1  /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
2   *
3   * Copyright 2016-2023 HabanaLabs, Ltd.
4   * All Rights Reserved.
5   *
6   */
7  
8  #ifndef HABANALABS_H_
9  #define HABANALABS_H_
10  
11  #include <drm/drm.h>
12  
13  /*
14   * Defines that are asic-specific but constitutes as ABI between kernel driver
15   * and userspace
16   */
17  #define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START		0x8000	/* 32KB */
18  #define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START	0x80	/* 128 bytes */
19  
20  /*
21   * 128 SOBs reserved for collective wait
22   * 16 SOBs reserved for sync stream
23   */
24  #define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT		144
25  
26  /*
27   * 64 monitors reserved for collective wait
28   * 8 monitors reserved for sync stream
29   */
30  #define GAUDI_FIRST_AVAILABLE_W_S_MONITOR		72
31  
32  /* Max number of elements in timestamps registration buffers */
33  #define	TS_MAX_ELEMENTS_NUM				(1 << 20) /* 1MB */
34  
35  /*
36   * Goya queue Numbering
37   *
38   * The external queues (PCI DMA channels) MUST be before the internal queues
39   * and each group (PCI DMA channels and internal) must be contiguous inside
40   * itself but there can be a gap between the two groups (although not
41   * recommended)
42   */
43  
44  enum goya_queue_id {
45  	GOYA_QUEUE_ID_DMA_0 = 0,
46  	GOYA_QUEUE_ID_DMA_1 = 1,
47  	GOYA_QUEUE_ID_DMA_2 = 2,
48  	GOYA_QUEUE_ID_DMA_3 = 3,
49  	GOYA_QUEUE_ID_DMA_4 = 4,
50  	GOYA_QUEUE_ID_CPU_PQ = 5,
51  	GOYA_QUEUE_ID_MME = 6,	/* Internal queues start here */
52  	GOYA_QUEUE_ID_TPC0 = 7,
53  	GOYA_QUEUE_ID_TPC1 = 8,
54  	GOYA_QUEUE_ID_TPC2 = 9,
55  	GOYA_QUEUE_ID_TPC3 = 10,
56  	GOYA_QUEUE_ID_TPC4 = 11,
57  	GOYA_QUEUE_ID_TPC5 = 12,
58  	GOYA_QUEUE_ID_TPC6 = 13,
59  	GOYA_QUEUE_ID_TPC7 = 14,
60  	GOYA_QUEUE_ID_SIZE
61  };
62  
63  /*
64   * Gaudi queue Numbering
65   * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
66   * Except one CPU queue, all the rest are internal queues.
67   */
68  
69  enum gaudi_queue_id {
70  	GAUDI_QUEUE_ID_DMA_0_0 = 0,	/* external */
71  	GAUDI_QUEUE_ID_DMA_0_1 = 1,	/* external */
72  	GAUDI_QUEUE_ID_DMA_0_2 = 2,	/* external */
73  	GAUDI_QUEUE_ID_DMA_0_3 = 3,	/* external */
74  	GAUDI_QUEUE_ID_DMA_1_0 = 4,	/* external */
75  	GAUDI_QUEUE_ID_DMA_1_1 = 5,	/* external */
76  	GAUDI_QUEUE_ID_DMA_1_2 = 6,	/* external */
77  	GAUDI_QUEUE_ID_DMA_1_3 = 7,	/* external */
78  	GAUDI_QUEUE_ID_CPU_PQ = 8,	/* CPU */
79  	GAUDI_QUEUE_ID_DMA_2_0 = 9,	/* internal */
80  	GAUDI_QUEUE_ID_DMA_2_1 = 10,	/* internal */
81  	GAUDI_QUEUE_ID_DMA_2_2 = 11,	/* internal */
82  	GAUDI_QUEUE_ID_DMA_2_3 = 12,	/* internal */
83  	GAUDI_QUEUE_ID_DMA_3_0 = 13,	/* internal */
84  	GAUDI_QUEUE_ID_DMA_3_1 = 14,	/* internal */
85  	GAUDI_QUEUE_ID_DMA_3_2 = 15,	/* internal */
86  	GAUDI_QUEUE_ID_DMA_3_3 = 16,	/* internal */
87  	GAUDI_QUEUE_ID_DMA_4_0 = 17,	/* internal */
88  	GAUDI_QUEUE_ID_DMA_4_1 = 18,	/* internal */
89  	GAUDI_QUEUE_ID_DMA_4_2 = 19,	/* internal */
90  	GAUDI_QUEUE_ID_DMA_4_3 = 20,	/* internal */
91  	GAUDI_QUEUE_ID_DMA_5_0 = 21,	/* internal */
92  	GAUDI_QUEUE_ID_DMA_5_1 = 22,	/* internal */
93  	GAUDI_QUEUE_ID_DMA_5_2 = 23,	/* internal */
94  	GAUDI_QUEUE_ID_DMA_5_3 = 24,	/* internal */
95  	GAUDI_QUEUE_ID_DMA_6_0 = 25,	/* internal */
96  	GAUDI_QUEUE_ID_DMA_6_1 = 26,	/* internal */
97  	GAUDI_QUEUE_ID_DMA_6_2 = 27,	/* internal */
98  	GAUDI_QUEUE_ID_DMA_6_3 = 28,	/* internal */
99  	GAUDI_QUEUE_ID_DMA_7_0 = 29,	/* internal */
100  	GAUDI_QUEUE_ID_DMA_7_1 = 30,	/* internal */
101  	GAUDI_QUEUE_ID_DMA_7_2 = 31,	/* internal */
102  	GAUDI_QUEUE_ID_DMA_7_3 = 32,	/* internal */
103  	GAUDI_QUEUE_ID_MME_0_0 = 33,	/* internal */
104  	GAUDI_QUEUE_ID_MME_0_1 = 34,	/* internal */
105  	GAUDI_QUEUE_ID_MME_0_2 = 35,	/* internal */
106  	GAUDI_QUEUE_ID_MME_0_3 = 36,	/* internal */
107  	GAUDI_QUEUE_ID_MME_1_0 = 37,	/* internal */
108  	GAUDI_QUEUE_ID_MME_1_1 = 38,	/* internal */
109  	GAUDI_QUEUE_ID_MME_1_2 = 39,	/* internal */
110  	GAUDI_QUEUE_ID_MME_1_3 = 40,	/* internal */
111  	GAUDI_QUEUE_ID_TPC_0_0 = 41,	/* internal */
112  	GAUDI_QUEUE_ID_TPC_0_1 = 42,	/* internal */
113  	GAUDI_QUEUE_ID_TPC_0_2 = 43,	/* internal */
114  	GAUDI_QUEUE_ID_TPC_0_3 = 44,	/* internal */
115  	GAUDI_QUEUE_ID_TPC_1_0 = 45,	/* internal */
116  	GAUDI_QUEUE_ID_TPC_1_1 = 46,	/* internal */
117  	GAUDI_QUEUE_ID_TPC_1_2 = 47,	/* internal */
118  	GAUDI_QUEUE_ID_TPC_1_3 = 48,	/* internal */
119  	GAUDI_QUEUE_ID_TPC_2_0 = 49,	/* internal */
120  	GAUDI_QUEUE_ID_TPC_2_1 = 50,	/* internal */
121  	GAUDI_QUEUE_ID_TPC_2_2 = 51,	/* internal */
122  	GAUDI_QUEUE_ID_TPC_2_3 = 52,	/* internal */
123  	GAUDI_QUEUE_ID_TPC_3_0 = 53,	/* internal */
124  	GAUDI_QUEUE_ID_TPC_3_1 = 54,	/* internal */
125  	GAUDI_QUEUE_ID_TPC_3_2 = 55,	/* internal */
126  	GAUDI_QUEUE_ID_TPC_3_3 = 56,	/* internal */
127  	GAUDI_QUEUE_ID_TPC_4_0 = 57,	/* internal */
128  	GAUDI_QUEUE_ID_TPC_4_1 = 58,	/* internal */
129  	GAUDI_QUEUE_ID_TPC_4_2 = 59,	/* internal */
130  	GAUDI_QUEUE_ID_TPC_4_3 = 60,	/* internal */
131  	GAUDI_QUEUE_ID_TPC_5_0 = 61,	/* internal */
132  	GAUDI_QUEUE_ID_TPC_5_1 = 62,	/* internal */
133  	GAUDI_QUEUE_ID_TPC_5_2 = 63,	/* internal */
134  	GAUDI_QUEUE_ID_TPC_5_3 = 64,	/* internal */
135  	GAUDI_QUEUE_ID_TPC_6_0 = 65,	/* internal */
136  	GAUDI_QUEUE_ID_TPC_6_1 = 66,	/* internal */
137  	GAUDI_QUEUE_ID_TPC_6_2 = 67,	/* internal */
138  	GAUDI_QUEUE_ID_TPC_6_3 = 68,	/* internal */
139  	GAUDI_QUEUE_ID_TPC_7_0 = 69,	/* internal */
140  	GAUDI_QUEUE_ID_TPC_7_1 = 70,	/* internal */
141  	GAUDI_QUEUE_ID_TPC_7_2 = 71,	/* internal */
142  	GAUDI_QUEUE_ID_TPC_7_3 = 72,	/* internal */
143  	GAUDI_QUEUE_ID_NIC_0_0 = 73,	/* internal */
144  	GAUDI_QUEUE_ID_NIC_0_1 = 74,	/* internal */
145  	GAUDI_QUEUE_ID_NIC_0_2 = 75,	/* internal */
146  	GAUDI_QUEUE_ID_NIC_0_3 = 76,	/* internal */
147  	GAUDI_QUEUE_ID_NIC_1_0 = 77,	/* internal */
148  	GAUDI_QUEUE_ID_NIC_1_1 = 78,	/* internal */
149  	GAUDI_QUEUE_ID_NIC_1_2 = 79,	/* internal */
150  	GAUDI_QUEUE_ID_NIC_1_3 = 80,	/* internal */
151  	GAUDI_QUEUE_ID_NIC_2_0 = 81,	/* internal */
152  	GAUDI_QUEUE_ID_NIC_2_1 = 82,	/* internal */
153  	GAUDI_QUEUE_ID_NIC_2_2 = 83,	/* internal */
154  	GAUDI_QUEUE_ID_NIC_2_3 = 84,	/* internal */
155  	GAUDI_QUEUE_ID_NIC_3_0 = 85,	/* internal */
156  	GAUDI_QUEUE_ID_NIC_3_1 = 86,	/* internal */
157  	GAUDI_QUEUE_ID_NIC_3_2 = 87,	/* internal */
158  	GAUDI_QUEUE_ID_NIC_3_3 = 88,	/* internal */
159  	GAUDI_QUEUE_ID_NIC_4_0 = 89,	/* internal */
160  	GAUDI_QUEUE_ID_NIC_4_1 = 90,	/* internal */
161  	GAUDI_QUEUE_ID_NIC_4_2 = 91,	/* internal */
162  	GAUDI_QUEUE_ID_NIC_4_3 = 92,	/* internal */
163  	GAUDI_QUEUE_ID_NIC_5_0 = 93,	/* internal */
164  	GAUDI_QUEUE_ID_NIC_5_1 = 94,	/* internal */
165  	GAUDI_QUEUE_ID_NIC_5_2 = 95,	/* internal */
166  	GAUDI_QUEUE_ID_NIC_5_3 = 96,	/* internal */
167  	GAUDI_QUEUE_ID_NIC_6_0 = 97,	/* internal */
168  	GAUDI_QUEUE_ID_NIC_6_1 = 98,	/* internal */
169  	GAUDI_QUEUE_ID_NIC_6_2 = 99,	/* internal */
170  	GAUDI_QUEUE_ID_NIC_6_3 = 100,	/* internal */
171  	GAUDI_QUEUE_ID_NIC_7_0 = 101,	/* internal */
172  	GAUDI_QUEUE_ID_NIC_7_1 = 102,	/* internal */
173  	GAUDI_QUEUE_ID_NIC_7_2 = 103,	/* internal */
174  	GAUDI_QUEUE_ID_NIC_7_3 = 104,	/* internal */
175  	GAUDI_QUEUE_ID_NIC_8_0 = 105,	/* internal */
176  	GAUDI_QUEUE_ID_NIC_8_1 = 106,	/* internal */
177  	GAUDI_QUEUE_ID_NIC_8_2 = 107,	/* internal */
178  	GAUDI_QUEUE_ID_NIC_8_3 = 108,	/* internal */
179  	GAUDI_QUEUE_ID_NIC_9_0 = 109,	/* internal */
180  	GAUDI_QUEUE_ID_NIC_9_1 = 110,	/* internal */
181  	GAUDI_QUEUE_ID_NIC_9_2 = 111,	/* internal */
182  	GAUDI_QUEUE_ID_NIC_9_3 = 112,	/* internal */
183  	GAUDI_QUEUE_ID_SIZE
184  };
185  
186  /*
187   * In GAUDI2 we have two modes of operation in regard to queues:
188   * 1. Legacy mode, where each QMAN exposes 4 streams to the user
189   * 2. F/W mode, where we use F/W to schedule the JOBS to the different queues.
190   *
191   * When in legacy mode, the user sends the queue id per JOB according to
192   * enum gaudi2_queue_id below.
193   *
194   * When in F/W mode, the user sends a stream id per Command Submission. The
195   * stream id is a running number from 0 up to (N-1), where N is the number
196   * of streams the F/W exposes and is passed to the user in
197   * struct hl_info_hw_ip_info
198   */
199  
200  enum gaudi2_queue_id {
201  	GAUDI2_QUEUE_ID_PDMA_0_0 = 0,
202  	GAUDI2_QUEUE_ID_PDMA_0_1 = 1,
203  	GAUDI2_QUEUE_ID_PDMA_0_2 = 2,
204  	GAUDI2_QUEUE_ID_PDMA_0_3 = 3,
205  	GAUDI2_QUEUE_ID_PDMA_1_0 = 4,
206  	GAUDI2_QUEUE_ID_PDMA_1_1 = 5,
207  	GAUDI2_QUEUE_ID_PDMA_1_2 = 6,
208  	GAUDI2_QUEUE_ID_PDMA_1_3 = 7,
209  	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0 = 8,
210  	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1 = 9,
211  	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2 = 10,
212  	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3 = 11,
213  	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0 = 12,
214  	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1 = 13,
215  	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2 = 14,
216  	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3 = 15,
217  	GAUDI2_QUEUE_ID_DCORE0_MME_0_0 = 16,
218  	GAUDI2_QUEUE_ID_DCORE0_MME_0_1 = 17,
219  	GAUDI2_QUEUE_ID_DCORE0_MME_0_2 = 18,
220  	GAUDI2_QUEUE_ID_DCORE0_MME_0_3 = 19,
221  	GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 = 20,
222  	GAUDI2_QUEUE_ID_DCORE0_TPC_0_1 = 21,
223  	GAUDI2_QUEUE_ID_DCORE0_TPC_0_2 = 22,
224  	GAUDI2_QUEUE_ID_DCORE0_TPC_0_3 = 23,
225  	GAUDI2_QUEUE_ID_DCORE0_TPC_1_0 = 24,
226  	GAUDI2_QUEUE_ID_DCORE0_TPC_1_1 = 25,
227  	GAUDI2_QUEUE_ID_DCORE0_TPC_1_2 = 26,
228  	GAUDI2_QUEUE_ID_DCORE0_TPC_1_3 = 27,
229  	GAUDI2_QUEUE_ID_DCORE0_TPC_2_0 = 28,
230  	GAUDI2_QUEUE_ID_DCORE0_TPC_2_1 = 29,
231  	GAUDI2_QUEUE_ID_DCORE0_TPC_2_2 = 30,
232  	GAUDI2_QUEUE_ID_DCORE0_TPC_2_3 = 31,
233  	GAUDI2_QUEUE_ID_DCORE0_TPC_3_0 = 32,
234  	GAUDI2_QUEUE_ID_DCORE0_TPC_3_1 = 33,
235  	GAUDI2_QUEUE_ID_DCORE0_TPC_3_2 = 34,
236  	GAUDI2_QUEUE_ID_DCORE0_TPC_3_3 = 35,
237  	GAUDI2_QUEUE_ID_DCORE0_TPC_4_0 = 36,
238  	GAUDI2_QUEUE_ID_DCORE0_TPC_4_1 = 37,
239  	GAUDI2_QUEUE_ID_DCORE0_TPC_4_2 = 38,
240  	GAUDI2_QUEUE_ID_DCORE0_TPC_4_3 = 39,
241  	GAUDI2_QUEUE_ID_DCORE0_TPC_5_0 = 40,
242  	GAUDI2_QUEUE_ID_DCORE0_TPC_5_1 = 41,
243  	GAUDI2_QUEUE_ID_DCORE0_TPC_5_2 = 42,
244  	GAUDI2_QUEUE_ID_DCORE0_TPC_5_3 = 43,
245  	GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 = 44,
246  	GAUDI2_QUEUE_ID_DCORE0_TPC_6_1 = 45,
247  	GAUDI2_QUEUE_ID_DCORE0_TPC_6_2 = 46,
248  	GAUDI2_QUEUE_ID_DCORE0_TPC_6_3 = 47,
249  	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0 = 48,
250  	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1 = 49,
251  	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2 = 50,
252  	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3 = 51,
253  	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0 = 52,
254  	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1 = 53,
255  	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2 = 54,
256  	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3 = 55,
257  	GAUDI2_QUEUE_ID_DCORE1_MME_0_0 = 56,
258  	GAUDI2_QUEUE_ID_DCORE1_MME_0_1 = 57,
259  	GAUDI2_QUEUE_ID_DCORE1_MME_0_2 = 58,
260  	GAUDI2_QUEUE_ID_DCORE1_MME_0_3 = 59,
261  	GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 = 60,
262  	GAUDI2_QUEUE_ID_DCORE1_TPC_0_1 = 61,
263  	GAUDI2_QUEUE_ID_DCORE1_TPC_0_2 = 62,
264  	GAUDI2_QUEUE_ID_DCORE1_TPC_0_3 = 63,
265  	GAUDI2_QUEUE_ID_DCORE1_TPC_1_0 = 64,
266  	GAUDI2_QUEUE_ID_DCORE1_TPC_1_1 = 65,
267  	GAUDI2_QUEUE_ID_DCORE1_TPC_1_2 = 66,
268  	GAUDI2_QUEUE_ID_DCORE1_TPC_1_3 = 67,
269  	GAUDI2_QUEUE_ID_DCORE1_TPC_2_0 = 68,
270  	GAUDI2_QUEUE_ID_DCORE1_TPC_2_1 = 69,
271  	GAUDI2_QUEUE_ID_DCORE1_TPC_2_2 = 70,
272  	GAUDI2_QUEUE_ID_DCORE1_TPC_2_3 = 71,
273  	GAUDI2_QUEUE_ID_DCORE1_TPC_3_0 = 72,
274  	GAUDI2_QUEUE_ID_DCORE1_TPC_3_1 = 73,
275  	GAUDI2_QUEUE_ID_DCORE1_TPC_3_2 = 74,
276  	GAUDI2_QUEUE_ID_DCORE1_TPC_3_3 = 75,
277  	GAUDI2_QUEUE_ID_DCORE1_TPC_4_0 = 76,
278  	GAUDI2_QUEUE_ID_DCORE1_TPC_4_1 = 77,
279  	GAUDI2_QUEUE_ID_DCORE1_TPC_4_2 = 78,
280  	GAUDI2_QUEUE_ID_DCORE1_TPC_4_3 = 79,
281  	GAUDI2_QUEUE_ID_DCORE1_TPC_5_0 = 80,
282  	GAUDI2_QUEUE_ID_DCORE1_TPC_5_1 = 81,
283  	GAUDI2_QUEUE_ID_DCORE1_TPC_5_2 = 82,
284  	GAUDI2_QUEUE_ID_DCORE1_TPC_5_3 = 83,
285  	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0 = 84,
286  	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1 = 85,
287  	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2 = 86,
288  	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3 = 87,
289  	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0 = 88,
290  	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1 = 89,
291  	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2 = 90,
292  	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3 = 91,
293  	GAUDI2_QUEUE_ID_DCORE2_MME_0_0 = 92,
294  	GAUDI2_QUEUE_ID_DCORE2_MME_0_1 = 93,
295  	GAUDI2_QUEUE_ID_DCORE2_MME_0_2 = 94,
296  	GAUDI2_QUEUE_ID_DCORE2_MME_0_3 = 95,
297  	GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 = 96,
298  	GAUDI2_QUEUE_ID_DCORE2_TPC_0_1 = 97,
299  	GAUDI2_QUEUE_ID_DCORE2_TPC_0_2 = 98,
300  	GAUDI2_QUEUE_ID_DCORE2_TPC_0_3 = 99,
301  	GAUDI2_QUEUE_ID_DCORE2_TPC_1_0 = 100,
302  	GAUDI2_QUEUE_ID_DCORE2_TPC_1_1 = 101,
303  	GAUDI2_QUEUE_ID_DCORE2_TPC_1_2 = 102,
304  	GAUDI2_QUEUE_ID_DCORE2_TPC_1_3 = 103,
305  	GAUDI2_QUEUE_ID_DCORE2_TPC_2_0 = 104,
306  	GAUDI2_QUEUE_ID_DCORE2_TPC_2_1 = 105,
307  	GAUDI2_QUEUE_ID_DCORE2_TPC_2_2 = 106,
308  	GAUDI2_QUEUE_ID_DCORE2_TPC_2_3 = 107,
309  	GAUDI2_QUEUE_ID_DCORE2_TPC_3_0 = 108,
310  	GAUDI2_QUEUE_ID_DCORE2_TPC_3_1 = 109,
311  	GAUDI2_QUEUE_ID_DCORE2_TPC_3_2 = 110,
312  	GAUDI2_QUEUE_ID_DCORE2_TPC_3_3 = 111,
313  	GAUDI2_QUEUE_ID_DCORE2_TPC_4_0 = 112,
314  	GAUDI2_QUEUE_ID_DCORE2_TPC_4_1 = 113,
315  	GAUDI2_QUEUE_ID_DCORE2_TPC_4_2 = 114,
316  	GAUDI2_QUEUE_ID_DCORE2_TPC_4_3 = 115,
317  	GAUDI2_QUEUE_ID_DCORE2_TPC_5_0 = 116,
318  	GAUDI2_QUEUE_ID_DCORE2_TPC_5_1 = 117,
319  	GAUDI2_QUEUE_ID_DCORE2_TPC_5_2 = 118,
320  	GAUDI2_QUEUE_ID_DCORE2_TPC_5_3 = 119,
321  	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0 = 120,
322  	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1 = 121,
323  	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2 = 122,
324  	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3 = 123,
325  	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0 = 124,
326  	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1 = 125,
327  	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2 = 126,
328  	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3 = 127,
329  	GAUDI2_QUEUE_ID_DCORE3_MME_0_0 = 128,
330  	GAUDI2_QUEUE_ID_DCORE3_MME_0_1 = 129,
331  	GAUDI2_QUEUE_ID_DCORE3_MME_0_2 = 130,
332  	GAUDI2_QUEUE_ID_DCORE3_MME_0_3 = 131,
333  	GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 = 132,
334  	GAUDI2_QUEUE_ID_DCORE3_TPC_0_1 = 133,
335  	GAUDI2_QUEUE_ID_DCORE3_TPC_0_2 = 134,
336  	GAUDI2_QUEUE_ID_DCORE3_TPC_0_3 = 135,
337  	GAUDI2_QUEUE_ID_DCORE3_TPC_1_0 = 136,
338  	GAUDI2_QUEUE_ID_DCORE3_TPC_1_1 = 137,
339  	GAUDI2_QUEUE_ID_DCORE3_TPC_1_2 = 138,
340  	GAUDI2_QUEUE_ID_DCORE3_TPC_1_3 = 139,
341  	GAUDI2_QUEUE_ID_DCORE3_TPC_2_0 = 140,
342  	GAUDI2_QUEUE_ID_DCORE3_TPC_2_1 = 141,
343  	GAUDI2_QUEUE_ID_DCORE3_TPC_2_2 = 142,
344  	GAUDI2_QUEUE_ID_DCORE3_TPC_2_3 = 143,
345  	GAUDI2_QUEUE_ID_DCORE3_TPC_3_0 = 144,
346  	GAUDI2_QUEUE_ID_DCORE3_TPC_3_1 = 145,
347  	GAUDI2_QUEUE_ID_DCORE3_TPC_3_2 = 146,
348  	GAUDI2_QUEUE_ID_DCORE3_TPC_3_3 = 147,
349  	GAUDI2_QUEUE_ID_DCORE3_TPC_4_0 = 148,
350  	GAUDI2_QUEUE_ID_DCORE3_TPC_4_1 = 149,
351  	GAUDI2_QUEUE_ID_DCORE3_TPC_4_2 = 150,
352  	GAUDI2_QUEUE_ID_DCORE3_TPC_4_3 = 151,
353  	GAUDI2_QUEUE_ID_DCORE3_TPC_5_0 = 152,
354  	GAUDI2_QUEUE_ID_DCORE3_TPC_5_1 = 153,
355  	GAUDI2_QUEUE_ID_DCORE3_TPC_5_2 = 154,
356  	GAUDI2_QUEUE_ID_DCORE3_TPC_5_3 = 155,
357  	GAUDI2_QUEUE_ID_NIC_0_0 = 156,
358  	GAUDI2_QUEUE_ID_NIC_0_1 = 157,
359  	GAUDI2_QUEUE_ID_NIC_0_2 = 158,
360  	GAUDI2_QUEUE_ID_NIC_0_3 = 159,
361  	GAUDI2_QUEUE_ID_NIC_1_0 = 160,
362  	GAUDI2_QUEUE_ID_NIC_1_1 = 161,
363  	GAUDI2_QUEUE_ID_NIC_1_2 = 162,
364  	GAUDI2_QUEUE_ID_NIC_1_3 = 163,
365  	GAUDI2_QUEUE_ID_NIC_2_0 = 164,
366  	GAUDI2_QUEUE_ID_NIC_2_1 = 165,
367  	GAUDI2_QUEUE_ID_NIC_2_2 = 166,
368  	GAUDI2_QUEUE_ID_NIC_2_3 = 167,
369  	GAUDI2_QUEUE_ID_NIC_3_0 = 168,
370  	GAUDI2_QUEUE_ID_NIC_3_1 = 169,
371  	GAUDI2_QUEUE_ID_NIC_3_2 = 170,
372  	GAUDI2_QUEUE_ID_NIC_3_3 = 171,
373  	GAUDI2_QUEUE_ID_NIC_4_0 = 172,
374  	GAUDI2_QUEUE_ID_NIC_4_1 = 173,
375  	GAUDI2_QUEUE_ID_NIC_4_2 = 174,
376  	GAUDI2_QUEUE_ID_NIC_4_3 = 175,
377  	GAUDI2_QUEUE_ID_NIC_5_0 = 176,
378  	GAUDI2_QUEUE_ID_NIC_5_1 = 177,
379  	GAUDI2_QUEUE_ID_NIC_5_2 = 178,
380  	GAUDI2_QUEUE_ID_NIC_5_3 = 179,
381  	GAUDI2_QUEUE_ID_NIC_6_0 = 180,
382  	GAUDI2_QUEUE_ID_NIC_6_1 = 181,
383  	GAUDI2_QUEUE_ID_NIC_6_2 = 182,
384  	GAUDI2_QUEUE_ID_NIC_6_3 = 183,
385  	GAUDI2_QUEUE_ID_NIC_7_0 = 184,
386  	GAUDI2_QUEUE_ID_NIC_7_1 = 185,
387  	GAUDI2_QUEUE_ID_NIC_7_2 = 186,
388  	GAUDI2_QUEUE_ID_NIC_7_3 = 187,
389  	GAUDI2_QUEUE_ID_NIC_8_0 = 188,
390  	GAUDI2_QUEUE_ID_NIC_8_1 = 189,
391  	GAUDI2_QUEUE_ID_NIC_8_2 = 190,
392  	GAUDI2_QUEUE_ID_NIC_8_3 = 191,
393  	GAUDI2_QUEUE_ID_NIC_9_0 = 192,
394  	GAUDI2_QUEUE_ID_NIC_9_1 = 193,
395  	GAUDI2_QUEUE_ID_NIC_9_2 = 194,
396  	GAUDI2_QUEUE_ID_NIC_9_3 = 195,
397  	GAUDI2_QUEUE_ID_NIC_10_0 = 196,
398  	GAUDI2_QUEUE_ID_NIC_10_1 = 197,
399  	GAUDI2_QUEUE_ID_NIC_10_2 = 198,
400  	GAUDI2_QUEUE_ID_NIC_10_3 = 199,
401  	GAUDI2_QUEUE_ID_NIC_11_0 = 200,
402  	GAUDI2_QUEUE_ID_NIC_11_1 = 201,
403  	GAUDI2_QUEUE_ID_NIC_11_2 = 202,
404  	GAUDI2_QUEUE_ID_NIC_11_3 = 203,
405  	GAUDI2_QUEUE_ID_NIC_12_0 = 204,
406  	GAUDI2_QUEUE_ID_NIC_12_1 = 205,
407  	GAUDI2_QUEUE_ID_NIC_12_2 = 206,
408  	GAUDI2_QUEUE_ID_NIC_12_3 = 207,
409  	GAUDI2_QUEUE_ID_NIC_13_0 = 208,
410  	GAUDI2_QUEUE_ID_NIC_13_1 = 209,
411  	GAUDI2_QUEUE_ID_NIC_13_2 = 210,
412  	GAUDI2_QUEUE_ID_NIC_13_3 = 211,
413  	GAUDI2_QUEUE_ID_NIC_14_0 = 212,
414  	GAUDI2_QUEUE_ID_NIC_14_1 = 213,
415  	GAUDI2_QUEUE_ID_NIC_14_2 = 214,
416  	GAUDI2_QUEUE_ID_NIC_14_3 = 215,
417  	GAUDI2_QUEUE_ID_NIC_15_0 = 216,
418  	GAUDI2_QUEUE_ID_NIC_15_1 = 217,
419  	GAUDI2_QUEUE_ID_NIC_15_2 = 218,
420  	GAUDI2_QUEUE_ID_NIC_15_3 = 219,
421  	GAUDI2_QUEUE_ID_NIC_16_0 = 220,
422  	GAUDI2_QUEUE_ID_NIC_16_1 = 221,
423  	GAUDI2_QUEUE_ID_NIC_16_2 = 222,
424  	GAUDI2_QUEUE_ID_NIC_16_3 = 223,
425  	GAUDI2_QUEUE_ID_NIC_17_0 = 224,
426  	GAUDI2_QUEUE_ID_NIC_17_1 = 225,
427  	GAUDI2_QUEUE_ID_NIC_17_2 = 226,
428  	GAUDI2_QUEUE_ID_NIC_17_3 = 227,
429  	GAUDI2_QUEUE_ID_NIC_18_0 = 228,
430  	GAUDI2_QUEUE_ID_NIC_18_1 = 229,
431  	GAUDI2_QUEUE_ID_NIC_18_2 = 230,
432  	GAUDI2_QUEUE_ID_NIC_18_3 = 231,
433  	GAUDI2_QUEUE_ID_NIC_19_0 = 232,
434  	GAUDI2_QUEUE_ID_NIC_19_1 = 233,
435  	GAUDI2_QUEUE_ID_NIC_19_2 = 234,
436  	GAUDI2_QUEUE_ID_NIC_19_3 = 235,
437  	GAUDI2_QUEUE_ID_NIC_20_0 = 236,
438  	GAUDI2_QUEUE_ID_NIC_20_1 = 237,
439  	GAUDI2_QUEUE_ID_NIC_20_2 = 238,
440  	GAUDI2_QUEUE_ID_NIC_20_3 = 239,
441  	GAUDI2_QUEUE_ID_NIC_21_0 = 240,
442  	GAUDI2_QUEUE_ID_NIC_21_1 = 241,
443  	GAUDI2_QUEUE_ID_NIC_21_2 = 242,
444  	GAUDI2_QUEUE_ID_NIC_21_3 = 243,
445  	GAUDI2_QUEUE_ID_NIC_22_0 = 244,
446  	GAUDI2_QUEUE_ID_NIC_22_1 = 245,
447  	GAUDI2_QUEUE_ID_NIC_22_2 = 246,
448  	GAUDI2_QUEUE_ID_NIC_22_3 = 247,
449  	GAUDI2_QUEUE_ID_NIC_23_0 = 248,
450  	GAUDI2_QUEUE_ID_NIC_23_1 = 249,
451  	GAUDI2_QUEUE_ID_NIC_23_2 = 250,
452  	GAUDI2_QUEUE_ID_NIC_23_3 = 251,
453  	GAUDI2_QUEUE_ID_ROT_0_0 = 252,
454  	GAUDI2_QUEUE_ID_ROT_0_1 = 253,
455  	GAUDI2_QUEUE_ID_ROT_0_2 = 254,
456  	GAUDI2_QUEUE_ID_ROT_0_3 = 255,
457  	GAUDI2_QUEUE_ID_ROT_1_0 = 256,
458  	GAUDI2_QUEUE_ID_ROT_1_1 = 257,
459  	GAUDI2_QUEUE_ID_ROT_1_2 = 258,
460  	GAUDI2_QUEUE_ID_ROT_1_3 = 259,
461  	GAUDI2_QUEUE_ID_CPU_PQ = 260,
462  	GAUDI2_QUEUE_ID_SIZE
463  };
464  
465  /*
466   * Engine Numbering
467   *
468   * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
469   */
470  
471  enum goya_engine_id {
472  	GOYA_ENGINE_ID_DMA_0 = 0,
473  	GOYA_ENGINE_ID_DMA_1,
474  	GOYA_ENGINE_ID_DMA_2,
475  	GOYA_ENGINE_ID_DMA_3,
476  	GOYA_ENGINE_ID_DMA_4,
477  	GOYA_ENGINE_ID_MME_0,
478  	GOYA_ENGINE_ID_TPC_0,
479  	GOYA_ENGINE_ID_TPC_1,
480  	GOYA_ENGINE_ID_TPC_2,
481  	GOYA_ENGINE_ID_TPC_3,
482  	GOYA_ENGINE_ID_TPC_4,
483  	GOYA_ENGINE_ID_TPC_5,
484  	GOYA_ENGINE_ID_TPC_6,
485  	GOYA_ENGINE_ID_TPC_7,
486  	GOYA_ENGINE_ID_SIZE
487  };
488  
489  enum gaudi_engine_id {
490  	GAUDI_ENGINE_ID_DMA_0 = 0,
491  	GAUDI_ENGINE_ID_DMA_1,
492  	GAUDI_ENGINE_ID_DMA_2,
493  	GAUDI_ENGINE_ID_DMA_3,
494  	GAUDI_ENGINE_ID_DMA_4,
495  	GAUDI_ENGINE_ID_DMA_5,
496  	GAUDI_ENGINE_ID_DMA_6,
497  	GAUDI_ENGINE_ID_DMA_7,
498  	GAUDI_ENGINE_ID_MME_0,
499  	GAUDI_ENGINE_ID_MME_1,
500  	GAUDI_ENGINE_ID_MME_2,
501  	GAUDI_ENGINE_ID_MME_3,
502  	GAUDI_ENGINE_ID_TPC_0,
503  	GAUDI_ENGINE_ID_TPC_1,
504  	GAUDI_ENGINE_ID_TPC_2,
505  	GAUDI_ENGINE_ID_TPC_3,
506  	GAUDI_ENGINE_ID_TPC_4,
507  	GAUDI_ENGINE_ID_TPC_5,
508  	GAUDI_ENGINE_ID_TPC_6,
509  	GAUDI_ENGINE_ID_TPC_7,
510  	GAUDI_ENGINE_ID_NIC_0,
511  	GAUDI_ENGINE_ID_NIC_1,
512  	GAUDI_ENGINE_ID_NIC_2,
513  	GAUDI_ENGINE_ID_NIC_3,
514  	GAUDI_ENGINE_ID_NIC_4,
515  	GAUDI_ENGINE_ID_NIC_5,
516  	GAUDI_ENGINE_ID_NIC_6,
517  	GAUDI_ENGINE_ID_NIC_7,
518  	GAUDI_ENGINE_ID_NIC_8,
519  	GAUDI_ENGINE_ID_NIC_9,
520  	GAUDI_ENGINE_ID_SIZE
521  };
522  
523  enum gaudi2_engine_id {
524  	GAUDI2_DCORE0_ENGINE_ID_EDMA_0 = 0,
525  	GAUDI2_DCORE0_ENGINE_ID_EDMA_1,
526  	GAUDI2_DCORE0_ENGINE_ID_MME,
527  	GAUDI2_DCORE0_ENGINE_ID_TPC_0,
528  	GAUDI2_DCORE0_ENGINE_ID_TPC_1,
529  	GAUDI2_DCORE0_ENGINE_ID_TPC_2,
530  	GAUDI2_DCORE0_ENGINE_ID_TPC_3,
531  	GAUDI2_DCORE0_ENGINE_ID_TPC_4,
532  	GAUDI2_DCORE0_ENGINE_ID_TPC_5,
533  	GAUDI2_DCORE0_ENGINE_ID_DEC_0,
534  	GAUDI2_DCORE0_ENGINE_ID_DEC_1,
535  	GAUDI2_DCORE1_ENGINE_ID_EDMA_0,
536  	GAUDI2_DCORE1_ENGINE_ID_EDMA_1,
537  	GAUDI2_DCORE1_ENGINE_ID_MME,
538  	GAUDI2_DCORE1_ENGINE_ID_TPC_0,
539  	GAUDI2_DCORE1_ENGINE_ID_TPC_1,
540  	GAUDI2_DCORE1_ENGINE_ID_TPC_2,
541  	GAUDI2_DCORE1_ENGINE_ID_TPC_3,
542  	GAUDI2_DCORE1_ENGINE_ID_TPC_4,
543  	GAUDI2_DCORE1_ENGINE_ID_TPC_5,
544  	GAUDI2_DCORE1_ENGINE_ID_DEC_0,
545  	GAUDI2_DCORE1_ENGINE_ID_DEC_1,
546  	GAUDI2_DCORE2_ENGINE_ID_EDMA_0,
547  	GAUDI2_DCORE2_ENGINE_ID_EDMA_1,
548  	GAUDI2_DCORE2_ENGINE_ID_MME,
549  	GAUDI2_DCORE2_ENGINE_ID_TPC_0,
550  	GAUDI2_DCORE2_ENGINE_ID_TPC_1,
551  	GAUDI2_DCORE2_ENGINE_ID_TPC_2,
552  	GAUDI2_DCORE2_ENGINE_ID_TPC_3,
553  	GAUDI2_DCORE2_ENGINE_ID_TPC_4,
554  	GAUDI2_DCORE2_ENGINE_ID_TPC_5,
555  	GAUDI2_DCORE2_ENGINE_ID_DEC_0,
556  	GAUDI2_DCORE2_ENGINE_ID_DEC_1,
557  	GAUDI2_DCORE3_ENGINE_ID_EDMA_0,
558  	GAUDI2_DCORE3_ENGINE_ID_EDMA_1,
559  	GAUDI2_DCORE3_ENGINE_ID_MME,
560  	GAUDI2_DCORE3_ENGINE_ID_TPC_0,
561  	GAUDI2_DCORE3_ENGINE_ID_TPC_1,
562  	GAUDI2_DCORE3_ENGINE_ID_TPC_2,
563  	GAUDI2_DCORE3_ENGINE_ID_TPC_3,
564  	GAUDI2_DCORE3_ENGINE_ID_TPC_4,
565  	GAUDI2_DCORE3_ENGINE_ID_TPC_5,
566  	GAUDI2_DCORE3_ENGINE_ID_DEC_0,
567  	GAUDI2_DCORE3_ENGINE_ID_DEC_1,
568  	GAUDI2_DCORE0_ENGINE_ID_TPC_6,
569  	GAUDI2_ENGINE_ID_PDMA_0,
570  	GAUDI2_ENGINE_ID_PDMA_1,
571  	GAUDI2_ENGINE_ID_ROT_0,
572  	GAUDI2_ENGINE_ID_ROT_1,
573  	GAUDI2_PCIE_ENGINE_ID_DEC_0,
574  	GAUDI2_PCIE_ENGINE_ID_DEC_1,
575  	GAUDI2_ENGINE_ID_NIC0_0,
576  	GAUDI2_ENGINE_ID_NIC0_1,
577  	GAUDI2_ENGINE_ID_NIC1_0,
578  	GAUDI2_ENGINE_ID_NIC1_1,
579  	GAUDI2_ENGINE_ID_NIC2_0,
580  	GAUDI2_ENGINE_ID_NIC2_1,
581  	GAUDI2_ENGINE_ID_NIC3_0,
582  	GAUDI2_ENGINE_ID_NIC3_1,
583  	GAUDI2_ENGINE_ID_NIC4_0,
584  	GAUDI2_ENGINE_ID_NIC4_1,
585  	GAUDI2_ENGINE_ID_NIC5_0,
586  	GAUDI2_ENGINE_ID_NIC5_1,
587  	GAUDI2_ENGINE_ID_NIC6_0,
588  	GAUDI2_ENGINE_ID_NIC6_1,
589  	GAUDI2_ENGINE_ID_NIC7_0,
590  	GAUDI2_ENGINE_ID_NIC7_1,
591  	GAUDI2_ENGINE_ID_NIC8_0,
592  	GAUDI2_ENGINE_ID_NIC8_1,
593  	GAUDI2_ENGINE_ID_NIC9_0,
594  	GAUDI2_ENGINE_ID_NIC9_1,
595  	GAUDI2_ENGINE_ID_NIC10_0,
596  	GAUDI2_ENGINE_ID_NIC10_1,
597  	GAUDI2_ENGINE_ID_NIC11_0,
598  	GAUDI2_ENGINE_ID_NIC11_1,
599  	GAUDI2_ENGINE_ID_PCIE,
600  	GAUDI2_ENGINE_ID_PSOC,
601  	GAUDI2_ENGINE_ID_ARC_FARM,
602  	GAUDI2_ENGINE_ID_KDMA,
603  	GAUDI2_ENGINE_ID_SIZE
604  };
605  
606  /*
607   * ASIC specific PLL index
608   *
609   * Used to retrieve in frequency info of different IPs via HL_INFO_PLL_FREQUENCY under
610   * DRM_IOCTL_HL_INFO IOCTL.
611   * The enums need to be used as an index in struct hl_pll_frequency_info.
612   */
613  
614  enum hl_goya_pll_index {
615  	HL_GOYA_CPU_PLL = 0,
616  	HL_GOYA_IC_PLL,
617  	HL_GOYA_MC_PLL,
618  	HL_GOYA_MME_PLL,
619  	HL_GOYA_PCI_PLL,
620  	HL_GOYA_EMMC_PLL,
621  	HL_GOYA_TPC_PLL,
622  	HL_GOYA_PLL_MAX
623  };
624  
625  enum hl_gaudi_pll_index {
626  	HL_GAUDI_CPU_PLL = 0,
627  	HL_GAUDI_PCI_PLL,
628  	HL_GAUDI_SRAM_PLL,
629  	HL_GAUDI_HBM_PLL,
630  	HL_GAUDI_NIC_PLL,
631  	HL_GAUDI_DMA_PLL,
632  	HL_GAUDI_MESH_PLL,
633  	HL_GAUDI_MME_PLL,
634  	HL_GAUDI_TPC_PLL,
635  	HL_GAUDI_IF_PLL,
636  	HL_GAUDI_PLL_MAX
637  };
638  
639  enum hl_gaudi2_pll_index {
640  	HL_GAUDI2_CPU_PLL = 0,
641  	HL_GAUDI2_PCI_PLL,
642  	HL_GAUDI2_SRAM_PLL,
643  	HL_GAUDI2_HBM_PLL,
644  	HL_GAUDI2_NIC_PLL,
645  	HL_GAUDI2_DMA_PLL,
646  	HL_GAUDI2_MESH_PLL,
647  	HL_GAUDI2_MME_PLL,
648  	HL_GAUDI2_TPC_PLL,
649  	HL_GAUDI2_IF_PLL,
650  	HL_GAUDI2_VID_PLL,
651  	HL_GAUDI2_MSS_PLL,
652  	HL_GAUDI2_PLL_MAX
653  };
654  
655  /**
656   * enum hl_goya_dma_direction - Direction of DMA operation inside a LIN_DMA packet that is
657   *                              submitted to the GOYA's DMA QMAN. This attribute is not relevant
658   *                              to the H/W but the kernel driver use it to parse the packet's
659   *                              addresses and patch/validate them.
660   * @HL_DMA_HOST_TO_DRAM: DMA operation from Host memory to GOYA's DDR.
661   * @HL_DMA_HOST_TO_SRAM: DMA operation from Host memory to GOYA's SRAM.
662   * @HL_DMA_DRAM_TO_SRAM: DMA operation from GOYA's DDR to GOYA's SRAM.
663   * @HL_DMA_SRAM_TO_DRAM: DMA operation from GOYA's SRAM to GOYA's DDR.
664   * @HL_DMA_SRAM_TO_HOST: DMA operation from GOYA's SRAM to Host memory.
665   * @HL_DMA_DRAM_TO_HOST: DMA operation from GOYA's DDR to Host memory.
666   * @HL_DMA_DRAM_TO_DRAM: DMA operation from GOYA's DDR to GOYA's DDR.
667   * @HL_DMA_SRAM_TO_SRAM: DMA operation from GOYA's SRAM to GOYA's SRAM.
668   * @HL_DMA_ENUM_MAX: number of values in enum
669   */
670  enum hl_goya_dma_direction {
671  	HL_DMA_HOST_TO_DRAM,
672  	HL_DMA_HOST_TO_SRAM,
673  	HL_DMA_DRAM_TO_SRAM,
674  	HL_DMA_SRAM_TO_DRAM,
675  	HL_DMA_SRAM_TO_HOST,
676  	HL_DMA_DRAM_TO_HOST,
677  	HL_DMA_DRAM_TO_DRAM,
678  	HL_DMA_SRAM_TO_SRAM,
679  	HL_DMA_ENUM_MAX
680  };
681  
682  /**
683   * enum hl_device_status - Device status information.
684   * @HL_DEVICE_STATUS_OPERATIONAL: Device is operational.
685   * @HL_DEVICE_STATUS_IN_RESET: Device is currently during reset.
686   * @HL_DEVICE_STATUS_MALFUNCTION: Device is unusable.
687   * @HL_DEVICE_STATUS_NEEDS_RESET: Device needs reset because auto reset was disabled.
688   * @HL_DEVICE_STATUS_IN_DEVICE_CREATION: Device is operational but its creation is still in
689   *                                       progress.
690   * @HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: Device is currently during reset that was
691   *                                                  triggered because the user released the device
692   * @HL_DEVICE_STATUS_LAST: Last status.
693   */
694  enum hl_device_status {
695  	HL_DEVICE_STATUS_OPERATIONAL,
696  	HL_DEVICE_STATUS_IN_RESET,
697  	HL_DEVICE_STATUS_MALFUNCTION,
698  	HL_DEVICE_STATUS_NEEDS_RESET,
699  	HL_DEVICE_STATUS_IN_DEVICE_CREATION,
700  	HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE,
701  	HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE
702  };
703  
704  enum hl_server_type {
705  	HL_SERVER_TYPE_UNKNOWN = 0,
706  	HL_SERVER_GAUDI_HLS1 = 1,
707  	HL_SERVER_GAUDI_HLS1H = 2,
708  	HL_SERVER_GAUDI_TYPE1 = 3,
709  	HL_SERVER_GAUDI_TYPE2 = 4,
710  	HL_SERVER_GAUDI2_HLS2 = 5,
711  	HL_SERVER_GAUDI2_TYPE1 = 7
712  };
713  
714  /*
715   * Notifier event values - for the notification mechanism and the HL_INFO_GET_EVENTS command
716   *
717   * HL_NOTIFIER_EVENT_TPC_ASSERT		- Indicates TPC assert event
718   * HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	- Indicates undefined operation code
719   * HL_NOTIFIER_EVENT_DEVICE_RESET	- Indicates device requires a reset
720   * HL_NOTIFIER_EVENT_CS_TIMEOUT		- Indicates CS timeout error
721   * HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	- Indicates device is unavailable
722   * HL_NOTIFIER_EVENT_USER_ENGINE_ERR	- Indicates device engine in error state
723   * HL_NOTIFIER_EVENT_GENERAL_HW_ERR     - Indicates device HW error
724   * HL_NOTIFIER_EVENT_RAZWI              - Indicates razwi happened
725   * HL_NOTIFIER_EVENT_PAGE_FAULT         - Indicates page fault happened
726   * HL_NOTIFIER_EVENT_CRITICAL_HW_ERR    - Indicates a HW error that requires SW abort and
727   *                                        HW reset
728   * HL_NOTIFIER_EVENT_CRITICAL_FW_ERR    - Indicates a FW error that requires SW abort and
729   *                                        HW reset
730   */
731  #define HL_NOTIFIER_EVENT_TPC_ASSERT		(1ULL << 0)
732  #define HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	(1ULL << 1)
733  #define HL_NOTIFIER_EVENT_DEVICE_RESET		(1ULL << 2)
734  #define HL_NOTIFIER_EVENT_CS_TIMEOUT		(1ULL << 3)
735  #define HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	(1ULL << 4)
736  #define HL_NOTIFIER_EVENT_USER_ENGINE_ERR	(1ULL << 5)
737  #define HL_NOTIFIER_EVENT_GENERAL_HW_ERR	(1ULL << 6)
738  #define HL_NOTIFIER_EVENT_RAZWI			(1ULL << 7)
739  #define HL_NOTIFIER_EVENT_PAGE_FAULT		(1ULL << 8)
740  #define HL_NOTIFIER_EVENT_CRITICL_HW_ERR	(1ULL << 9)
741  #define HL_NOTIFIER_EVENT_CRITICL_FW_ERR	(1ULL << 10)
742  
743  /* Opcode for management ioctl
744   *
745   * HW_IP_INFO            - Receive information about different IP blocks in the
746   *                         device.
747   * HL_INFO_HW_EVENTS     - Receive an array describing how many times each event
748   *                         occurred since the last hard reset.
749   * HL_INFO_DRAM_USAGE    - Retrieve the dram usage inside the device and of the
750   *                         specific context. This is relevant only for devices
751   *                         where the dram is managed by the kernel driver
752   * HL_INFO_HW_IDLE       - Retrieve information about the idle status of each
753   *                         internal engine.
754   * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
755   *                         require an open context.
756   * HL_INFO_DEVICE_UTILIZATION  - Retrieve the total utilization of the device
757   *                               over the last period specified by the user.
758   *                               The period can be between 100ms to 1s, in
759   *                               resolution of 100ms. The return value is a
760   *                               percentage of the utilization rate.
761   * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
762   *                               event occurred since the driver was loaded.
763   * HL_INFO_CLK_RATE            - Retrieve the current and maximum clock rate
764   *                               of the device in MHz. The maximum clock rate is
765   *                               configurable via sysfs parameter
766   * HL_INFO_RESET_COUNT   - Retrieve the counts of the soft and hard reset
767   *                         operations performed on the device since the last
768   *                         time the driver was loaded.
769   * HL_INFO_TIME_SYNC     - Retrieve the device's time alongside the host's time
770   *                         for synchronization.
771   * HL_INFO_CS_COUNTERS   - Retrieve command submission counters
772   * HL_INFO_PCI_COUNTERS  - Retrieve PCI counters
773   * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
774   * HL_INFO_SYNC_MANAGER  - Retrieve sync manager info per dcore
775   * HL_INFO_TOTAL_ENERGY  - Retrieve total energy consumption
776   * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
777   * HL_INFO_POWER         - Retrieve power information
778   * HL_INFO_OPEN_STATS    - Retrieve info regarding recent device open calls
779   * HL_INFO_DRAM_REPLACED_ROWS - Retrieve DRAM replaced rows info
780   * HL_INFO_DRAM_PENDING_ROWS - Retrieve DRAM pending rows num
781   * HL_INFO_LAST_ERR_OPEN_DEV_TIME - Retrieve timestamp of the last time the device was opened
782   *                                  and CS timeout or razwi error occurred.
783   * HL_INFO_CS_TIMEOUT_EVENT - Retrieve CS timeout timestamp and its related CS sequence number.
784   * HL_INFO_RAZWI_EVENT - Retrieve parameters of razwi:
785   *                            Timestamp of razwi.
786   *                            The address which accessing it caused the razwi.
787   *                            Razwi initiator.
788   *                            Razwi cause, was it a page fault or MMU access error.
789   *                            May return 0 even though no new data is available, in that case
790   *                            timestamp will be 0.
791   * HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES - Retrieve valid page sizes for device memory allocation
792   * HL_INFO_SECURED_ATTESTATION - Retrieve attestation report of the boot.
793   * HL_INFO_REGISTER_EVENTFD   - Register eventfd for event notifications.
794   * HL_INFO_UNREGISTER_EVENTFD - Unregister eventfd
795   * HL_INFO_GET_EVENTS         - Retrieve the last occurred events
796   * HL_INFO_UNDEFINED_OPCODE_EVENT - Retrieve last undefined opcode error information.
797   *                                  May return 0 even though no new data is available, in that case
798   *                                  timestamp will be 0.
799   * HL_INFO_ENGINE_STATUS - Retrieve the status of all the h/w engines in the asic.
800   * HL_INFO_PAGE_FAULT_EVENT - Retrieve parameters of captured page fault.
801   *                            May return 0 even though no new data is available, in that case
802   *                            timestamp will be 0.
803   * HL_INFO_USER_MAPPINGS - Retrieve user mappings, captured after page fault event.
804   * HL_INFO_FW_GENERIC_REQ - Send generic request to FW.
805   * HL_INFO_HW_ERR_EVENT   - Retrieve information on the reported HW error.
806   *                          May return 0 even though no new data is available, in that case
807   *                          timestamp will be 0.
808   * HL_INFO_FW_ERR_EVENT   - Retrieve information on the reported FW error.
809   *                          May return 0 even though no new data is available, in that case
810   *                          timestamp will be 0.
811   * HL_INFO_USER_ENGINE_ERR_EVENT - Retrieve the last engine id that reported an error.
812   */
813  #define HL_INFO_HW_IP_INFO			0
814  #define HL_INFO_HW_EVENTS			1
815  #define HL_INFO_DRAM_USAGE			2
816  #define HL_INFO_HW_IDLE				3
817  #define HL_INFO_DEVICE_STATUS			4
818  #define HL_INFO_DEVICE_UTILIZATION		6
819  #define HL_INFO_HW_EVENTS_AGGREGATE		7
820  #define HL_INFO_CLK_RATE			8
821  #define HL_INFO_RESET_COUNT			9
822  #define HL_INFO_TIME_SYNC			10
823  #define HL_INFO_CS_COUNTERS			11
824  #define HL_INFO_PCI_COUNTERS			12
825  #define HL_INFO_CLK_THROTTLE_REASON		13
826  #define HL_INFO_SYNC_MANAGER			14
827  #define HL_INFO_TOTAL_ENERGY			15
828  #define HL_INFO_PLL_FREQUENCY			16
829  #define HL_INFO_POWER				17
830  #define HL_INFO_OPEN_STATS			18
831  #define HL_INFO_DRAM_REPLACED_ROWS		21
832  #define HL_INFO_DRAM_PENDING_ROWS		22
833  #define HL_INFO_LAST_ERR_OPEN_DEV_TIME		23
834  #define HL_INFO_CS_TIMEOUT_EVENT		24
835  #define HL_INFO_RAZWI_EVENT			25
836  #define HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES	26
837  #define HL_INFO_SECURED_ATTESTATION		27
838  #define HL_INFO_REGISTER_EVENTFD		28
839  #define HL_INFO_UNREGISTER_EVENTFD		29
840  #define HL_INFO_GET_EVENTS			30
841  #define HL_INFO_UNDEFINED_OPCODE_EVENT		31
842  #define HL_INFO_ENGINE_STATUS			32
843  #define HL_INFO_PAGE_FAULT_EVENT		33
844  #define HL_INFO_USER_MAPPINGS			34
845  #define HL_INFO_FW_GENERIC_REQ			35
846  #define HL_INFO_HW_ERR_EVENT			36
847  #define HL_INFO_FW_ERR_EVENT			37
848  #define HL_INFO_USER_ENGINE_ERR_EVENT		38
849  #define HL_INFO_DEV_SIGNED			40
850  
851  #define HL_INFO_VERSION_MAX_LEN			128
852  #define HL_INFO_CARD_NAME_MAX_LEN		16
853  
854  /* Maximum buffer size for retrieving engines status */
855  #define HL_ENGINES_DATA_MAX_SIZE	SZ_1M
856  
857  /**
858   * struct hl_info_hw_ip_info - hardware information on various IPs in the ASIC
859   * @sram_base_address: The first SRAM physical base address that is free to be
860   *                     used by the user.
861   * @dram_base_address: The first DRAM virtual or physical base address that is
862   *                     free to be used by the user.
863   * @dram_size: The DRAM size that is available to the user.
864   * @sram_size: The SRAM size that is available to the user.
865   * @num_of_events: The number of events that can be received from the f/w. This
866   *                 is needed so the user can what is the size of the h/w events
867   *                 array he needs to pass to the kernel when he wants to fetch
868   *                 the event counters.
869   * @device_id: PCI device ID of the ASIC.
870   * @module_id: Module ID of the ASIC for mezzanine cards in servers
871   *             (From OCP spec).
872   * @decoder_enabled_mask: Bit-mask that represents which decoders are enabled.
873   * @first_available_interrupt_id: The first available interrupt ID for the user
874   *                                to be used when it works with user interrupts.
875   *                                Relevant for Gaudi2 and later.
876   * @server_type: Server type that the Gaudi ASIC is currently installed in.
877   *               The value is according to enum hl_server_type
878   * @cpld_version: CPLD version on the board.
879   * @psoc_pci_pll_nr: PCI PLL NR value. Needed by the profiler in some ASICs.
880   * @psoc_pci_pll_nf: PCI PLL NF value. Needed by the profiler in some ASICs.
881   * @psoc_pci_pll_od: PCI PLL OD value. Needed by the profiler in some ASICs.
882   * @psoc_pci_pll_div_factor: PCI PLL DIV factor value. Needed by the profiler
883   *                           in some ASICs.
884   * @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant
885   *                    for Goya/Gaudi only.
886   * @dram_enabled: Whether the DRAM is enabled.
887   * @security_enabled: Whether security is enabled on device.
888   * @mme_master_slave_mode: Indicate whether the MME is working in master/slave
889   *                         configuration. Relevant for Gaudi2 and later.
890   * @cpucp_version: The CPUCP f/w version.
891   * @card_name: The card name as passed by the f/w.
892   * @tpc_enabled_mask_ext: Bit-mask that represents which TPCs are enabled.
893   *                        Relevant for Gaudi2 and later.
894   * @dram_page_size: The DRAM physical page size.
895   * @edma_enabled_mask: Bit-mask that represents which EDMAs are enabled.
896   *                     Relevant for Gaudi2 and later.
897   * @number_of_user_interrupts: The number of interrupts that are available to the userspace
898   *                             application to use. Relevant for Gaudi2 and later.
899   * @device_mem_alloc_default_page_size: default page size used in device memory allocation.
900   * @revision_id: PCI revision ID of the ASIC.
901   * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
902   * @rotator_enabled_mask: Bit-mask that represents which rotators are enabled.
903   *                        Relevant for Gaudi3 and later.
904   * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
905   *                                  in order to raise events toward FW.
906   * @reserved_dram_size: DRAM size reserved for driver and firmware.
907   */
908  struct hl_info_hw_ip_info {
909  	__u64 sram_base_address;
910  	__u64 dram_base_address;
911  	__u64 dram_size;
912  	__u32 sram_size;
913  	__u32 num_of_events;
914  	__u32 device_id;
915  	__u32 module_id;
916  	__u32 decoder_enabled_mask;
917  	__u16 first_available_interrupt_id;
918  	__u16 server_type;
919  	__u32 cpld_version;
920  	__u32 psoc_pci_pll_nr;
921  	__u32 psoc_pci_pll_nf;
922  	__u32 psoc_pci_pll_od;
923  	__u32 psoc_pci_pll_div_factor;
924  	__u8 tpc_enabled_mask;
925  	__u8 dram_enabled;
926  	__u8 security_enabled;
927  	__u8 mme_master_slave_mode;
928  	__u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
929  	__u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
930  	__u64 tpc_enabled_mask_ext;
931  	__u64 dram_page_size;
932  	__u32 edma_enabled_mask;
933  	__u16 number_of_user_interrupts;
934  	__u8 reserved1;
935  	__u8 reserved2;
936  	__u64 reserved3;
937  	__u64 device_mem_alloc_default_page_size;
938  	__u64 reserved4;
939  	__u64 reserved5;
940  	__u32 reserved6;
941  	__u8 reserved7;
942  	__u8 revision_id;
943  	__u16 tpc_interrupt_id;
944  	__u32 rotator_enabled_mask;
945  	__u32 reserved9;
946  	__u64 engine_core_interrupt_reg_addr;
947  	__u64 reserved_dram_size;
948  };
949  
950  struct hl_info_dram_usage {
951  	__u64 dram_free_mem;
952  	__u64 ctx_dram_mem;
953  };
954  
955  #define HL_BUSY_ENGINES_MASK_EXT_SIZE	4
956  
957  struct hl_info_hw_idle {
958  	__u32 is_idle;
959  	/*
960  	 * Bitmask of busy engines.
961  	 * Bits definition is according to `enum <chip>_engine_id'.
962  	 */
963  	__u32 busy_engines_mask;
964  
965  	/*
966  	 * Extended Bitmask of busy engines.
967  	 * Bits definition is according to `enum <chip>_engine_id'.
968  	 */
969  	__u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE];
970  };
971  
972  struct hl_info_device_status {
973  	__u32 status;
974  	__u32 pad;
975  };
976  
977  struct hl_info_device_utilization {
978  	__u32 utilization;
979  	__u32 pad;
980  };
981  
982  struct hl_info_clk_rate {
983  	__u32 cur_clk_rate_mhz;
984  	__u32 max_clk_rate_mhz;
985  };
986  
987  struct hl_info_reset_count {
988  	__u32 hard_reset_cnt;
989  	__u32 soft_reset_cnt;
990  };
991  
992  struct hl_info_time_sync {
993  	__u64 device_time;
994  	__u64 host_time;
995  	__u64 tsc_time;
996  };
997  
998  /**
999   * struct hl_info_pci_counters - pci counters
1000   * @rx_throughput: PCI rx throughput KBps
1001   * @tx_throughput: PCI tx throughput KBps
1002   * @replay_cnt: PCI replay counter
1003   */
1004  struct hl_info_pci_counters {
1005  	__u64 rx_throughput;
1006  	__u64 tx_throughput;
1007  	__u64 replay_cnt;
1008  };
1009  
1010  enum hl_clk_throttling_type {
1011  	HL_CLK_THROTTLE_TYPE_POWER,
1012  	HL_CLK_THROTTLE_TYPE_THERMAL,
1013  	HL_CLK_THROTTLE_TYPE_MAX
1014  };
1015  
1016  /* clk_throttling_reason masks */
1017  #define HL_CLK_THROTTLE_POWER		(1 << HL_CLK_THROTTLE_TYPE_POWER)
1018  #define HL_CLK_THROTTLE_THERMAL		(1 << HL_CLK_THROTTLE_TYPE_THERMAL)
1019  
1020  /**
1021   * struct hl_info_clk_throttle - clock throttling reason
1022   * @clk_throttling_reason: each bit represents a clk throttling reason
1023   * @clk_throttling_timestamp_us: represents CPU timestamp in microseconds of the start-event
1024   * @clk_throttling_duration_ns: the clock throttle time in nanosec
1025   */
1026  struct hl_info_clk_throttle {
1027  	__u32 clk_throttling_reason;
1028  	__u32 pad;
1029  	__u64 clk_throttling_timestamp_us[HL_CLK_THROTTLE_TYPE_MAX];
1030  	__u64 clk_throttling_duration_ns[HL_CLK_THROTTLE_TYPE_MAX];
1031  };
1032  
1033  /**
1034   * struct hl_info_energy - device energy information
1035   * @total_energy_consumption: total device energy consumption
1036   */
1037  struct hl_info_energy {
1038  	__u64 total_energy_consumption;
1039  };
1040  
1041  #define HL_PLL_NUM_OUTPUTS 4
1042  
1043  struct hl_pll_frequency_info {
1044  	__u16 output[HL_PLL_NUM_OUTPUTS];
1045  };
1046  
1047  /**
1048   * struct hl_open_stats_info - device open statistics information
1049   * @open_counter: ever growing counter, increased on each successful dev open
1050   * @last_open_period_ms: duration (ms) device was open last time
1051   * @is_compute_ctx_active: Whether there is an active compute context executing
1052   * @compute_ctx_in_release: true if the current compute context is being released
1053   */
1054  struct hl_open_stats_info {
1055  	__u64 open_counter;
1056  	__u64 last_open_period_ms;
1057  	__u8 is_compute_ctx_active;
1058  	__u8 compute_ctx_in_release;
1059  	__u8 pad[6];
1060  };
1061  
1062  /**
1063   * struct hl_power_info - power information
1064   * @power: power consumption
1065   */
1066  struct hl_power_info {
1067  	__u64 power;
1068  };
1069  
1070  /**
1071   * struct hl_info_sync_manager - sync manager information
1072   * @first_available_sync_object: first available sob
1073   * @first_available_monitor: first available monitor
1074   * @first_available_cq: first available cq
1075   */
1076  struct hl_info_sync_manager {
1077  	__u32 first_available_sync_object;
1078  	__u32 first_available_monitor;
1079  	__u32 first_available_cq;
1080  	__u32 reserved;
1081  };
1082  
1083  /**
1084   * struct hl_info_cs_counters - command submission counters
1085   * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
1086   * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
1087   * @total_parsing_drop_cnt: total dropped due to error in packet parsing
1088   * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
1089   * @total_queue_full_drop_cnt: total dropped due to queue full
1090   * @ctx_queue_full_drop_cnt: context dropped due to queue full
1091   * @total_device_in_reset_drop_cnt: total dropped due to device in reset
1092   * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
1093   * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
1094   * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
1095   * @total_validation_drop_cnt: total dropped due to validation error
1096   * @ctx_validation_drop_cnt: context dropped due to validation error
1097   */
1098  struct hl_info_cs_counters {
1099  	__u64 total_out_of_mem_drop_cnt;
1100  	__u64 ctx_out_of_mem_drop_cnt;
1101  	__u64 total_parsing_drop_cnt;
1102  	__u64 ctx_parsing_drop_cnt;
1103  	__u64 total_queue_full_drop_cnt;
1104  	__u64 ctx_queue_full_drop_cnt;
1105  	__u64 total_device_in_reset_drop_cnt;
1106  	__u64 ctx_device_in_reset_drop_cnt;
1107  	__u64 total_max_cs_in_flight_drop_cnt;
1108  	__u64 ctx_max_cs_in_flight_drop_cnt;
1109  	__u64 total_validation_drop_cnt;
1110  	__u64 ctx_validation_drop_cnt;
1111  };
1112  
1113  /**
1114   * struct hl_info_last_err_open_dev_time - last error boot information.
1115   * @timestamp: timestamp of last time the device was opened and error occurred.
1116   */
1117  struct hl_info_last_err_open_dev_time {
1118  	__s64 timestamp;
1119  };
1120  
1121  /**
1122   * struct hl_info_cs_timeout_event - last CS timeout information.
1123   * @timestamp: timestamp when last CS timeout event occurred.
1124   * @seq: sequence number of last CS timeout event.
1125   */
1126  struct hl_info_cs_timeout_event {
1127  	__s64 timestamp;
1128  	__u64 seq;
1129  };
1130  
1131  #define HL_RAZWI_NA_ENG_ID U16_MAX
1132  #define HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR 128
1133  #define HL_RAZWI_READ		BIT(0)
1134  #define HL_RAZWI_WRITE		BIT(1)
1135  #define HL_RAZWI_LBW		BIT(2)
1136  #define HL_RAZWI_HBW		BIT(3)
1137  #define HL_RAZWI_RR		BIT(4)
1138  #define HL_RAZWI_ADDR_DEC	BIT(5)
1139  
1140  /**
1141   * struct hl_info_razwi_event - razwi information.
1142   * @timestamp: timestamp of razwi.
1143   * @addr: address which accessing it caused razwi.
1144   * @engine_id: engine id of the razwi initiator, if it was initiated by engine that does not
1145   *             have engine id it will be set to HL_RAZWI_NA_ENG_ID. If there are several possible
1146   *             engines which caused the razwi, it will hold all of them.
1147   * @num_of_possible_engines: contains number of possible engine ids. In some asics, razwi indication
1148   *                           might be common for several engines and there is no way to get the
1149   *                           exact engine. In this way, engine_id array will be filled with all
1150   *                           possible engines caused this razwi. Also, there might be possibility
1151   *                           in gaudi, where we don't indication on specific engine, in that case
1152   *                           the value of this parameter will be zero.
1153   * @flags: bitmask for additional data: HL_RAZWI_READ - razwi caused by read operation
1154   *                                      HL_RAZWI_WRITE - razwi caused by write operation
1155   *                                      HL_RAZWI_LBW - razwi caused by lbw fabric transaction
1156   *                                      HL_RAZWI_HBW - razwi caused by hbw fabric transaction
1157   *                                      HL_RAZWI_RR - razwi caused by range register
1158   *                                      HL_RAZWI_ADDR_DEC - razwi caused by address decode error
1159   *         Note: this data is not supported by all asics, in that case the relevant bits will not
1160   *               be set.
1161   */
1162  struct hl_info_razwi_event {
1163  	__s64 timestamp;
1164  	__u64 addr;
1165  	__u16 engine_id[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR];
1166  	__u16 num_of_possible_engines;
1167  	__u8 flags;
1168  	__u8 pad[5];
1169  };
1170  
1171  #define MAX_QMAN_STREAMS_INFO		4
1172  #define OPCODE_INFO_MAX_ADDR_SIZE	8
1173  /**
1174   * struct hl_info_undefined_opcode_event - info about last undefined opcode error
1175   * @timestamp: timestamp of the undefined opcode error
1176   * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
1177   *                   entries. In case all streams array entries are
1178   *                   filled with values, it means the execution was in Lower-CP.
1179   * @cq_addr: the address of the current handled command buffer
1180   * @cq_size: the size of the current handled command buffer
1181   * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
1182   *                       should be equal to 1 in case of undefined opcode
1183   *                       in Upper-CP (specific stream) and equal to 4 incase
1184   *                       of undefined opcode in Lower-CP.
1185   * @engine_id: engine-id that the error occurred on
1186   * @stream_id: the stream id the error occurred on. In case the stream equals to
1187   *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
1188   */
1189  struct hl_info_undefined_opcode_event {
1190  	__s64 timestamp;
1191  	__u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
1192  	__u64 cq_addr;
1193  	__u32 cq_size;
1194  	__u32 cb_addr_streams_len;
1195  	__u32 engine_id;
1196  	__u32 stream_id;
1197  };
1198  
1199  /**
1200   * struct hl_info_hw_err_event - info about HW error
1201   * @timestamp: timestamp of error occurrence
1202   * @event_id: The async event ID (specific to each device type).
1203   * @pad: size padding for u64 granularity.
1204   */
1205  struct hl_info_hw_err_event {
1206  	__s64 timestamp;
1207  	__u16 event_id;
1208  	__u16 pad[3];
1209  };
1210  
1211  /* FW error definition for event_type in struct hl_info_fw_err_event */
1212  enum hl_info_fw_err_type {
1213  	HL_INFO_FW_HEARTBEAT_ERR,
1214  	HL_INFO_FW_REPORTED_ERR,
1215  };
1216  
1217  /**
1218   * struct hl_info_fw_err_event - info about FW error
1219   * @timestamp: time-stamp of error occurrence
1220   * @err_type: The type of event as defined in hl_info_fw_err_type.
1221   * @event_id: The async event ID (specific to each device type, applicable only when event type is
1222   *             HL_INFO_FW_REPORTED_ERR).
1223   * @pad: size padding for u64 granularity.
1224   */
1225  struct hl_info_fw_err_event {
1226  	__s64 timestamp;
1227  	__u16 err_type;
1228  	__u16 event_id;
1229  	__u32 pad;
1230  };
1231  
1232  /**
1233   * struct hl_info_engine_err_event - engine error info
1234   * @timestamp: time-stamp of error occurrence
1235   * @engine_id: engine id who reported the error.
1236   * @error_count: Amount of errors reported.
1237   * @pad: size padding for u64 granularity.
1238   */
1239  struct hl_info_engine_err_event {
1240  	__s64 timestamp;
1241  	__u16 engine_id;
1242  	__u16 error_count;
1243  	__u32 pad;
1244  };
1245  
1246  /**
1247   * struct hl_info_dev_memalloc_page_sizes - valid page sizes in device mem alloc information.
1248   * @page_order_bitmask: bitmap in which a set bit represents the order of the supported page size
1249   *                      (e.g. 0x2100000 means that 1MB and 32MB pages are supported).
1250   */
1251  struct hl_info_dev_memalloc_page_sizes {
1252  	__u64 page_order_bitmask;
1253  };
1254  
1255  #define SEC_PCR_DATA_BUF_SZ	256
1256  #define SEC_PCR_QUOTE_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1257  #define SEC_SIGNATURE_BUF_SZ	255	/* (256 - 1) 1 byte used for size */
1258  #define SEC_PUB_DATA_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1259  #define SEC_CERTIFICATE_BUF_SZ	2046	/* (2048 - 2) 2 bytes used for size */
1260  #define SEC_DEV_INFO_BUF_SZ	5120
1261  
1262  /*
1263   * struct hl_info_sec_attest - attestation report of the boot
1264   * @nonce: number only used once. random number provided by host. this also passed to the quote
1265   *         command as a qualifying data.
1266   * @pcr_quote_len: length of the attestation quote data (bytes)
1267   * @pub_data_len: length of the public data (bytes)
1268   * @certificate_len: length of the certificate (bytes)
1269   * @pcr_num_reg: number of PCR registers in the pcr_data array
1270   * @pcr_reg_len: length of each PCR register in the pcr_data array (bytes)
1271   * @quote_sig_len: length of the attestation report signature (bytes)
1272   * @pcr_data: raw values of the PCR registers
1273   * @pcr_quote: attestation report data structure
1274   * @quote_sig: signature structure of the attestation report
1275   * @public_data: public key for the signed attestation
1276   *		 (outPublic + name + qualifiedName)
1277   * @certificate: certificate for the attestation signing key
1278   */
1279  struct hl_info_sec_attest {
1280  	__u32 nonce;
1281  	__u16 pcr_quote_len;
1282  	__u16 pub_data_len;
1283  	__u16 certificate_len;
1284  	__u8 pcr_num_reg;
1285  	__u8 pcr_reg_len;
1286  	__u8 quote_sig_len;
1287  	__u8 pcr_data[SEC_PCR_DATA_BUF_SZ];
1288  	__u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ];
1289  	__u8 quote_sig[SEC_SIGNATURE_BUF_SZ];
1290  	__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1291  	__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1292  	__u8 pad0[2];
1293  };
1294  
1295  /*
1296   * struct hl_info_signed - device information signed by a secured device.
1297   * @nonce: number only used once. random number provided by host. this also passed to the quote
1298   *         command as a qualifying data.
1299   * @pub_data_len: length of the public data (bytes)
1300   * @certificate_len: length of the certificate (bytes)
1301   * @info_sig_len: length of the attestation signature (bytes)
1302   * @public_data: public key info signed info data (outPublic + name + qualifiedName)
1303   * @certificate: certificate for the signing key
1304   * @info_sig: signature of the info + nonce data.
1305   * @dev_info_len: length of device info (bytes)
1306   * @dev_info: device info as byte array.
1307   */
1308  struct hl_info_signed {
1309  	__u32 nonce;
1310  	__u16 pub_data_len;
1311  	__u16 certificate_len;
1312  	__u8 info_sig_len;
1313  	__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1314  	__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1315  	__u8 info_sig[SEC_SIGNATURE_BUF_SZ];
1316  	__u16 dev_info_len;
1317  	__u8 dev_info[SEC_DEV_INFO_BUF_SZ];
1318  	__u8 pad[2];
1319  };
1320  
1321  /**
1322   * struct hl_page_fault_info - page fault information.
1323   * @timestamp: timestamp of page fault.
1324   * @addr: address which accessing it caused page fault.
1325   * @engine_id: engine id which caused the page fault, supported only in gaudi3.
1326   */
1327  struct hl_page_fault_info {
1328  	__s64 timestamp;
1329  	__u64 addr;
1330  	__u16 engine_id;
1331  	__u8 pad[6];
1332  };
1333  
1334  /**
1335   * struct hl_user_mapping - user mapping information.
1336   * @dev_va: device virtual address.
1337   * @size: virtual address mapping size.
1338   */
1339  struct hl_user_mapping {
1340  	__u64 dev_va;
1341  	__u64 size;
1342  };
1343  
1344  enum gaudi_dcores {
1345  	HL_GAUDI_WS_DCORE,
1346  	HL_GAUDI_WN_DCORE,
1347  	HL_GAUDI_EN_DCORE,
1348  	HL_GAUDI_ES_DCORE
1349  };
1350  
1351  /**
1352   * struct hl_info_args - Main structure to retrieve device related information.
1353   * @return_pointer: User space address of the relevant structure related to HL_INFO_* operation
1354   *                  mentioned in @op.
1355   * @return_size: Size of the structure used in @return_pointer, just like "size" in "snprintf", it
1356   *               limits how many bytes the kernel can write. For hw_events array, the size should be
1357   *               hl_info_hw_ip_info.num_of_events * sizeof(__u32).
1358   * @op: Defines which type of information to be retrieved. Refer HL_INFO_* for details.
1359   * @dcore_id: DCORE id for which the information is relevant (for Gaudi refer to enum gaudi_dcores).
1360   * @ctx_id: Context ID of the user. Currently not in use.
1361   * @period_ms: Period value, in milliseconds, for utilization rate in range 100ms - 1000ms in 100 ms
1362   *             resolution. Currently not in use.
1363   * @pll_index: Index as defined in hl_<asic type>_pll_index enumeration.
1364   * @eventfd: event file descriptor for event notifications.
1365   * @user_buffer_actual_size: Actual data size which was copied to user allocated buffer by the
1366   *                           driver. It is possible for the user to allocate buffer larger than
1367   *                           needed, hence updating this variable so user will know the exact amount
1368   *                           of bytes copied by the kernel to the buffer.
1369   * @sec_attest_nonce: Nonce number used for attestation report.
1370   * @array_size: Number of array members copied to user buffer.
1371   *              Relevant for HL_INFO_USER_MAPPINGS info ioctl.
1372   * @fw_sub_opcode: generic requests sub opcodes.
1373   * @pad: Padding to 64 bit.
1374   */
1375  struct hl_info_args {
1376  	__u64 return_pointer;
1377  	__u32 return_size;
1378  	__u32 op;
1379  
1380  	union {
1381  		__u32 dcore_id;
1382  		__u32 ctx_id;
1383  		__u32 period_ms;
1384  		__u32 pll_index;
1385  		__u32 eventfd;
1386  		__u32 user_buffer_actual_size;
1387  		__u32 sec_attest_nonce;
1388  		__u32 array_size;
1389  		__u32 fw_sub_opcode;
1390  	};
1391  
1392  	__u32 pad;
1393  };
1394  
1395  /* Opcode to create a new command buffer */
1396  #define HL_CB_OP_CREATE		0
1397  /* Opcode to destroy previously created command buffer */
1398  #define HL_CB_OP_DESTROY	1
1399  /* Opcode to retrieve information about a command buffer */
1400  #define HL_CB_OP_INFO		2
1401  
1402  /* 2MB minus 32 bytes for 2xMSG_PROT */
1403  #define HL_MAX_CB_SIZE		(0x200000 - 32)
1404  
1405  /* Indicates whether the command buffer should be mapped to the device's MMU */
1406  #define HL_CB_FLAGS_MAP			0x1
1407  
1408  /* Used with HL_CB_OP_INFO opcode to get the device va address for kernel mapped CB */
1409  #define HL_CB_FLAGS_GET_DEVICE_VA	0x2
1410  
1411  struct hl_cb_in {
1412  	/* Handle of CB or 0 if we want to create one */
1413  	__u64 cb_handle;
1414  	/* HL_CB_OP_* */
1415  	__u32 op;
1416  
1417  	/* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
1418  	 * will be allocated, regardless of this parameter's value, is PAGE_SIZE
1419  	 */
1420  	__u32 cb_size;
1421  
1422  	/* Context ID - Currently not in use */
1423  	__u32 ctx_id;
1424  	/* HL_CB_FLAGS_* */
1425  	__u32 flags;
1426  };
1427  
1428  struct hl_cb_out {
1429  	union {
1430  		/* Handle of CB */
1431  		__u64 cb_handle;
1432  
1433  		union {
1434  			/* Information about CB */
1435  			struct {
1436  				/* Usage count of CB */
1437  				__u32 usage_cnt;
1438  				__u32 pad;
1439  			};
1440  
1441  			/* CB mapped address to device MMU */
1442  			__u64 device_va;
1443  		};
1444  	};
1445  };
1446  
1447  union hl_cb_args {
1448  	struct hl_cb_in in;
1449  	struct hl_cb_out out;
1450  };
1451  
1452  /* HL_CS_CHUNK_FLAGS_ values
1453   *
1454   * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
1455   *      Indicates if the CB was allocated and mapped by userspace
1456   *      (relevant to Gaudi2 and later). User allocated CB is a command buffer,
1457   *      allocated by the user, via malloc (or similar). After allocating the
1458   *      CB, the user invokes - “memory ioctl” to map the user memory into a
1459   *      device virtual address. The user provides this address via the
1460   *      cb_handle field. The interface provides the ability to create a
1461   *      large CBs, Which aren’t limited to “HL_MAX_CB_SIZE”. Therefore, it
1462   *      increases the PCI-DMA queues throughput. This CB allocation method
1463   *      also reduces the use of Linux DMA-able memory pool. Which are limited
1464   *      and used by other Linux sub-systems.
1465   */
1466  #define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
1467  
1468  /*
1469   * This structure size must always be fixed to 64-bytes for backward
1470   * compatibility
1471   */
1472  struct hl_cs_chunk {
1473  	union {
1474  		/* Goya/Gaudi:
1475  		 * For external queue, this represents a Handle of CB on the
1476  		 * Host.
1477  		 * For internal queue in Goya, this represents an SRAM or
1478  		 * a DRAM address of the internal CB. In Gaudi, this might also
1479  		 * represent a mapped host address of the CB.
1480  		 *
1481  		 * Gaudi2 onwards:
1482  		 * For H/W queue, this represents either a Handle of CB on the
1483  		 * Host, or an SRAM, a DRAM, or a mapped host address of the CB.
1484  		 *
1485  		 * A mapped host address is in the device address space, after
1486  		 * a host address was mapped by the device MMU.
1487  		 */
1488  		__u64 cb_handle;
1489  
1490  		/* Relevant only when HL_CS_FLAGS_WAIT or
1491  		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1492  		 * This holds address of array of u64 values that contain
1493  		 * signal CS sequence numbers. The wait described by
1494  		 * this job will listen on all those signals
1495  		 * (wait event per signal)
1496  		 */
1497  		__u64 signal_seq_arr;
1498  
1499  		/*
1500  		 * Relevant only when HL_CS_FLAGS_WAIT or
1501  		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1502  		 * along with HL_CS_FLAGS_ENCAP_SIGNALS.
1503  		 * This is the CS sequence which has the encapsulated signals.
1504  		 */
1505  		__u64 encaps_signal_seq;
1506  	};
1507  
1508  	/* Index of queue to put the CB on */
1509  	__u32 queue_index;
1510  
1511  	union {
1512  		/*
1513  		 * Size of command buffer with valid packets
1514  		 * Can be smaller then actual CB size
1515  		 */
1516  		__u32 cb_size;
1517  
1518  		/* Relevant only when HL_CS_FLAGS_WAIT or
1519  		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1520  		 * Number of entries in signal_seq_arr
1521  		 */
1522  		__u32 num_signal_seq_arr;
1523  
1524  		/* Relevant only when HL_CS_FLAGS_WAIT or
1525  		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set along
1526  		 * with HL_CS_FLAGS_ENCAP_SIGNALS
1527  		 * This set the signals range that the user want to wait for
1528  		 * out of the whole reserved signals range.
1529  		 * e.g if the signals range is 20, and user don't want
1530  		 * to wait for signal 8, so he set this offset to 7, then
1531  		 * he call the API again with 9 and so on till 20.
1532  		 */
1533  		__u32 encaps_signal_offset;
1534  	};
1535  
1536  	/* HL_CS_CHUNK_FLAGS_* */
1537  	__u32 cs_chunk_flags;
1538  
1539  	/* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1540  	 * This holds the collective engine ID. The wait described by this job
1541  	 * will sync with this engine and with all NICs before completion.
1542  	 */
1543  	__u32 collective_engine_id;
1544  
1545  	/* Align structure to 64 bytes */
1546  	__u32 pad[10];
1547  };
1548  
1549  /* SIGNAL/WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
1550  #define HL_CS_FLAGS_FORCE_RESTORE		0x1
1551  #define HL_CS_FLAGS_SIGNAL			0x2
1552  #define HL_CS_FLAGS_WAIT			0x4
1553  #define HL_CS_FLAGS_COLLECTIVE_WAIT		0x8
1554  
1555  #define HL_CS_FLAGS_TIMESTAMP			0x20
1556  #define HL_CS_FLAGS_STAGED_SUBMISSION		0x40
1557  #define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST	0x80
1558  #define HL_CS_FLAGS_STAGED_SUBMISSION_LAST	0x100
1559  #define HL_CS_FLAGS_CUSTOM_TIMEOUT		0x200
1560  #define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT	0x400
1561  
1562  /*
1563   * The encapsulated signals CS is merged into the existing CS ioctls.
1564   * In order to use this feature need to follow the below procedure:
1565   * 1. Reserve signals, set the CS type to HL_CS_FLAGS_RESERVE_SIGNALS_ONLY
1566   *    the output of this API will be the SOB offset from CFG_BASE.
1567   *    this address will be used to patch CB cmds to do the signaling for this
1568   *    SOB by incrementing it's value.
1569   *    for reverting the reservation use HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY
1570   *    CS type, note that this might fail if out-of-sync happened to the SOB
1571   *    value, in case other signaling request to the same SOB occurred between
1572   *    reserve-unreserve calls.
1573   * 2. Use the staged CS to do the encapsulated signaling jobs.
1574   *    use HL_CS_FLAGS_STAGED_SUBMISSION and HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1575   *    along with HL_CS_FLAGS_ENCAP_SIGNALS flag, and set encaps_signal_offset
1576   *    field. This offset allows app to wait on part of the reserved signals.
1577   * 3. Use WAIT/COLLECTIVE WAIT CS along with HL_CS_FLAGS_ENCAP_SIGNALS flag
1578   *    to wait for the encapsulated signals.
1579   */
1580  #define HL_CS_FLAGS_ENCAP_SIGNALS		0x800
1581  #define HL_CS_FLAGS_RESERVE_SIGNALS_ONLY	0x1000
1582  #define HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY	0x2000
1583  
1584  /*
1585   * The engine cores CS is merged into the existing CS ioctls.
1586   * Use it to control the engine cores mode.
1587   */
1588  #define HL_CS_FLAGS_ENGINE_CORE_COMMAND		0x4000
1589  
1590  /*
1591   * The flush HBW PCI writes is merged into the existing CS ioctls.
1592   * Used to flush all HBW PCI writes.
1593   * This is a blocking operation and for this reason the user shall not use
1594   * the return sequence number (which will be invalid anyway)
1595   */
1596  #define HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES	0x8000
1597  
1598  /*
1599   * The engines CS is merged into the existing CS ioctls.
1600   * Use it to control engines modes.
1601   */
1602  #define HL_CS_FLAGS_ENGINES_COMMAND		0x10000
1603  
1604  #define HL_CS_STATUS_SUCCESS		0
1605  
1606  #define HL_MAX_JOBS_PER_CS		512
1607  
1608  /*
1609   * enum hl_engine_command - engine command
1610   *
1611   * @HL_ENGINE_CORE_HALT: engine core halt
1612   * @HL_ENGINE_CORE_RUN: engine core run
1613   * @HL_ENGINE_STALL: user engine/s stall
1614   * @HL_ENGINE_RESUME: user engine/s resume
1615   */
1616  enum hl_engine_command {
1617  	HL_ENGINE_CORE_HALT = 1,
1618  	HL_ENGINE_CORE_RUN = 2,
1619  	HL_ENGINE_STALL = 3,
1620  	HL_ENGINE_RESUME = 4,
1621  	HL_ENGINE_COMMAND_MAX
1622  };
1623  
1624  struct hl_cs_in {
1625  
1626  	union {
1627  		struct {
1628  			/* this holds address of array of hl_cs_chunk for restore phase */
1629  			__u64 chunks_restore;
1630  
1631  			/* holds address of array of hl_cs_chunk for execution phase */
1632  			__u64 chunks_execute;
1633  		};
1634  
1635  		/* Valid only when HL_CS_FLAGS_ENGINE_CORE_COMMAND is set */
1636  		struct {
1637  			/* this holds address of array of uint32 for engine_cores */
1638  			__u64 engine_cores;
1639  
1640  			/* number of engine cores in engine_cores array */
1641  			__u32 num_engine_cores;
1642  
1643  			/* the core command to be sent towards engine cores */
1644  			__u32 core_command;
1645  		};
1646  
1647  		/* Valid only when HL_CS_FLAGS_ENGINES_COMMAND is set */
1648  		struct {
1649  			/* this holds address of array of uint32 for engines */
1650  			__u64 engines;
1651  
1652  			/* number of engines in engines array */
1653  			__u32 num_engines;
1654  
1655  			/* the engine command to be sent towards engines */
1656  			__u32 engine_command;
1657  		};
1658  	};
1659  
1660  	union {
1661  		/*
1662  		 * Sequence number of a staged submission CS
1663  		 * valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set and
1664  		 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST is unset.
1665  		 */
1666  		__u64 seq;
1667  
1668  		/*
1669  		 * Encapsulated signals handle id
1670  		 * Valid for two flows:
1671  		 * 1. CS with encapsulated signals:
1672  		 *    when HL_CS_FLAGS_STAGED_SUBMISSION and
1673  		 *    HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1674  		 *    and HL_CS_FLAGS_ENCAP_SIGNALS are set.
1675  		 * 2. unreserve signals:
1676  		 *    valid when HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY is set.
1677  		 */
1678  		__u32 encaps_sig_handle_id;
1679  
1680  		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1681  		struct {
1682  			/* Encapsulated signals number */
1683  			__u32 encaps_signals_count;
1684  
1685  			/* Encapsulated signals queue index (stream) */
1686  			__u32 encaps_signals_q_idx;
1687  		};
1688  	};
1689  
1690  	/* Number of chunks in restore phase array. Maximum number is
1691  	 * HL_MAX_JOBS_PER_CS
1692  	 */
1693  	__u32 num_chunks_restore;
1694  
1695  	/* Number of chunks in execution array. Maximum number is
1696  	 * HL_MAX_JOBS_PER_CS
1697  	 */
1698  	__u32 num_chunks_execute;
1699  
1700  	/* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT
1701  	 * is set
1702  	 */
1703  	__u32 timeout;
1704  
1705  	/* HL_CS_FLAGS_* */
1706  	__u32 cs_flags;
1707  
1708  	/* Context ID - Currently not in use */
1709  	__u32 ctx_id;
1710  	__u8 pad[4];
1711  };
1712  
1713  struct hl_cs_out {
1714  	union {
1715  		/*
1716  		 * seq holds the sequence number of the CS to pass to wait
1717  		 * ioctl. All values are valid except for 0 and ULLONG_MAX
1718  		 */
1719  		__u64 seq;
1720  
1721  		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1722  		struct {
1723  			/* This is the reserved signal handle id */
1724  			__u32 handle_id;
1725  
1726  			/* This is the signals count */
1727  			__u32 count;
1728  		};
1729  	};
1730  
1731  	/* HL_CS_STATUS */
1732  	__u32 status;
1733  
1734  	/*
1735  	 * SOB base address offset
1736  	 * Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY or HL_CS_FLAGS_SIGNAL is set
1737  	 */
1738  	__u32 sob_base_addr_offset;
1739  
1740  	/*
1741  	 * Count of completed signals in SOB before current signal submission.
1742  	 * Valid only when (HL_CS_FLAGS_ENCAP_SIGNALS & HL_CS_FLAGS_STAGED_SUBMISSION)
1743  	 * or HL_CS_FLAGS_SIGNAL is set
1744  	 */
1745  	__u16 sob_count_before_submission;
1746  	__u16 pad[3];
1747  };
1748  
1749  union hl_cs_args {
1750  	struct hl_cs_in in;
1751  	struct hl_cs_out out;
1752  };
1753  
1754  #define HL_WAIT_CS_FLAGS_INTERRUPT		0x2
1755  #define HL_WAIT_CS_FLAGS_INTERRUPT_MASK		0xFFF00000
1756  #define HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT	0xFFF00000
1757  #define HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT	0xFFE00000
1758  #define HL_WAIT_CS_FLAGS_MULTI_CS		0x4
1759  #define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ	0x10
1760  #define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT	0x20
1761  
1762  #define HL_WAIT_MULTI_CS_LIST_MAX_LEN	32
1763  
1764  struct hl_wait_cs_in {
1765  	union {
1766  		struct {
1767  			/*
1768  			 * In case of wait_cs holds the CS sequence number.
1769  			 * In case of wait for multi CS hold a user pointer to
1770  			 * an array of CS sequence numbers
1771  			 */
1772  			__u64 seq;
1773  			/* Absolute timeout to wait for command submission
1774  			 * in microseconds
1775  			 */
1776  			__u64 timeout_us;
1777  		};
1778  
1779  		struct {
1780  			union {
1781  				/* User address for completion comparison.
1782  				 * upon interrupt, driver will compare the value pointed
1783  				 * by this address with the supplied target value.
1784  				 * in order not to perform any comparison, set address
1785  				 * to all 1s.
1786  				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1787  				 */
1788  				__u64 addr;
1789  
1790  				/* cq_counters_handle to a kernel mapped cb which contains
1791  				 * cq counters.
1792  				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1793  				 */
1794  				__u64 cq_counters_handle;
1795  			};
1796  
1797  			/* Target value for completion comparison */
1798  			__u64 target;
1799  		};
1800  	};
1801  
1802  	/* Context ID - Currently not in use */
1803  	__u32 ctx_id;
1804  
1805  	/* HL_WAIT_CS_FLAGS_*
1806  	 * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include
1807  	 * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK
1808  	 *
1809  	 * in order to wait for any CQ interrupt, set interrupt value to
1810  	 * HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT.
1811  	 *
1812  	 * in order to wait for any decoder interrupt, set interrupt value to
1813  	 * HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT.
1814  	 */
1815  	__u32 flags;
1816  
1817  	union {
1818  		struct {
1819  			/* Multi CS API info- valid entries in multi-CS array */
1820  			__u8 seq_arr_len;
1821  			__u8 pad[7];
1822  		};
1823  
1824  		/* Absolute timeout to wait for an interrupt in microseconds.
1825  		 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1826  		 */
1827  		__u64 interrupt_timeout_us;
1828  	};
1829  
1830  	/*
1831  	 * cq counter offset inside the counters cb pointed by cq_counters_handle above.
1832  	 * upon interrupt, driver will compare the value pointed
1833  	 * by this address (cq_counters_handle + cq_counters_offset)
1834  	 * with the supplied target value.
1835  	 * relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1836  	 */
1837  	__u64 cq_counters_offset;
1838  
1839  	/*
1840  	 * Timestamp_handle timestamps buffer handle.
1841  	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1842  	 */
1843  	__u64 timestamp_handle;
1844  
1845  	/*
1846  	 * Timestamp_offset is offset inside the timestamp buffer pointed by timestamp_handle above.
1847  	 * upon interrupt, if the cq reached the target value then driver will write
1848  	 * timestamp to this offset.
1849  	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1850  	 */
1851  	__u64 timestamp_offset;
1852  };
1853  
1854  #define HL_WAIT_CS_STATUS_COMPLETED	0
1855  #define HL_WAIT_CS_STATUS_BUSY		1
1856  #define HL_WAIT_CS_STATUS_TIMEDOUT	2
1857  #define HL_WAIT_CS_STATUS_ABORTED	3
1858  
1859  #define HL_WAIT_CS_STATUS_FLAG_GONE		0x1
1860  #define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD	0x2
1861  
1862  struct hl_wait_cs_out {
1863  	/* HL_WAIT_CS_STATUS_* */
1864  	__u32 status;
1865  	/* HL_WAIT_CS_STATUS_FLAG* */
1866  	__u32 flags;
1867  	/*
1868  	 * valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set
1869  	 * for wait_cs: timestamp of CS completion
1870  	 * for wait_multi_cs: timestamp of FIRST CS completion
1871  	 */
1872  	__s64 timestamp_nsec;
1873  	/* multi CS completion bitmap */
1874  	__u32 cs_completion_map;
1875  	__u32 pad;
1876  };
1877  
1878  union hl_wait_cs_args {
1879  	struct hl_wait_cs_in in;
1880  	struct hl_wait_cs_out out;
1881  };
1882  
1883  /* Opcode to allocate device memory */
1884  #define HL_MEM_OP_ALLOC			0
1885  
1886  /* Opcode to free previously allocated device memory */
1887  #define HL_MEM_OP_FREE			1
1888  
1889  /* Opcode to map host and device memory */
1890  #define HL_MEM_OP_MAP			2
1891  
1892  /* Opcode to unmap previously mapped host and device memory */
1893  #define HL_MEM_OP_UNMAP			3
1894  
1895  /* Opcode to map a hw block */
1896  #define HL_MEM_OP_MAP_BLOCK		4
1897  
1898  /* Opcode to create DMA-BUF object for an existing device memory allocation
1899   * and to export an FD of that DMA-BUF back to the caller
1900   */
1901  #define HL_MEM_OP_EXPORT_DMABUF_FD	5
1902  
1903  /* Opcode to create timestamps pool for user interrupts registration support
1904   * The memory will be allocated by the kernel driver, A timestamp buffer which the user
1905   * will get handle to it for mmap, and another internal buffer used by the
1906   * driver for registration management
1907   * The memory will be freed when the user closes the file descriptor(ctx close)
1908   */
1909  #define HL_MEM_OP_TS_ALLOC		6
1910  
1911  /* Memory flags */
1912  #define HL_MEM_CONTIGUOUS	0x1
1913  #define HL_MEM_SHARED		0x2
1914  #define HL_MEM_USERPTR		0x4
1915  #define HL_MEM_FORCE_HINT	0x8
1916  #define HL_MEM_PREFETCH		0x40
1917  
1918  /**
1919   * structure hl_mem_in - structure that handle input args for memory IOCTL
1920   * @union arg: union of structures to be used based on the input operation
1921   * @op: specify the requested memory operation (one of the HL_MEM_OP_* definitions).
1922   * @flags: flags for the memory operation (one of the HL_MEM_* definitions).
1923   *         For the HL_MEM_OP_EXPORT_DMABUF_FD opcode, this field holds the DMA-BUF file/FD flags.
1924   * @ctx_id: context ID - currently not in use.
1925   * @num_of_elements: number of timestamp elements used only with HL_MEM_OP_TS_ALLOC opcode.
1926   */
1927  struct hl_mem_in {
1928  	union {
1929  		/**
1930  		 * structure for device memory allocation (used with the HL_MEM_OP_ALLOC op)
1931  		 * @mem_size: memory size to allocate
1932  		 * @page_size: page size to use on allocation. when the value is 0 the default page
1933  		 *             size will be taken.
1934  		 */
1935  		struct {
1936  			__u64 mem_size;
1937  			__u64 page_size;
1938  		} alloc;
1939  
1940  		/**
1941  		 * structure for free-ing device memory (used with the HL_MEM_OP_FREE op)
1942  		 * @handle: handle returned from HL_MEM_OP_ALLOC
1943  		 */
1944  		struct {
1945  			__u64 handle;
1946  		} free;
1947  
1948  		/**
1949  		 * structure for mapping device memory (used with the HL_MEM_OP_MAP op)
1950  		 * @hint_addr: requested virtual address of mapped memory.
1951  		 *             the driver will try to map the requested region to this hint
1952  		 *             address, as long as the address is valid and not already mapped.
1953  		 *             the user should check the returned address of the IOCTL to make
1954  		 *             sure he got the hint address.
1955  		 *             passing 0 here means that the driver will choose the address itself.
1956  		 * @handle: handle returned from HL_MEM_OP_ALLOC.
1957  		 */
1958  		struct {
1959  			__u64 hint_addr;
1960  			__u64 handle;
1961  		} map_device;
1962  
1963  		/**
1964  		 * structure for mapping host memory (used with the HL_MEM_OP_MAP op)
1965  		 * @host_virt_addr: address of allocated host memory.
1966  		 * @hint_addr: requested virtual address of mapped memory.
1967  		 *             the driver will try to map the requested region to this hint
1968  		 *             address, as long as the address is valid and not already mapped.
1969  		 *             the user should check the returned address of the IOCTL to make
1970  		 *             sure he got the hint address.
1971  		 *             passing 0 here means that the driver will choose the address itself.
1972  		 * @size: size of allocated host memory.
1973  		 */
1974  		struct {
1975  			__u64 host_virt_addr;
1976  			__u64 hint_addr;
1977  			__u64 mem_size;
1978  		} map_host;
1979  
1980  		/**
1981  		 * structure for mapping hw block (used with the HL_MEM_OP_MAP_BLOCK op)
1982  		 * @block_addr:HW block address to map, a handle and size will be returned
1983  		 *             to the user and will be used to mmap the relevant block.
1984  		 *             only addresses from configuration space are allowed.
1985  		 */
1986  		struct {
1987  			__u64 block_addr;
1988  		} map_block;
1989  
1990  		/**
1991  		 * structure for unmapping host memory (used with the HL_MEM_OP_UNMAP op)
1992  		 * @device_virt_addr: virtual address returned from HL_MEM_OP_MAP
1993  		 */
1994  		struct {
1995  			__u64 device_virt_addr;
1996  		} unmap;
1997  
1998  		/**
1999  		 * structure for exporting DMABUF object (used with
2000  		 * the HL_MEM_OP_EXPORT_DMABUF_FD op)
2001  		 * @addr: for Gaudi1, the driver expects a physical address
2002  		 *        inside the device's DRAM. this is because in Gaudi1
2003  		 *        we don't have MMU that covers the device's DRAM.
2004  		 *        for all other ASICs, the driver expects a device
2005  		 *        virtual address that represents the start address of
2006  		 *        a mapped DRAM memory area inside the device.
2007  		 *        the address must be the same as was received from the
2008  		 *        driver during a previous HL_MEM_OP_MAP operation.
2009  		 * @mem_size: size of memory to export.
2010  		 * @offset: for Gaudi1, this value must be 0. For all other ASICs,
2011  		 *          the driver expects an offset inside of the memory area
2012  		 *          describe by addr. the offset represents the start
2013  		 *          address of that the exported dma-buf object describes.
2014  		 */
2015  		struct {
2016  			__u64 addr;
2017  			__u64 mem_size;
2018  			__u64 offset;
2019  		} export_dmabuf_fd;
2020  	};
2021  
2022  	__u32 op;
2023  	__u32 flags;
2024  	__u32 ctx_id;
2025  	__u32 num_of_elements;
2026  };
2027  
2028  struct hl_mem_out {
2029  	union {
2030  		/*
2031  		 * Used for HL_MEM_OP_MAP as the virtual address that was
2032  		 * assigned in the device VA space.
2033  		 * A value of 0 means the requested operation failed.
2034  		 */
2035  		__u64 device_virt_addr;
2036  
2037  		/*
2038  		 * Used in HL_MEM_OP_ALLOC
2039  		 * This is the assigned handle for the allocated memory
2040  		 */
2041  		__u64 handle;
2042  
2043  		struct {
2044  			/*
2045  			 * Used in HL_MEM_OP_MAP_BLOCK.
2046  			 * This is the assigned handle for the mapped block
2047  			 */
2048  			__u64 block_handle;
2049  
2050  			/*
2051  			 * Used in HL_MEM_OP_MAP_BLOCK
2052  			 * This is the size of the mapped block
2053  			 */
2054  			__u32 block_size;
2055  
2056  			__u32 pad;
2057  		};
2058  
2059  		/* Returned in HL_MEM_OP_EXPORT_DMABUF_FD. Represents the
2060  		 * DMA-BUF object that was created to describe a memory
2061  		 * allocation on the device's memory space. The FD should be
2062  		 * passed to the importer driver
2063  		 */
2064  		__s32 fd;
2065  	};
2066  };
2067  
2068  union hl_mem_args {
2069  	struct hl_mem_in in;
2070  	struct hl_mem_out out;
2071  };
2072  
2073  #define HL_DEBUG_MAX_AUX_VALUES		10
2074  
2075  struct hl_debug_params_etr {
2076  	/* Address in memory to allocate buffer */
2077  	__u64 buffer_address;
2078  
2079  	/* Size of buffer to allocate */
2080  	__u64 buffer_size;
2081  
2082  	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2083  	__u32 sink_mode;
2084  	__u32 pad;
2085  };
2086  
2087  struct hl_debug_params_etf {
2088  	/* Address in memory to allocate buffer */
2089  	__u64 buffer_address;
2090  
2091  	/* Size of buffer to allocate */
2092  	__u64 buffer_size;
2093  
2094  	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2095  	__u32 sink_mode;
2096  	__u32 pad;
2097  };
2098  
2099  struct hl_debug_params_stm {
2100  	/* Two bit masks for HW event and Stimulus Port */
2101  	__u64 he_mask;
2102  	__u64 sp_mask;
2103  
2104  	/* Trace source ID */
2105  	__u32 id;
2106  
2107  	/* Frequency for the timestamp register */
2108  	__u32 frequency;
2109  };
2110  
2111  struct hl_debug_params_bmon {
2112  	/* Two address ranges that the user can request to filter */
2113  	__u64 start_addr0;
2114  	__u64 addr_mask0;
2115  
2116  	__u64 start_addr1;
2117  	__u64 addr_mask1;
2118  
2119  	/* Capture window configuration */
2120  	__u32 bw_win;
2121  	__u32 win_capture;
2122  
2123  	/* Trace source ID */
2124  	__u32 id;
2125  
2126  	/* Control register */
2127  	__u32 control;
2128  
2129  	/* Two more address ranges that the user can request to filter */
2130  	__u64 start_addr2;
2131  	__u64 end_addr2;
2132  
2133  	__u64 start_addr3;
2134  	__u64 end_addr3;
2135  };
2136  
2137  struct hl_debug_params_spmu {
2138  	/* Event types selection */
2139  	__u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
2140  
2141  	/* Number of event types selection */
2142  	__u32 event_types_num;
2143  
2144  	/* TRC configuration register values */
2145  	__u32 pmtrc_val;
2146  	__u32 trc_ctrl_host_val;
2147  	__u32 trc_en_host_val;
2148  };
2149  
2150  /* Opcode for ETR component */
2151  #define HL_DEBUG_OP_ETR		0
2152  /* Opcode for ETF component */
2153  #define HL_DEBUG_OP_ETF		1
2154  /* Opcode for STM component */
2155  #define HL_DEBUG_OP_STM		2
2156  /* Opcode for FUNNEL component */
2157  #define HL_DEBUG_OP_FUNNEL	3
2158  /* Opcode for BMON component */
2159  #define HL_DEBUG_OP_BMON	4
2160  /* Opcode for SPMU component */
2161  #define HL_DEBUG_OP_SPMU	5
2162  /* Opcode for timestamp (deprecated) */
2163  #define HL_DEBUG_OP_TIMESTAMP	6
2164  /* Opcode for setting the device into or out of debug mode. The enable
2165   * variable should be 1 for enabling debug mode and 0 for disabling it
2166   */
2167  #define HL_DEBUG_OP_SET_MODE	7
2168  
2169  struct hl_debug_args {
2170  	/*
2171  	 * Pointer to user input structure.
2172  	 * This field is relevant to specific opcodes.
2173  	 */
2174  	__u64 input_ptr;
2175  	/* Pointer to user output structure */
2176  	__u64 output_ptr;
2177  	/* Size of user input structure */
2178  	__u32 input_size;
2179  	/* Size of user output structure */
2180  	__u32 output_size;
2181  	/* HL_DEBUG_OP_* */
2182  	__u32 op;
2183  	/*
2184  	 * Register index in the component, taken from the debug_regs_index enum
2185  	 * in the various ASIC header files
2186  	 */
2187  	__u32 reg_idx;
2188  	/* Enable/disable */
2189  	__u32 enable;
2190  	/* Context ID - Currently not in use */
2191  	__u32 ctx_id;
2192  };
2193  
2194  #define HL_IOCTL_INFO		0x00
2195  #define HL_IOCTL_CB		0x01
2196  #define HL_IOCTL_CS		0x02
2197  #define HL_IOCTL_WAIT_CS	0x03
2198  #define HL_IOCTL_MEMORY		0x04
2199  #define HL_IOCTL_DEBUG		0x05
2200  
2201  /*
2202   * Various information operations such as:
2203   * - H/W IP information
2204   * - Current dram usage
2205   *
2206   * The user calls this IOCTL with an opcode that describes the required
2207   * information. The user should supply a pointer to a user-allocated memory
2208   * chunk, which will be filled by the driver with the requested information.
2209   *
2210   * The user supplies the maximum amount of size to copy into the user's memory,
2211   * in order to prevent data corruption in case of differences between the
2212   * definitions of structures in kernel and userspace, e.g. in case of old
2213   * userspace and new kernel driver
2214   */
2215  #define DRM_IOCTL_HL_INFO	DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_INFO, struct hl_info_args)
2216  
2217  /*
2218   * Command Buffer
2219   * - Request a Command Buffer
2220   * - Destroy a Command Buffer
2221   *
2222   * The command buffers are memory blocks that reside in DMA-able address
2223   * space and are physically contiguous so they can be accessed by the device
2224   * directly. They are allocated using the coherent DMA API.
2225   *
2226   * When creating a new CB, the IOCTL returns a handle of it, and the user-space
2227   * process needs to use that handle to mmap the buffer so it can access them.
2228   *
2229   * In some instances, the device must access the command buffer through the
2230   * device's MMU, and thus its memory should be mapped. In these cases, user can
2231   * indicate the driver that such a mapping is required.
2232   * The resulting device virtual address will be used internally by the driver,
2233   * and won't be returned to user.
2234   *
2235   */
2236  #define DRM_IOCTL_HL_CB		DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CB, union hl_cb_args)
2237  
2238  /*
2239   * Command Submission
2240   *
2241   * To submit work to the device, the user need to call this IOCTL with a set
2242   * of JOBS. That set of JOBS constitutes a CS object.
2243   * Each JOB will be enqueued on a specific queue, according to the user's input.
2244   * There can be more then one JOB per queue.
2245   *
2246   * The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase
2247   * and a second set is for "execution" phase.
2248   * The JOBS on the "restore" phase are enqueued only after context-switch
2249   * (or if its the first CS for this context). The user can also order the
2250   * driver to run the "restore" phase explicitly
2251   *
2252   * Goya/Gaudi:
2253   * There are two types of queues - external and internal. External queues
2254   * are DMA queues which transfer data from/to the Host. All other queues are
2255   * internal. The driver will get completion notifications from the device only
2256   * on JOBS which are enqueued in the external queues.
2257   *
2258   * Gaudi2 onwards:
2259   * There is a single type of queue for all types of engines, either DMA engines
2260   * for transfers from/to the host or inside the device, or compute engines.
2261   * The driver will get completion notifications from the device for all queues.
2262   *
2263   * For jobs on external queues, the user needs to create command buffers
2264   * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
2265   * internal queues, the user needs to prepare a "command buffer" with packets
2266   * on either the device SRAM/DRAM or the host, and give the device address of
2267   * that buffer to the CS ioctl.
2268   * For jobs on H/W queues both options of command buffers are valid.
2269   *
2270   * This IOCTL is asynchronous in regard to the actual execution of the CS. This
2271   * means it returns immediately after ALL the JOBS were enqueued on their
2272   * relevant queues. Therefore, the user mustn't assume the CS has been completed
2273   * or has even started to execute.
2274   *
2275   * Upon successful enqueue, the IOCTL returns a sequence number which the user
2276   * can use with the "Wait for CS" IOCTL to check whether the handle's CS
2277   * non-internal JOBS have been completed. Note that if the CS has internal JOBS
2278   * which can execute AFTER the external JOBS have finished, the driver might
2279   * report that the CS has finished executing BEFORE the internal JOBS have
2280   * actually finished executing.
2281   *
2282   * Even though the sequence number increments per CS, the user can NOT
2283   * automatically assume that if CS with sequence number N finished, then CS
2284   * with sequence number N-1 also finished. The user can make this assumption if
2285   * and only if CS N and CS N-1 are exactly the same (same CBs for the same
2286   * queues).
2287   */
2288  #define DRM_IOCTL_HL_CS		DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CS, union hl_cs_args)
2289  
2290  /*
2291   * Wait for Command Submission
2292   *
2293   * The user can call this IOCTL with a handle it received from the CS IOCTL
2294   * to wait until the handle's CS has finished executing. The user will wait
2295   * inside the kernel until the CS has finished or until the user-requested
2296   * timeout has expired.
2297   *
2298   * If the timeout value is 0, the driver won't sleep at all. It will check
2299   * the status of the CS and return immediately
2300   *
2301   * The return value of the IOCTL is a standard Linux error code. The possible
2302   * values are:
2303   *
2304   * EINTR     - Kernel waiting has been interrupted, e.g. due to OS signal
2305   *             that the user process received
2306   * ETIMEDOUT - The CS has caused a timeout on the device
2307   * EIO       - The CS was aborted (usually because the device was reset)
2308   * ENODEV    - The device wants to do hard-reset (so user need to close FD)
2309   *
2310   * The driver also returns a custom define in case the IOCTL call returned 0.
2311   * The define can be one of the following:
2312   *
2313   * HL_WAIT_CS_STATUS_COMPLETED   - The CS has been completed successfully (0)
2314   * HL_WAIT_CS_STATUS_BUSY        - The CS is still executing (0)
2315   * HL_WAIT_CS_STATUS_TIMEDOUT    - The CS has caused a timeout on the device
2316   *                                 (ETIMEDOUT)
2317   * HL_WAIT_CS_STATUS_ABORTED     - The CS was aborted, usually because the
2318   *                                 device was reset (EIO)
2319   */
2320  #define DRM_IOCTL_HL_WAIT_CS	DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_WAIT_CS, union hl_wait_cs_args)
2321  
2322  /*
2323   * Memory
2324   * - Map host memory to device MMU
2325   * - Unmap host memory from device MMU
2326   *
2327   * This IOCTL allows the user to map host memory to the device MMU
2328   *
2329   * For host memory, the IOCTL doesn't allocate memory. The user is supposed
2330   * to allocate the memory in user-space (malloc/new). The driver pins the
2331   * physical pages (up to the allowed limit by the OS), assigns a virtual
2332   * address in the device VA space and initializes the device MMU.
2333   *
2334   * There is an option for the user to specify the requested virtual address.
2335   *
2336   */
2337  #define DRM_IOCTL_HL_MEMORY	DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_MEMORY, union hl_mem_args)
2338  
2339  /*
2340   * Debug
2341   * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
2342   *
2343   * This IOCTL allows the user to get debug traces from the chip.
2344   *
2345   * Before the user can send configuration requests of the various
2346   * debug/profile engines, it needs to set the device into debug mode.
2347   * This is because the debug/profile infrastructure is shared component in the
2348   * device and we can't allow multiple users to access it at the same time.
2349   *
2350   * Once a user set the device into debug mode, the driver won't allow other
2351   * users to "work" with the device, i.e. open a FD. If there are multiple users
2352   * opened on the device, the driver won't allow any user to debug the device.
2353   *
2354   * For each configuration request, the user needs to provide the register index
2355   * and essential data such as buffer address and size.
2356   *
2357   * Once the user has finished using the debug/profile engines, he should
2358   * set the device into non-debug mode, i.e. disable debug mode.
2359   *
2360   * The driver can decide to "kick out" the user if he abuses this interface.
2361   *
2362   */
2363  #define DRM_IOCTL_HL_DEBUG	DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_DEBUG, struct hl_debug_args)
2364  
2365  #define HL_COMMAND_START	(DRM_COMMAND_BASE + HL_IOCTL_INFO)
2366  #define HL_COMMAND_END		(DRM_COMMAND_BASE + HL_IOCTL_DEBUG + 1)
2367  
2368  #endif /* HABANALABS_H_ */
2369