1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47
48 #define FPEXC_IOF (1 << 0)
49 #define FPEXC_DZF (1 << 1)
50 #define FPEXC_OFF (1 << 2)
51 #define FPEXC_UFF (1 << 3)
52 #define FPEXC_IXF (1 << 4)
53 #define FPEXC_IDF (1 << 7)
54
55 /*
56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57 *
58 * In order to reduce the number of times the FPSIMD state is needlessly saved
59 * and restored, we need to keep track of two things:
60 * (a) for each task, we need to remember which CPU was the last one to have
61 * the task's FPSIMD state loaded into its FPSIMD registers;
62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63 * been loaded into its FPSIMD registers most recently, or whether it has
64 * been used to perform kernel mode NEON in the meantime.
65 *
66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69 * address of the userland FPSIMD state of the task that was loaded onto the CPU
70 * the most recently, or NULL if kernel mode NEON has been performed after that.
71 *
72 * With this in place, we no longer have to restore the next FPSIMD state right
73 * when switching between tasks. Instead, we can defer this check to userland
74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76 * can omit the FPSIMD restore.
77 *
78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79 * indicate whether or not the userland FPSIMD state of the current task is
80 * present in the registers. The flag is set unless the FPSIMD registers of this
81 * CPU currently contain the most recent userland FPSIMD state of the current
82 * task. If the task is behaving as a VMM, then this is will be managed by
83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86 * flag the register state as invalid.
87 *
88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be
89 * called from softirq context, which will save the task's FPSIMD context back
90 * to task_struct. To prevent this from racing with the manipulation of the
91 * task's FPSIMD state from task context and thereby corrupting the state, it
92 * is necessary to protect any manipulation of a task's fpsimd_state or
93 * TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend
94 * softirq servicing entirely until put_cpu_fpsimd_context() is called.
95 *
96 * For a certain task, the sequence may look something like this:
97 * - the task gets scheduled in; if both the task's fpsimd_cpu field
98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100 * cleared, otherwise it is set;
101 *
102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103 * userland FPSIMD state is copied from memory to the registers, the task's
104 * fpsimd_cpu field is set to the id of the current CPU, the current
105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106 * TIF_FOREIGN_FPSTATE flag is cleared;
107 *
108 * - the task executes an ordinary syscall; upon return to userland, the
109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110 * restored;
111 *
112 * - the task executes a syscall which executes some NEON instructions; this is
113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114 * register contents to memory, clears the fpsimd_last_state per-cpu variable
115 * and sets the TIF_FOREIGN_FPSTATE flag;
116 *
117 * - the task gets preempted after kernel_neon_end() is called; as we have not
118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
120 */
121
122 static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 [ARM64_VEC_SVE] = {
127 .type = ARM64_VEC_SVE,
128 .name = "SVE",
129 .min_vl = SVE_VL_MIN,
130 .max_vl = SVE_VL_MIN,
131 .max_virtualisable_vl = SVE_VL_MIN,
132 },
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 [ARM64_VEC_SME] = {
136 .type = ARM64_VEC_SME,
137 .name = "SME",
138 },
139 #endif
140 };
141
vec_vl_inherit_flag(enum vec_type type)142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 switch (type) {
145 case ARM64_VEC_SVE:
146 return TIF_SVE_VL_INHERIT;
147 case ARM64_VEC_SME:
148 return TIF_SME_VL_INHERIT;
149 default:
150 WARN_ON_ONCE(1);
151 return 0;
152 }
153 }
154
155 struct vl_config {
156 int __default_vl; /* Default VL for tasks */
157 };
158
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160
get_default_vl(enum vec_type type)161 static inline int get_default_vl(enum vec_type type)
162 {
163 return READ_ONCE(vl_config[type].__default_vl);
164 }
165
166 #ifdef CONFIG_ARM64_SVE
167
get_sve_default_vl(void)168 static inline int get_sve_default_vl(void)
169 {
170 return get_default_vl(ARM64_VEC_SVE);
171 }
172
set_default_vl(enum vec_type type,int val)173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177
set_sve_default_vl(int val)178 static inline void set_sve_default_vl(int val)
179 {
180 set_default_vl(ARM64_VEC_SVE, val);
181 }
182
183 static void __percpu *efi_sve_state;
184
185 #else /* ! CONFIG_ARM64_SVE */
186
187 /* Dummy declaration for code that will be optimised out: */
188 extern void __percpu *efi_sve_state;
189
190 #endif /* ! CONFIG_ARM64_SVE */
191
192 #ifdef CONFIG_ARM64_SME
193
get_sme_default_vl(void)194 static int get_sme_default_vl(void)
195 {
196 return get_default_vl(ARM64_VEC_SME);
197 }
198
set_sme_default_vl(int val)199 static void set_sme_default_vl(int val)
200 {
201 set_default_vl(ARM64_VEC_SME, val);
202 }
203
204 static void sme_free(struct task_struct *);
205
206 #else
207
sme_free(struct task_struct * t)208 static inline void sme_free(struct task_struct *t) { }
209
210 #endif
211
212 static void fpsimd_bind_task_to_cpu(void);
213
214 /*
215 * Claim ownership of the CPU FPSIMD context for use by the calling context.
216 *
217 * The caller may freely manipulate the FPSIMD context metadata until
218 * put_cpu_fpsimd_context() is called.
219 *
220 * On RT kernels local_bh_disable() is not sufficient because it only
221 * serializes soft interrupt related sections via a local lock, but stays
222 * preemptible. Disabling preemption is the right choice here as bottom
223 * half processing is always in thread context on RT kernels so it
224 * implicitly prevents bottom half processing as well.
225 */
get_cpu_fpsimd_context(void)226 static void get_cpu_fpsimd_context(void)
227 {
228 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
229 local_bh_disable();
230 else
231 preempt_disable();
232 }
233
234 /*
235 * Release the CPU FPSIMD context.
236 *
237 * Must be called from a context in which get_cpu_fpsimd_context() was
238 * previously called, with no call to put_cpu_fpsimd_context() in the
239 * meantime.
240 */
put_cpu_fpsimd_context(void)241 static void put_cpu_fpsimd_context(void)
242 {
243 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
244 local_bh_enable();
245 else
246 preempt_enable();
247 }
248
task_get_vl(const struct task_struct * task,enum vec_type type)249 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
250 {
251 return task->thread.vl[type];
252 }
253
task_set_vl(struct task_struct * task,enum vec_type type,unsigned long vl)254 void task_set_vl(struct task_struct *task, enum vec_type type,
255 unsigned long vl)
256 {
257 task->thread.vl[type] = vl;
258 }
259
task_get_vl_onexec(const struct task_struct * task,enum vec_type type)260 unsigned int task_get_vl_onexec(const struct task_struct *task,
261 enum vec_type type)
262 {
263 return task->thread.vl_onexec[type];
264 }
265
task_set_vl_onexec(struct task_struct * task,enum vec_type type,unsigned long vl)266 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
267 unsigned long vl)
268 {
269 task->thread.vl_onexec[type] = vl;
270 }
271
272 /*
273 * TIF_SME controls whether a task can use SME without trapping while
274 * in userspace, when TIF_SME is set then we must have storage
275 * allocated in sve_state and sme_state to store the contents of both ZA
276 * and the SVE registers for both streaming and non-streaming modes.
277 *
278 * If both SVCR.ZA and SVCR.SM are disabled then at any point we
279 * may disable TIF_SME and reenable traps.
280 */
281
282
283 /*
284 * TIF_SVE controls whether a task can use SVE without trapping while
285 * in userspace, and also (together with TIF_SME) the way a task's
286 * FPSIMD/SVE state is stored in thread_struct.
287 *
288 * The kernel uses this flag to track whether a user task is actively
289 * using SVE, and therefore whether full SVE register state needs to
290 * be tracked. If not, the cheaper FPSIMD context handling code can
291 * be used instead of the more costly SVE equivalents.
292 *
293 * * TIF_SVE or SVCR.SM set:
294 *
295 * The task can execute SVE instructions while in userspace without
296 * trapping to the kernel.
297 *
298 * During any syscall, the kernel may optionally clear TIF_SVE and
299 * discard the vector state except for the FPSIMD subset.
300 *
301 * * TIF_SVE clear:
302 *
303 * An attempt by the user task to execute an SVE instruction causes
304 * do_sve_acc() to be called, which does some preparation and then
305 * sets TIF_SVE.
306 *
307 * During any syscall, the kernel may optionally clear TIF_SVE and
308 * discard the vector state except for the FPSIMD subset.
309 *
310 * The data will be stored in one of two formats:
311 *
312 * * FPSIMD only - FP_STATE_FPSIMD:
313 *
314 * When the FPSIMD only state stored task->thread.fp_type is set to
315 * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
316 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
317 * logically zero but not stored anywhere; P0-P15 and FFR are not
318 * stored and have unspecified values from userspace's point of
319 * view. For hygiene purposes, the kernel zeroes them on next use,
320 * but userspace is discouraged from relying on this.
321 *
322 * task->thread.sve_state does not need to be non-NULL, valid or any
323 * particular size: it must not be dereferenced and any data stored
324 * there should be considered stale and not referenced.
325 *
326 * * SVE state - FP_STATE_SVE:
327 *
328 * When the full SVE state is stored task->thread.fp_type is set to
329 * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
330 * corresponding Zn), P0-P15 and FFR are encoded in in
331 * task->thread.sve_state, formatted appropriately for vector
332 * length task->thread.sve_vl or, if SVCR.SM is set,
333 * task->thread.sme_vl. The storage for the vector registers in
334 * task->thread.uw.fpsimd_state should be ignored.
335 *
336 * task->thread.sve_state must point to a valid buffer at least
337 * sve_state_size(task) bytes in size. The data stored in
338 * task->thread.uw.fpsimd_state.vregs should be considered stale
339 * and not referenced.
340 *
341 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
342 * irrespective of whether TIF_SVE is clear or set, since these are
343 * not vector length dependent.
344 */
345
346 /*
347 * Update current's FPSIMD/SVE registers from thread_struct.
348 *
349 * This function should be called only when the FPSIMD/SVE state in
350 * thread_struct is known to be up to date, when preparing to enter
351 * userspace.
352 */
task_fpsimd_load(void)353 static void task_fpsimd_load(void)
354 {
355 bool restore_sve_regs = false;
356 bool restore_ffr;
357
358 WARN_ON(!system_supports_fpsimd());
359 WARN_ON(preemptible());
360 WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE));
361
362 if (system_supports_fpmr())
363 write_sysreg_s(current->thread.uw.fpmr, SYS_FPMR);
364
365 if (system_supports_sve() || system_supports_sme()) {
366 switch (current->thread.fp_type) {
367 case FP_STATE_FPSIMD:
368 /* Stop tracking SVE for this task until next use. */
369 if (test_and_clear_thread_flag(TIF_SVE))
370 sve_user_disable();
371 break;
372 case FP_STATE_SVE:
373 if (!thread_sm_enabled(¤t->thread) &&
374 !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
375 sve_user_enable();
376
377 if (test_thread_flag(TIF_SVE))
378 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
379
380 restore_sve_regs = true;
381 restore_ffr = true;
382 break;
383 default:
384 /*
385 * This indicates either a bug in
386 * fpsimd_save_user_state() or memory corruption, we
387 * should always record an explicit format
388 * when we save. We always at least have the
389 * memory allocated for FPSMID registers so
390 * try that and hope for the best.
391 */
392 WARN_ON_ONCE(1);
393 clear_thread_flag(TIF_SVE);
394 break;
395 }
396 }
397
398 /* Restore SME, override SVE register configuration if needed */
399 if (system_supports_sme()) {
400 unsigned long sme_vl = task_get_sme_vl(current);
401
402 /* Ensure VL is set up for restoring data */
403 if (test_thread_flag(TIF_SME))
404 sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
405
406 write_sysreg_s(current->thread.svcr, SYS_SVCR);
407
408 if (thread_za_enabled(¤t->thread))
409 sme_load_state(current->thread.sme_state,
410 system_supports_sme2());
411
412 if (thread_sm_enabled(¤t->thread))
413 restore_ffr = system_supports_fa64();
414 }
415
416 if (restore_sve_regs) {
417 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
418 sve_load_state(sve_pffr(¤t->thread),
419 ¤t->thread.uw.fpsimd_state.fpsr,
420 restore_ffr);
421 } else {
422 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
423 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
424 }
425 }
426
427 /*
428 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
429 * date with respect to the CPU registers. Note carefully that the
430 * current context is the context last bound to the CPU stored in
431 * last, if KVM is involved this may be the guest VM context rather
432 * than the host thread for the VM pointed to by current. This means
433 * that we must always reference the state storage via last rather
434 * than via current, if we are saving KVM state then it will have
435 * ensured that the type of registers to save is set in last->to_save.
436 */
fpsimd_save_user_state(void)437 static void fpsimd_save_user_state(void)
438 {
439 struct cpu_fp_state const *last =
440 this_cpu_ptr(&fpsimd_last_state);
441 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
442 bool save_sve_regs = false;
443 bool save_ffr;
444 unsigned int vl;
445
446 WARN_ON(!system_supports_fpsimd());
447 WARN_ON(preemptible());
448
449 if (test_thread_flag(TIF_FOREIGN_FPSTATE))
450 return;
451
452 if (system_supports_fpmr())
453 *(last->fpmr) = read_sysreg_s(SYS_FPMR);
454
455 /*
456 * If a task is in a syscall the ABI allows us to only
457 * preserve the state shared with FPSIMD so don't bother
458 * saving the full SVE state in that case.
459 */
460 if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) &&
461 !in_syscall(current_pt_regs())) ||
462 last->to_save == FP_STATE_SVE) {
463 save_sve_regs = true;
464 save_ffr = true;
465 vl = last->sve_vl;
466 }
467
468 if (system_supports_sme()) {
469 u64 *svcr = last->svcr;
470
471 *svcr = read_sysreg_s(SYS_SVCR);
472
473 if (*svcr & SVCR_ZA_MASK)
474 sme_save_state(last->sme_state,
475 system_supports_sme2());
476
477 /* If we are in streaming mode override regular SVE. */
478 if (*svcr & SVCR_SM_MASK) {
479 save_sve_regs = true;
480 save_ffr = system_supports_fa64();
481 vl = last->sme_vl;
482 }
483 }
484
485 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
486 /* Get the configured VL from RDVL, will account for SM */
487 if (WARN_ON(sve_get_vl() != vl)) {
488 /*
489 * Can't save the user regs, so current would
490 * re-enter user with corrupt state.
491 * There's no way to recover, so kill it:
492 */
493 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
494 return;
495 }
496
497 sve_save_state((char *)last->sve_state +
498 sve_ffr_offset(vl),
499 &last->st->fpsr, save_ffr);
500 *last->fp_type = FP_STATE_SVE;
501 } else {
502 fpsimd_save_state(last->st);
503 *last->fp_type = FP_STATE_FPSIMD;
504 }
505 }
506
507 /*
508 * All vector length selection from userspace comes through here.
509 * We're on a slow path, so some sanity-checks are included.
510 * If things go wrong there's a bug somewhere, but try to fall back to a
511 * safe choice.
512 */
find_supported_vector_length(enum vec_type type,unsigned int vl)513 static unsigned int find_supported_vector_length(enum vec_type type,
514 unsigned int vl)
515 {
516 struct vl_info *info = &vl_info[type];
517 int bit;
518 int max_vl = info->max_vl;
519
520 if (WARN_ON(!sve_vl_valid(vl)))
521 vl = info->min_vl;
522
523 if (WARN_ON(!sve_vl_valid(max_vl)))
524 max_vl = info->min_vl;
525
526 if (vl > max_vl)
527 vl = max_vl;
528 if (vl < info->min_vl)
529 vl = info->min_vl;
530
531 bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
532 __vq_to_bit(sve_vq_from_vl(vl)));
533 return sve_vl_from_vq(__bit_to_vq(bit));
534 }
535
536 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
537
vec_proc_do_default_vl(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)538 static int vec_proc_do_default_vl(const struct ctl_table *table, int write,
539 void *buffer, size_t *lenp, loff_t *ppos)
540 {
541 struct vl_info *info = table->extra1;
542 enum vec_type type = info->type;
543 int ret;
544 int vl = get_default_vl(type);
545 struct ctl_table tmp_table = {
546 .data = &vl,
547 .maxlen = sizeof(vl),
548 };
549
550 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
551 if (ret || !write)
552 return ret;
553
554 /* Writing -1 has the special meaning "set to max": */
555 if (vl == -1)
556 vl = info->max_vl;
557
558 if (!sve_vl_valid(vl))
559 return -EINVAL;
560
561 set_default_vl(type, find_supported_vector_length(type, vl));
562 return 0;
563 }
564
565 static struct ctl_table sve_default_vl_table[] = {
566 {
567 .procname = "sve_default_vector_length",
568 .mode = 0644,
569 .proc_handler = vec_proc_do_default_vl,
570 .extra1 = &vl_info[ARM64_VEC_SVE],
571 },
572 };
573
sve_sysctl_init(void)574 static int __init sve_sysctl_init(void)
575 {
576 if (system_supports_sve())
577 if (!register_sysctl("abi", sve_default_vl_table))
578 return -EINVAL;
579
580 return 0;
581 }
582
583 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)584 static int __init sve_sysctl_init(void) { return 0; }
585 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
586
587 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
588 static struct ctl_table sme_default_vl_table[] = {
589 {
590 .procname = "sme_default_vector_length",
591 .mode = 0644,
592 .proc_handler = vec_proc_do_default_vl,
593 .extra1 = &vl_info[ARM64_VEC_SME],
594 },
595 };
596
sme_sysctl_init(void)597 static int __init sme_sysctl_init(void)
598 {
599 if (system_supports_sme())
600 if (!register_sysctl("abi", sme_default_vl_table))
601 return -EINVAL;
602
603 return 0;
604 }
605
606 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
sme_sysctl_init(void)607 static int __init sme_sysctl_init(void) { return 0; }
608 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
609
610 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
611 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
612
613 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)614 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
615 {
616 u64 a = swab64(x);
617 u64 b = swab64(x >> 64);
618
619 return ((__uint128_t)a << 64) | b;
620 }
621 #else
arm64_cpu_to_le128(__uint128_t x)622 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
623 {
624 return x;
625 }
626 #endif
627
628 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
629
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)630 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
631 unsigned int vq)
632 {
633 unsigned int i;
634 __uint128_t *p;
635
636 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
637 p = (__uint128_t *)ZREG(sst, vq, i);
638 *p = arm64_cpu_to_le128(fst->vregs[i]);
639 }
640 }
641
642 /*
643 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
644 * task->thread.sve_state.
645 *
646 * Task can be a non-runnable task, or current. In the latter case,
647 * the caller must have ownership of the cpu FPSIMD context before calling
648 * this function.
649 * task->thread.sve_state must point to at least sve_state_size(task)
650 * bytes of allocated kernel memory.
651 * task->thread.uw.fpsimd_state must be up to date before calling this
652 * function.
653 */
fpsimd_to_sve(struct task_struct * task)654 static void fpsimd_to_sve(struct task_struct *task)
655 {
656 unsigned int vq;
657 void *sst = task->thread.sve_state;
658 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
659
660 if (!system_supports_sve() && !system_supports_sme())
661 return;
662
663 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
664 __fpsimd_to_sve(sst, fst, vq);
665 }
666
667 /*
668 * Transfer the SVE state in task->thread.sve_state to
669 * task->thread.uw.fpsimd_state.
670 *
671 * Task can be a non-runnable task, or current. In the latter case,
672 * the caller must have ownership of the cpu FPSIMD context before calling
673 * this function.
674 * task->thread.sve_state must point to at least sve_state_size(task)
675 * bytes of allocated kernel memory.
676 * task->thread.sve_state must be up to date before calling this function.
677 */
sve_to_fpsimd(struct task_struct * task)678 static void sve_to_fpsimd(struct task_struct *task)
679 {
680 unsigned int vq, vl;
681 void const *sst = task->thread.sve_state;
682 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
683 unsigned int i;
684 __uint128_t const *p;
685
686 if (!system_supports_sve() && !system_supports_sme())
687 return;
688
689 vl = thread_get_cur_vl(&task->thread);
690 vq = sve_vq_from_vl(vl);
691 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
692 p = (__uint128_t const *)ZREG(sst, vq, i);
693 fst->vregs[i] = arm64_le128_to_cpu(*p);
694 }
695 }
696
cpu_enable_fpmr(const struct arm64_cpu_capabilities * __always_unused p)697 void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__always_unused p)
698 {
699 write_sysreg_s(read_sysreg_s(SYS_SCTLR_EL1) | SCTLR_EL1_EnFPM_MASK,
700 SYS_SCTLR_EL1);
701 }
702
703 #ifdef CONFIG_ARM64_SVE
704 /*
705 * Call __sve_free() directly only if you know task can't be scheduled
706 * or preempted.
707 */
__sve_free(struct task_struct * task)708 static void __sve_free(struct task_struct *task)
709 {
710 kfree(task->thread.sve_state);
711 task->thread.sve_state = NULL;
712 }
713
sve_free(struct task_struct * task)714 static void sve_free(struct task_struct *task)
715 {
716 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
717
718 __sve_free(task);
719 }
720
721 /*
722 * Return how many bytes of memory are required to store the full SVE
723 * state for task, given task's currently configured vector length.
724 */
sve_state_size(struct task_struct const * task)725 size_t sve_state_size(struct task_struct const *task)
726 {
727 unsigned int vl = 0;
728
729 if (system_supports_sve())
730 vl = task_get_sve_vl(task);
731 if (system_supports_sme())
732 vl = max(vl, task_get_sme_vl(task));
733
734 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
735 }
736
737 /*
738 * Ensure that task->thread.sve_state is allocated and sufficiently large.
739 *
740 * This function should be used only in preparation for replacing
741 * task->thread.sve_state with new data. The memory is always zeroed
742 * here to prevent stale data from showing through: this is done in
743 * the interest of testability and predictability: except in the
744 * do_sve_acc() case, there is no ABI requirement to hide stale data
745 * written previously be task.
746 */
sve_alloc(struct task_struct * task,bool flush)747 void sve_alloc(struct task_struct *task, bool flush)
748 {
749 if (task->thread.sve_state) {
750 if (flush)
751 memset(task->thread.sve_state, 0,
752 sve_state_size(task));
753 return;
754 }
755
756 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
757 task->thread.sve_state =
758 kzalloc(sve_state_size(task), GFP_KERNEL);
759 }
760
761
762 /*
763 * Force the FPSIMD state shared with SVE to be updated in the SVE state
764 * even if the SVE state is the current active state.
765 *
766 * This should only be called by ptrace. task must be non-runnable.
767 * task->thread.sve_state must point to at least sve_state_size(task)
768 * bytes of allocated kernel memory.
769 */
fpsimd_force_sync_to_sve(struct task_struct * task)770 void fpsimd_force_sync_to_sve(struct task_struct *task)
771 {
772 fpsimd_to_sve(task);
773 }
774
775 /*
776 * Ensure that task->thread.sve_state is up to date with respect to
777 * the user task, irrespective of when SVE is in use or not.
778 *
779 * This should only be called by ptrace. task must be non-runnable.
780 * task->thread.sve_state must point to at least sve_state_size(task)
781 * bytes of allocated kernel memory.
782 */
fpsimd_sync_to_sve(struct task_struct * task)783 void fpsimd_sync_to_sve(struct task_struct *task)
784 {
785 if (!test_tsk_thread_flag(task, TIF_SVE) &&
786 !thread_sm_enabled(&task->thread))
787 fpsimd_to_sve(task);
788 }
789
790 /*
791 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
792 * the user task, irrespective of whether SVE is in use or not.
793 *
794 * This should only be called by ptrace. task must be non-runnable.
795 * task->thread.sve_state must point to at least sve_state_size(task)
796 * bytes of allocated kernel memory.
797 */
sve_sync_to_fpsimd(struct task_struct * task)798 void sve_sync_to_fpsimd(struct task_struct *task)
799 {
800 if (task->thread.fp_type == FP_STATE_SVE)
801 sve_to_fpsimd(task);
802 }
803
804 /*
805 * Ensure that task->thread.sve_state is up to date with respect to
806 * the task->thread.uw.fpsimd_state.
807 *
808 * This should only be called by ptrace to merge new FPSIMD register
809 * values into a task for which SVE is currently active.
810 * task must be non-runnable.
811 * task->thread.sve_state must point to at least sve_state_size(task)
812 * bytes of allocated kernel memory.
813 * task->thread.uw.fpsimd_state must already have been initialised with
814 * the new FPSIMD register values to be merged in.
815 */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)816 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
817 {
818 unsigned int vq;
819 void *sst = task->thread.sve_state;
820 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
821
822 if (!test_tsk_thread_flag(task, TIF_SVE) &&
823 !thread_sm_enabled(&task->thread))
824 return;
825
826 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
827
828 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
829 __fpsimd_to_sve(sst, fst, vq);
830 }
831
vec_set_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl,unsigned long flags)832 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
833 unsigned long vl, unsigned long flags)
834 {
835 bool free_sme = false;
836
837 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
838 PR_SVE_SET_VL_ONEXEC))
839 return -EINVAL;
840
841 if (!sve_vl_valid(vl))
842 return -EINVAL;
843
844 /*
845 * Clamp to the maximum vector length that VL-agnostic code
846 * can work with. A flag may be assigned in the future to
847 * allow setting of larger vector lengths without confusing
848 * older software.
849 */
850 if (vl > VL_ARCH_MAX)
851 vl = VL_ARCH_MAX;
852
853 vl = find_supported_vector_length(type, vl);
854
855 if (flags & (PR_SVE_VL_INHERIT |
856 PR_SVE_SET_VL_ONEXEC))
857 task_set_vl_onexec(task, type, vl);
858 else
859 /* Reset VL to system default on next exec: */
860 task_set_vl_onexec(task, type, 0);
861
862 /* Only actually set the VL if not deferred: */
863 if (flags & PR_SVE_SET_VL_ONEXEC)
864 goto out;
865
866 if (vl == task_get_vl(task, type))
867 goto out;
868
869 /*
870 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
871 * write any live register state back to task_struct, and convert to a
872 * regular FPSIMD thread.
873 */
874 if (task == current) {
875 get_cpu_fpsimd_context();
876
877 fpsimd_save_user_state();
878 }
879
880 fpsimd_flush_task_state(task);
881 if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
882 thread_sm_enabled(&task->thread)) {
883 sve_to_fpsimd(task);
884 task->thread.fp_type = FP_STATE_FPSIMD;
885 }
886
887 if (system_supports_sme()) {
888 if (type == ARM64_VEC_SME ||
889 !(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) {
890 /*
891 * We are changing the SME VL or weren't using
892 * SME anyway, discard the state and force a
893 * reallocation.
894 */
895 task->thread.svcr &= ~(SVCR_SM_MASK |
896 SVCR_ZA_MASK);
897 clear_tsk_thread_flag(task, TIF_SME);
898 free_sme = true;
899 }
900 }
901
902 if (task == current)
903 put_cpu_fpsimd_context();
904
905 task_set_vl(task, type, vl);
906
907 /*
908 * Free the changed states if they are not in use, SME will be
909 * reallocated to the correct size on next use and we just
910 * allocate SVE now in case it is needed for use in streaming
911 * mode.
912 */
913 sve_free(task);
914 sve_alloc(task, true);
915
916 if (free_sme)
917 sme_free(task);
918
919 out:
920 update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
921 flags & PR_SVE_VL_INHERIT);
922
923 return 0;
924 }
925
926 /*
927 * Encode the current vector length and flags for return.
928 * This is only required for prctl(): ptrace has separate fields.
929 * SVE and SME use the same bits for _ONEXEC and _INHERIT.
930 *
931 * flags are as for vec_set_vector_length().
932 */
vec_prctl_status(enum vec_type type,unsigned long flags)933 static int vec_prctl_status(enum vec_type type, unsigned long flags)
934 {
935 int ret;
936
937 if (flags & PR_SVE_SET_VL_ONEXEC)
938 ret = task_get_vl_onexec(current, type);
939 else
940 ret = task_get_vl(current, type);
941
942 if (test_thread_flag(vec_vl_inherit_flag(type)))
943 ret |= PR_SVE_VL_INHERIT;
944
945 return ret;
946 }
947
948 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)949 int sve_set_current_vl(unsigned long arg)
950 {
951 unsigned long vl, flags;
952 int ret;
953
954 vl = arg & PR_SVE_VL_LEN_MASK;
955 flags = arg & ~vl;
956
957 if (!system_supports_sve() || is_compat_task())
958 return -EINVAL;
959
960 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
961 if (ret)
962 return ret;
963
964 return vec_prctl_status(ARM64_VEC_SVE, flags);
965 }
966
967 /* PR_SVE_GET_VL */
sve_get_current_vl(void)968 int sve_get_current_vl(void)
969 {
970 if (!system_supports_sve() || is_compat_task())
971 return -EINVAL;
972
973 return vec_prctl_status(ARM64_VEC_SVE, 0);
974 }
975
976 #ifdef CONFIG_ARM64_SME
977 /* PR_SME_SET_VL */
sme_set_current_vl(unsigned long arg)978 int sme_set_current_vl(unsigned long arg)
979 {
980 unsigned long vl, flags;
981 int ret;
982
983 vl = arg & PR_SME_VL_LEN_MASK;
984 flags = arg & ~vl;
985
986 if (!system_supports_sme() || is_compat_task())
987 return -EINVAL;
988
989 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
990 if (ret)
991 return ret;
992
993 return vec_prctl_status(ARM64_VEC_SME, flags);
994 }
995
996 /* PR_SME_GET_VL */
sme_get_current_vl(void)997 int sme_get_current_vl(void)
998 {
999 if (!system_supports_sme() || is_compat_task())
1000 return -EINVAL;
1001
1002 return vec_prctl_status(ARM64_VEC_SME, 0);
1003 }
1004 #endif /* CONFIG_ARM64_SME */
1005
vec_probe_vqs(struct vl_info * info,DECLARE_BITMAP (map,SVE_VQ_MAX))1006 static void vec_probe_vqs(struct vl_info *info,
1007 DECLARE_BITMAP(map, SVE_VQ_MAX))
1008 {
1009 unsigned int vq, vl;
1010
1011 bitmap_zero(map, SVE_VQ_MAX);
1012
1013 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
1014 write_vl(info->type, vq - 1); /* self-syncing */
1015
1016 switch (info->type) {
1017 case ARM64_VEC_SVE:
1018 vl = sve_get_vl();
1019 break;
1020 case ARM64_VEC_SME:
1021 vl = sme_get_vl();
1022 break;
1023 default:
1024 vl = 0;
1025 break;
1026 }
1027
1028 /* Minimum VL identified? */
1029 if (sve_vq_from_vl(vl) > vq)
1030 break;
1031
1032 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1033 set_bit(__vq_to_bit(vq), map);
1034 }
1035 }
1036
1037 /*
1038 * Initialise the set of known supported VQs for the boot CPU.
1039 * This is called during kernel boot, before secondary CPUs are brought up.
1040 */
vec_init_vq_map(enum vec_type type)1041 void __init vec_init_vq_map(enum vec_type type)
1042 {
1043 struct vl_info *info = &vl_info[type];
1044 vec_probe_vqs(info, info->vq_map);
1045 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1046 }
1047
1048 /*
1049 * If we haven't committed to the set of supported VQs yet, filter out
1050 * those not supported by the current CPU.
1051 * This function is called during the bring-up of early secondary CPUs only.
1052 */
vec_update_vq_map(enum vec_type type)1053 void vec_update_vq_map(enum vec_type type)
1054 {
1055 struct vl_info *info = &vl_info[type];
1056 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1057
1058 vec_probe_vqs(info, tmp_map);
1059 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1060 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1061 SVE_VQ_MAX);
1062 }
1063
1064 /*
1065 * Check whether the current CPU supports all VQs in the committed set.
1066 * This function is called during the bring-up of late secondary CPUs only.
1067 */
vec_verify_vq_map(enum vec_type type)1068 int vec_verify_vq_map(enum vec_type type)
1069 {
1070 struct vl_info *info = &vl_info[type];
1071 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1072 unsigned long b;
1073
1074 vec_probe_vqs(info, tmp_map);
1075
1076 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1077 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1078 pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1079 info->name, smp_processor_id());
1080 return -EINVAL;
1081 }
1082
1083 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1084 return 0;
1085
1086 /*
1087 * For KVM, it is necessary to ensure that this CPU doesn't
1088 * support any vector length that guests may have probed as
1089 * unsupported.
1090 */
1091
1092 /* Recover the set of supported VQs: */
1093 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1094 /* Find VQs supported that are not globally supported: */
1095 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1096
1097 /* Find the lowest such VQ, if any: */
1098 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1099 if (b >= SVE_VQ_MAX)
1100 return 0; /* no mismatches */
1101
1102 /*
1103 * Mismatches above sve_max_virtualisable_vl are fine, since
1104 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1105 */
1106 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1107 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1108 info->name, smp_processor_id());
1109 return -EINVAL;
1110 }
1111
1112 return 0;
1113 }
1114
sve_efi_setup(void)1115 static void __init sve_efi_setup(void)
1116 {
1117 int max_vl = 0;
1118 int i;
1119
1120 if (!IS_ENABLED(CONFIG_EFI))
1121 return;
1122
1123 for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1124 max_vl = max(vl_info[i].max_vl, max_vl);
1125
1126 /*
1127 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1128 * This is evidence of a crippled system and we are returning void,
1129 * so no attempt is made to handle this situation here.
1130 */
1131 if (!sve_vl_valid(max_vl))
1132 goto fail;
1133
1134 efi_sve_state = __alloc_percpu(
1135 SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1136 if (!efi_sve_state)
1137 goto fail;
1138
1139 return;
1140
1141 fail:
1142 panic("Cannot allocate percpu memory for EFI SVE save/restore");
1143 }
1144
cpu_enable_sve(const struct arm64_cpu_capabilities * __always_unused p)1145 void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p)
1146 {
1147 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1148 isb();
1149
1150 write_sysreg_s(0, SYS_ZCR_EL1);
1151 }
1152
sve_setup(void)1153 void __init sve_setup(void)
1154 {
1155 struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1156 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1157 unsigned long b;
1158 int max_bit;
1159
1160 if (!system_supports_sve())
1161 return;
1162
1163 /*
1164 * The SVE architecture mandates support for 128-bit vectors,
1165 * so sve_vq_map must have at least SVE_VQ_MIN set.
1166 * If something went wrong, at least try to patch it up:
1167 */
1168 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1169 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1170
1171 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1172 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1173
1174 /*
1175 * For the default VL, pick the maximum supported value <= 64.
1176 * VL == 64 is guaranteed not to grow the signal frame.
1177 */
1178 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1179
1180 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1181 SVE_VQ_MAX);
1182
1183 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1184 if (b >= SVE_VQ_MAX)
1185 /* No non-virtualisable VLs found */
1186 info->max_virtualisable_vl = SVE_VQ_MAX;
1187 else if (WARN_ON(b == SVE_VQ_MAX - 1))
1188 /* No virtualisable VLs? This is architecturally forbidden. */
1189 info->max_virtualisable_vl = SVE_VQ_MIN;
1190 else /* b + 1 < SVE_VQ_MAX */
1191 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1192
1193 if (info->max_virtualisable_vl > info->max_vl)
1194 info->max_virtualisable_vl = info->max_vl;
1195
1196 pr_info("%s: maximum available vector length %u bytes per vector\n",
1197 info->name, info->max_vl);
1198 pr_info("%s: default vector length %u bytes per vector\n",
1199 info->name, get_sve_default_vl());
1200
1201 /* KVM decides whether to support mismatched systems. Just warn here: */
1202 if (sve_max_virtualisable_vl() < sve_max_vl())
1203 pr_warn("%s: unvirtualisable vector lengths present\n",
1204 info->name);
1205
1206 sve_efi_setup();
1207 }
1208
1209 /*
1210 * Called from the put_task_struct() path, which cannot get here
1211 * unless dead_task is really dead and not schedulable.
1212 */
fpsimd_release_task(struct task_struct * dead_task)1213 void fpsimd_release_task(struct task_struct *dead_task)
1214 {
1215 __sve_free(dead_task);
1216 sme_free(dead_task);
1217 }
1218
1219 #endif /* CONFIG_ARM64_SVE */
1220
1221 #ifdef CONFIG_ARM64_SME
1222
1223 /*
1224 * Ensure that task->thread.sme_state is allocated and sufficiently large.
1225 *
1226 * This function should be used only in preparation for replacing
1227 * task->thread.sme_state with new data. The memory is always zeroed
1228 * here to prevent stale data from showing through: this is done in
1229 * the interest of testability and predictability, the architecture
1230 * guarantees that when ZA is enabled it will be zeroed.
1231 */
sme_alloc(struct task_struct * task,bool flush)1232 void sme_alloc(struct task_struct *task, bool flush)
1233 {
1234 if (task->thread.sme_state) {
1235 if (flush)
1236 memset(task->thread.sme_state, 0,
1237 sme_state_size(task));
1238 return;
1239 }
1240
1241 /* This could potentially be up to 64K. */
1242 task->thread.sme_state =
1243 kzalloc(sme_state_size(task), GFP_KERNEL);
1244 }
1245
sme_free(struct task_struct * task)1246 static void sme_free(struct task_struct *task)
1247 {
1248 kfree(task->thread.sme_state);
1249 task->thread.sme_state = NULL;
1250 }
1251
cpu_enable_sme(const struct arm64_cpu_capabilities * __always_unused p)1252 void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p)
1253 {
1254 /* Set priority for all PEs to architecturally defined minimum */
1255 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1256 SYS_SMPRI_EL1);
1257
1258 /* Allow SME in kernel */
1259 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1260 isb();
1261
1262 /* Ensure all bits in SMCR are set to known values */
1263 write_sysreg_s(0, SYS_SMCR_EL1);
1264
1265 /* Allow EL0 to access TPIDR2 */
1266 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1267 isb();
1268 }
1269
cpu_enable_sme2(const struct arm64_cpu_capabilities * __always_unused p)1270 void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p)
1271 {
1272 /* This must be enabled after SME */
1273 BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME);
1274
1275 /* Allow use of ZT0 */
1276 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1277 SYS_SMCR_EL1);
1278 }
1279
cpu_enable_fa64(const struct arm64_cpu_capabilities * __always_unused p)1280 void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p)
1281 {
1282 /* This must be enabled after SME */
1283 BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME);
1284
1285 /* Allow use of FA64 */
1286 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1287 SYS_SMCR_EL1);
1288 }
1289
sme_setup(void)1290 void __init sme_setup(void)
1291 {
1292 struct vl_info *info = &vl_info[ARM64_VEC_SME];
1293 int min_bit, max_bit;
1294
1295 if (!system_supports_sme())
1296 return;
1297
1298 /*
1299 * SME doesn't require any particular vector length be
1300 * supported but it does require at least one. We should have
1301 * disabled the feature entirely while bringing up CPUs but
1302 * let's double check here. The bitmap is SVE_VQ_MAP sized for
1303 * sharing with SVE.
1304 */
1305 WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1306
1307 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1308 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1309
1310 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1311 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1312
1313 WARN_ON(info->min_vl > info->max_vl);
1314
1315 /*
1316 * For the default VL, pick the maximum supported value <= 32
1317 * (256 bits) if there is one since this is guaranteed not to
1318 * grow the signal frame when in streaming mode, otherwise the
1319 * minimum available VL will be used.
1320 */
1321 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1322
1323 pr_info("SME: minimum available vector length %u bytes per vector\n",
1324 info->min_vl);
1325 pr_info("SME: maximum available vector length %u bytes per vector\n",
1326 info->max_vl);
1327 pr_info("SME: default vector length %u bytes per vector\n",
1328 get_sme_default_vl());
1329 }
1330
sme_suspend_exit(void)1331 void sme_suspend_exit(void)
1332 {
1333 u64 smcr = 0;
1334
1335 if (!system_supports_sme())
1336 return;
1337
1338 if (system_supports_fa64())
1339 smcr |= SMCR_ELx_FA64;
1340 if (system_supports_sme2())
1341 smcr |= SMCR_ELx_EZT0;
1342
1343 write_sysreg_s(smcr, SYS_SMCR_EL1);
1344 write_sysreg_s(0, SYS_SMPRI_EL1);
1345 }
1346
1347 #endif /* CONFIG_ARM64_SME */
1348
sve_init_regs(void)1349 static void sve_init_regs(void)
1350 {
1351 /*
1352 * Convert the FPSIMD state to SVE, zeroing all the state that
1353 * is not shared with FPSIMD. If (as is likely) the current
1354 * state is live in the registers then do this there and
1355 * update our metadata for the current task including
1356 * disabling the trap, otherwise update our in-memory copy.
1357 * We are guaranteed to not be in streaming mode, we can only
1358 * take a SVE trap when not in streaming mode and we can't be
1359 * in streaming mode when taking a SME trap.
1360 */
1361 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1362 unsigned long vq_minus_one =
1363 sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1364 sve_set_vq(vq_minus_one);
1365 sve_flush_live(true, vq_minus_one);
1366 fpsimd_bind_task_to_cpu();
1367 } else {
1368 fpsimd_to_sve(current);
1369 current->thread.fp_type = FP_STATE_SVE;
1370 fpsimd_flush_task_state(current);
1371 }
1372 }
1373
1374 /*
1375 * Trapped SVE access
1376 *
1377 * Storage is allocated for the full SVE state, the current FPSIMD
1378 * register contents are migrated across, and the access trap is
1379 * disabled.
1380 *
1381 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1382 * would have disabled the SVE access trap for userspace during
1383 * ret_to_user, making an SVE access trap impossible in that case.
1384 */
do_sve_acc(unsigned long esr,struct pt_regs * regs)1385 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1386 {
1387 /* Even if we chose not to use SVE, the hardware could still trap: */
1388 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1389 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1390 return;
1391 }
1392
1393 sve_alloc(current, true);
1394 if (!current->thread.sve_state) {
1395 force_sig(SIGKILL);
1396 return;
1397 }
1398
1399 get_cpu_fpsimd_context();
1400
1401 if (test_and_set_thread_flag(TIF_SVE))
1402 WARN_ON(1); /* SVE access shouldn't have trapped */
1403
1404 /*
1405 * Even if the task can have used streaming mode we can only
1406 * generate SVE access traps in normal SVE mode and
1407 * transitioning out of streaming mode may discard any
1408 * streaming mode state. Always clear the high bits to avoid
1409 * any potential errors tracking what is properly initialised.
1410 */
1411 sve_init_regs();
1412
1413 put_cpu_fpsimd_context();
1414 }
1415
1416 /*
1417 * Trapped SME access
1418 *
1419 * Storage is allocated for the full SVE and SME state, the current
1420 * FPSIMD register contents are migrated to SVE if SVE is not already
1421 * active, and the access trap is disabled.
1422 *
1423 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1424 * would have disabled the SME access trap for userspace during
1425 * ret_to_user, making an SME access trap impossible in that case.
1426 */
do_sme_acc(unsigned long esr,struct pt_regs * regs)1427 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1428 {
1429 /* Even if we chose not to use SME, the hardware could still trap: */
1430 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1431 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1432 return;
1433 }
1434
1435 /*
1436 * If this not a trap due to SME being disabled then something
1437 * is being used in the wrong mode, report as SIGILL.
1438 */
1439 if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1440 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1441 return;
1442 }
1443
1444 sve_alloc(current, false);
1445 sme_alloc(current, true);
1446 if (!current->thread.sve_state || !current->thread.sme_state) {
1447 force_sig(SIGKILL);
1448 return;
1449 }
1450
1451 get_cpu_fpsimd_context();
1452
1453 /* With TIF_SME userspace shouldn't generate any traps */
1454 if (test_and_set_thread_flag(TIF_SME))
1455 WARN_ON(1);
1456
1457 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1458 unsigned long vq_minus_one =
1459 sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1460 sme_set_vq(vq_minus_one);
1461
1462 fpsimd_bind_task_to_cpu();
1463 }
1464
1465 put_cpu_fpsimd_context();
1466 }
1467
1468 /*
1469 * Trapped FP/ASIMD access.
1470 */
do_fpsimd_acc(unsigned long esr,struct pt_regs * regs)1471 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1472 {
1473 /* Even if we chose not to use FPSIMD, the hardware could still trap: */
1474 if (!system_supports_fpsimd()) {
1475 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1476 return;
1477 }
1478
1479 /*
1480 * When FPSIMD is enabled, we should never take a trap unless something
1481 * has gone very wrong.
1482 */
1483 BUG();
1484 }
1485
1486 /*
1487 * Raise a SIGFPE for the current process.
1488 */
do_fpsimd_exc(unsigned long esr,struct pt_regs * regs)1489 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1490 {
1491 unsigned int si_code = FPE_FLTUNK;
1492
1493 if (esr & ESR_ELx_FP_EXC_TFV) {
1494 if (esr & FPEXC_IOF)
1495 si_code = FPE_FLTINV;
1496 else if (esr & FPEXC_DZF)
1497 si_code = FPE_FLTDIV;
1498 else if (esr & FPEXC_OFF)
1499 si_code = FPE_FLTOVF;
1500 else if (esr & FPEXC_UFF)
1501 si_code = FPE_FLTUND;
1502 else if (esr & FPEXC_IXF)
1503 si_code = FPE_FLTRES;
1504 }
1505
1506 send_sig_fault(SIGFPE, si_code,
1507 (void __user *)instruction_pointer(regs),
1508 current);
1509 }
1510
fpsimd_load_kernel_state(struct task_struct * task)1511 static void fpsimd_load_kernel_state(struct task_struct *task)
1512 {
1513 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1514
1515 /*
1516 * Elide the load if this CPU holds the most recent kernel mode
1517 * FPSIMD context of the current task.
1518 */
1519 if (last->st == &task->thread.kernel_fpsimd_state &&
1520 task->thread.kernel_fpsimd_cpu == smp_processor_id())
1521 return;
1522
1523 fpsimd_load_state(&task->thread.kernel_fpsimd_state);
1524 }
1525
fpsimd_save_kernel_state(struct task_struct * task)1526 static void fpsimd_save_kernel_state(struct task_struct *task)
1527 {
1528 struct cpu_fp_state cpu_fp_state = {
1529 .st = &task->thread.kernel_fpsimd_state,
1530 .to_save = FP_STATE_FPSIMD,
1531 };
1532
1533 fpsimd_save_state(&task->thread.kernel_fpsimd_state);
1534 fpsimd_bind_state_to_cpu(&cpu_fp_state);
1535
1536 task->thread.kernel_fpsimd_cpu = smp_processor_id();
1537 }
1538
1539 /*
1540 * Invalidate any task's FPSIMD state that is present on this cpu.
1541 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1542 * before calling this function.
1543 */
fpsimd_flush_cpu_state(void)1544 static void fpsimd_flush_cpu_state(void)
1545 {
1546 WARN_ON(!system_supports_fpsimd());
1547 __this_cpu_write(fpsimd_last_state.st, NULL);
1548
1549 /*
1550 * Leaving streaming mode enabled will cause issues for any kernel
1551 * NEON and leaving streaming mode or ZA enabled may increase power
1552 * consumption.
1553 */
1554 if (system_supports_sme())
1555 sme_smstop();
1556
1557 set_thread_flag(TIF_FOREIGN_FPSTATE);
1558 }
1559
fpsimd_thread_switch(struct task_struct * next)1560 void fpsimd_thread_switch(struct task_struct *next)
1561 {
1562 bool wrong_task, wrong_cpu;
1563
1564 if (!system_supports_fpsimd())
1565 return;
1566
1567 WARN_ON_ONCE(!irqs_disabled());
1568
1569 /* Save unsaved fpsimd state, if any: */
1570 if (test_thread_flag(TIF_KERNEL_FPSTATE))
1571 fpsimd_save_kernel_state(current);
1572 else
1573 fpsimd_save_user_state();
1574
1575 if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) {
1576 fpsimd_load_kernel_state(next);
1577 fpsimd_flush_cpu_state();
1578 } else {
1579 /*
1580 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1581 * state. For kernel threads, FPSIMD registers are never
1582 * loaded with user mode FPSIMD state and so wrong_task and
1583 * wrong_cpu will always be true.
1584 */
1585 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1586 &next->thread.uw.fpsimd_state;
1587 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1588
1589 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1590 wrong_task || wrong_cpu);
1591 }
1592 }
1593
fpsimd_flush_thread_vl(enum vec_type type)1594 static void fpsimd_flush_thread_vl(enum vec_type type)
1595 {
1596 int vl, supported_vl;
1597
1598 /*
1599 * Reset the task vector length as required. This is where we
1600 * ensure that all user tasks have a valid vector length
1601 * configured: no kernel task can become a user task without
1602 * an exec and hence a call to this function. By the time the
1603 * first call to this function is made, all early hardware
1604 * probing is complete, so __sve_default_vl should be valid.
1605 * If a bug causes this to go wrong, we make some noise and
1606 * try to fudge thread.sve_vl to a safe value here.
1607 */
1608 vl = task_get_vl_onexec(current, type);
1609 if (!vl)
1610 vl = get_default_vl(type);
1611
1612 if (WARN_ON(!sve_vl_valid(vl)))
1613 vl = vl_info[type].min_vl;
1614
1615 supported_vl = find_supported_vector_length(type, vl);
1616 if (WARN_ON(supported_vl != vl))
1617 vl = supported_vl;
1618
1619 task_set_vl(current, type, vl);
1620
1621 /*
1622 * If the task is not set to inherit, ensure that the vector
1623 * length will be reset by a subsequent exec:
1624 */
1625 if (!test_thread_flag(vec_vl_inherit_flag(type)))
1626 task_set_vl_onexec(current, type, 0);
1627 }
1628
fpsimd_flush_thread(void)1629 void fpsimd_flush_thread(void)
1630 {
1631 void *sve_state = NULL;
1632 void *sme_state = NULL;
1633
1634 if (!system_supports_fpsimd())
1635 return;
1636
1637 get_cpu_fpsimd_context();
1638
1639 fpsimd_flush_task_state(current);
1640 memset(¤t->thread.uw.fpsimd_state, 0,
1641 sizeof(current->thread.uw.fpsimd_state));
1642
1643 if (system_supports_sve()) {
1644 clear_thread_flag(TIF_SVE);
1645
1646 /* Defer kfree() while in atomic context */
1647 sve_state = current->thread.sve_state;
1648 current->thread.sve_state = NULL;
1649
1650 fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1651 }
1652
1653 if (system_supports_sme()) {
1654 clear_thread_flag(TIF_SME);
1655
1656 /* Defer kfree() while in atomic context */
1657 sme_state = current->thread.sme_state;
1658 current->thread.sme_state = NULL;
1659
1660 fpsimd_flush_thread_vl(ARM64_VEC_SME);
1661 current->thread.svcr = 0;
1662 }
1663
1664 current->thread.fp_type = FP_STATE_FPSIMD;
1665
1666 put_cpu_fpsimd_context();
1667 kfree(sve_state);
1668 kfree(sme_state);
1669 }
1670
1671 /*
1672 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1673 * currently held in the registers does in fact belong to 'current'
1674 */
fpsimd_preserve_current_state(void)1675 void fpsimd_preserve_current_state(void)
1676 {
1677 if (!system_supports_fpsimd())
1678 return;
1679
1680 get_cpu_fpsimd_context();
1681 fpsimd_save_user_state();
1682 put_cpu_fpsimd_context();
1683 }
1684
1685 /*
1686 * Like fpsimd_preserve_current_state(), but ensure that
1687 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1688 * the signal frame.
1689 */
fpsimd_signal_preserve_current_state(void)1690 void fpsimd_signal_preserve_current_state(void)
1691 {
1692 fpsimd_preserve_current_state();
1693 if (current->thread.fp_type == FP_STATE_SVE)
1694 sve_to_fpsimd(current);
1695 }
1696
1697 /*
1698 * Called by KVM when entering the guest.
1699 */
fpsimd_kvm_prepare(void)1700 void fpsimd_kvm_prepare(void)
1701 {
1702 if (!system_supports_sve())
1703 return;
1704
1705 /*
1706 * KVM does not save host SVE state since we can only enter
1707 * the guest from a syscall so the ABI means that only the
1708 * non-saved SVE state needs to be saved. If we have left
1709 * SVE enabled for performance reasons then update the task
1710 * state to be FPSIMD only.
1711 */
1712 get_cpu_fpsimd_context();
1713
1714 if (test_and_clear_thread_flag(TIF_SVE)) {
1715 sve_to_fpsimd(current);
1716 current->thread.fp_type = FP_STATE_FPSIMD;
1717 }
1718
1719 put_cpu_fpsimd_context();
1720 }
1721
1722 /*
1723 * Associate current's FPSIMD context with this cpu
1724 * The caller must have ownership of the cpu FPSIMD context before calling
1725 * this function.
1726 */
fpsimd_bind_task_to_cpu(void)1727 static void fpsimd_bind_task_to_cpu(void)
1728 {
1729 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1730
1731 WARN_ON(!system_supports_fpsimd());
1732 last->st = ¤t->thread.uw.fpsimd_state;
1733 last->sve_state = current->thread.sve_state;
1734 last->sme_state = current->thread.sme_state;
1735 last->sve_vl = task_get_sve_vl(current);
1736 last->sme_vl = task_get_sme_vl(current);
1737 last->svcr = ¤t->thread.svcr;
1738 last->fpmr = ¤t->thread.uw.fpmr;
1739 last->fp_type = ¤t->thread.fp_type;
1740 last->to_save = FP_STATE_CURRENT;
1741 current->thread.fpsimd_cpu = smp_processor_id();
1742
1743 /*
1744 * Toggle SVE and SME trapping for userspace if needed, these
1745 * are serialsied by ret_to_user().
1746 */
1747 if (system_supports_sme()) {
1748 if (test_thread_flag(TIF_SME))
1749 sme_user_enable();
1750 else
1751 sme_user_disable();
1752 }
1753
1754 if (system_supports_sve()) {
1755 if (test_thread_flag(TIF_SVE))
1756 sve_user_enable();
1757 else
1758 sve_user_disable();
1759 }
1760 }
1761
fpsimd_bind_state_to_cpu(struct cpu_fp_state * state)1762 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1763 {
1764 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1765
1766 WARN_ON(!system_supports_fpsimd());
1767 WARN_ON(!in_softirq() && !irqs_disabled());
1768
1769 *last = *state;
1770 }
1771
1772 /*
1773 * Load the userland FPSIMD state of 'current' from memory, but only if the
1774 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1775 * state of 'current'. This is called when we are preparing to return to
1776 * userspace to ensure that userspace sees a good register state.
1777 */
fpsimd_restore_current_state(void)1778 void fpsimd_restore_current_state(void)
1779 {
1780 /*
1781 * TIF_FOREIGN_FPSTATE is set on the init task and copied by
1782 * arch_dup_task_struct() regardless of whether FP/SIMD is detected.
1783 * Thus user threads can have this set even when FP/SIMD hasn't been
1784 * detected.
1785 *
1786 * When FP/SIMD is detected, begin_new_exec() will set
1787 * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(),
1788 * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when
1789 * switching tasks. We detect FP/SIMD before we exec the first user
1790 * process, ensuring this has TIF_FOREIGN_FPSTATE set and
1791 * do_notify_resume() will call fpsimd_restore_current_state() to
1792 * install the user FP/SIMD context.
1793 *
1794 * When FP/SIMD is not detected, nothing else will clear or set
1795 * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and
1796 * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume()
1797 * looping forever calling fpsimd_restore_current_state().
1798 */
1799 if (!system_supports_fpsimd()) {
1800 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1801 return;
1802 }
1803
1804 get_cpu_fpsimd_context();
1805
1806 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1807 task_fpsimd_load();
1808 fpsimd_bind_task_to_cpu();
1809 }
1810
1811 put_cpu_fpsimd_context();
1812 }
1813
1814 /*
1815 * Load an updated userland FPSIMD state for 'current' from memory and set the
1816 * flag that indicates that the FPSIMD register contents are the most recent
1817 * FPSIMD state of 'current'. This is used by the signal code to restore the
1818 * register state when returning from a signal handler in FPSIMD only cases,
1819 * any SVE context will be discarded.
1820 */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1821 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1822 {
1823 if (WARN_ON(!system_supports_fpsimd()))
1824 return;
1825
1826 get_cpu_fpsimd_context();
1827
1828 current->thread.uw.fpsimd_state = *state;
1829 if (test_thread_flag(TIF_SVE))
1830 fpsimd_to_sve(current);
1831
1832 task_fpsimd_load();
1833 fpsimd_bind_task_to_cpu();
1834
1835 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1836
1837 put_cpu_fpsimd_context();
1838 }
1839
1840 /*
1841 * Invalidate live CPU copies of task t's FPSIMD state
1842 *
1843 * This function may be called with preemption enabled. The barrier()
1844 * ensures that the assignment to fpsimd_cpu is visible to any
1845 * preemption/softirq that could race with set_tsk_thread_flag(), so
1846 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1847 *
1848 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1849 * subsequent code.
1850 */
fpsimd_flush_task_state(struct task_struct * t)1851 void fpsimd_flush_task_state(struct task_struct *t)
1852 {
1853 t->thread.fpsimd_cpu = NR_CPUS;
1854 /*
1855 * If we don't support fpsimd, bail out after we have
1856 * reset the fpsimd_cpu for this task and clear the
1857 * FPSTATE.
1858 */
1859 if (!system_supports_fpsimd())
1860 return;
1861 barrier();
1862 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1863
1864 barrier();
1865 }
1866
1867 /*
1868 * Save the FPSIMD state to memory and invalidate cpu view.
1869 * This function must be called with preemption disabled.
1870 */
fpsimd_save_and_flush_cpu_state(void)1871 void fpsimd_save_and_flush_cpu_state(void)
1872 {
1873 unsigned long flags;
1874
1875 if (!system_supports_fpsimd())
1876 return;
1877 WARN_ON(preemptible());
1878 local_irq_save(flags);
1879 fpsimd_save_user_state();
1880 fpsimd_flush_cpu_state();
1881 local_irq_restore(flags);
1882 }
1883
1884 #ifdef CONFIG_KERNEL_MODE_NEON
1885
1886 /*
1887 * Kernel-side NEON support functions
1888 */
1889
1890 /*
1891 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1892 * context
1893 *
1894 * Must not be called unless may_use_simd() returns true.
1895 * Task context in the FPSIMD registers is saved back to memory as necessary.
1896 *
1897 * A matching call to kernel_neon_end() must be made before returning from the
1898 * calling context.
1899 *
1900 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1901 * called.
1902 */
kernel_neon_begin(void)1903 void kernel_neon_begin(void)
1904 {
1905 if (WARN_ON(!system_supports_fpsimd()))
1906 return;
1907
1908 BUG_ON(!may_use_simd());
1909
1910 get_cpu_fpsimd_context();
1911
1912 /* Save unsaved fpsimd state, if any: */
1913 if (test_thread_flag(TIF_KERNEL_FPSTATE)) {
1914 BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq());
1915 fpsimd_save_kernel_state(current);
1916 } else {
1917 fpsimd_save_user_state();
1918
1919 /*
1920 * Set the thread flag so that the kernel mode FPSIMD state
1921 * will be context switched along with the rest of the task
1922 * state.
1923 *
1924 * On non-PREEMPT_RT, softirqs may interrupt task level kernel
1925 * mode FPSIMD, but the task will not be preemptible so setting
1926 * TIF_KERNEL_FPSTATE for those would be both wrong (as it
1927 * would mark the task context FPSIMD state as requiring a
1928 * context switch) and unnecessary.
1929 *
1930 * On PREEMPT_RT, softirqs are serviced from a separate thread,
1931 * which is scheduled as usual, and this guarantees that these
1932 * softirqs are not interrupting use of the FPSIMD in kernel
1933 * mode in task context. So in this case, setting the flag here
1934 * is always appropriate.
1935 */
1936 if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq())
1937 set_thread_flag(TIF_KERNEL_FPSTATE);
1938 }
1939
1940 /* Invalidate any task state remaining in the fpsimd regs: */
1941 fpsimd_flush_cpu_state();
1942
1943 put_cpu_fpsimd_context();
1944 }
1945 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1946
1947 /*
1948 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1949 *
1950 * Must be called from a context in which kernel_neon_begin() was previously
1951 * called, with no call to kernel_neon_end() in the meantime.
1952 *
1953 * The caller must not use the FPSIMD registers after this function is called,
1954 * unless kernel_neon_begin() is called again in the meantime.
1955 */
kernel_neon_end(void)1956 void kernel_neon_end(void)
1957 {
1958 if (!system_supports_fpsimd())
1959 return;
1960
1961 /*
1962 * If we are returning from a nested use of kernel mode FPSIMD, restore
1963 * the task context kernel mode FPSIMD state. This can only happen when
1964 * running in softirq context on non-PREEMPT_RT.
1965 */
1966 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq() &&
1967 test_thread_flag(TIF_KERNEL_FPSTATE))
1968 fpsimd_load_kernel_state(current);
1969 else
1970 clear_thread_flag(TIF_KERNEL_FPSTATE);
1971 }
1972 EXPORT_SYMBOL_GPL(kernel_neon_end);
1973
1974 #ifdef CONFIG_EFI
1975
1976 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1977 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1978 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1979 static DEFINE_PER_CPU(bool, efi_sm_state);
1980
1981 /*
1982 * EFI runtime services support functions
1983 *
1984 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1985 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1986 * is always used rather than being an optional accelerator.
1987 *
1988 * These functions provide the necessary support for ensuring FPSIMD
1989 * save/restore in the contexts from which EFI is used.
1990 *
1991 * Do not use them for any other purpose -- if tempted to do so, you are
1992 * either doing something wrong or you need to propose some refactoring.
1993 */
1994
1995 /*
1996 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1997 */
__efi_fpsimd_begin(void)1998 void __efi_fpsimd_begin(void)
1999 {
2000 if (!system_supports_fpsimd())
2001 return;
2002
2003 WARN_ON(preemptible());
2004
2005 if (may_use_simd()) {
2006 kernel_neon_begin();
2007 } else {
2008 /*
2009 * If !efi_sve_state, SVE can't be in use yet and doesn't need
2010 * preserving:
2011 */
2012 if (system_supports_sve() && likely(efi_sve_state)) {
2013 char *sve_state = this_cpu_ptr(efi_sve_state);
2014 bool ffr = true;
2015 u64 svcr;
2016
2017 __this_cpu_write(efi_sve_state_used, true);
2018
2019 if (system_supports_sme()) {
2020 svcr = read_sysreg_s(SYS_SVCR);
2021
2022 __this_cpu_write(efi_sm_state,
2023 svcr & SVCR_SM_MASK);
2024
2025 /*
2026 * Unless we have FA64 FFR does not
2027 * exist in streaming mode.
2028 */
2029 if (!system_supports_fa64())
2030 ffr = !(svcr & SVCR_SM_MASK);
2031 }
2032
2033 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
2034 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2035 ffr);
2036
2037 if (system_supports_sme())
2038 sysreg_clear_set_s(SYS_SVCR,
2039 SVCR_SM_MASK, 0);
2040
2041 } else {
2042 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
2043 }
2044
2045 __this_cpu_write(efi_fpsimd_state_used, true);
2046 }
2047 }
2048
2049 /*
2050 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
2051 */
__efi_fpsimd_end(void)2052 void __efi_fpsimd_end(void)
2053 {
2054 if (!system_supports_fpsimd())
2055 return;
2056
2057 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
2058 kernel_neon_end();
2059 } else {
2060 if (system_supports_sve() &&
2061 likely(__this_cpu_read(efi_sve_state_used))) {
2062 char const *sve_state = this_cpu_ptr(efi_sve_state);
2063 bool ffr = true;
2064
2065 /*
2066 * Restore streaming mode; EFI calls are
2067 * normal function calls so should not return in
2068 * streaming mode.
2069 */
2070 if (system_supports_sme()) {
2071 if (__this_cpu_read(efi_sm_state)) {
2072 sysreg_clear_set_s(SYS_SVCR,
2073 0,
2074 SVCR_SM_MASK);
2075
2076 /*
2077 * Unless we have FA64 FFR does not
2078 * exist in streaming mode.
2079 */
2080 if (!system_supports_fa64())
2081 ffr = false;
2082 }
2083 }
2084
2085 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
2086 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2087 ffr);
2088
2089 __this_cpu_write(efi_sve_state_used, false);
2090 } else {
2091 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
2092 }
2093 }
2094 }
2095
2096 #endif /* CONFIG_EFI */
2097
2098 #endif /* CONFIG_KERNEL_MODE_NEON */
2099
2100 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2101 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2102 unsigned long cmd, void *v)
2103 {
2104 switch (cmd) {
2105 case CPU_PM_ENTER:
2106 fpsimd_save_and_flush_cpu_state();
2107 break;
2108 case CPU_PM_EXIT:
2109 break;
2110 case CPU_PM_ENTER_FAILED:
2111 default:
2112 return NOTIFY_DONE;
2113 }
2114 return NOTIFY_OK;
2115 }
2116
2117 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2118 .notifier_call = fpsimd_cpu_pm_notifier,
2119 };
2120
fpsimd_pm_init(void)2121 static void __init fpsimd_pm_init(void)
2122 {
2123 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2124 }
2125
2126 #else
fpsimd_pm_init(void)2127 static inline void fpsimd_pm_init(void) { }
2128 #endif /* CONFIG_CPU_PM */
2129
2130 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)2131 static int fpsimd_cpu_dead(unsigned int cpu)
2132 {
2133 per_cpu(fpsimd_last_state.st, cpu) = NULL;
2134 return 0;
2135 }
2136
fpsimd_hotplug_init(void)2137 static inline void fpsimd_hotplug_init(void)
2138 {
2139 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2140 NULL, fpsimd_cpu_dead);
2141 }
2142
2143 #else
fpsimd_hotplug_init(void)2144 static inline void fpsimd_hotplug_init(void) { }
2145 #endif
2146
cpu_enable_fpsimd(const struct arm64_cpu_capabilities * __always_unused p)2147 void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p)
2148 {
2149 unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN;
2150 write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1);
2151 isb();
2152 }
2153
2154 /*
2155 * FP/SIMD support code initialisation.
2156 */
fpsimd_init(void)2157 static int __init fpsimd_init(void)
2158 {
2159 if (cpu_have_named_feature(FP)) {
2160 fpsimd_pm_init();
2161 fpsimd_hotplug_init();
2162 } else {
2163 pr_notice("Floating-point is not implemented\n");
2164 }
2165
2166 if (!cpu_have_named_feature(ASIMD))
2167 pr_notice("Advanced SIMD is not implemented\n");
2168
2169
2170 sve_sysctl_init();
2171 sme_sysctl_init();
2172
2173 return 0;
2174 }
2175 core_initcall(fpsimd_init);
2176