1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt)	"powernv: " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/cpu.h>
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/gfp.h>
13 #include <linux/smp.h>
14 #include <linux/stop_machine.h>
15 
16 #include <asm/cputhreads.h>
17 #include <asm/cpuidle.h>
18 #include <asm/kvm_ppc.h>
19 #include <asm/machdep.h>
20 #include <asm/opal.h>
21 #include <asm/smp.h>
22 
23 #include <trace/events/ipi.h>
24 
25 #include "subcore.h"
26 #include "powernv.h"
27 
28 
29 /*
30  * Split/unsplit procedure:
31  *
32  * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
33  *
34  * The mapping to subcores_per_core is simple:
35  *
36  *  State       | subcores_per_core
37  *  ------------|------------------
38  *  Unsplit     |        1
39  *  2-way split |        2
40  *  4-way split |        4
41  *
42  * The core is split along thread boundaries, the mapping between subcores and
43  * threads is as follows:
44  *
45  *  Unsplit:
46  *          ----------------------------
47  *  Subcore |            0             |
48  *          ----------------------------
49  *  Thread  |  0  1  2  3  4  5  6  7  |
50  *          ----------------------------
51  *
52  *  2-way split:
53  *          -------------------------------------
54  *  Subcore |        0        |        1        |
55  *          -------------------------------------
56  *  Thread  |  0   1   2   3  |  4   5   6   7  |
57  *          -------------------------------------
58  *
59  *  4-way split:
60  *          -----------------------------------------
61  *  Subcore |    0    |    1    |    2    |    3    |
62  *          -----------------------------------------
63  *  Thread  |  0   1  |  2   3  |  4   5  |  6   7  |
64  *          -----------------------------------------
65  *
66  *
67  * Transitions
68  * -----------
69  *
70  * It is not possible to transition between either of the split states, the
71  * core must first be unsplit. The legal transitions are:
72  *
73  *  -----------          ---------------
74  *  |         |  <---->  | 2-way split |
75  *  |         |          ---------------
76  *  | Unsplit |
77  *  |         |          ---------------
78  *  |         |  <---->  | 4-way split |
79  *  -----------          ---------------
80  *
81  * Unsplitting
82  * -----------
83  *
84  * Unsplitting is the simpler procedure. It requires thread 0 to request the
85  * unsplit while all other threads NAP.
86  *
87  * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
88  * the hardware that if all threads except 0 are napping, the hardware should
89  * unsplit the core.
90  *
91  * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
92  * see the core unsplit.
93  *
94  * Core 0 spins waiting for the hardware to see all the other threads napping
95  * and perform the unsplit.
96  *
97  * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
98  * out of NAP. They will then see the core unsplit and exit the NAP loop.
99  *
100  * Splitting
101  * ---------
102  *
103  * The basic splitting procedure is fairly straight forward. However it is
104  * complicated by the fact that after the split occurs, the newly created
105  * subcores are not in a fully initialised state.
106  *
107  * Most notably the subcores do not have the correct value for SDR1, which
108  * means they must not be running in virtual mode when the split occurs. The
109  * subcores have separate timebases SPRs but these are pre-synchronised by
110  * opal.
111  *
112  * To begin with secondary threads are sent to an assembly routine. There they
113  * switch to real mode, so they are immune to the uninitialised SDR1 value.
114  * Once in real mode they indicate that they are in real mode, and spin waiting
115  * to see the core split.
116  *
117  * Thread 0 waits to see that all secondaries are in real mode, and then begins
118  * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
119  * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
120  * to request the split, and spins waiting to see that the split has happened.
121  *
122  * Concurrently the secondaries will notice the split. When they do they set up
123  * their SPRs, notably SDR1, and then they can return to virtual mode and exit
124  * the procedure.
125  */
126 
127 /* Initialised at boot by subcore_init() */
128 static int subcores_per_core;
129 
130 /*
131  * Used to communicate to offline cpus that we want them to pop out of the
132  * offline loop and do a split or unsplit.
133  *
134  * 0 - no split happening
135  * 1 - unsplit in progress
136  * 2 - split to 2 in progress
137  * 4 - split to 4 in progress
138  */
139 static int new_split_mode;
140 
141 static cpumask_var_t cpu_offline_mask;
142 
143 struct split_state {
144 	u8 step;
145 	u8 master;
146 };
147 
148 static DEFINE_PER_CPU(struct split_state, split_state);
149 
wait_for_sync_step(int step)150 static void wait_for_sync_step(int step)
151 {
152 	int i, cpu = smp_processor_id();
153 
154 	for (i = cpu + 1; i < cpu + threads_per_core; i++)
155 		while(per_cpu(split_state, i).step < step)
156 			barrier();
157 
158 	/* Order the wait loop vs any subsequent loads/stores. */
159 	mb();
160 }
161 
update_hid_in_slw(u64 hid0)162 static void update_hid_in_slw(u64 hid0)
163 {
164 	u64 idle_states = pnv_get_supported_cpuidle_states();
165 
166 	if (idle_states & OPAL_PM_WINKLE_ENABLED) {
167 		/* OPAL call to patch slw with the new HID0 value */
168 		u64 cpu_pir = hard_smp_processor_id();
169 
170 		opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0);
171 	}
172 }
173 
update_power8_hid0(unsigned long hid0)174 static inline void update_power8_hid0(unsigned long hid0)
175 {
176 	/*
177 	 *  The HID0 update on Power8 should at the very least be
178 	 *  preceded by a SYNC instruction followed by an ISYNC
179 	 *  instruction
180 	 */
181 	asm volatile("sync; mtspr %0,%1; isync":: "i"(SPRN_HID0), "r"(hid0));
182 }
183 
unsplit_core(void)184 static void unsplit_core(void)
185 {
186 	u64 hid0, mask;
187 	int i, cpu;
188 
189 	mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
190 
191 	cpu = smp_processor_id();
192 	if (cpu_thread_in_core(cpu) != 0) {
193 		while (mfspr(SPRN_HID0) & mask)
194 			power7_idle_type(PNV_THREAD_NAP);
195 
196 		per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
197 		return;
198 	}
199 
200 	hid0 = mfspr(SPRN_HID0);
201 	hid0 &= ~HID0_POWER8_DYNLPARDIS;
202 	update_power8_hid0(hid0);
203 	update_hid_in_slw(hid0);
204 
205 	while (mfspr(SPRN_HID0) & mask)
206 		cpu_relax();
207 
208 	/* Wake secondaries out of NAP */
209 	for (i = cpu + 1; i < cpu + threads_per_core; i++)
210 		smp_send_reschedule(i);
211 
212 	wait_for_sync_step(SYNC_STEP_UNSPLIT);
213 }
214 
split_core(int new_mode)215 static void split_core(int new_mode)
216 {
217 	struct {  u64 value; u64 mask; } split_parms[2] = {
218 		{ HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
219 		{ HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
220 	};
221 	int i, cpu;
222 	u64 hid0;
223 
224 	/* Convert new_mode (2 or 4) into an index into our parms array */
225 	i = (new_mode >> 1) - 1;
226 	BUG_ON(i < 0 || i > 1);
227 
228 	cpu = smp_processor_id();
229 	if (cpu_thread_in_core(cpu) != 0) {
230 		split_core_secondary_loop(&per_cpu(split_state, cpu).step);
231 		return;
232 	}
233 
234 	wait_for_sync_step(SYNC_STEP_REAL_MODE);
235 
236 	/* Write new mode */
237 	hid0  = mfspr(SPRN_HID0);
238 	hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
239 	update_power8_hid0(hid0);
240 	update_hid_in_slw(hid0);
241 
242 	/* Wait for it to happen */
243 	while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
244 		cpu_relax();
245 }
246 
cpu_do_split(int new_mode)247 static void cpu_do_split(int new_mode)
248 {
249 	/*
250 	 * At boot subcores_per_core will be 0, so we will always unsplit at
251 	 * boot. In the usual case where the core is already unsplit it's a
252 	 * nop, and this just ensures the kernel's notion of the mode is
253 	 * consistent with the hardware.
254 	 */
255 	if (subcores_per_core != 1)
256 		unsplit_core();
257 
258 	if (new_mode != 1)
259 		split_core(new_mode);
260 
261 	mb();
262 	per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
263 }
264 
cpu_core_split_required(void)265 bool cpu_core_split_required(void)
266 {
267 	smp_rmb();
268 
269 	if (!new_split_mode)
270 		return false;
271 
272 	cpu_do_split(new_split_mode);
273 
274 	return true;
275 }
276 
update_subcore_sibling_mask(void)277 void update_subcore_sibling_mask(void)
278 {
279 	int cpu;
280 	/*
281 	 * sibling mask for the first cpu. Left shift this by required bits
282 	 * to get sibling mask for the rest of the cpus.
283 	 */
284 	int sibling_mask_first_cpu =  (1 << threads_per_subcore) - 1;
285 
286 	for_each_possible_cpu(cpu) {
287 		int tid = cpu_thread_in_core(cpu);
288 		int offset = (tid / threads_per_subcore) * threads_per_subcore;
289 		int mask = sibling_mask_first_cpu << offset;
290 
291 		paca_ptrs[cpu]->subcore_sibling_mask = mask;
292 
293 	}
294 }
295 
cpu_update_split_mode(void * data)296 static int cpu_update_split_mode(void *data)
297 {
298 	int cpu, new_mode = *(int *)data;
299 
300 	if (this_cpu_ptr(&split_state)->master) {
301 		new_split_mode = new_mode;
302 		smp_wmb();
303 
304 		cpumask_andnot(cpu_offline_mask, cpu_present_mask,
305 			       cpu_online_mask);
306 
307 		/* This should work even though the cpu is offline */
308 		for_each_cpu(cpu, cpu_offline_mask)
309 			smp_send_reschedule(cpu);
310 	}
311 
312 	cpu_do_split(new_mode);
313 
314 	if (this_cpu_ptr(&split_state)->master) {
315 		/* Wait for all cpus to finish before we touch subcores_per_core */
316 		for_each_present_cpu(cpu) {
317 			if (cpu >= setup_max_cpus)
318 				break;
319 
320 			while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
321 				barrier();
322 		}
323 
324 		new_split_mode = 0;
325 
326 		/* Make the new mode public */
327 		subcores_per_core = new_mode;
328 		threads_per_subcore = threads_per_core / subcores_per_core;
329 		update_subcore_sibling_mask();
330 
331 		/* Make sure the new mode is written before we exit */
332 		mb();
333 	}
334 
335 	return 0;
336 }
337 
set_subcores_per_core(int new_mode)338 static int set_subcores_per_core(int new_mode)
339 {
340 	struct split_state *state;
341 	int cpu;
342 
343 	if (kvm_hv_mode_active()) {
344 		pr_err("Unable to change split core mode while KVM active.\n");
345 		return -EBUSY;
346 	}
347 
348 	/*
349 	 * We are only called at boot, or from the sysfs write. If that ever
350 	 * changes we'll need a lock here.
351 	 */
352 	BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
353 
354 	for_each_present_cpu(cpu) {
355 		state = &per_cpu(split_state, cpu);
356 		state->step = SYNC_STEP_INITIAL;
357 		state->master = 0;
358 	}
359 
360 	cpus_read_lock();
361 
362 	/* This cpu will update the globals before exiting stop machine */
363 	this_cpu_ptr(&split_state)->master = 1;
364 
365 	/* Ensure state is consistent before we call the other cpus */
366 	mb();
367 
368 	stop_machine_cpuslocked(cpu_update_split_mode, &new_mode,
369 				cpu_online_mask);
370 
371 	cpus_read_unlock();
372 
373 	return 0;
374 }
375 
store_subcores_per_core(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)376 static ssize_t __used store_subcores_per_core(struct device *dev,
377 		struct device_attribute *attr, const char *buf,
378 		size_t count)
379 {
380 	unsigned long val;
381 	int rc;
382 
383 	/* We are serialised by the attribute lock */
384 
385 	rc = sscanf(buf, "%lx", &val);
386 	if (rc != 1)
387 		return -EINVAL;
388 
389 	switch (val) {
390 	case 1:
391 	case 2:
392 	case 4:
393 		if (subcores_per_core == val)
394 			/* Nothing to do */
395 			goto out;
396 		break;
397 	default:
398 		return -EINVAL;
399 	}
400 
401 	rc = set_subcores_per_core(val);
402 	if (rc)
403 		return rc;
404 
405 out:
406 	return count;
407 }
408 
show_subcores_per_core(struct device * dev,struct device_attribute * attr,char * buf)409 static ssize_t show_subcores_per_core(struct device *dev,
410 		struct device_attribute *attr, char *buf)
411 {
412 	return sprintf(buf, "%x\n", subcores_per_core);
413 }
414 
415 static DEVICE_ATTR(subcores_per_core, 0644,
416 		show_subcores_per_core, store_subcores_per_core);
417 
subcore_init(void)418 static int subcore_init(void)
419 {
420 	struct device *dev_root;
421 	unsigned pvr_ver;
422 	int rc = 0;
423 
424 	pvr_ver = PVR_VER(mfspr(SPRN_PVR));
425 
426 	if (pvr_ver != PVR_POWER8 &&
427 	    pvr_ver != PVR_POWER8E &&
428 	    pvr_ver != PVR_POWER8NVL &&
429 	    pvr_ver != PVR_HX_C2000)
430 		return 0;
431 
432 	/*
433 	 * We need all threads in a core to be present to split/unsplit so
434          * continue only if max_cpus are aligned to threads_per_core.
435 	 */
436 	if (setup_max_cpus % threads_per_core)
437 		return 0;
438 
439 	BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
440 
441 	set_subcores_per_core(1);
442 
443 	dev_root = bus_get_dev_root(&cpu_subsys);
444 	if (dev_root) {
445 		rc = device_create_file(dev_root, &dev_attr_subcores_per_core);
446 		put_device(dev_root);
447 	}
448 	return rc;
449 }
450 machine_device_initcall(powernv, subcore_init);
451