1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Generic entry points for the idle threads and
4   * implementation of the idle task scheduling class.
5   *
6   * (NOTE: these are not related to SCHED_IDLE batch scheduled
7   *        tasks which are handled in sched/fair.c )
8   */
9  
10  /* Linker adds these: start and end of __cpuidle functions */
11  extern char __cpuidle_text_start[], __cpuidle_text_end[];
12  
13  /**
14   * sched_idle_set_state - Record idle state for the current CPU.
15   * @idle_state: State to record.
16   */
sched_idle_set_state(struct cpuidle_state * idle_state)17  void sched_idle_set_state(struct cpuidle_state *idle_state)
18  {
19  	idle_set_state(this_rq(), idle_state);
20  }
21  
22  static int __read_mostly cpu_idle_force_poll;
23  
cpu_idle_poll_ctrl(bool enable)24  void cpu_idle_poll_ctrl(bool enable)
25  {
26  	if (enable) {
27  		cpu_idle_force_poll++;
28  	} else {
29  		cpu_idle_force_poll--;
30  		WARN_ON_ONCE(cpu_idle_force_poll < 0);
31  	}
32  }
33  
34  #ifdef CONFIG_GENERIC_IDLE_POLL_SETUP
cpu_idle_poll_setup(char * __unused)35  static int __init cpu_idle_poll_setup(char *__unused)
36  {
37  	cpu_idle_force_poll = 1;
38  
39  	return 1;
40  }
41  __setup("nohlt", cpu_idle_poll_setup);
42  
cpu_idle_nopoll_setup(char * __unused)43  static int __init cpu_idle_nopoll_setup(char *__unused)
44  {
45  	cpu_idle_force_poll = 0;
46  
47  	return 1;
48  }
49  __setup("hlt", cpu_idle_nopoll_setup);
50  #endif
51  
cpu_idle_poll(void)52  static noinline int __cpuidle cpu_idle_poll(void)
53  {
54  	instrumentation_begin();
55  	trace_cpu_idle(0, smp_processor_id());
56  	stop_critical_timings();
57  	ct_cpuidle_enter();
58  
59  	raw_local_irq_enable();
60  	while (!tif_need_resched() &&
61  	       (cpu_idle_force_poll || tick_check_broadcast_expired()))
62  		cpu_relax();
63  	raw_local_irq_disable();
64  
65  	ct_cpuidle_exit();
66  	start_critical_timings();
67  	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
68  	local_irq_enable();
69  	instrumentation_end();
70  
71  	return 1;
72  }
73  
74  /* Weak implementations for optional arch specific functions */
arch_cpu_idle_prepare(void)75  void __weak arch_cpu_idle_prepare(void) { }
arch_cpu_idle_enter(void)76  void __weak arch_cpu_idle_enter(void) { }
arch_cpu_idle_exit(void)77  void __weak arch_cpu_idle_exit(void) { }
arch_cpu_idle_dead(void)78  void __weak __noreturn arch_cpu_idle_dead(void) { while (1); }
arch_cpu_idle(void)79  void __weak arch_cpu_idle(void)
80  {
81  	cpu_idle_force_poll = 1;
82  }
83  
84  #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE
85  DEFINE_STATIC_KEY_FALSE(arch_needs_tick_broadcast);
86  
cond_tick_broadcast_enter(void)87  static inline void cond_tick_broadcast_enter(void)
88  {
89  	if (static_branch_unlikely(&arch_needs_tick_broadcast))
90  		tick_broadcast_enter();
91  }
92  
cond_tick_broadcast_exit(void)93  static inline void cond_tick_broadcast_exit(void)
94  {
95  	if (static_branch_unlikely(&arch_needs_tick_broadcast))
96  		tick_broadcast_exit();
97  }
98  #else
cond_tick_broadcast_enter(void)99  static inline void cond_tick_broadcast_enter(void) { }
cond_tick_broadcast_exit(void)100  static inline void cond_tick_broadcast_exit(void) { }
101  #endif
102  
103  /**
104   * default_idle_call - Default CPU idle routine.
105   *
106   * To use when the cpuidle framework cannot be used.
107   */
default_idle_call(void)108  void __cpuidle default_idle_call(void)
109  {
110  	instrumentation_begin();
111  	if (!current_clr_polling_and_test()) {
112  		cond_tick_broadcast_enter();
113  		trace_cpu_idle(1, smp_processor_id());
114  		stop_critical_timings();
115  
116  		ct_cpuidle_enter();
117  		arch_cpu_idle();
118  		ct_cpuidle_exit();
119  
120  		start_critical_timings();
121  		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
122  		cond_tick_broadcast_exit();
123  	}
124  	local_irq_enable();
125  	instrumentation_end();
126  }
127  
call_cpuidle_s2idle(struct cpuidle_driver * drv,struct cpuidle_device * dev)128  static int call_cpuidle_s2idle(struct cpuidle_driver *drv,
129  			       struct cpuidle_device *dev)
130  {
131  	if (current_clr_polling_and_test())
132  		return -EBUSY;
133  
134  	return cpuidle_enter_s2idle(drv, dev);
135  }
136  
call_cpuidle(struct cpuidle_driver * drv,struct cpuidle_device * dev,int next_state)137  static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
138  		      int next_state)
139  {
140  	/*
141  	 * The idle task must be scheduled, it is pointless to go to idle, just
142  	 * update no idle residency and return.
143  	 */
144  	if (current_clr_polling_and_test()) {
145  		dev->last_residency_ns = 0;
146  		local_irq_enable();
147  		return -EBUSY;
148  	}
149  
150  	/*
151  	 * Enter the idle state previously returned by the governor decision.
152  	 * This function will block until an interrupt occurs and will take
153  	 * care of re-enabling the local interrupts
154  	 */
155  	return cpuidle_enter(drv, dev, next_state);
156  }
157  
158  /**
159   * cpuidle_idle_call - the main idle function
160   *
161   * NOTE: no locks or semaphores should be used here
162   *
163   * On architectures that support TIF_POLLING_NRFLAG, is called with polling
164   * set, and it returns with polling set.  If it ever stops polling, it
165   * must clear the polling bit.
166   */
cpuidle_idle_call(void)167  static void cpuidle_idle_call(void)
168  {
169  	struct cpuidle_device *dev = cpuidle_get_device();
170  	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
171  	int next_state, entered_state;
172  
173  	/*
174  	 * Check if the idle task must be rescheduled. If it is the
175  	 * case, exit the function after re-enabling the local IRQ.
176  	 */
177  	if (need_resched()) {
178  		local_irq_enable();
179  		return;
180  	}
181  
182  	if (cpuidle_not_available(drv, dev)) {
183  		tick_nohz_idle_stop_tick();
184  
185  		default_idle_call();
186  		goto exit_idle;
187  	}
188  
189  	/*
190  	 * Suspend-to-idle ("s2idle") is a system state in which all user space
191  	 * has been frozen, all I/O devices have been suspended and the only
192  	 * activity happens here and in interrupts (if any). In that case bypass
193  	 * the cpuidle governor and go straight for the deepest idle state
194  	 * available.  Possibly also suspend the local tick and the entire
195  	 * timekeeping to prevent timer interrupts from kicking us out of idle
196  	 * until a proper wakeup interrupt happens.
197  	 */
198  
199  	if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) {
200  		u64 max_latency_ns;
201  
202  		if (idle_should_enter_s2idle()) {
203  
204  			entered_state = call_cpuidle_s2idle(drv, dev);
205  			if (entered_state > 0)
206  				goto exit_idle;
207  
208  			max_latency_ns = U64_MAX;
209  		} else {
210  			max_latency_ns = dev->forced_idle_latency_limit_ns;
211  		}
212  
213  		tick_nohz_idle_stop_tick();
214  
215  		next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns);
216  		call_cpuidle(drv, dev, next_state);
217  	} else {
218  		bool stop_tick = true;
219  
220  		/*
221  		 * Ask the cpuidle framework to choose a convenient idle state.
222  		 */
223  		next_state = cpuidle_select(drv, dev, &stop_tick);
224  
225  		if (stop_tick || tick_nohz_tick_stopped())
226  			tick_nohz_idle_stop_tick();
227  		else
228  			tick_nohz_idle_retain_tick();
229  
230  		entered_state = call_cpuidle(drv, dev, next_state);
231  		/*
232  		 * Give the governor an opportunity to reflect on the outcome
233  		 */
234  		cpuidle_reflect(dev, entered_state);
235  	}
236  
237  exit_idle:
238  	__current_set_polling();
239  
240  	/*
241  	 * It is up to the idle functions to re-enable local interrupts
242  	 */
243  	if (WARN_ON_ONCE(irqs_disabled()))
244  		local_irq_enable();
245  }
246  
247  /*
248   * Generic idle loop implementation
249   *
250   * Called with polling cleared.
251   */
do_idle(void)252  static void do_idle(void)
253  {
254  	int cpu = smp_processor_id();
255  
256  	/*
257  	 * Check if we need to update blocked load
258  	 */
259  	nohz_run_idle_balance(cpu);
260  
261  	/*
262  	 * If the arch has a polling bit, we maintain an invariant:
263  	 *
264  	 * Our polling bit is clear if we're not scheduled (i.e. if rq->curr !=
265  	 * rq->idle). This means that, if rq->idle has the polling bit set,
266  	 * then setting need_resched is guaranteed to cause the CPU to
267  	 * reschedule.
268  	 */
269  
270  	__current_set_polling();
271  	tick_nohz_idle_enter();
272  
273  	while (!need_resched()) {
274  		rmb();
275  
276  		/*
277  		 * Interrupts shouldn't be re-enabled from that point on until
278  		 * the CPU sleeping instruction is reached. Otherwise an interrupt
279  		 * may fire and queue a timer that would be ignored until the CPU
280  		 * wakes from the sleeping instruction. And testing need_resched()
281  		 * doesn't tell about pending needed timer reprogram.
282  		 *
283  		 * Several cases to consider:
284  		 *
285  		 * - SLEEP-UNTIL-PENDING-INTERRUPT based instructions such as
286  		 *   "wfi" or "mwait" are fine because they can be entered with
287  		 *   interrupt disabled.
288  		 *
289  		 * - sti;mwait() couple is fine because the interrupts are
290  		 *   re-enabled only upon the execution of mwait, leaving no gap
291  		 *   in-between.
292  		 *
293  		 * - ROLLBACK based idle handlers with the sleeping instruction
294  		 *   called with interrupts enabled are NOT fine. In this scheme
295  		 *   when the interrupt detects it has interrupted an idle handler,
296  		 *   it rolls back to its beginning which performs the
297  		 *   need_resched() check before re-executing the sleeping
298  		 *   instruction. This can leak a pending needed timer reprogram.
299  		 *   If such a scheme is really mandatory due to the lack of an
300  		 *   appropriate CPU sleeping instruction, then a FAST-FORWARD
301  		 *   must instead be applied: when the interrupt detects it has
302  		 *   interrupted an idle handler, it must resume to the end of
303  		 *   this idle handler so that the generic idle loop is iterated
304  		 *   again to reprogram the tick.
305  		 */
306  		local_irq_disable();
307  
308  		if (cpu_is_offline(cpu)) {
309  			cpuhp_report_idle_dead();
310  			arch_cpu_idle_dead();
311  		}
312  
313  		arch_cpu_idle_enter();
314  		rcu_nocb_flush_deferred_wakeup();
315  
316  		/*
317  		 * In poll mode we re-enable interrupts and spin. Also if we
318  		 * detected in the wakeup from idle path that the tick
319  		 * broadcast device expired for us, we don't want to go deep
320  		 * idle as we know that the IPI is going to arrive right away.
321  		 */
322  		if (cpu_idle_force_poll || tick_check_broadcast_expired()) {
323  			tick_nohz_idle_restart_tick();
324  			cpu_idle_poll();
325  		} else {
326  			cpuidle_idle_call();
327  		}
328  		arch_cpu_idle_exit();
329  	}
330  
331  	/*
332  	 * Since we fell out of the loop above, we know TIF_NEED_RESCHED must
333  	 * be set, propagate it into PREEMPT_NEED_RESCHED.
334  	 *
335  	 * This is required because for polling idle loops we will not have had
336  	 * an IPI to fold the state for us.
337  	 */
338  	preempt_set_need_resched();
339  	tick_nohz_idle_exit();
340  	__current_clr_polling();
341  
342  	/*
343  	 * We promise to call sched_ttwu_pending() and reschedule if
344  	 * need_resched() is set while polling is set. That means that clearing
345  	 * polling needs to be visible before doing these things.
346  	 */
347  	smp_mb__after_atomic();
348  
349  	/*
350  	 * RCU relies on this call to be done outside of an RCU read-side
351  	 * critical section.
352  	 */
353  	flush_smp_call_function_queue();
354  	schedule_idle();
355  
356  	if (unlikely(klp_patch_pending(current)))
357  		klp_update_patch_state(current);
358  }
359  
cpu_in_idle(unsigned long pc)360  bool cpu_in_idle(unsigned long pc)
361  {
362  	return pc >= (unsigned long)__cpuidle_text_start &&
363  		pc < (unsigned long)__cpuidle_text_end;
364  }
365  
366  struct idle_timer {
367  	struct hrtimer timer;
368  	int done;
369  };
370  
idle_inject_timer_fn(struct hrtimer * timer)371  static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
372  {
373  	struct idle_timer *it = container_of(timer, struct idle_timer, timer);
374  
375  	WRITE_ONCE(it->done, 1);
376  	set_tsk_need_resched(current);
377  
378  	return HRTIMER_NORESTART;
379  }
380  
play_idle_precise(u64 duration_ns,u64 latency_ns)381  void play_idle_precise(u64 duration_ns, u64 latency_ns)
382  {
383  	struct idle_timer it;
384  
385  	/*
386  	 * Only FIFO tasks can disable the tick since they don't need the forced
387  	 * preemption.
388  	 */
389  	WARN_ON_ONCE(current->policy != SCHED_FIFO);
390  	WARN_ON_ONCE(current->nr_cpus_allowed != 1);
391  	WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
392  	WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
393  	WARN_ON_ONCE(!duration_ns);
394  	WARN_ON_ONCE(current->mm);
395  
396  	rcu_sleep_check();
397  	preempt_disable();
398  	current->flags |= PF_IDLE;
399  	cpuidle_use_deepest_state(latency_ns);
400  
401  	it.done = 0;
402  	hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
403  	it.timer.function = idle_inject_timer_fn;
404  	hrtimer_start(&it.timer, ns_to_ktime(duration_ns),
405  		      HRTIMER_MODE_REL_PINNED_HARD);
406  
407  	while (!READ_ONCE(it.done))
408  		do_idle();
409  
410  	cpuidle_use_deepest_state(0);
411  	current->flags &= ~PF_IDLE;
412  
413  	preempt_fold_need_resched();
414  	preempt_enable();
415  }
416  EXPORT_SYMBOL_GPL(play_idle_precise);
417  
cpu_startup_entry(enum cpuhp_state state)418  void cpu_startup_entry(enum cpuhp_state state)
419  {
420  	current->flags |= PF_IDLE;
421  	arch_cpu_idle_prepare();
422  	cpuhp_online_idle(state);
423  	while (1)
424  		do_idle();
425  }
426  
427  /*
428   * idle-task scheduling class.
429   */
430  
431  #ifdef CONFIG_SMP
432  static int
select_task_rq_idle(struct task_struct * p,int cpu,int flags)433  select_task_rq_idle(struct task_struct *p, int cpu, int flags)
434  {
435  	return task_cpu(p); /* IDLE tasks as never migrated */
436  }
437  
438  static int
balance_idle(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)439  balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
440  {
441  	return WARN_ON_ONCE(1);
442  }
443  #endif
444  
445  /*
446   * Idle tasks are unconditionally rescheduled:
447   */
wakeup_preempt_idle(struct rq * rq,struct task_struct * p,int flags)448  static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags)
449  {
450  	resched_curr(rq);
451  }
452  
put_prev_task_idle(struct rq * rq,struct task_struct * prev,struct task_struct * next)453  static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, struct task_struct *next)
454  {
455  	dl_server_update_idle_time(rq, prev);
456  	scx_update_idle(rq, false);
457  }
458  
set_next_task_idle(struct rq * rq,struct task_struct * next,bool first)459  static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
460  {
461  	update_idle_core(rq);
462  	scx_update_idle(rq, true);
463  	schedstat_inc(rq->sched_goidle);
464  	next->se.exec_start = rq_clock_task(rq);
465  }
466  
pick_task_idle(struct rq * rq)467  struct task_struct *pick_task_idle(struct rq *rq)
468  {
469  	return rq->idle;
470  }
471  
472  /*
473   * It is not legal to sleep in the idle task - print a warning
474   * message if some code attempts to do it:
475   */
476  static bool
dequeue_task_idle(struct rq * rq,struct task_struct * p,int flags)477  dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
478  {
479  	raw_spin_rq_unlock_irq(rq);
480  	printk(KERN_ERR "bad: scheduling from the idle thread!\n");
481  	dump_stack();
482  	raw_spin_rq_lock_irq(rq);
483  	return true;
484  }
485  
486  /*
487   * scheduler tick hitting a task of our scheduling class.
488   *
489   * NOTE: This function can be called remotely by the tick offload that
490   * goes along full dynticks. Therefore no local assumption can be made
491   * and everything must be accessed through the @rq and @curr passed in
492   * parameters.
493   */
task_tick_idle(struct rq * rq,struct task_struct * curr,int queued)494  static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
495  {
496  }
497  
switched_to_idle(struct rq * rq,struct task_struct * p)498  static void switched_to_idle(struct rq *rq, struct task_struct *p)
499  {
500  	BUG();
501  }
502  
503  static void
prio_changed_idle(struct rq * rq,struct task_struct * p,int oldprio)504  prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
505  {
506  	BUG();
507  }
508  
update_curr_idle(struct rq * rq)509  static void update_curr_idle(struct rq *rq)
510  {
511  }
512  
513  /*
514   * Simple, special scheduling class for the per-CPU idle tasks:
515   */
516  DEFINE_SCHED_CLASS(idle) = {
517  
518  	/* no enqueue/yield_task for idle tasks */
519  
520  	/* dequeue is not valid, we print a debug message there: */
521  	.dequeue_task		= dequeue_task_idle,
522  
523  	.wakeup_preempt		= wakeup_preempt_idle,
524  
525  	.pick_task		= pick_task_idle,
526  	.put_prev_task		= put_prev_task_idle,
527  	.set_next_task          = set_next_task_idle,
528  
529  #ifdef CONFIG_SMP
530  	.balance		= balance_idle,
531  	.select_task_rq		= select_task_rq_idle,
532  	.set_cpus_allowed	= set_cpus_allowed_common,
533  #endif
534  
535  	.task_tick		= task_tick_idle,
536  
537  	.prio_changed		= prio_changed_idle,
538  	.switched_to		= switched_to_idle,
539  	.update_curr		= update_curr_idle,
540  };
541