1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Hardware-accelerated CRC-32 variants for Linux on z Systems
4  *
5  * Use the z/Architecture Vector Extension Facility to accelerate the
6  * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
7  * and Castagnoli.
8  *
9  * This CRC-32 implementation algorithm is bitreflected and processes
10  * the least-significant bit first (Little-Endian).
11  *
12  * Copyright IBM Corp. 2015
13  * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
14  */
15 
16 #include <linux/types.h>
17 #include <asm/fpu.h>
18 #include "crc32-vx.h"
19 
20 /* Vector register range containing CRC-32 constants */
21 #define CONST_PERM_LE2BE	9
22 #define CONST_R2R1		10
23 #define CONST_R4R3		11
24 #define CONST_R5		12
25 #define CONST_RU_POLY		13
26 #define CONST_CRC_POLY		14
27 
28 /*
29  * The CRC-32 constant block contains reduction constants to fold and
30  * process particular chunks of the input data stream in parallel.
31  *
32  * For the CRC-32 variants, the constants are precomputed according to
33  * these definitions:
34  *
35  *	R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
36  *	R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
37  *	R3 = [(x128+32 mod P'(x) << 32)]'   << 1
38  *	R4 = [(x128-32 mod P'(x) << 32)]'   << 1
39  *	R5 = [(x64 mod P'(x) << 32)]'	    << 1
40  *	R6 = [(x32 mod P'(x) << 32)]'	    << 1
41  *
42  *	The bitreflected Barret reduction constant, u', is defined as
43  *	the bit reversal of floor(x**64 / P(x)).
44  *
45  *	where P(x) is the polynomial in the normal domain and the P'(x) is the
46  *	polynomial in the reversed (bitreflected) domain.
47  *
48  * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
49  *
50  *	P(x)  = 0x04C11DB7
51  *	P'(x) = 0xEDB88320
52  *
53  * CRC-32C (Castagnoli) polynomials:
54  *
55  *	P(x)  = 0x1EDC6F41
56  *	P'(x) = 0x82F63B78
57  */
58 
59 static unsigned long constants_CRC_32_LE[] = {
60 	0x0f0e0d0c0b0a0908, 0x0706050403020100,	/* BE->LE mask */
61 	0x1c6e41596, 0x154442bd4,		/* R2, R1 */
62 	0x0ccaa009e, 0x1751997d0,		/* R4, R3 */
63 	0x0, 0x163cd6124,			/* R5 */
64 	0x0, 0x1f7011641,			/* u' */
65 	0x0, 0x1db710641			/* P'(x) << 1 */
66 };
67 
68 static unsigned long constants_CRC_32C_LE[] = {
69 	0x0f0e0d0c0b0a0908, 0x0706050403020100,	/* BE->LE mask */
70 	0x09e4addf8, 0x740eef02,		/* R2, R1 */
71 	0x14cd00bd6, 0xf20c0dfe,		/* R4, R3 */
72 	0x0, 0x0dd45aab8,			/* R5 */
73 	0x0, 0x0dea713f1,			/* u' */
74 	0x0, 0x105ec76f0			/* P'(x) << 1 */
75 };
76 
77 /**
78  * crc32_le_vgfm_generic - Compute CRC-32 (LE variant) with vector registers
79  * @crc: Initial CRC value, typically ~0.
80  * @buf: Input buffer pointer, performance might be improved if the
81  *	 buffer is on a doubleword boundary.
82  * @size: Size of the buffer, must be 64 bytes or greater.
83  * @constants: CRC-32 constant pool base pointer.
84  *
85  * Register usage:
86  *	V0:	  Initial CRC value and intermediate constants and results.
87  *	V1..V4:	  Data for CRC computation.
88  *	V5..V8:	  Next data chunks that are fetched from the input buffer.
89  *	V9:	  Constant for BE->LE conversion and shift operations
90  *	V10..V14: CRC-32 constants.
91  */
crc32_le_vgfm_generic(u32 crc,unsigned char const * buf,size_t size,unsigned long * constants)92 static u32 crc32_le_vgfm_generic(u32 crc, unsigned char const *buf, size_t size, unsigned long *constants)
93 {
94 	/* Load CRC-32 constants */
95 	fpu_vlm(CONST_PERM_LE2BE, CONST_CRC_POLY, constants);
96 
97 	/*
98 	 * Load the initial CRC value.
99 	 *
100 	 * The CRC value is loaded into the rightmost word of the
101 	 * vector register and is later XORed with the LSB portion
102 	 * of the loaded input data.
103 	 */
104 	fpu_vzero(0);			/* Clear V0 */
105 	fpu_vlvgf(0, crc, 3);		/* Load CRC into rightmost word */
106 
107 	/* Load a 64-byte data chunk and XOR with CRC */
108 	fpu_vlm(1, 4, buf);
109 	fpu_vperm(1, 1, 1, CONST_PERM_LE2BE);
110 	fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
111 	fpu_vperm(3, 3, 3, CONST_PERM_LE2BE);
112 	fpu_vperm(4, 4, 4, CONST_PERM_LE2BE);
113 
114 	fpu_vx(1, 0, 1);		/* V1 ^= CRC */
115 	buf += 64;
116 	size -= 64;
117 
118 	while (size >= 64) {
119 		fpu_vlm(5, 8, buf);
120 		fpu_vperm(5, 5, 5, CONST_PERM_LE2BE);
121 		fpu_vperm(6, 6, 6, CONST_PERM_LE2BE);
122 		fpu_vperm(7, 7, 7, CONST_PERM_LE2BE);
123 		fpu_vperm(8, 8, 8, CONST_PERM_LE2BE);
124 		/*
125 		 * Perform a GF(2) multiplication of the doublewords in V1 with
126 		 * the R1 and R2 reduction constants in V0.  The intermediate
127 		 * result is then folded (accumulated) with the next data chunk
128 		 * in V5 and stored in V1. Repeat this step for the register
129 		 * contents in V2, V3, and V4 respectively.
130 		 */
131 		fpu_vgfmag(1, CONST_R2R1, 1, 5);
132 		fpu_vgfmag(2, CONST_R2R1, 2, 6);
133 		fpu_vgfmag(3, CONST_R2R1, 3, 7);
134 		fpu_vgfmag(4, CONST_R2R1, 4, 8);
135 		buf += 64;
136 		size -= 64;
137 	}
138 
139 	/*
140 	 * Fold V1 to V4 into a single 128-bit value in V1.  Multiply V1 with R3
141 	 * and R4 and accumulating the next 128-bit chunk until a single 128-bit
142 	 * value remains.
143 	 */
144 	fpu_vgfmag(1, CONST_R4R3, 1, 2);
145 	fpu_vgfmag(1, CONST_R4R3, 1, 3);
146 	fpu_vgfmag(1, CONST_R4R3, 1, 4);
147 
148 	while (size >= 16) {
149 		fpu_vl(2, buf);
150 		fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
151 		fpu_vgfmag(1, CONST_R4R3, 1, 2);
152 		buf += 16;
153 		size -= 16;
154 	}
155 
156 	/*
157 	 * Set up a vector register for byte shifts.  The shift value must
158 	 * be loaded in bits 1-4 in byte element 7 of a vector register.
159 	 * Shift by 8 bytes: 0x40
160 	 * Shift by 4 bytes: 0x20
161 	 */
162 	fpu_vleib(9, 0x40, 7);
163 
164 	/*
165 	 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
166 	 * to move R4 into the rightmost doubleword and set the leftmost
167 	 * doubleword to 0x1.
168 	 */
169 	fpu_vsrlb(0, CONST_R4R3, 9);
170 	fpu_vleig(0, 1, 0);
171 
172 	/*
173 	 * Compute GF(2) product of V1 and V0.	The rightmost doubleword
174 	 * of V1 is multiplied with R4.  The leftmost doubleword of V1 is
175 	 * multiplied by 0x1 and is then XORed with rightmost product.
176 	 * Implicitly, the intermediate leftmost product becomes padded
177 	 */
178 	fpu_vgfmg(1, 0, 1);
179 
180 	/*
181 	 * Now do the final 32-bit fold by multiplying the rightmost word
182 	 * in V1 with R5 and XOR the result with the remaining bits in V1.
183 	 *
184 	 * To achieve this by a single VGFMAG, right shift V1 by a word
185 	 * and store the result in V2 which is then accumulated.  Use the
186 	 * vector unpack instruction to load the rightmost half of the
187 	 * doubleword into the rightmost doubleword element of V1; the other
188 	 * half is loaded in the leftmost doubleword.
189 	 * The vector register with CONST_R5 contains the R5 constant in the
190 	 * rightmost doubleword and the leftmost doubleword is zero to ignore
191 	 * the leftmost product of V1.
192 	 */
193 	fpu_vleib(9, 0x20, 7);		  /* Shift by words */
194 	fpu_vsrlb(2, 1, 9);		  /* Store remaining bits in V2 */
195 	fpu_vupllf(1, 1);		  /* Split rightmost doubleword */
196 	fpu_vgfmag(1, CONST_R5, 1, 2);	  /* V1 = (V1 * R5) XOR V2 */
197 
198 	/*
199 	 * Apply a Barret reduction to compute the final 32-bit CRC value.
200 	 *
201 	 * The input values to the Barret reduction are the degree-63 polynomial
202 	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
203 	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
204 	 * P(x).
205 	 *
206 	 * The Barret reduction algorithm is defined as:
207 	 *
208 	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
209 	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
210 	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
211 	 *
212 	 *  Note: The leftmost doubleword of vector register containing
213 	 *  CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
214 	 *  is zero and does not contribute to the final result.
215 	 */
216 
217 	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
218 	fpu_vupllf(2, 1);
219 	fpu_vgfmg(2, CONST_RU_POLY, 2);
220 
221 	/*
222 	 * Compute the GF(2) product of the CRC polynomial with T1(x) in
223 	 * V2 and XOR the intermediate result, T2(x), with the value in V1.
224 	 * The final result is stored in word element 2 of V2.
225 	 */
226 	fpu_vupllf(2, 2);
227 	fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
228 
229 	return fpu_vlgvf(2, 2);
230 }
231 
crc32_le_vgfm_16(u32 crc,unsigned char const * buf,size_t size)232 u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
233 {
234 	return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32_LE[0]);
235 }
236 
crc32c_le_vgfm_16(u32 crc,unsigned char const * buf,size_t size)237 u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
238 {
239 	return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32C_LE[0]);
240 }
241