the namespace
4133 	 * except for the files explicitly marked delegatable -
4134 	 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4135 	 */
4136 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4137 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4138 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4139 		return -EPERM;
4140 
4141 	if (cft->write)
4142 		return cft->write(of, buf, nbytes, off);
4143 
4144 	/*
4145 	 * kernfs guarantees that a file isn't deleted with operations in
4146 	 * flight, which means that the matching css is and stays alive and
4147 	 * doesn't need to be pinned.  The RCU locking is not necessary
4148 	 * either.  It's just for the convenience of using cgroup_css().
4149 	 */
4150 	rcu_read_lock();
4151 	css = cgroup_css(cgrp, cft->ss);
4152 	rcu_read_unlock();
4153 
4154 	if (cft->write_u64) {
4155 		unsigned long long v;
4156 		ret = kstrtoull(buf, 0, &v);
4157 		if (!ret)
4158 			ret = cft->write_u64(css, cft, v);
4159 	} else if (cft->write_s64) {
4160 		long long v;
4161 		ret = kstrtoll(buf, 0, &v);
4162 		if (!ret)
4163 			ret = cft->write_s64(css, cft, v);
4164 	} else {
4165 		ret = -EINVAL;
4166 	}
4167 
4168 	return ret ?: nbytes;
4169 }
4170 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)4171 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4172 {
4173 	struct cftype *cft = of_cft(of);
4174 
4175 	if (cft->poll)
4176 		return cft->poll(of, pt);
4177 
4178 	return kernfs_generic_poll(of, pt);
4179 }
4180 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)4181 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4182 {
4183 	return seq_cft(seq)->seq_start(seq, ppos);
4184 }
4185 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4186 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4187 {
4188 	return seq_cft(seq)->seq_next(seq, v, ppos);
4189 }
4190 
cgroup_seqfile_stop(struct seq_file * seq,void * v)4191 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4192 {
4193 	if (seq_cft(seq)->seq_stop)
4194 		seq_cft(seq)->seq_stop(seq, v);
4195 }
4196 
cgroup_seqfile_show(struct seq_file * m,void * arg)4197 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4198 {
4199 	struct cftype *cft = seq_cft(m);
4200 	struct cgroup_subsys_state *css = seq_css(m);
4201 
4202 	if (cft->seq_show)
4203 		return cft->seq_show(m, arg);
4204 
4205 	if (cft->read_u64)
4206 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4207 	else if (cft->read_s64)
4208 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4209 	else
4210 		return -EINVAL;
4211 	return 0;
4212 }
4213 
4214 static struct kernfs_ops cgroup_kf_single_ops = {
4215 	.atomic_write_len	= PAGE_SIZE,
4216 	.open			= cgroup_file_open,
4217 	.release		= cgroup_file_release,
4218 	.write			= cgroup_file_write,
4219 	.poll			= cgroup_file_poll,
4220 	.seq_show		= cgroup_seqfile_show,
4221 };
4222 
4223 static struct kernfs_ops cgroup_kf_ops = {
4224 	.atomic_write_len	= PAGE_SIZE,
4225 	.open			= cgroup_file_open,
4226 	.release		= cgroup_file_release,
4227 	.write			= cgroup_file_write,
4228 	.poll			= cgroup_file_poll,
4229 	.seq_start		= cgroup_seqfile_start,
4230 	.seq_next		= cgroup_seqfile_next,
4231 	.seq_stop		= cgroup_seqfile_stop,
4232 	.seq_show		= cgroup_seqfile_show,
4233 };
4234 
cgroup_file_notify_timer(struct timer_list * timer)4235 static void cgroup_file_notify_timer(struct timer_list *timer)
4236 {
4237 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4238 					notify_timer));
4239 }
4240 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4241 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4242 			   struct cftype *cft)
4243 {
4244 	char name[CGROUP_FILE_NAME_MAX];
4245 	struct kernfs_node *kn;
4246 	struct lock_class_key *key = NULL;
4247 
4248 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4249 	key = &cft->lockdep_key;
4250 #endif
4251 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4252 				  cgroup_file_mode(cft),
4253 				  current_fsuid(), current_fsgid(),
4254 				  0, cft->kf_ops, cft,
4255 				  NULL, key);
4256 	if (IS_ERR(kn))
4257 		return PTR_ERR(kn);
4258 
4259 	if (cft->file_offset) {
4260 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4261 
4262 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4263 
4264 		spin_lock_irq(&cgroup_file_kn_lock);
4265 		cfile->kn = kn;
4266 		spin_unlock_irq(&cgroup_file_kn_lock);
4267 	}
4268 
4269 	return 0;
4270 }
4271 
4272 /**
4273  * cgroup_addrm_files - add or remove files to a cgroup directory
4274  * @css: the target css
4275  * @cgrp: the target cgroup (usually css->cgroup)
4276  * @cfts: array of cftypes to be added
4277  * @is_add: whether to add or remove
4278  *
4279  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4280  * For removals, this function never fails.
4281  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4282 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4283 			      struct cgroup *cgrp, struct cftype cfts[],
4284 			      bool is_add)
4285 {
4286 	struct cftype *cft, *cft_end = NULL;
4287 	int ret = 0;
4288 
4289 	lockdep_assert_held(&cgroup_mutex);
4290 
4291 restart:
4292 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4293 		/* does cft->flags tell us to skip this file on @cgrp? */
4294 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4295 			continue;
4296 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4297 			continue;
4298 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4299 			continue;
4300 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4301 			continue;
4302 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4303 			continue;
4304 		if (is_add) {
4305 			ret = cgroup_add_file(css, cgrp, cft);
4306 			if (ret) {
4307 				pr_warn("%s: failed to add %s, err=%d\n",
4308 					__func__, cft->name, ret);
4309 				cft_end = cft;
4310 				is_add = false;
4311 				goto restart;
4312 			}
4313 		} else {
4314 			cgroup_rm_file(cgrp, cft);
4315 		}
4316 	}
4317 	return ret;
4318 }
4319 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4320 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4321 {
4322 	struct cgroup_subsys *ss = cfts[0].ss;
4323 	struct cgroup *root = &ss->root->cgrp;
4324 	struct cgroup_subsys_state *css;
4325 	int ret = 0;
4326 
4327 	lockdep_assert_held(&cgroup_mutex);
4328 
4329 	/* add/rm files for all cgroups created before */
4330 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4331 		struct cgroup *cgrp = css->cgroup;
4332 
4333 		if (!(css->flags & CSS_VISIBLE))
4334 			continue;
4335 
4336 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4337 		if (ret)
4338 			break;
4339 	}
4340 
4341 	if (is_add && !ret)
4342 		kernfs_activate(root->kn);
4343 	return ret;
4344 }
4345 
cgroup_exit_cftypes(struct cftype * cfts)4346 static void cgroup_exit_cftypes(struct cftype *cfts)
4347 {
4348 	struct cftype *cft;
4349 
4350 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4351 		/* free copy for custom atomic_write_len, see init_cftypes() */
4352 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4353 			kfree(cft->kf_ops);
4354 		cft->kf_ops = NULL;
4355 		cft->ss = NULL;
4356 
4357 		/* revert flags set by cgroup core while adding @cfts */
4358 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4359 				__CFTYPE_ADDED);
4360 	}
4361 }
4362 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4363 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4364 {
4365 	struct cftype *cft;
4366 	int ret = 0;
4367 
4368 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4369 		struct kernfs_ops *kf_ops;
4370 
4371 		WARN_ON(cft->ss || cft->kf_ops);
4372 
4373 		if (cft->flags & __CFTYPE_ADDED) {
4374 			ret = -EBUSY;
4375 			break;
4376 		}
4377 
4378 		if (cft->seq_start)
4379 			kf_ops = &cgroup_kf_ops;
4380 		else
4381 			kf_ops = &cgroup_kf_single_ops;
4382 
4383 		/*
4384 		 * Ugh... if @cft wants a custom max_write_len, we need to
4385 		 * make a copy of kf_ops to set its atomic_write_len.
4386 		 */
4387 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4388 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4389 			if (!kf_ops) {
4390 				ret = -ENOMEM;
4391 				break;
4392 			}
4393 			kf_ops->atomic_write_len = cft->max_write_len;
4394 		}
4395 
4396 		cft->kf_ops = kf_ops;
4397 		cft->ss = ss;
4398 		cft->flags |= __CFTYPE_ADDED;
4399 	}
4400 
4401 	if (ret)
4402 		cgroup_exit_cftypes(cfts);
4403 	return ret;
4404 }
4405 
cgroup_rm_cftypes_locked(struct cftype * cfts)4406 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4407 {
4408 	lockdep_assert_held(&cgroup_mutex);
4409 
4410 	list_del(&cfts->node);
4411 	cgroup_apply_cftypes(cfts, false);
4412 	cgroup_exit_cftypes(cfts);
4413 }
4414 
4415 /**
4416  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4417  * @cfts: zero-length name terminated array of cftypes
4418  *
4419  * Unregister @cfts.  Files described by @cfts are removed from all
4420  * existing cgroups and all future cgroups won't have them either.  This
4421  * function can be called anytime whether @cfts' subsys is attached or not.
4422  *
4423  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4424  * registered.
4425  */
cgroup_rm_cftypes(struct cftype * cfts)4426 int cgroup_rm_cftypes(struct cftype *cfts)
4427 {
4428 	if (!cfts || cfts[0].name[0] == '\0')
4429 		return 0;
4430 
4431 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4432 		return -ENOENT;
4433 
4434 	cgroup_lock();
4435 	cgroup_rm_cftypes_locked(cfts);
4436 	cgroup_unlock();
4437 	return 0;
4438 }
4439 
4440 /**
4441  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4442  * @ss: target cgroup subsystem
4443  * @cfts: zero-length name terminated array of cftypes
4444  *
4445  * Register @cfts to @ss.  Files described by @cfts are created for all
4446  * existing cgroups to which @ss is attached and all future cgroups will
4447  * have them too.  This function can be called anytime whether @ss is
4448  * attached or not.
4449  *
4450  * Returns 0 on successful registration, -errno on failure.  Note that this
4451  * function currently returns 0 as long as @cfts registration is successful
4452  * even if some file creation attempts on existing cgroups fail.
4453  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4454 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4455 {
4456 	int ret;
4457 
4458 	if (!cgroup_ssid_enabled(ss->id))
4459 		return 0;
4460 
4461 	if (!cfts || cfts[0].name[0] == '\0')
4462 		return 0;
4463 
4464 	ret = cgroup_init_cftypes(ss, cfts);
4465 	if (ret)
4466 		return ret;
4467 
4468 	cgroup_lock();
4469 
4470 	list_add_tail(&cfts->node, &ss->cfts);
4471 	ret = cgroup_apply_cftypes(cfts, true);
4472 	if (ret)
4473 		cgroup_rm_cftypes_locked(cfts);
4474 
4475 	cgroup_unlock();
4476 	return ret;
4477 }
4478 
4479 /**
4480  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4481  * @ss: target cgroup subsystem
4482  * @cfts: zero-length name terminated array of cftypes
4483  *
4484  * Similar to cgroup_add_cftypes() but the added files are only used for
4485  * the default hierarchy.
4486  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4487 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4488 {
4489 	struct cftype *cft;
4490 
4491 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4492 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4493 	return cgroup_add_cftypes(ss, cfts);
4494 }
4495 
4496 /**
4497  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4498  * @ss: target cgroup subsystem
4499  * @cfts: zero-length name terminated array of cftypes
4500  *
4501  * Similar to cgroup_add_cftypes() but the added files are only used for
4502  * the legacy hierarchies.
4503  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4504 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4505 {
4506 	struct cftype *cft;
4507 
4508 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4509 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4510 	return cgroup_add_cftypes(ss, cfts);
4511 }
4512 
4513 /**
4514  * cgroup_file_notify - generate a file modified event for a cgroup_file
4515  * @cfile: target cgroup_file
4516  *
4517  * @cfile must have been obtained by setting cftype->file_offset.
4518  */
cgroup_file_notify(struct cgroup_file * cfile)4519 void cgroup_file_notify(struct cgroup_file *cfile)
4520 {
4521 	unsigned long flags;
4522 
4523 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4524 	if (cfile->kn) {
4525 		unsigned long last = cfile->notified_at;
4526 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4527 
4528 		if (time_in_range(jiffies, last, next)) {
4529 			timer_reduce(&cfile->notify_timer, next);
4530 		} else {
4531 			kernfs_notify(cfile->kn);
4532 			cfile->notified_at = jiffies;
4533 		}
4534 	}
4535 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4536 }
4537 
4538 /**
4539  * cgroup_file_show - show or hide a hidden cgroup file
4540  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4541  * @show: whether to show or hide
4542  */
cgroup_file_show(struct cgroup_file * cfile,bool show)4543 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4544 {
4545 	struct kernfs_node *kn;
4546 
4547 	spin_lock_irq(&cgroup_file_kn_lock);
4548 	kn = cfile->kn;
4549 	kernfs_get(kn);
4550 	spin_unlock_irq(&cgroup_file_kn_lock);
4551 
4552 	if (kn)
4553 		kernfs_show(kn, show);
4554 
4555 	kernfs_put(kn);
4556 }
4557 
4558 /**
4559  * css_next_child - find the next child of a given css
4560  * @pos: the current position (%NULL to initiate traversal)
4561  * @parent: css whose children to walk
4562  *
4563  * This function returns the next child of @parent and should be called
4564  * under either cgroup_mutex or RCU read lock.  The only requirement is
4565  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4566  * be returned regardless of their states.
4567  *
4568  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4569  * css which finished ->css_online() is guaranteed to be visible in the
4570  * future iterations and will stay visible until the last reference is put.
4571  * A css which hasn't finished ->css_online() or already finished
4572  * ->css_offline() may show up during traversal.  It's each subsystem's
4573  * responsibility to synchronize against on/offlining.
4574  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4575 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4576 					   struct cgroup_subsys_state *parent)
4577 {
4578 	struct cgroup_subsys_state *next;
4579 
4580 	cgroup_assert_mutex_or_rcu_locked();
4581 
4582 	/*
4583 	 * @pos could already have been unlinked from the sibling list.
4584 	 * Once a cgroup is removed, its ->sibling.next is no longer
4585 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4586 	 * @pos is taken off list, at which time its next pointer is valid,
4587 	 * and, as releases are serialized, the one pointed to by the next
4588 	 * pointer is guaranteed to not have started release yet.  This
4589 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4590 	 * critical section, the one pointed to by its next pointer is
4591 	 * guaranteed to not have finished its RCU grace period even if we
4592 	 * have dropped rcu_read_lock() in-between iterations.
4593 	 *
4594 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4595 	 * dereferenced; however, as each css is given a monotonically
4596 	 * increasing unique serial number and always appended to the
4597 	 * sibling list, the next one can be found by walking the parent's
4598 	 * children until the first css with higher serial number than
4599 	 * @pos's.  While this path can be slower, it happens iff iteration
4600 	 * races against release and the race window is very small.
4601 	 */
4602 	if (!pos) {
4603 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4604 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4605 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4606 	} else {
4607 		list_for_each_entry_rcu(next, &parent->children, sibling,
4608 					lockdep_is_held(&cgroup_mutex))
4609 			if (next->serial_nr > pos->serial_nr)
4610 				break;
4611 	}
4612 
4613 	/*
4614 	 * @next, if not pointing to the head, can be dereferenced and is
4615 	 * the next sibling.
4616 	 */
4617 	if (&next->sibling != &parent->children)
4618 		return next;
4619 	return NULL;
4620 }
4621 
4622 /**
4623  * css_next_descendant_pre - find the next descendant for pre-order walk
4624  * @pos: the current position (%NULL to initiate traversal)
4625  * @root: css whose descendants to walk
4626  *
4627  * To be used by css_for_each_descendant_pre().  Find the next descendant
4628  * to visit for pre-order traversal of @root's descendants.  @root is
4629  * included in the iteration and the first node to be visited.
4630  *
4631  * While this function requires cgroup_mutex or RCU read locking, it
4632  * doesn't require the whole traversal to be contained in a single critical
4633  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4634  * This function will return the correct next descendant as long as both @pos
4635  * and @root are accessible and @pos is a descendant of @root.
4636  *
4637  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4638  * css which finished ->css_online() is guaranteed to be visible in the
4639  * future iterations and will stay visible until the last reference is put.
4640  * A css which hasn't finished ->css_online() or already finished
4641  * ->css_offline() may show up during traversal.  It's each subsystem's
4642  * responsibility to synchronize against on/offlining.
4643  */
4644 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4645 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4646 			struct cgroup_subsys_state *root)
4647 {
4648 	struct cgroup_subsys_state *next;
4649 
4650 	cgroup_assert_mutex_or_rcu_locked();
4651 
4652 	/* if first iteration, visit @root */
4653 	if (!pos)
4654 		return root;
4655 
4656 	/* visit the first child if exists */
4657 	next = css_next_child(NULL, pos);
4658 	if (next)
4659 		return next;
4660 
4661 	/* no child, visit my or the closest ancestor's next sibling */
4662 	while (pos != root) {
4663 		next = css_next_child(pos, pos->parent);
4664 		if (next)
4665 			return next;
4666 		pos = pos->parent;
4667 	}
4668 
4669 	return NULL;
4670 }
4671 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4672 
4673 /**
4674  * css_rightmost_descendant - return the rightmost descendant of a css
4675  * @pos: css of interest
4676  *
4677  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4678  * is returned.  This can be used during pre-order traversal to skip
4679  * subtree of @pos.
4680  *
4681  * While this function requires cgroup_mutex or RCU read locking, it
4682  * doesn't require the whole traversal to be contained in a single critical
4683  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4684  * This function will return the correct rightmost descendant as long as @pos
4685  * is accessible.
4686  */
4687 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4688 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4689 {
4690 	struct cgroup_subsys_state *last, *tmp;
4691 
4692 	cgroup_assert_mutex_or_rcu_locked();
4693 
4694 	do {
4695 		last = pos;
4696 		/* ->prev isn't RCU safe, walk ->next till the end */
4697 		pos = NULL;
4698 		css_for_each_child(tmp, last)
4699 			pos = tmp;
4700 	} while (pos);
4701 
4702 	return last;
4703 }
4704 
4705 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4706 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4707 {
4708 	struct cgroup_subsys_state *last;
4709 
4710 	do {
4711 		last = pos;
4712 		pos = css_next_child(NULL, pos);
4713 	} while (pos);
4714 
4715 	return last;
4716 }
4717 
4718 /**
4719  * css_next_descendant_post - find the next descendant for post-order walk
4720  * @pos: the current position (%NULL to initiate traversal)
4721  * @root: css whose descendants to walk
4722  *
4723  * To be used by css_for_each_descendant_post().  Find the next descendant
4724  * to visit for post-order traversal of @root's descendants.  @root is
4725  * included in the iteration and the last node to be visited.
4726  *
4727  * While this function requires cgroup_mutex or RCU read locking, it
4728  * doesn't require the whole traversal to be contained in a single critical
4729  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4730  * This function will return the correct next descendant as long as both @pos
4731  * and @cgroup are accessible and @pos is a descendant of @cgroup.
4732  *
4733  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4734  * css which finished ->css_online() is guaranteed to be visible in the
4735  * future iterations and will stay visible until the last reference is put.
4736  * A css which hasn't finished ->css_online() or already finished
4737  * ->css_offline() may show up during traversal.  It's each subsystem's
4738  * responsibility to synchronize against on/offlining.
4739  */
4740 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4741 css_next_descendant_post(struct cgroup_subsys_state *pos,
4742 			 struct cgroup_subsys_state *root)
4743 {
4744 	struct cgroup_subsys_state *next;
4745 
4746 	cgroup_assert_mutex_or_rcu_locked();
4747 
4748 	/* if first iteration, visit leftmost descendant which may be @root */
4749 	if (!pos)
4750 		return css_leftmost_descendant(root);
4751 
4752 	/* if we visited @root, we're done */
4753 	if (pos == root)
4754 		return NULL;
4755 
4756 	/* if there's an unvisited sibling, visit its leftmost descendant */
4757 	next = css_next_child(pos, pos->parent);
4758 	if (next)
4759 		return css_leftmost_descendant(next);
4760 
4761 	/* no sibling left, visit parent */
4762 	return pos->parent;
4763 }
4764 
4765 /**
4766  * css_has_online_children - does a css have online children
4767  * @css: the target css
4768  *
4769  * Returns %true if @css has any online children; otherwise, %false.  This
4770  * function can be called from any context but the caller is responsible
4771  * for synchronizing against on/offlining as necessary.
4772  */
css_has_online_children(struct cgroup_subsys_state * css)4773 bool css_has_online_children(struct cgroup_subsys_state *css)
4774 {
4775 	struct cgroup_subsys_state *child;
4776 	bool ret = false;
4777 
4778 	rcu_read_lock();
4779 	css_for_each_child(child, css) {
4780 		if (child->flags & CSS_ONLINE) {
4781 			ret = true;
4782 			break;
4783 		}
4784 	}
4785 	rcu_read_unlock();
4786 	return ret;
4787 }
4788 
css_task_iter_next_css_set(struct css_task_iter * it)4789 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4790 {
4791 	struct list_head *l;
4792 	struct cgrp_cset_link *link;
4793 	struct css_set *cset;
4794 
4795 	lockdep_assert_held(&css_set_lock);
4796 
4797 	/* find the next threaded cset */
4798 	if (it->tcset_pos) {
4799 		l = it->tcset_pos->next;
4800 
4801 		if (l != it->tcset_head) {
4802 			it->tcset_pos = l;
4803 			return container_of(l, struct css_set,
4804 					    threaded_csets_node);
4805 		}
4806 
4807 		it->tcset_pos = NULL;
4808 	}
4809 
4810 	/* find the next cset */
4811 	l = it->cset_pos;
4812 	l = l->next;
4813 	if (l == it->cset_head) {
4814 		it->cset_pos = NULL;
4815 		return NULL;
4816 	}
4817 
4818 	if (it->ss) {
4819 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4820 	} else {
4821 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4822 		cset = link->cset;
4823 	}
4824 
4825 	it->cset_pos = l;
4826 
4827 	/* initialize threaded css_set walking */
4828 	if (it->flags & CSS_TASK_ITER_THREADED) {
4829 		if (it->cur_dcset)
4830 			put_css_set_locked(it->cur_dcset);
4831 		it->cur_dcset = cset;
4832 		get_css_set(cset);
4833 
4834 		it->tcset_head = &cset->threaded_csets;
4835 		it->tcset_pos = &cset->threaded_csets;
4836 	}
4837 
4838 	return cset;
4839 }
4840 
4841 /**
4842  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4843  * @it: the iterator to advance
4844  *
4845  * Advance @it to the next css_set to walk.
4846  */
css_task_iter_advance_css_set(struct css_task_iter * it)4847 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4848 {
4849 	struct css_set *cset;
4850 
4851 	lockdep_assert_held(&css_set_lock);
4852 
4853 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4854 	while ((cset = css_task_iter_next_css_set(it))) {
4855 		if (!list_empty(&cset->tasks)) {
4856 			it->cur_tasks_head = &cset->tasks;
4857 			break;
4858 		} else if (!list_empty(&cset->mg_tasks)) {
4859 			it->cur_tasks_head = &cset->mg_tasks;
4860 			break;
4861 		} else if (!list_empty(&cset->dying_tasks)) {
4862 			it->cur_tasks_head = &cset->dying_tasks;
4863 			break;
4864 		}
4865 	}
4866 	if (!cset) {
4867 		it->task_pos = NULL;
4868 		return;
4869 	}
4870 	it->task_pos = it->cur_tasks_head->next;
4871 
4872 	/*
4873 	 * We don't keep css_sets locked across iteration steps and thus
4874 	 * need to take steps to ensure that iteration can be resumed after
4875 	 * the lock is re-acquired.  Iteration is performed at two levels -
4876 	 * css_sets and tasks in them.
4877 	 *
4878 	 * Once created, a css_set never leaves its cgroup lists, so a
4879 	 * pinned css_set is guaranteed to stay put and we can resume
4880 	 * iteration afterwards.
4881 	 *
4882 	 * Tasks may leave @cset across iteration steps.  This is resolved
4883 	 * by registering each iterator with the css_set currently being
4884 	 * walked and making css_set_move_task() advance iterators whose
4885 	 * next task is leaving.
4886 	 */
4887 	if (it->cur_cset) {
4888 		list_del(&it->iters_node);
4889 		put_css_set_locked(it->cur_cset);
4890 	}
4891 	get_css_set(cset);
4892 	it->cur_cset = cset;
4893 	list_add(&it->iters_node, &cset->task_iters);
4894 }
4895 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4896 static void css_task_iter_skip(struct css_task_iter *it,
4897 			       struct task_struct *task)
4898 {
4899 	lockdep_assert_held(&css_set_lock);
4900 
4901 	if (it->task_pos == &task->cg_list) {
4902 		it->task_pos = it->task_pos->next;
4903 		it->flags |= CSS_TASK_ITER_SKIPPED;
4904 	}
4905 }
4906 
css_task_iter_advance(struct css_task_iter * it)4907 static void css_task_iter_advance(struct css_task_iter *it)
4908 {
4909 	struct task_struct *task;
4910 
4911 	lockdep_assert_held(&css_set_lock);
4912 repeat:
4913 	if (it->task_pos) {
4914 		/*
4915 		 * Advance iterator to find next entry. We go through cset
4916 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4917 		 * the next cset.
4918 		 */
4919 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4920 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4921 		else
4922 			it->task_pos = it->task_pos->next;
4923 
4924 		if (it->task_pos == &it->cur_cset->tasks) {
4925 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4926 			it->task_pos = it->cur_tasks_head->next;
4927 		}
4928 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4929 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4930 			it->task_pos = it->cur_tasks_head->next;
4931 		}
4932 		if (it->task_pos == &it->cur_cset->dying_tasks)
4933 			css_task_iter_advance_css_set(it);
4934 	} else {
4935 		/* called from start, proceed to the first cset */
4936 		css_task_iter_advance_css_set(it);
4937 	}
4938 
4939 	if (!it->task_pos)
4940 		return;
4941 
4942 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4943 
4944 	if (it->flags & CSS_TASK_ITER_PROCS) {
4945 		/* if PROCS, skip over tasks which aren't group leaders */
4946 		if (!thread_group_leader(task))
4947 			goto repeat;
4948 
4949 		/* and dying leaders w/o live member threads */
4950 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4951 		    !atomic_read(&task->signal->live))
4952 			goto repeat;
4953 	} else {
4954 		/* skip all dying ones */
4955 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4956 			goto repeat;
4957 	}
4958 }
4959 
4960 /**
4961  * css_task_iter_start - initiate task iteration
4962  * @css: the css to walk tasks of
4963  * @flags: CSS_TASK_ITER_* flags
4964  * @it: the task iterator to use
4965  *
4966  * Initiate iteration through the tasks of @css.  The caller can call
4967  * css_task_iter_next() to walk through the tasks until the function
4968  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4969  * called.
4970  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4971 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4972 			 struct css_task_iter *it)
4973 {
4974 	unsigned long irqflags;
4975 
4976 	memset(it, 0, sizeof(*it));
4977 
4978 	spin_lock_irqsave(&css_set_lock, irqflags);
4979 
4980 	it->ss = css->ss;
4981 	it->flags = flags;
4982 
4983 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4984 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4985 	else
4986 		it->cset_pos = &css->cgroup->cset_links;
4987 
4988 	it->cset_head = it->cset_pos;
4989 
4990 	css_task_iter_advance(it);
4991 
4992 	spin_unlock_irqrestore(&css_set_lock, irqflags);
4993 }
4994 
4995 /**
4996  * css_task_iter_next - return the next task for the iterator
4997  * @it: the task iterator being iterated
4998  *
4999  * The "next" function for task iteration.  @it should have been
5000  * initialized via css_task_iter_start().  Returns NULL when the iteration
5001  * reaches the end.
5002  */
css_task_iter_next(struct css_task_iter * it)5003 struct task_struct *css_task_iter_next(struct css_task_iter *it)
5004 {
5005 	unsigned long irqflags;
5006 
5007 	if (it->cur_task) {
5008 		put_task_struct(it->cur_task);
5009 		it->cur_task = NULL;
5010 	}
5011 
5012 	spin_lock_irqsave(&css_set_lock, irqflags);
5013 
5014 	/* @it may be half-advanced by skips, finish advancing */
5015 	if (it->flags & CSS_TASK_ITER_SKIPPED)
5016 		css_task_iter_advance(it);
5017 
5018 	if (it->task_pos) {
5019 		it->cur_task = list_entry(it->task_pos, struct task_struct,
5020 					  cg_list);
5021 		get_task_struct(it->cur_task);
5022 		css_task_iter_advance(it);
5023 	}
5024 
5025 	spin_unlock_irqrestore(&css_set_lock, irqflags);
5026 
5027 	return it->cur_task;
5028 }
5029 
5030 /**
5031  * css_task_iter_end - finish task iteration
5032  * @it: the task iterator to finish
5033  *
5034  * Finish task iteration started by css_task_iter_start().
5035  */
css_task_iter_end(struct css_task_iter * it)5036 void css_task_iter_end(struct css_task_iter *it)
5037 {
5038 	unsigned long irqflags;
5039 
5040 	if (it->cur_cset) {
5041 		spin_lock_irqsave(&css_set_lock, irqflags);
5042 		list_del(&it->iters_node);
5043 		put_css_set_locked(it->cur_cset);
5044 		spin_unlock_irqrestore(&css_set_lock, irqflags);
5045 	}
5046 
5047 	if (it->cur_dcset)
5048 		put_css_set(it->cur_dcset);
5049 
5050 	if (it->cur_task)
5051 		put_task_struct(it->cur_task);
5052 }
5053 
cgroup_procs_release(struct kernfs_open_file * of)5054 static void cgroup_procs_release(struct kernfs_open_file *of)
5055 {
5056 	struct cgroup_file_ctx *ctx = of->priv;
5057 
5058 	if (ctx->procs.started)
5059 		css_task_iter_end(&ctx->procs.iter);
5060 }
5061 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)5062 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5063 {
5064 	struct kernfs_open_file *of = s->private;
5065 	struct cgroup_file_ctx *ctx = of->priv;
5066 
5067 	if (pos)
5068 		(*pos)++;
5069 
5070 	return css_task_iter_next(&ctx->procs.iter);
5071 }
5072 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)5073 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5074 				  unsigned int iter_flags)
5075 {
5076 	struct kernfs_open_file *of = s->private;
5077 	struct cgroup *cgrp = seq_css(s)->cgroup;
5078 	struct cgroup_file_ctx *ctx = of->priv;
5079 	struct css_task_iter *it = &ctx->procs.iter;
5080 
5081 	/*
5082 	 * When a seq_file is seeked, it's always traversed sequentially
5083 	 * from position 0, so we can simply keep iterating on !0 *pos.
5084 	 */
5085 	if (!ctx->procs.started) {
5086 		if (WARN_ON_ONCE((*pos)))
5087 			return ERR_PTR(-EINVAL);
5088 		css_task_iter_start(&cgrp->self, iter_flags, it);
5089 		ctx->procs.started = true;
5090 	} else if (!(*pos)) {
5091 		css_task_iter_end(it);
5092 		css_task_iter_start(&cgrp->self, iter_flags, it);
5093 	} else
5094 		return it->cur_task;
5095 
5096 	return cgroup_procs_next(s, NULL, NULL);
5097 }
5098 
cgroup_procs_start(struct seq_file * s,loff_t * pos)5099 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5100 {
5101 	struct cgroup *cgrp = seq_css(s)->cgroup;
5102 
5103 	/*
5104 	 * All processes of a threaded subtree belong to the domain cgroup
5105 	 * of the subtree.  Only threads can be distributed across the
5106 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5107 	 * They're always empty anyway.
5108 	 */
5109 	if (cgroup_is_threaded(cgrp))
5110 		return ERR_PTR(-EOPNOTSUPP);
5111 
5112 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5113 					    CSS_TASK_ITER_THREADED);
5114 }
5115 
cgroup_procs_show(struct seq_file * s,void * v)5116 static int cgroup_procs_show(struct seq_file *s, void *v)
5117 {
5118 	seq_printf(s, "%d\n", task_pid_vnr(v));
5119 	return 0;
5120 }
5121 
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)5122 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5123 {
5124 	int ret;
5125 	struct inode *inode;
5126 
5127 	lockdep_assert_held(&cgroup_mutex);
5128 
5129 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5130 	if (!inode)
5131 		return -ENOMEM;
5132 
5133 	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5134 	iput(inode);
5135 	return ret;
5136 }
5137 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)5138 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5139 					 struct cgroup *dst_cgrp,
5140 					 struct super_block *sb,
5141 					 struct cgroup_namespace *ns)
5142 {
5143 	struct cgroup *com_cgrp = src_cgrp;
5144 	int ret;
5145 
5146 	lockdep_assert_held(&cgroup_mutex);
5147 
5148 	/* find the common ancestor */
5149 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5150 		com_cgrp = cgroup_parent(com_cgrp);
5151 
5152 	/* %current should be authorized to migrate to the common ancestor */
5153 	ret = cgroup_may_write(com_cgrp, sb);
5154 	if (ret)
5155 		return ret;
5156 
5157 	/*
5158 	 * If namespaces are delegation boundaries, %current must be able
5159 	 * to see both source and destination cgroups from its namespace.
5160 	 */
5161 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5162 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5163 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5164 		return -ENOENT;
5165 
5166 	return 0;
5167 }
5168 
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)5169 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5170 				     struct cgroup *dst_cgrp,
5171 				     struct super_block *sb, bool threadgroup,
5172 				     struct cgroup_namespace *ns)
5173 {
5174 	int ret = 0;
5175 
5176 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5177 	if (ret)
5178 		return ret;
5179 
5180 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5181 	if (ret)
5182 		return ret;
5183 
5184 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5185 		ret = -EOPNOTSUPP;
5186 
5187 	return ret;
5188 }
5189 
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)5190 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5191 				    bool threadgroup)
5192 {
5193 	struct cgroup_file_ctx *ctx = of->priv;
5194 	struct cgroup *src_cgrp, *dst_cgrp;
5195 	struct task_struct *task;
5196 	const struct cred *saved_cred;
5197 	ssize_t ret;
5198 	bool threadgroup_locked;
5199 
5200 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5201 	if (!dst_cgrp)
5202 		return -ENODEV;
5203 
5204 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5205 	ret = PTR_ERR_OR_ZERO(task);
5206 	if (ret)
5207 		goto out_unlock;
5208 
5209 	/* find the source cgroup */
5210 	spin_lock_irq(&css_set_lock);
5211 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5212 	spin_unlock_irq(&css_set_lock);
5213 
5214 	/*
5215 	 * Process and thread migrations follow same delegation rule. Check
5216 	 * permissions using the credentials from file open to protect against
5217 	 * inherited fd attacks.
5218 	 */
5219 	saved_cred = override_creds(of->file->f_cred);
5220 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5221 					of->file->f_path.dentry->d_sb,
5222 					threadgroup, ctx->ns);
5223 	revert_creds(saved_cred);
5224 	if (ret)
5225 		goto out_finish;
5226 
5227 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5228 
5229 out_finish:
5230 	cgroup_procs_write_finish(task, threadgroup_locked);
5231 out_unlock:
5232 	cgroup_kn_unlock(of->kn);
5233 
5234 	return ret;
5235 }
5236 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5237 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5238 				  char *buf, size_t nbytes, loff_t off)
5239 {
5240 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5241 }
5242 
cgroup_threads_start(struct seq_file * s,loff_t * pos)5243 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5244 {
5245 	return __cgroup_procs_start(s, pos, 0);
5246 }
5247 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5248 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5249 				    char *buf, size_t nbytes, loff_t off)
5250 {
5251 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5252 }
5253 
5254 /* cgroup core interface files for the default hierarchy */
5255 static struct cftype cgroup_base_files[] = {
5256 	{
5257 		.name = "cgroup.type",
5258 		.flags = CFTYPE_NOT_ON_ROOT,
5259 		.seq_show = cgroup_type_show,
5260 		.write = cgroup_type_write,
5261 	},
5262 	{
5263 		.name = "cgroup.procs",
5264 		.flags = CFTYPE_NS_DELEGATABLE,
5265 		.file_offset = offsetof(struct cgroup, procs_file),
5266 		.release = cgroup_procs_release,
5267 		.seq_start = cgroup_procs_start,
5268 		.seq_next = cgroup_procs_next,
5269 		.seq_show = cgroup_procs_show,
5270 		.write = cgroup_procs_write,
5271 	},
5272 	{
5273 		.name = "cgroup.threads",
5274 		.flags = CFTYPE_NS_DELEGATABLE,
5275 		.release = cgroup_procs_release,
5276 		.seq_start = cgroup_threads_start,
5277 		.seq_next = cgroup_procs_next,
5278 		.seq_show = cgroup_procs_show,
5279 		.write = cgroup_threads_write,
5280 	},
5281 	{
5282 		.name = "cgroup.controllers",
5283 		.seq_show = cgroup_controllers_show,
5284 	},
5285 	{
5286 		.name = "cgroup.subtree_control",
5287 		.flags = CFTYPE_NS_DELEGATABLE,
5288 		.seq_show = cgroup_subtree_control_show,
5289 		.write = cgroup_subtree_control_write,
5290 	},
5291 	{
5292 		.name = "cgroup.events",
5293 		.flags = CFTYPE_NOT_ON_ROOT,
5294 		.file_offset = offsetof(struct cgroup, events_file),
5295 		.seq_show = cgroup_events_show,
5296 	},
5297 	{
5298 		.name = "cgroup.max.descendants",
5299 		.seq_show = cgroup_max_descendants_show,
5300 		.write = cgroup_max_descendants_write,
5301 	},
5302 	{
5303 		.name = "cgroup.max.depth",
5304 		.seq_show = cgroup_max_depth_show,
5305 		.write = cgroup_max_depth_write,
5306 	},
5307 	{
5308 		.name = "cgroup.stat",
5309 		.seq_show = cgroup_stat_show,
5310 	},
5311 	{
5312 		.name = "cgroup.freeze",
5313 		.flags = CFTYPE_NOT_ON_ROOT,
5314 		.seq_show = cgroup_freeze_show,
5315 		.write = cgroup_freeze_write,
5316 	},
5317 	{
5318 		.name = "cgroup.kill",
5319 		.flags = CFTYPE_NOT_ON_ROOT,
5320 		.write = cgroup_kill_write,
5321 	},
5322 	{
5323 		.name = "cpu.stat",
5324 		.seq_show = cpu_stat_show,
5325 	},
5326 	{
5327 		.name = "cpu.stat.local",
5328 		.seq_show = cpu_local_stat_show,
5329 	},
5330 	{ }	/* terminate */
5331 };
5332 
5333 static struct cftype cgroup_psi_files[] = {
5334 #ifdef CONFIG_PSI
5335 	{
5336 		.name = "io.pressure",
5337 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5338 		.seq_show = cgroup_io_pressure_show,
5339 		.write = cgroup_io_pressure_write,
5340 		.poll = cgroup_pressure_poll,
5341 		.release = cgroup_pressure_release,
5342 	},
5343 	{
5344 		.name = "memory.pressure",
5345 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5346 		.seq_show = cgroup_memory_pressure_show,
5347 		.write = cgroup_memory_pressure_write,
5348 		.poll = cgroup_pressure_poll,
5349 		.release = cgroup_pressure_release,
5350 	},
5351 	{
5352 		.name = "cpu.pressure",
5353 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5354 		.seq_show = cgroup_cpu_pressure_show,
5355 		.write = cgroup_cpu_pressure_write,
5356 		.poll = cgroup_pressure_poll,
5357 		.release = cgroup_pressure_release,
5358 	},
5359 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5360 	{
5361 		.name = "irq.pressure",
5362 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5363 		.seq_show = cgroup_irq_pressure_show,
5364 		.write = cgroup_irq_pressure_write,
5365 		.poll = cgroup_pressure_poll,
5366 		.release = cgroup_pressure_release,
5367 	},
5368 #endif
5369 	{
5370 		.name = "cgroup.pressure",
5371 		.seq_show = cgroup_pressure_show,
5372 		.write = cgroup_pressure_write,
5373 	},
5374 #endif /* CONFIG_PSI */
5375 	{ }	/* terminate */
5376 };
5377 
5378 /*
5379  * css destruction is four-stage process.
5380  *
5381  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5382  *    Implemented in kill_css().
5383  *
5384  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5385  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5386  *    offlined by invoking offline_css().  After offlining, the base ref is
5387  *    put.  Implemented in css_killed_work_fn().
5388  *
5389  * 3. When the percpu_ref reaches zero, the only possible remaining
5390  *    accessors are inside RCU read sections.  css_release() schedules the
5391  *    RCU callback.
5392  *
5393  * 4. After the grace period, the css can be freed.  Implemented in
5394  *    css_free_rwork_fn().
5395  *
5396  * It is actually hairier because both step 2 and 4 require process context
5397  * and thus involve punting to css->destroy_work adding two additional
5398  * steps to the already complex sequence.
5399  */
css_free_rwork_fn(struct work_struct * work)5400 static void css_free_rwork_fn(struct work_struct *work)
5401 {
5402 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5403 				struct cgroup_subsys_state, destroy_rwork);
5404 	struct cgroup_subsys *ss = css->ss;
5405 	struct cgroup *cgrp = css->cgroup;
5406 
5407 	percpu_ref_exit(&css->refcnt);
5408 
5409 	if (ss) {
5410 		/* css free path */
5411 		struct cgroup_subsys_state *parent = css->parent;
5412 		int id = css->id;
5413 
5414 		ss->css_free(css);
5415 		cgroup_idr_remove(&ss->css_idr, id);
5416 		cgroup_put(cgrp);
5417 
5418 		if (parent)
5419 			css_put(parent);
5420 	} else {
5421 		/* cgroup free path */
5422 		atomic_dec(&cgrp->root->nr_cgrps);
5423 		if (!cgroup_on_dfl(cgrp))
5424 			cgroup1_pidlist_destroy_all(cgrp);
5425 		cancel_work_sync(&cgrp->release_agent_work);
5426 		bpf_cgrp_storage_free(cgrp);
5427 
5428 		if (cgroup_parent(cgrp)) {
5429 			/*
5430 			 * We get a ref to the parent, and put the ref when
5431 			 * this cgroup is being freed, so it's guaranteed
5432 			 * that the parent won't be destroyed before its
5433 			 * children.
5434 			 */
5435 			cgroup_put(cgroup_parent(cgrp));
5436 			kernfs_put(cgrp->kn);
5437 			psi_cgroup_free(cgrp);
5438 			cgroup_rstat_exit(cgrp);
5439 			kfree(cgrp);
5440 		} else {
5441 			/*
5442 			 * This is root cgroup's refcnt reaching zero,
5443 			 * which indicates that the root should be
5444 			 * released.
5445 			 */
5446 			cgroup_destroy_root(cgrp->root);
5447 		}
5448 	}
5449 }
5450 
css_release_work_fn(struct work_struct * work)5451 static void css_release_work_fn(struct work_struct *work)
5452 {
5453 	struct cgroup_subsys_state *css =
5454 		container_of(work, struct cgroup_subsys_state, destroy_work);
5455 	struct cgroup_subsys *ss = css->ss;
5456 	struct cgroup *cgrp = css->cgroup;
5457 
5458 	cgroup_lock();
5459 
5460 	css->flags |= CSS_RELEASED;
5461 	list_del_rcu(&css->sibling);
5462 
5463 	if (ss) {
5464 		struct cgroup *parent_cgrp;
5465 
5466 		/* css release path */
5467 		if (!list_empty(&css->rstat_css_node)) {
5468 			cgroup_rstat_flush(cgrp);
5469 			list_del_rcu(&css->rstat_css_node);
5470 		}
5471 
5472 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5473 		if (ss->css_released)
5474 			ss->css_released(css);
5475 
5476 		cgrp->nr_dying_subsys[ss->id]--;
5477 		/*
5478 		 * When a css is released and ready to be freed, its
5479 		 * nr_descendants must be zero. However, the corresponding
5480 		 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5481 		 * is activated and deactivated multiple times with one or
5482 		 * more of its previous activation leaving behind dying csses.
5483 		 */
5484 		WARN_ON_ONCE(css->nr_descendants);
5485 		parent_cgrp = cgroup_parent(cgrp);
5486 		while (parent_cgrp) {
5487 			parent_cgrp->nr_dying_subsys[ss->id]--;
5488 			parent_cgrp = cgroup_parent(parent_cgrp);
5489 		}
5490 	} else {
5491 		struct cgroup *tcgrp;
5492 
5493 		/* cgroup release path */
5494 		TRACE_CGROUP_PATH(release, cgrp);
5495 
5496 		cgroup_rstat_flush(cgrp);
5497 
5498 		spin_lock_irq(&css_set_lock);
5499 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5500 		     tcgrp = cgroup_parent(tcgrp))
5501 			tcgrp->nr_dying_descendants--;
5502 		spin_unlock_irq(&css_set_lock);
5503 
5504 		/*
5505 		 * There are two control paths which try to determine
5506 		 * cgroup from dentry without going through kernfs -
5507 		 * cgroupstats_build() and css_tryget_online_from_dir().
5508 		 * Those are supported by RCU protecting clearing of
5509 		 * cgrp->kn->priv backpointer.
5510 		 */
5511 		if (cgrp->kn)
5512 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5513 					 NULL);
5514 	}
5515 
5516 	cgroup_unlock();
5517 
5518 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5519 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5520 }
5521 
css_release(struct percpu_ref * ref)5522 static void css_release(struct percpu_ref *ref)
5523 {
5524 	struct cgroup_subsys_state *css =
5525 		container_of(ref, struct cgroup_subsys_state, refcnt);
5526 
5527 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5528 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5529 }
5530 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5531 static void init_and_link_css(struct cgroup_subsys_state *css,
5532 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5533 {
5534 	lockdep_assert_held(&cgroup_mutex);
5535 
5536 	cgroup_get_live(cgrp);
5537 
5538 	memset(css, 0, sizeof(*css));
5539 	css->cgroup = cgrp;
5540 	css->ss = ss;
5541 	css->id = -1;
5542 	INIT_LIST_HEAD(&css->sibling);
5543 	INIT_LIST_HEAD(&css->children);
5544 	INIT_LIST_HEAD(&css->rstat_css_node);
5545 	css->serial_nr = css_serial_nr_next++;
5546 	atomic_set(&css->online_cnt, 0);
5547 
5548 	if (cgroup_parent(cgrp)) {
5549 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5550 		css_get(css->parent);
5551 	}
5552 
5553 	if (ss->css_rstat_flush)
5554 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5555 
5556 	BUG_ON(cgroup_css(cgrp, ss));
5557 }
5558 
5559 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5560 static int online_css(struct cgroup_subsys_state *css)
5561 {
5562 	struct cgroup_subsys *ss = css->ss;
5563 	int ret = 0;
5564 
5565 	lockdep_assert_held(&cgroup_mutex);
5566 
5567 	if (ss->css_online)
5568 		ret = ss->css_online(css);
5569 	if (!ret) {
5570 		css->flags |= CSS_ONLINE;
5571 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5572 
5573 		atomic_inc(&css->online_cnt);
5574 		if (css->parent) {
5575 			atomic_inc(&css->parent->online_cnt);
5576 			while ((css = css->parent))
5577 				css->nr_descendants++;
5578 		}
5579 	}
5580 	return ret;
5581 }
5582 
5583 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5584 static void offline_css(struct cgroup_subsys_state *css)
5585 {
5586 	struct cgroup_subsys *ss = css->ss;
5587 
5588 	lockdep_assert_held(&cgroup_mutex);
5589 
5590 	if (!(css->flags & CSS_ONLINE))
5591 		return;
5592 
5593 	if (ss->css_offline)
5594 		ss->css_offline(css);
5595 
5596 	css->flags &= ~CSS_ONLINE;
5597 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5598 
5599 	wake_up_all(&css->cgroup->offline_waitq);
5600 
5601 	css->cgroup->nr_dying_subsys[ss->id]++;
5602 	/*
5603 	 * Parent css and cgroup cannot be freed until after the freeing
5604 	 * of child css, see css_free_rwork_fn().
5605 	 */
5606 	while ((css = css->parent)) {
5607 		css->nr_descendants--;
5608 		css->cgroup->nr_dying_subsys[ss->id]++;
5609 	}
5610 }
5611 
5612 /**
5613  * css_create - create a cgroup_subsys_state
5614  * @cgrp: the cgroup new css will be associated with
5615  * @ss: the subsys of new css
5616  *
5617  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5618  * css is online and installed in @cgrp.  This function doesn't create the
5619  * interface files.  Returns 0 on success, -errno on failure.
5620  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5621 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5622 					      struct cgroup_subsys *ss)
5623 {
5624 	struct cgroup *parent = cgroup_parent(cgrp);
5625 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5626 	struct cgroup_subsys_state *css;
5627 	int err;
5628 
5629 	lockdep_assert_held(&cgroup_mutex);
5630 
5631 	css = ss->css_alloc(parent_css);
5632 	if (!css)
5633 		css = ERR_PTR(-ENOMEM);
5634 	if (IS_ERR(css))
5635 		return css;
5636 
5637 	init_and_link_css(css, ss, cgrp);
5638 
5639 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5640 	if (err)
5641 		goto err_free_css;
5642 
5643 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5644 	if (err < 0)
5645 		goto err_free_css;
5646 	css->id = err;
5647 
5648 	/* @css is ready to be brought online now, make it visible */
5649 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5650 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5651 
5652 	err = online_css(css);
5653 	if (err)
5654 		goto err_list_del;
5655 
5656 	return css;
5657 
5658 err_list_del:
5659 	list_del_rcu(&css->sibling);
5660 err_free_css:
5661 	list_del_rcu(&css->rstat_css_node);
5662 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5663 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5664 	return ERR_PTR(err);
5665 }
5666 
5667 /*
5668  * The returned cgroup is fully initialized including its control mask, but
5669  * it doesn't have the control mask applied.
5670  */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5671 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5672 				    umode_t mode)
5673 {
5674 	struct cgroup_root *root = parent->root;
5675 	struct cgroup *cgrp, *tcgrp;
5676 	struct kernfs_node *kn;
5677 	int level = parent->level + 1;
5678 	int ret;
5679 
5680 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5681 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5682 	if (!cgrp)
5683 		return ERR_PTR(-ENOMEM);
5684 
5685 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5686 	if (ret)
5687 		goto out_free_cgrp;
5688 
5689 	ret = cgroup_rstat_init(cgrp);
5690 	if (ret)
5691 		goto out_cancel_ref;
5692 
5693 	/* create the directory */
5694 	kn = kernfs_create_dir_ns(parent->kn, name, mode,
5695 				  current_fsuid(), current_fsgid(),
5696 				  cgrp, NULL);
5697 	if (IS_ERR(kn)) {
5698 		ret = PTR_ERR(kn);
5699 		goto out_stat_exit;
5700 	}
5701 	cgrp->kn = kn;
5702 
5703 	init_cgroup_housekeeping(cgrp);
5704 
5705 	cgrp->self.parent = &parent->self;
5706 	cgrp->root = root;
5707 	cgrp->level = level;
5708 
5709 	ret = psi_cgroup_alloc(cgrp);
5710 	if (ret)
5711 		goto out_kernfs_remove;
5712 
5713 	ret = cgroup_bpf_inherit(cgrp);
5714 	if (ret)
5715 		goto out_psi_free;
5716 
5717 	/*
5718 	 * New cgroup inherits effective freeze counter, and
5719 	 * if the parent has to be frozen, the child has too.
5720 	 */
5721 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5722 	if (cgrp->freezer.e_freeze) {
5723 		/*
5724 		 * Set the CGRP_FREEZE flag, so when a process will be
5725 		 * attached to the child cgroup, it will become frozen.
5726 		 * At this point the new cgroup is unpopulated, so we can
5727 		 * consider it frozen immediately.
5728 		 */
5729 		set_bit(CGRP_FREEZE, &cgrp->flags);
5730 		set_bit(CGRP_FROZEN, &cgrp->flags);
5731 	}
5732 
5733 	spin_lock_irq(&css_set_lock);
5734 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5735 		cgrp->ancestors[tcgrp->level] = tcgrp;
5736 
5737 		if (tcgrp != cgrp) {
5738 			tcgrp->nr_descendants++;
5739 
5740 			/*
5741 			 * If the new cgroup is frozen, all ancestor cgroups
5742 			 * get a new frozen descendant, but their state can't
5743 			 * change because of this.
5744 			 */
5745 			if (cgrp->freezer.e_freeze)
5746 				tcgrp->freezer.nr_frozen_descendants++;
5747 		}
5748 	}
5749 	spin_unlock_irq(&css_set_lock);
5750 
5751 	if (notify_on_release(parent))
5752 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5753 
5754 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5755 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5756 
5757 	cgrp->self.serial_nr = css_serial_nr_next++;
5758 
5759 	/* allocation complete, commit to creation */
5760 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5761 	atomic_inc(&root->nr_cgrps);
5762 	cgroup_get_live(parent);
5763 
5764 	/*
5765 	 * On the default hierarchy, a child doesn't automatically inherit
5766 	 * subtree_control from the parent.  Each is configured manually.
5767 	 */
5768 	if (!cgroup_on_dfl(cgrp))
5769 		cgrp->subtree_control = cgroup_control(cgrp);
5770 
5771 	cgroup_propagate_control(cgrp);
5772 
5773 	return cgrp;
5774 
5775 out_psi_free:
5776 	psi_cgroup_free(cgrp);
5777 out_kernfs_remove:
5778 	kernfs_remove(cgrp->kn);
5779 out_stat_exit:
5780 	cgroup_rstat_exit(cgrp);
5781 out_cancel_ref:
5782 	percpu_ref_exit(&cgrp->self.refcnt);
5783 out_free_cgrp:
5784 	kfree(cgrp);
5785 	return ERR_PTR(ret);
5786 }
5787 
cgroup_check_hierarchy_limits(struct cgroup * parent)5788 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5789 {
5790 	struct cgroup *cgroup;
5791 	int ret = false;
5792 	int level = 0;
5793 
5794 	lockdep_assert_held(&cgroup_mutex);
5795 
5796 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5797 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5798 			goto fail;
5799 
5800 		if (level >= cgroup->max_depth)
5801 			goto fail;
5802 
5803 		level++;
5804 	}
5805 
5806 	ret = true;
5807 fail:
5808 	return ret;
5809 }
5810 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5811 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5812 {
5813 	struct cgroup *parent, *cgrp;
5814 	int ret;
5815 
5816 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5817 	if (strchr(name, '\n'))
5818 		return -EINVAL;
5819 
5820 	parent = cgroup_kn_lock_live(parent_kn, false);
5821 	if (!parent)
5822 		return -ENODEV;
5823 
5824 	if (!cgroup_check_hierarchy_limits(parent)) {
5825 		ret = -EAGAIN;
5826 		goto out_unlock;
5827 	}
5828 
5829 	cgrp = cgroup_create(parent, name, mode);
5830 	if (IS_ERR(cgrp)) {
5831 		ret = PTR_ERR(cgrp);
5832 		goto out_unlock;
5833 	}
5834 
5835 	/*
5836 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5837 	 * that @cgrp->kn is always accessible.
5838 	 */
5839 	kernfs_get(cgrp->kn);
5840 
5841 	ret = css_populate_dir(&cgrp->self);
5842 	if (ret)
5843 		goto out_destroy;
5844 
5845 	ret = cgroup_apply_control_enable(cgrp);
5846 	if (ret)
5847 		goto out_destroy;
5848 
5849 	TRACE_CGROUP_PATH(mkdir, cgrp);
5850 
5851 	/* let's create and online css's */
5852 	kernfs_activate(cgrp->kn);
5853 
5854 	ret = 0;
5855 	goto out_unlock;
5856 
5857 out_destroy:
5858 	cgroup_destroy_locked(cgrp);
5859 out_unlock:
5860 	cgroup_kn_unlock(parent_kn);
5861 	return ret;
5862 }
5863 
5864 /*
5865  * This is called when the refcnt of a css is confirmed to be killed.
5866  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5867  * initiate destruction and put the css ref from kill_css().
5868  */
css_killed_work_fn(struct work_struct * work)5869 static void css_killed_work_fn(struct work_struct *work)
5870 {
5871 	struct cgroup_subsys_state *css =
5872 		container_of(work, struct cgroup_subsys_state, destroy_work);
5873 
5874 	cgroup_lock();
5875 
5876 	do {
5877 		offline_css(css);
5878 		css_put(css);
5879 		/* @css can't go away while we're holding cgroup_mutex */
5880 		css = css->parent;
5881 	} while (css && atomic_dec_and_test(&css->online_cnt));
5882 
5883 	cgroup_unlock();
5884 }
5885 
5886 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5887 static void css_killed_ref_fn(struct percpu_ref *ref)
5888 {
5889 	struct cgroup_subsys_state *css =
5890 		container_of(ref, struct cgroup_subsys_state, refcnt);
5891 
5892 	if (atomic_dec_and_test(&css->online_cnt)) {
5893 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5894 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5895 	}
5896 }
5897 
5898 /**
5899  * kill_css - destroy a css
5900  * @css: css to destroy
5901  *
5902  * This function initiates destruction of @css by removing cgroup interface
5903  * files and putting its base reference.  ->css_offline() will be invoked
5904  * asynchronously once css_tryget_online() is guaranteed to fail and when
5905  * the reference count reaches zero, @css will be released.
5906  */
kill_css(struct cgroup_subsys_state * css)5907 static void kill_css(struct cgroup_subsys_state *css)
5908 {
5909 	lockdep_assert_held(&cgroup_mutex);
5910 
5911 	if (css->flags & CSS_DYING)
5912 		return;
5913 
5914 	css->flags |= CSS_DYING;
5915 
5916 	/*
5917 	 * This must happen before css is disassociated with its cgroup.
5918 	 * See seq_css() for details.
5919 	 */
5920 	css_clear_dir(css);
5921 
5922 	/*
5923 	 * Killing would put the base ref, but we need to keep it alive
5924 	 * until after ->css_offline().
5925 	 */
5926 	css_get(css);
5927 
5928 	/*
5929 	 * cgroup core guarantees that, by the time ->css_offline() is
5930 	 * invoked, no new css reference will be given out via
5931 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5932 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5933 	 * guarantee that the ref is seen as killed on all CPUs on return.
5934 	 *
5935 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5936 	 * css is confirmed to be seen as killed on all CPUs.
5937 	 */
5938 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5939 }
5940 
5941 /**
5942  * cgroup_destroy_locked - the first stage of cgroup destruction
5943  * @cgrp: cgroup to be destroyed
5944  *
5945  * css's make use of percpu refcnts whose killing latency shouldn't be
5946  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5947  * guarantee that css_tryget_online() won't succeed by the time
5948  * ->css_offline() is invoked.  To satisfy all the requirements,
5949  * destruction is implemented in the following two steps.
5950  *
5951  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5952  *     userland visible parts and start killing the percpu refcnts of
5953  *     css's.  Set up so that the next stage will be kicked off once all
5954  *     the percpu refcnts are confirmed to be killed.
5955  *
5956  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5957  *     rest of destruction.  Once all cgroup references are gone, the
5958  *     cgroup is RCU-freed.
5959  *
5960  * This function implements s1.  After this step, @cgrp is gone as far as
5961  * the userland is concerned and a new cgroup with the same name may be
5962  * created.  As cgroup doesn't care about the names internally, this
5963  * doesn't cause any problem.
5964  */
cgroup_destroy_locked(struct cgroup * cgrp)5965 static int cgroup_destroy_locked(struct cgroup *cgrp)
5966 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5967 {
5968 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5969 	struct cgroup_subsys_state *css;
5970 	struct cgrp_cset_link *link;
5971 	int ssid;
5972 
5973 	lockdep_assert_held(&cgroup_mutex);
5974 
5975 	/*
5976 	 * Only migration can raise populated from zero and we're already
5977 	 * holding cgroup_mutex.
5978 	 */
5979 	if (cgroup_is_populated(cgrp))
5980 		return -EBUSY;
5981 
5982 	/*
5983 	 * Make sure there's no live children.  We can't test emptiness of
5984 	 * ->self.children as dead children linger on it while being
5985 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5986 	 */
5987 	if (css_has_online_children(&cgrp->self))
5988 		return -EBUSY;
5989 
5990 	/*
5991 	 * Mark @cgrp and the associated csets dead.  The former prevents
5992 	 * further task migration and child creation by disabling
5993 	 * cgroup_kn_lock_live().  The latter makes the csets ignored by
5994 	 * the migration path.
5995 	 */
5996 	cgrp->self.flags &= ~CSS_ONLINE;
5997 
5998 	spin_lock_irq(&css_set_lock);
5999 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
6000 		link->cset->dead = true;
6001 	spin_unlock_irq(&css_set_lock);
6002 
6003 	/* initiate massacre of all css's */
6004 	for_each_css(css, ssid, cgrp)
6005 		kill_css(css);
6006 
6007 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
6008 	css_clear_dir(&cgrp->self);
6009 	kernfs_remove(cgrp->kn);
6010 
6011 	if (cgroup_is_threaded(cgrp))
6012 		parent->nr_threaded_children--;
6013 
6014 	spin_lock_irq(&css_set_lock);
6015 	for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6016 		tcgrp->nr_descendants--;
6017 		tcgrp->nr_dying_descendants++;
6018 		/*
6019 		 * If the dying cgroup is frozen, decrease frozen descendants
6020 		 * counters of ancestor cgroups.
6021 		 */
6022 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
6023 			tcgrp->freezer.nr_frozen_descendants--;
6024 	}
6025 	spin_unlock_irq(&css_set_lock);
6026 
6027 	cgroup1_check_for_release(parent);
6028 
6029 	cgroup_bpf_offline(cgrp);
6030 
6031 	/* put the base reference */
6032 	percpu_ref_kill(&cgrp->self.refcnt);
6033 
6034 	return 0;
6035 };
6036 
cgroup_rmdir(struct kernfs_node * kn)6037 int cgroup_rmdir(struct kernfs_node *kn)
6038 {
6039 	struct cgroup *cgrp;
6040 	int ret = 0;
6041 
6042 	cgrp = cgroup_kn_lock_live(kn, false);
6043 	if (!cgrp)
6044 		return 0;
6045 
6046 	ret = cgroup_destroy_locked(cgrp);
6047 	if (!ret)
6048 		TRACE_CGROUP_PATH(rmdir, cgrp);
6049 
6050 	cgroup_kn_unlock(kn);
6051 	return ret;
6052 }
6053 
6054 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6055 	.show_options		= cgroup_show_options,
6056 	.mkdir			= cgroup_mkdir,
6057 	.rmdir			= cgroup_rmdir,
6058 	.show_path		= cgroup_show_path,
6059 };
6060 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)6061 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6062 {
6063 	struct cgroup_subsys_state *css;
6064 
6065 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
6066 
6067 	cgroup_lock();
6068 
6069 	idr_init(&ss->css_idr);
6070 	INIT_LIST_HEAD(&ss->cfts);
6071 
6072 	/* Create the root cgroup state for this subsystem */
6073 	ss->root = &cgrp_dfl_root;
6074 	css = ss->css_alloc(NULL);
6075 	/* We don't handle early failures gracefully */
6076 	BUG_ON(IS_ERR(css));
6077 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6078 
6079 	/*
6080 	 * Root csses are never destroyed and we can't initialize
6081 	 * percpu_ref during early init.  Disable refcnting.
6082 	 */
6083 	css->flags |= CSS_NO_REF;
6084 
6085 	if (early) {
6086 		/* allocation can't be done safely during early init */
6087 		css->id = 1;
6088 	} else {
6089 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6090 		BUG_ON(css->id < 0);
6091 	}
6092 
6093 	/* Update the init_css_set to contain a subsys
6094 	 * pointer to this state - since the subsystem is
6095 	 * newly registered, all tasks and hence the
6096 	 * init_css_set is in the subsystem's root cgroup. */
6097 	init_css_set.subsys[ss->id] = css;
6098 
6099 	have_fork_callback |= (bool)ss->fork << ss->id;
6100 	have_exit_callback |= (bool)ss->exit << ss->id;
6101 	have_release_callback |= (bool)ss->release << ss->id;
6102 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6103 
6104 	/* At system boot, before all subsystems have been
6105 	 * registered, no tasks have been forked, so we don't
6106 	 * need to invoke fork callbacks here. */
6107 	BUG_ON(!list_empty(&init_task.tasks));
6108 
6109 	BUG_ON(online_css(css));
6110 
6111 	cgroup_unlock();
6112 }
6113 
6114 /**
6115  * cgroup_init_early - cgroup initialization at system boot
6116  *
6117  * Initialize cgroups at system boot, and initialize any
6118  * subsystems that request early init.
6119  */
cgroup_init_early(void)6120 int __init cgroup_init_early(void)
6121 {
6122 	static struct cgroup_fs_context __initdata ctx;
6123 	struct cgroup_subsys *ss;
6124 	int i;
6125 
6126 	ctx.root = &cgrp_dfl_root;
6127 	init_cgroup_root(&ctx);
6128 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6129 
6130 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6131 
6132 	for_each_subsys(ss, i) {
6133 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6134 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6135 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6136 		     ss->id, ss->name);
6137 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6138 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6139 
6140 		ss->id = i;
6141 		ss->name = cgroup_subsys_name[i];
6142 		if (!ss->legacy_name)
6143 			ss->legacy_name = cgroup_subsys_name[i];
6144 
6145 		if (ss->early_init)
6146 			cgroup_init_subsys(ss, true);
6147 	}
6148 	return 0;
6149 }
6150 
6151 /**
6152  * cgroup_init - cgroup initialization
6153  *
6154  * Register cgroup filesystem and /proc file, and initialize
6155  * any subsystems that didn't request early init.
6156  */
cgroup_init(void)6157 int __init cgroup_init(void)
6158 {
6159 	struct cgroup_subsys *ss;
6160 	int ssid;
6161 
6162 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6163 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6164 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6165 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6166 
6167 	cgroup_rstat_boot();
6168 
6169 	get_user_ns(init_cgroup_ns.user_ns);
6170 
6171 	cgroup_lock();
6172 
6173 	/*
6174 	 * Add init_css_set to the hash table so that dfl_root can link to
6175 	 * it during init.
6176 	 */
6177 	hash_add(css_set_table, &init_css_set.hlist,
6178 		 css_set_hash(init_css_set.subsys));
6179 
6180 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6181 
6182 	cgroup_unlock();
6183 
6184 	for_each_subsys(ss, ssid) {
6185 		if (ss->early_init) {
6186 			struct cgroup_subsys_state *css =
6187 				init_css_set.subsys[ss->id];
6188 
6189 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6190 						   GFP_KERNEL);
6191 			BUG_ON(css->id < 0);
6192 		} else {
6193 			cgroup_init_subsys(ss, false);
6194 		}
6195 
6196 		list_add_tail(&init_css_set.e_cset_node[ssid],
6197 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6198 
6199 		/*
6200 		 * Setting dfl_root subsys_mask needs to consider the
6201 		 * disabled flag and cftype registration needs kmalloc,
6202 		 * both of which aren't available during early_init.
6203 		 */
6204 		if (!cgroup_ssid_enabled(ssid))
6205 			continue;
6206 
6207 		if (cgroup1_ssid_disabled(ssid))
6208 			pr_info("Disabling %s control group subsystem in v1 mounts\n",
6209 				ss->legacy_name);
6210 
6211 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6212 
6213 		/* implicit controllers must be threaded too */
6214 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6215 
6216 		if (ss->implicit_on_dfl)
6217 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6218 		else if (!ss->dfl_cftypes)
6219 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6220 
6221 		if (ss->threaded)
6222 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6223 
6224 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6225 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6226 		} else {
6227 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6228 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6229 		}
6230 
6231 		if (ss->bind)
6232 			ss->bind(init_css_set.subsys[ssid]);
6233 
6234 		cgroup_lock();
6235 		css_populate_dir(init_css_set.subsys[ssid]);
6236 		cgroup_unlock();
6237 	}
6238 
6239 	/* init_css_set.subsys[] has been updated, re-hash */
6240 	hash_del(&init_css_set.hlist);
6241 	hash_add(css_set_table, &init_css_set.hlist,
6242 		 css_set_hash(init_css_set.subsys));
6243 
6244 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6245 	WARN_ON(register_filesystem(&cgroup_fs_type));
6246 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6247 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6248 #ifdef CONFIG_CPUSETS_V1
6249 	WARN_ON(register_filesystem(&cpuset_fs_type));
6250 #endif
6251 
6252 	return 0;
6253 }
6254 
cgroup_wq_init(void)6255 static int __init cgroup_wq_init(void)
6256 {
6257 	/*
6258 	 * There isn't much point in executing destruction path in
6259 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6260 	 * Use 1 for @max_active.
6261 	 *
6262 	 * We would prefer to do this in cgroup_init() above, but that
6263 	 * is called before init_workqueues(): so leave this until after.
6264 	 */
6265 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6266 	BUG_ON(!cgroup_destroy_wq);
6267 	return 0;
6268 }
6269 core_initcall(cgroup_wq_init);
6270 
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6271 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6272 {
6273 	struct kernfs_node *kn;
6274 
6275 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6276 	if (!kn)
6277 		return;
6278 	kernfs_path(kn, buf, buflen);
6279 	kernfs_put(kn);
6280 }
6281 
6282 /*
6283  * cgroup_get_from_id : get the cgroup associated with cgroup id
6284  * @id: cgroup id
6285  * On success return the cgrp or ERR_PTR on failure
6286  * Only cgroups within current task's cgroup NS are valid.
6287  */
cgroup_get_from_id(u64 id)6288 struct cgroup *cgroup_get_from_id(u64 id)
6289 {
6290 	struct kernfs_node *kn;
6291 	struct cgroup *cgrp, *root_cgrp;
6292 
6293 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6294 	if (!kn)
6295 		return ERR_PTR(-ENOENT);
6296 
6297 	if (kernfs_type(kn) != KERNFS_DIR) {
6298 		kernfs_put(kn);
6299 		return ERR_PTR(-ENOENT);
6300 	}
6301 
6302 	rcu_read_lock();
6303 
6304 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6305 	if (cgrp && !cgroup_tryget(cgrp))
6306 		cgrp = NULL;
6307 
6308 	rcu_read_unlock();
6309 	kernfs_put(kn);
6310 
6311 	if (!cgrp)
6312 		return ERR_PTR(-ENOENT);
6313 
6314 	root_cgrp = current_cgns_cgroup_dfl();
6315 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6316 		cgroup_put(cgrp);
6317 		return ERR_PTR(-ENOENT);
6318 	}
6319 
6320 	return cgrp;
6321 }
6322 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6323 
6324 /*
6325  * proc_cgroup_show()
6326  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6327  *  - Used for /proc/<pid>/cgroup.
6328  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6329 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6330 		     struct pid *pid, struct task_struct *tsk)
6331 {
6332 	char *buf;
6333 	int retval;
6334 	struct cgroup_root *root;
6335 
6336 	retval = -ENOMEM;
6337 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6338 	if (!buf)
6339 		goto out;
6340 
6341 	rcu_read_lock();
6342 	spin_lock_irq(&css_set_lock);
6343 
6344 	for_each_root(root) {
6345 		struct cgroup_subsys *ss;
6346 		struct cgroup *cgrp;
6347 		int ssid, count = 0;
6348 
6349 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6350 			continue;
6351 
6352 		cgrp = task_cgroup_from_root(tsk, root);
6353 		/* The root has already been unmounted. */
6354 		if (!cgrp)
6355 			continue;
6356 
6357 		seq_printf(m, "%d:", root->hierarchy_id);
6358 		if (root != &cgrp_dfl_root)
6359 			for_each_subsys(ss, ssid)
6360 				if (root->subsys_mask & (1 << ssid))
6361 					seq_printf(m, "%s%s", count++ ? "," : "",
6362 						   ss->legacy_name);
6363 		if (strlen(root->name))
6364 			seq_printf(m, "%sname=%s", count ? "," : "",
6365 				   root->name);
6366 		seq_putc(m, ':');
6367 		/*
6368 		 * On traditional hierarchies, all zombie tasks show up as
6369 		 * belonging to the root cgroup.  On the default hierarchy,
6370 		 * while a zombie doesn't show up in "cgroup.procs" and
6371 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6372 		 * reporting the cgroup it belonged to before exiting.  If
6373 		 * the cgroup is removed before the zombie is reaped,
6374 		 * " (deleted)" is appended to the cgroup path.
6375 		 */
6376 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6377 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6378 						current->nsproxy->cgroup_ns);
6379 			if (retval == -E2BIG)
6380 				retval = -ENAMETOOLONG;
6381 			if (retval < 0)
6382 				goto out_unlock;
6383 
6384 			seq_puts(m, buf);
6385 		} else {
6386 			seq_puts(m, "/");
6387 		}
6388 
6389 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6390 			seq_puts(m, " (deleted)\n");
6391 		else
6392 			seq_putc(m, '\n');
6393 	}
6394 
6395 	retval = 0;
6396 out_unlock:
6397 	spin_unlock_irq(&css_set_lock);
6398 	rcu_read_unlock();
6399 	kfree(buf);
6400 out:
6401 	return retval;
6402 }
6403 
6404 /**
6405  * cgroup_fork - initialize cgroup related fields during copy_process()
6406  * @child: pointer to task_struct of forking parent process.
6407  *
6408  * A task is associated with the init_css_set until cgroup_post_fork()
6409  * attaches it to the target css_set.
6410  */
cgroup_fork(struct task_struct * child)6411 void cgroup_fork(struct task_struct *child)
6412 {
6413 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6414 	INIT_LIST_HEAD(&child->cg_list);
6415 }
6416 
6417 /**
6418  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6419  * @f: file corresponding to cgroup_dir
6420  *
6421  * Find the cgroup from a file pointer associated with a cgroup directory.
6422  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6423  * cgroup cannot be found.
6424  */
cgroup_v1v2_get_from_file(struct file * f)6425 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6426 {
6427 	struct cgroup_subsys_state *css;
6428 
6429 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6430 	if (IS_ERR(css))
6431 		return ERR_CAST(css);
6432 
6433 	return css->cgroup;
6434 }
6435 
6436 /**
6437  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6438  * cgroup2.
6439  * @f: file corresponding to cgroup2_dir
6440  */
cgroup_get_from_file(struct file * f)6441 static struct cgroup *cgroup_get_from_file(struct file *f)
6442 {
6443 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6444 
6445 	if (IS_ERR(cgrp))
6446 		return ERR_CAST(cgrp);
6447 
6448 	if (!cgroup_on_dfl(cgrp)) {
6449 		cgroup_put(cgrp);
6450 		return ERR_PTR(-EBADF);
6451 	}
6452 
6453 	return cgrp;
6454 }
6455 
6456 /**
6457  * cgroup_css_set_fork - find or create a css_set for a child process
6458  * @kargs: the arguments passed to create the child process
6459  *
6460  * This functions finds or creates a new css_set which the child
6461  * process will be attached to in cgroup_post_fork(). By default,
6462  * the child process will be given the same css_set as its parent.
6463  *
6464  * If CLONE_INTO_CGROUP is specified this function will try to find an
6465  * existing css_set which includes the requested cgroup and if not create
6466  * a new css_set that the child will be attached to later. If this function
6467  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6468  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6469  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6470  * to the target cgroup.
6471  */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6472 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6473 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6474 {
6475 	int ret;
6476 	struct cgroup *dst_cgrp = NULL;
6477 	struct css_set *cset;
6478 	struct super_block *sb;
6479 	struct file *f;
6480 
6481 	if (kargs->flags & CLONE_INTO_CGROUP)
6482 		cgroup_lock();
6483 
6484 	cgroup_threadgroup_change_begin(current);
6485 
6486 	spin_lock_irq(&css_set_lock);
6487 	cset = task_css_set(current);
6488 	get_css_set(cset);
6489 	spin_unlock_irq(&css_set_lock);
6490 
6491 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6492 		kargs->cset = cset;
6493 		return 0;
6494 	}
6495 
6496 	f = fget_raw(kargs->cgroup);
6497 	if (!f) {
6498 		ret = -EBADF;
6499 		goto err;
6500 	}
6501 	sb = f->f_path.dentry->d_sb;
6502 
6503 	dst_cgrp = cgroup_get_from_file(f);
6504 	if (IS_ERR(dst_cgrp)) {
6505 		ret = PTR_ERR(dst_cgrp);
6506 		dst_cgrp = NULL;
6507 		goto err;
6508 	}
6509 
6510 	if (cgroup_is_dead(dst_cgrp)) {
6511 		ret = -ENODEV;
6512 		goto err;
6513 	}
6514 
6515 	/*
6516 	 * Verify that we the target cgroup is writable for us. This is
6517 	 * usually done by the vfs layer but since we're not going through
6518 	 * the vfs layer here we need to do it "manually".
6519 	 */
6520 	ret = cgroup_may_write(dst_cgrp, sb);
6521 	if (ret)
6522 		goto err;
6523 
6524 	/*
6525 	 * Spawning a task directly into a cgroup works by passing a file
6526 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6527 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6528 	 * This was done on purpose so spawning into a cgroup could be
6529 	 * conceptualized as an atomic
6530 	 *
6531 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6532 	 *   write(fd, <child-pid>, ...);
6533 	 *
6534 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6535 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6536 	 * to always use the caller's credentials.
6537 	 */
6538 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6539 					!(kargs->flags & CLONE_THREAD),
6540 					current->nsproxy->cgroup_ns);
6541 	if (ret)
6542 		goto err;
6543 
6544 	kargs->cset = find_css_set(cset, dst_cgrp);
6545 	if (!kargs->cset) {
6546 		ret = -ENOMEM;
6547 		goto err;
6548 	}
6549 
6550 	put_css_set(cset);
6551 	fput(f);
6552 	kargs->cgrp = dst_cgrp;
6553 	return ret;
6554 
6555 err:
6556 	cgroup_threadgroup_change_end(current);
6557 	cgroup_unlock();
6558 	if (f)
6559 		fput(f);
6560 	if (dst_cgrp)
6561 		cgroup_put(dst_cgrp);
6562 	put_css_set(cset);
6563 	if (kargs->cset)
6564 		put_css_set(kargs->cset);
6565 	return ret;
6566 }
6567 
6568 /**
6569  * cgroup_css_set_put_fork - drop references we took during fork
6570  * @kargs: the arguments passed to create the child process
6571  *
6572  * Drop references to the prepared css_set and target cgroup if
6573  * CLONE_INTO_CGROUP was requested.
6574  */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6575 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6576 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6577 {
6578 	struct cgroup *cgrp = kargs->cgrp;
6579 	struct css_set *cset = kargs->cset;
6580 
6581 	cgroup_threadgroup_change_end(current);
6582 
6583 	if (cset) {
6584 		put_css_set(cset);
6585 		kargs->cset = NULL;
6586 	}
6587 
6588 	if (kargs->flags & CLONE_INTO_CGROUP) {
6589 		cgroup_unlock();
6590 		if (cgrp) {
6591 			cgroup_put(cgrp);
6592 			kargs->cgrp = NULL;
6593 		}
6594 	}
6595 }
6596 
6597 /**
6598  * cgroup_can_fork - called on a new task before the process is exposed
6599  * @child: the child process
6600  * @kargs: the arguments passed to create the child process
6601  *
6602  * This prepares a new css_set for the child process which the child will
6603  * be attached to in cgroup_post_fork().
6604  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6605  * callback returns an error, the fork aborts with that error code. This
6606  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6607  */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6608 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6609 {
6610 	struct cgroup_subsys *ss;
6611 	int i, j, ret;
6612 
6613 	ret = cgroup_css_set_fork(kargs);
6614 	if (ret)
6615 		return ret;
6616 
6617 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6618 		ret = ss->can_fork(child, kargs->cset);
6619 		if (ret)
6620 			goto out_revert;
6621 	} while_each_subsys_mask();
6622 
6623 	return 0;
6624 
6625 out_revert:
6626 	for_each_subsys(ss, j) {
6627 		if (j >= i)
6628 			break;
6629 		if (ss->cancel_fork)
6630 			ss->cancel_fork(child, kargs->cset);
6631 	}
6632 
6633 	cgroup_css_set_put_fork(kargs);
6634 
6635 	return ret;
6636 }
6637 
6638 /**
6639  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6640  * @child: the child process
6641  * @kargs: the arguments passed to create the child process
6642  *
6643  * This calls the cancel_fork() callbacks if a fork failed *after*
6644  * cgroup_can_fork() succeeded and cleans up references we took to
6645  * prepare a new css_set for the child process in cgroup_can_fork().
6646  */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6647 void cgroup_cancel_fork(struct task_struct *child,
6648 			struct kernel_clone_args *kargs)
6649 {
6650 	struct cgroup_subsys *ss;
6651 	int i;
6652 
6653 	for_each_subsys(ss, i)
6654 		if (ss->cancel_fork)
6655 			ss->cancel_fork(child, kargs->cset);
6656 
6657 	cgroup_css_set_put_fork(kargs);
6658 }
6659 
6660 /**
6661  * cgroup_post_fork - finalize cgroup setup for the child process
6662  * @child: the child process
6663  * @kargs: the arguments passed to create the child process
6664  *
6665  * Attach the child process to its css_set calling the subsystem fork()
6666  * callbacks.
6667  */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6668 void cgroup_post_fork(struct task_struct *child,
6669 		      struct kernel_clone_args *kargs)
6670 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6671 {
6672 	unsigned long cgrp_flags = 0;
6673 	bool kill = false;
6674 	struct cgroup_subsys *ss;
6675 	struct css_set *cset;
6676 	int i;
6677 
6678 	cset = kargs->cset;
6679 	kargs->cset = NULL;
6680 
6681 	spin_lock_irq(&css_set_lock);
6682 
6683 	/* init tasks are special, only link regular threads */
6684 	if (likely(child->pid)) {
6685 		if (kargs->cgrp)
6686 			cgrp_flags = kargs->cgrp->flags;
6687 		else
6688 			cgrp_flags = cset->dfl_cgrp->flags;
6689 
6690 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6691 		cset->nr_tasks++;
6692 		css_set_move_task(child, NULL, cset, false);
6693 	} else {
6694 		put_css_set(cset);
6695 		cset = NULL;
6696 	}
6697 
6698 	if (!(child->flags & PF_KTHREAD)) {
6699 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6700 			/*
6701 			 * If the cgroup has to be frozen, the new task has
6702 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6703 			 * get the task into the frozen state.
6704 			 */
6705 			spin_lock(&child->sighand->siglock);
6706 			WARN_ON_ONCE(child->frozen);
6707 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6708 			spin_unlock(&child->sighand->siglock);
6709 
6710 			/*
6711 			 * Calling cgroup_update_frozen() isn't required here,
6712 			 * because it will be called anyway a bit later from
6713 			 * do_freezer_trap(). So we avoid cgroup's transient
6714 			 * switch from the frozen state and back.
6715 			 */
6716 		}
6717 
6718 		/*
6719 		 * If the cgroup is to be killed notice it now and take the
6720 		 * child down right after we finished preparing it for
6721 		 * userspace.
6722 		 */
6723 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6724 	}
6725 
6726 	spin_unlock_irq(&css_set_lock);
6727 
6728 	/*
6729 	 * Call ss->fork().  This must happen after @child is linked on
6730 	 * css_set; otherwise, @child might change state between ->fork()
6731 	 * and addition to css_set.
6732 	 */
6733 	do_each_subsys_mask(ss, i, have_fork_callback) {
6734 		ss->fork(child);
6735 	} while_each_subsys_mask();
6736 
6737 	/* Make the new cset the root_cset of the new cgroup namespace. */
6738 	if (kargs->flags & CLONE_NEWCGROUP) {
6739 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6740 
6741 		get_css_set(cset);
6742 		child->nsproxy->cgroup_ns->root_cset = cset;
6743 		put_css_set(rcset);
6744 	}
6745 
6746 	/* Cgroup has to be killed so take down child immediately. */
6747 	if (unlikely(kill))
6748 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6749 
6750 	cgroup_css_set_put_fork(kargs);
6751 }
6752 
6753 /**
6754  * cgroup_exit - detach cgroup from exiting task
6755  * @tsk: pointer to task_struct of exiting process
6756  *
6757  * Description: Detach cgroup from @tsk.
6758  *
6759  */
cgroup_exit(struct task_struct * tsk)6760 void cgroup_exit(struct task_struct *tsk)
6761 {
6762 	struct cgroup_subsys *ss;
6763 	struct css_set *cset;
6764 	int i;
6765 
6766 	spin_lock_irq(&css_set_lock);
6767 
6768 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6769 	cset = task_css_set(tsk);
6770 	css_set_move_task(tsk, cset, NULL, false);
6771 	cset->nr_tasks--;
6772 	/* matches the signal->live check in css_task_iter_advance() */
6773 	if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6774 		list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6775 
6776 	if (dl_task(tsk))
6777 		dec_dl_tasks_cs(tsk);
6778 
6779 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6780 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6781 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6782 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6783 
6784 	spin_unlock_irq(&css_set_lock);
6785 
6786 	/* see cgroup_post_fork() for details */
6787 	do_each_subsys_mask(ss, i, have_exit_callback) {
6788 		ss->exit(tsk);
6789 	} while_each_subsys_mask();
6790 }
6791 
cgroup_release(struct task_struct * task)6792 void cgroup_release(struct task_struct *task)
6793 {
6794 	struct cgroup_subsys *ss;
6795 	int ssid;
6796 
6797 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6798 		ss->release(task);
6799 	} while_each_subsys_mask();
6800 
6801 	if (!list_empty(&task->cg_list)) {
6802 		spin_lock_irq(&css_set_lock);
6803 		css_set_skip_task_iters(task_css_set(task), task);
6804 		list_del_init(&task->cg_list);
6805 		spin_unlock_irq(&css_set_lock);
6806 	}
6807 }
6808 
cgroup_free(struct task_struct * task)6809 void cgroup_free(struct task_struct *task)
6810 {
6811 	struct css_set *cset = task_css_set(task);
6812 	put_css_set(cset);
6813 }
6814 
cgroup_disable(char * str)6815 static int __init cgroup_disable(char *str)
6816 {
6817 	struct cgroup_subsys *ss;
6818 	char *token;
6819 	int i;
6820 
6821 	while ((token = strsep(&str, ",")) != NULL) {
6822 		if (!*token)
6823 			continue;
6824 
6825 		for_each_subsys(ss, i) {
6826 			if (strcmp(token, ss->name) &&
6827 			    strcmp(token, ss->legacy_name))
6828 				continue;
6829 
6830 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6831 			pr_info("Disabling %s control group subsystem\n",
6832 				ss->name);
6833 		}
6834 
6835 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6836 			if (strcmp(token, cgroup_opt_feature_names[i]))
6837 				continue;
6838 			cgroup_feature_disable_mask |= 1 << i;
6839 			pr_info("Disabling %s control group feature\n",
6840 				cgroup_opt_feature_names[i]);
6841 			break;
6842 		}
6843 	}
6844 	return 1;
6845 }
6846 __setup("cgroup_disable=", cgroup_disable);
6847 
enable_debug_cgroup(void)6848 void __init __weak enable_debug_cgroup(void) { }
6849 
enable_cgroup_debug(char * str)6850 static int __init enable_cgroup_debug(char *str)
6851 {
6852 	cgroup_debug = true;
6853 	enable_debug_cgroup();
6854 	return 1;
6855 }
6856 __setup("cgroup_debug", enable_cgroup_debug);
6857 
cgroup_favordynmods_setup(char * str)6858 static int __init cgroup_favordynmods_setup(char *str)
6859 {
6860 	return (kstrtobool(str, &have_favordynmods) == 0);
6861 }
6862 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6863 
6864 /**
6865  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6866  * @dentry: directory dentry of interest
6867  * @ss: subsystem of interest
6868  *
6869  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6870  * to get the corresponding css and return it.  If such css doesn't exist
6871  * or can't be pinned, an ERR_PTR value is returned.
6872  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6873 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6874 						       struct cgroup_subsys *ss)
6875 {
6876 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6877 	struct file_system_type *s_type = dentry->d_sb->s_type;
6878 	struct cgroup_subsys_state *css = NULL;
6879 	struct cgroup *cgrp;
6880 
6881 	/* is @dentry a cgroup dir? */
6882 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6883 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6884 		return ERR_PTR(-EBADF);
6885 
6886 	rcu_read_lock();
6887 
6888 	/*
6889 	 * This path doesn't originate from kernfs and @kn could already
6890 	 * have been or be removed at any point.  @kn->priv is RCU
6891 	 * protected for this access.  See css_release_work_fn() for details.
6892 	 */
6893 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6894 	if (cgrp)
6895 		css = cgroup_css(cgrp, ss);
6896 
6897 	if (!css || !css_tryget_online(css))
6898 		css = ERR_PTR(-ENOENT);
6899 
6900 	rcu_read_unlock();
6901 	return css;
6902 }
6903 
6904 /**
6905  * css_from_id - lookup css by id
6906  * @id: the cgroup id
6907  * @ss: cgroup subsys to be looked into
6908  *
6909  * Returns the css if there's valid one with @id, otherwise returns NULL.
6910  * Should be called under rcu_read_lock().
6911  */
css_from_id(int id,struct cgroup_subsys * ss)6912 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6913 {
6914 	WARN_ON_ONCE(!rcu_read_lock_held());
6915 	return idr_find(&ss->css_idr, id);
6916 }
6917 
6918 /**
6919  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6920  * @path: path on the default hierarchy
6921  *
6922  * Find the cgroup at @path on the default hierarchy, increment its
6923  * reference count and return it.  Returns pointer to the found cgroup on
6924  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6925  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6926  */
cgroup_get_from_path(const char * path)6927 struct cgroup *cgroup_get_from_path(const char *path)
6928 {
6929 	struct kernfs_node *kn;
6930 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6931 	struct cgroup *root_cgrp;
6932 
6933 	root_cgrp = current_cgns_cgroup_dfl();
6934 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6935 	if (!kn)
6936 		goto out;
6937 
6938 	if (kernfs_type(kn) != KERNFS_DIR) {
6939 		cgrp = ERR_PTR(-ENOTDIR);
6940 		goto out_kernfs;
6941 	}
6942 
6943 	rcu_read_lock();
6944 
6945 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6946 	if (!cgrp || !cgroup_tryget(cgrp))
6947 		cgrp = ERR_PTR(-ENOENT);
6948 
6949 	rcu_read_unlock();
6950 
6951 out_kernfs:
6952 	kernfs_put(kn);
6953 out:
6954 	return cgrp;
6955 }
6956 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6957 
6958 /**
6959  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6960  * @fd: fd obtained by open(cgroup_dir)
6961  *
6962  * Find the cgroup from a fd which should be obtained
6963  * by opening a cgroup directory.  Returns a pointer to the
6964  * cgroup on success. ERR_PTR is returned if the cgroup
6965  * cannot be found.
6966  */
cgroup_v1v2_get_from_fd(int fd)6967 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6968 {
6969 	struct cgroup *cgrp;
6970 	struct fd f = fdget_raw(fd);
6971 	if (!fd_file(f))
6972 		return ERR_PTR(-EBADF);
6973 
6974 	cgrp = cgroup_v1v2_get_from_file(fd_file(f));
6975 	fdput(f);
6976 	return cgrp;
6977 }
6978 
6979 /**
6980  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6981  * cgroup2.
6982  * @fd: fd obtained by open(cgroup2_dir)
6983  */
cgroup_get_from_fd(int fd)6984 struct cgroup *cgroup_get_from_fd(int fd)
6985 {
6986 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6987 
6988 	if (IS_ERR(cgrp))
6989 		return ERR_CAST(cgrp);
6990 
6991 	if (!cgroup_on_dfl(cgrp)) {
6992 		cgroup_put(cgrp);
6993 		return ERR_PTR(-EBADF);
6994 	}
6995 	return cgrp;
6996 }
6997 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6998 
power_of_ten(int power)6999 static u64 power_of_ten(int power)
7000 {
7001 	u64 v = 1;
7002 	while (power--)
7003 		v *= 10;
7004 	return v;
7005 }
7006 
7007 /**
7008  * cgroup_parse_float - parse a floating number
7009  * @input: input string
7010  * @dec_shift: number of decimal digits to shift
7011  * @v: output
7012  *
7013  * Parse a decimal floating point number in @input and store the result in
7014  * @v with decimal point right shifted @dec_shift times.  For example, if
7015  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7016  * Returns 0 on success, -errno otherwise.
7017  *
7018  * There's nothing cgroup specific about this function except that it's
7019  * currently the only user.
7020  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)7021 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7022 {
7023 	s64 whole, frac = 0;
7024 	int fstart = 0, fend = 0, flen;
7025 
7026 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7027 		return -EINVAL;
7028 	if (frac < 0)
7029 		return -EINVAL;
7030 
7031 	flen = fend > fstart ? fend - fstart : 0;
7032 	if (flen < dec_shift)
7033 		frac *= power_of_ten(dec_shift - flen);
7034 	else
7035 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7036 
7037 	*v = whole * power_of_ten(dec_shift) + frac;
7038 	return 0;
7039 }
7040 
7041 /*
7042  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
7043  * definition in cgroup-defs.h.
7044  */
7045 #ifdef CONFIG_SOCK_CGROUP_DATA
7046 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)7047 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7048 {
7049 	struct cgroup *cgroup;
7050 
7051 	rcu_read_lock();
7052 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
7053 	if (in_interrupt()) {
7054 		cgroup = &cgrp_dfl_root.cgrp;
7055 		cgroup_get(cgroup);
7056 		goto out;
7057 	}
7058 
7059 	while (true) {
7060 		struct css_set *cset;
7061 
7062 		cset = task_css_set(current);
7063 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7064 			cgroup = cset->dfl_cgrp;
7065 			break;
7066 		}
7067 		cpu_relax();
7068 	}
7069 out:
7070 	skcd->cgroup = cgroup;
7071 	cgroup_bpf_get(cgroup);
7072 	rcu_read_unlock();
7073 }
7074 
cgroup_sk_clone(struct sock_cgroup_data * skcd)7075 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7076 {
7077 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7078 
7079 	/*
7080 	 * We might be cloning a socket which is left in an empty
7081 	 * cgroup and the cgroup might have already been rmdir'd.
7082 	 * Don't use cgroup_get_live().
7083 	 */
7084 	cgroup_get(cgrp);
7085 	cgroup_bpf_get(cgrp);
7086 }
7087 
cgroup_sk_free(struct sock_cgroup_data * skcd)7088 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7089 {
7090 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7091 
7092 	cgroup_bpf_put(cgrp);
7093 	cgroup_put(cgrp);
7094 }
7095 
7096 #endif	/* CONFIG_SOCK_CGROUP_DATA */
7097 
7098 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)7099 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7100 				      ssize_t size, const char *prefix)
7101 {
7102 	struct cftype *cft;
7103 	ssize_t ret = 0;
7104 
7105 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7106 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7107 			continue;
7108 
7109 		if (prefix)
7110 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7111 
7112 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7113 
7114 		if (WARN_ON(ret >= size))
7115 			break;
7116 	}
7117 
7118 	return ret;
7119 }
7120 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7121 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7122 			      char *buf)
7123 {
7124 	struct cgroup_subsys *ss;
7125 	int ssid;
7126 	ssize_t ret = 0;
7127 
7128 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7129 				     PAGE_SIZE - ret, NULL);
7130 	if (cgroup_psi_enabled())
7131 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7132 					      PAGE_SIZE - ret, NULL);
7133 
7134 	for_each_subsys(ss, ssid)
7135 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7136 					      PAGE_SIZE - ret,
7137 					      cgroup_subsys_name[ssid]);
7138 
7139 	return ret;
7140 }
7141 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7142 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7143 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7144 			     char *buf)
7145 {
7146 	return snprintf(buf, PAGE_SIZE,
7147 			"nsdelegate\n"
7148 			"favordynmods\n"
7149 			"memory_localevents\n"
7150 			"memory_recursiveprot\n"
7151 			"memory_hugetlb_accounting\n"
7152 			"pids_localevents\n");
7153 }
7154 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7155 
7156 static struct attribute *cgroup_sysfs_attrs[] = {
7157 	&cgroup_delegate_attr.attr,
7158 	&cgroup_features_attr.attr,
7159 	NULL,
7160 };
7161 
7162 static const struct attribute_group cgroup_sysfs_attr_group = {
7163 	.attrs = cgroup_sysfs_attrs,
7164 	.name = "cgroup",
7165 };
7166 
cgroup_sysfs_init(void)7167 static int __init cgroup_sysfs_init(void)
7168 {
7169 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7170 }
7171 subsys_initcall(cgroup_sysfs_init);
7172 
7173 #endif /* CONFIG_SYSFS */
7174