1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * UEFI Common Platform Error Record (CPER) support
4 *
5 * Copyright (C) 2010, Intel Corp.
6 * Author: Huang Ying <ying.huang@intel.com>
7 *
8 * CPER is the format used to describe platform hardware error by
9 * various tables, such as ERST, BERT and HEST etc.
10 *
11 * For more information about CPER, please refer to Appendix N of UEFI
12 * Specification version 2.4.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/time.h>
18 #include <linux/cper.h>
19 #include <linux/dmi.h>
20 #include <linux/acpi.h>
21 #include <linux/pci.h>
22 #include <linux/aer.h>
23 #include <linux/printk.h>
24 #include <linux/bcd.h>
25 #include <acpi/ghes.h>
26 #include <ras/ras_event.h>
27 #include "cper_cxl.h"
28
29 /*
30 * CPER record ID need to be unique even after reboot, because record
31 * ID is used as index for ERST storage, while CPER records from
32 * multiple boot may co-exist in ERST.
33 */
cper_next_record_id(void)34 u64 cper_next_record_id(void)
35 {
36 static atomic64_t seq;
37
38 if (!atomic64_read(&seq)) {
39 time64_t time = ktime_get_real_seconds();
40
41 /*
42 * This code is unlikely to still be needed in year 2106,
43 * but just in case, let's use a few more bits for timestamps
44 * after y2038 to be sure they keep increasing monotonically
45 * for the next few hundred years...
46 */
47 if (time < 0x80000000)
48 atomic64_set(&seq, (ktime_get_real_seconds()) << 32);
49 else
50 atomic64_set(&seq, 0x8000000000000000ull |
51 ktime_get_real_seconds() << 24);
52 }
53
54 return atomic64_inc_return(&seq);
55 }
56 EXPORT_SYMBOL_GPL(cper_next_record_id);
57
58 static const char * const severity_strs[] = {
59 "recoverable",
60 "fatal",
61 "corrected",
62 "info",
63 };
64
cper_severity_str(unsigned int severity)65 const char *cper_severity_str(unsigned int severity)
66 {
67 return severity < ARRAY_SIZE(severity_strs) ?
68 severity_strs[severity] : "unknown";
69 }
70 EXPORT_SYMBOL_GPL(cper_severity_str);
71
72 /*
73 * cper_print_bits - print strings for set bits
74 * @pfx: prefix for each line, including log level and prefix string
75 * @bits: bit mask
76 * @strs: string array, indexed by bit position
77 * @strs_size: size of the string array: @strs
78 *
79 * For each set bit in @bits, print the corresponding string in @strs.
80 * If the output length is longer than 80, multiple line will be
81 * printed, with @pfx is printed at the beginning of each line.
82 */
cper_print_bits(const char * pfx,unsigned int bits,const char * const strs[],unsigned int strs_size)83 void cper_print_bits(const char *pfx, unsigned int bits,
84 const char * const strs[], unsigned int strs_size)
85 {
86 int i, len = 0;
87 const char *str;
88 char buf[84];
89
90 for (i = 0; i < strs_size; i++) {
91 if (!(bits & (1U << i)))
92 continue;
93 str = strs[i];
94 if (!str)
95 continue;
96 if (len && len + strlen(str) + 2 > 80) {
97 printk("%s\n", buf);
98 len = 0;
99 }
100 if (!len)
101 len = snprintf(buf, sizeof(buf), "%s%s", pfx, str);
102 else
103 len += scnprintf(buf+len, sizeof(buf)-len, ", %s", str);
104 }
105 if (len)
106 printk("%s\n", buf);
107 }
108
109 static const char * const proc_type_strs[] = {
110 "IA32/X64",
111 "IA64",
112 "ARM",
113 };
114
115 static const char * const proc_isa_strs[] = {
116 "IA32",
117 "IA64",
118 "X64",
119 "ARM A32/T32",
120 "ARM A64",
121 };
122
123 const char * const cper_proc_error_type_strs[] = {
124 "cache error",
125 "TLB error",
126 "bus error",
127 "micro-architectural error",
128 };
129
130 static const char * const proc_op_strs[] = {
131 "unknown or generic",
132 "data read",
133 "data write",
134 "instruction execution",
135 };
136
137 static const char * const proc_flag_strs[] = {
138 "restartable",
139 "precise IP",
140 "overflow",
141 "corrected",
142 };
143
cper_print_proc_generic(const char * pfx,const struct cper_sec_proc_generic * proc)144 static void cper_print_proc_generic(const char *pfx,
145 const struct cper_sec_proc_generic *proc)
146 {
147 if (proc->validation_bits & CPER_PROC_VALID_TYPE)
148 printk("%s""processor_type: %d, %s\n", pfx, proc->proc_type,
149 proc->proc_type < ARRAY_SIZE(proc_type_strs) ?
150 proc_type_strs[proc->proc_type] : "unknown");
151 if (proc->validation_bits & CPER_PROC_VALID_ISA)
152 printk("%s""processor_isa: %d, %s\n", pfx, proc->proc_isa,
153 proc->proc_isa < ARRAY_SIZE(proc_isa_strs) ?
154 proc_isa_strs[proc->proc_isa] : "unknown");
155 if (proc->validation_bits & CPER_PROC_VALID_ERROR_TYPE) {
156 printk("%s""error_type: 0x%02x\n", pfx, proc->proc_error_type);
157 cper_print_bits(pfx, proc->proc_error_type,
158 cper_proc_error_type_strs,
159 ARRAY_SIZE(cper_proc_error_type_strs));
160 }
161 if (proc->validation_bits & CPER_PROC_VALID_OPERATION)
162 printk("%s""operation: %d, %s\n", pfx, proc->operation,
163 proc->operation < ARRAY_SIZE(proc_op_strs) ?
164 proc_op_strs[proc->operation] : "unknown");
165 if (proc->validation_bits & CPER_PROC_VALID_FLAGS) {
166 printk("%s""flags: 0x%02x\n", pfx, proc->flags);
167 cper_print_bits(pfx, proc->flags, proc_flag_strs,
168 ARRAY_SIZE(proc_flag_strs));
169 }
170 if (proc->validation_bits & CPER_PROC_VALID_LEVEL)
171 printk("%s""level: %d\n", pfx, proc->level);
172 if (proc->validation_bits & CPER_PROC_VALID_VERSION)
173 printk("%s""version_info: 0x%016llx\n", pfx, proc->cpu_version);
174 if (proc->validation_bits & CPER_PROC_VALID_ID)
175 printk("%s""processor_id: 0x%016llx\n", pfx, proc->proc_id);
176 if (proc->validation_bits & CPER_PROC_VALID_TARGET_ADDRESS)
177 printk("%s""target_address: 0x%016llx\n",
178 pfx, proc->target_addr);
179 if (proc->validation_bits & CPER_PROC_VALID_REQUESTOR_ID)
180 printk("%s""requestor_id: 0x%016llx\n",
181 pfx, proc->requestor_id);
182 if (proc->validation_bits & CPER_PROC_VALID_RESPONDER_ID)
183 printk("%s""responder_id: 0x%016llx\n",
184 pfx, proc->responder_id);
185 if (proc->validation_bits & CPER_PROC_VALID_IP)
186 printk("%s""IP: 0x%016llx\n", pfx, proc->ip);
187 }
188
189 static const char * const mem_err_type_strs[] = {
190 "unknown",
191 "no error",
192 "single-bit ECC",
193 "multi-bit ECC",
194 "single-symbol chipkill ECC",
195 "multi-symbol chipkill ECC",
196 "master abort",
197 "target abort",
198 "parity error",
199 "watchdog timeout",
200 "invalid address",
201 "mirror Broken",
202 "memory sparing",
203 "scrub corrected error",
204 "scrub uncorrected error",
205 "physical memory map-out event",
206 };
207
cper_mem_err_type_str(unsigned int etype)208 const char *cper_mem_err_type_str(unsigned int etype)
209 {
210 return etype < ARRAY_SIZE(mem_err_type_strs) ?
211 mem_err_type_strs[etype] : "unknown";
212 }
213 EXPORT_SYMBOL_GPL(cper_mem_err_type_str);
214
cper_mem_err_status_str(u64 status)215 const char *cper_mem_err_status_str(u64 status)
216 {
217 switch ((status >> 8) & 0xff) {
218 case 1: return "Error detected internal to the component";
219 case 4: return "Storage error in DRAM memory";
220 case 5: return "Storage error in TLB";
221 case 6: return "Storage error in cache";
222 case 7: return "Error in one or more functional units";
223 case 8: return "Component failed self test";
224 case 9: return "Overflow or undervalue of internal queue";
225 case 16: return "Error detected in the bus";
226 case 17: return "Virtual address not found on IO-TLB or IO-PDIR";
227 case 18: return "Improper access error";
228 case 19: return "Access to a memory address which is not mapped to any component";
229 case 20: return "Loss of Lockstep";
230 case 21: return "Response not associated with a request";
231 case 22: return "Bus parity error - must also set the A, C, or D Bits";
232 case 23: return "Detection of a protocol error";
233 case 24: return "Detection of a PATH_ERROR";
234 case 25: return "Bus operation timeout";
235 case 26: return "A read was issued to data that has been poisoned";
236 default: return "Reserved";
237 }
238 }
239 EXPORT_SYMBOL_GPL(cper_mem_err_status_str);
240
cper_mem_err_location(struct cper_mem_err_compact * mem,char * msg)241 int cper_mem_err_location(struct cper_mem_err_compact *mem, char *msg)
242 {
243 u32 len, n;
244
245 if (!msg)
246 return 0;
247
248 n = 0;
249 len = CPER_REC_LEN;
250 if (mem->validation_bits & CPER_MEM_VALID_NODE)
251 n += scnprintf(msg + n, len - n, "node:%d ", mem->node);
252 if (mem->validation_bits & CPER_MEM_VALID_CARD)
253 n += scnprintf(msg + n, len - n, "card:%d ", mem->card);
254 if (mem->validation_bits & CPER_MEM_VALID_MODULE)
255 n += scnprintf(msg + n, len - n, "module:%d ", mem->module);
256 if (mem->validation_bits & CPER_MEM_VALID_RANK_NUMBER)
257 n += scnprintf(msg + n, len - n, "rank:%d ", mem->rank);
258 if (mem->validation_bits & CPER_MEM_VALID_BANK)
259 n += scnprintf(msg + n, len - n, "bank:%d ", mem->bank);
260 if (mem->validation_bits & CPER_MEM_VALID_BANK_GROUP)
261 n += scnprintf(msg + n, len - n, "bank_group:%d ",
262 mem->bank >> CPER_MEM_BANK_GROUP_SHIFT);
263 if (mem->validation_bits & CPER_MEM_VALID_BANK_ADDRESS)
264 n += scnprintf(msg + n, len - n, "bank_address:%d ",
265 mem->bank & CPER_MEM_BANK_ADDRESS_MASK);
266 if (mem->validation_bits & CPER_MEM_VALID_DEVICE)
267 n += scnprintf(msg + n, len - n, "device:%d ", mem->device);
268 if (mem->validation_bits & (CPER_MEM_VALID_ROW | CPER_MEM_VALID_ROW_EXT)) {
269 u32 row = mem->row;
270
271 row |= cper_get_mem_extension(mem->validation_bits, mem->extended);
272 n += scnprintf(msg + n, len - n, "row:%d ", row);
273 }
274 if (mem->validation_bits & CPER_MEM_VALID_COLUMN)
275 n += scnprintf(msg + n, len - n, "column:%d ", mem->column);
276 if (mem->validation_bits & CPER_MEM_VALID_BIT_POSITION)
277 n += scnprintf(msg + n, len - n, "bit_position:%d ",
278 mem->bit_pos);
279 if (mem->validation_bits & CPER_MEM_VALID_REQUESTOR_ID)
280 n += scnprintf(msg + n, len - n, "requestor_id:0x%016llx ",
281 mem->requestor_id);
282 if (mem->validation_bits & CPER_MEM_VALID_RESPONDER_ID)
283 n += scnprintf(msg + n, len - n, "responder_id:0x%016llx ",
284 mem->responder_id);
285 if (mem->validation_bits & CPER_MEM_VALID_TARGET_ID)
286 n += scnprintf(msg + n, len - n, "target_id:0x%016llx ",
287 mem->target_id);
288 if (mem->validation_bits & CPER_MEM_VALID_CHIP_ID)
289 n += scnprintf(msg + n, len - n, "chip_id:%d ",
290 mem->extended >> CPER_MEM_CHIP_ID_SHIFT);
291
292 return n;
293 }
294 EXPORT_SYMBOL_GPL(cper_mem_err_location);
295
cper_dimm_err_location(struct cper_mem_err_compact * mem,char * msg)296 int cper_dimm_err_location(struct cper_mem_err_compact *mem, char *msg)
297 {
298 u32 len, n;
299 const char *bank = NULL, *device = NULL;
300
301 if (!msg || !(mem->validation_bits & CPER_MEM_VALID_MODULE_HANDLE))
302 return 0;
303
304 len = CPER_REC_LEN;
305 dmi_memdev_name(mem->mem_dev_handle, &bank, &device);
306 if (bank && device)
307 n = snprintf(msg, len, "DIMM location: %s %s ", bank, device);
308 else
309 n = snprintf(msg, len,
310 "DIMM location: not present. DMI handle: 0x%.4x ",
311 mem->mem_dev_handle);
312
313 return n;
314 }
315 EXPORT_SYMBOL_GPL(cper_dimm_err_location);
316
cper_mem_err_pack(const struct cper_sec_mem_err * mem,struct cper_mem_err_compact * cmem)317 void cper_mem_err_pack(const struct cper_sec_mem_err *mem,
318 struct cper_mem_err_compact *cmem)
319 {
320 cmem->validation_bits = mem->validation_bits;
321 cmem->node = mem->node;
322 cmem->card = mem->card;
323 cmem->module = mem->module;
324 cmem->bank = mem->bank;
325 cmem->device = mem->device;
326 cmem->row = mem->row;
327 cmem->column = mem->column;
328 cmem->bit_pos = mem->bit_pos;
329 cmem->requestor_id = mem->requestor_id;
330 cmem->responder_id = mem->responder_id;
331 cmem->target_id = mem->target_id;
332 cmem->extended = mem->extended;
333 cmem->rank = mem->rank;
334 cmem->mem_array_handle = mem->mem_array_handle;
335 cmem->mem_dev_handle = mem->mem_dev_handle;
336 }
337 EXPORT_SYMBOL_GPL(cper_mem_err_pack);
338
cper_mem_err_unpack(struct trace_seq * p,struct cper_mem_err_compact * cmem)339 const char *cper_mem_err_unpack(struct trace_seq *p,
340 struct cper_mem_err_compact *cmem)
341 {
342 const char *ret = trace_seq_buffer_ptr(p);
343 char rcd_decode_str[CPER_REC_LEN];
344
345 if (cper_mem_err_location(cmem, rcd_decode_str))
346 trace_seq_printf(p, "%s", rcd_decode_str);
347 if (cper_dimm_err_location(cmem, rcd_decode_str))
348 trace_seq_printf(p, "%s", rcd_decode_str);
349 trace_seq_putc(p, '\0');
350
351 return ret;
352 }
353
cper_print_mem(const char * pfx,const struct cper_sec_mem_err * mem,int len)354 static void cper_print_mem(const char *pfx, const struct cper_sec_mem_err *mem,
355 int len)
356 {
357 struct cper_mem_err_compact cmem;
358 char rcd_decode_str[CPER_REC_LEN];
359
360 /* Don't trust UEFI 2.1/2.2 structure with bad validation bits */
361 if (len == sizeof(struct cper_sec_mem_err_old) &&
362 (mem->validation_bits & ~(CPER_MEM_VALID_RANK_NUMBER - 1))) {
363 pr_err(FW_WARN "valid bits set for fields beyond structure\n");
364 return;
365 }
366 if (mem->validation_bits & CPER_MEM_VALID_ERROR_STATUS)
367 printk("%s error_status: %s (0x%016llx)\n",
368 pfx, cper_mem_err_status_str(mem->error_status),
369 mem->error_status);
370 if (mem->validation_bits & CPER_MEM_VALID_PA)
371 printk("%s""physical_address: 0x%016llx\n",
372 pfx, mem->physical_addr);
373 if (mem->validation_bits & CPER_MEM_VALID_PA_MASK)
374 printk("%s""physical_address_mask: 0x%016llx\n",
375 pfx, mem->physical_addr_mask);
376 cper_mem_err_pack(mem, &cmem);
377 if (cper_mem_err_location(&cmem, rcd_decode_str))
378 printk("%s%s\n", pfx, rcd_decode_str);
379 if (mem->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
380 u8 etype = mem->error_type;
381 printk("%s""error_type: %d, %s\n", pfx, etype,
382 cper_mem_err_type_str(etype));
383 }
384 if (cper_dimm_err_location(&cmem, rcd_decode_str))
385 printk("%s%s\n", pfx, rcd_decode_str);
386 }
387
388 static const char * const pcie_port_type_strs[] = {
389 "PCIe end point",
390 "legacy PCI end point",
391 "unknown",
392 "unknown",
393 "root port",
394 "upstream switch port",
395 "downstream switch port",
396 "PCIe to PCI/PCI-X bridge",
397 "PCI/PCI-X to PCIe bridge",
398 "root complex integrated endpoint device",
399 "root complex event collector",
400 };
401
cper_print_pcie(const char * pfx,const struct cper_sec_pcie * pcie,const struct acpi_hest_generic_data * gdata)402 static void cper_print_pcie(const char *pfx, const struct cper_sec_pcie *pcie,
403 const struct acpi_hest_generic_data *gdata)
404 {
405 if (pcie->validation_bits & CPER_PCIE_VALID_PORT_TYPE)
406 printk("%s""port_type: %d, %s\n", pfx, pcie->port_type,
407 pcie->port_type < ARRAY_SIZE(pcie_port_type_strs) ?
408 pcie_port_type_strs[pcie->port_type] : "unknown");
409 if (pcie->validation_bits & CPER_PCIE_VALID_VERSION)
410 printk("%s""version: %d.%d\n", pfx,
411 pcie->version.major, pcie->version.minor);
412 if (pcie->validation_bits & CPER_PCIE_VALID_COMMAND_STATUS)
413 printk("%s""command: 0x%04x, status: 0x%04x\n", pfx,
414 pcie->command, pcie->status);
415 if (pcie->validation_bits & CPER_PCIE_VALID_DEVICE_ID) {
416 const __u8 *p;
417 printk("%s""device_id: %04x:%02x:%02x.%x\n", pfx,
418 pcie->device_id.segment, pcie->device_id.bus,
419 pcie->device_id.device, pcie->device_id.function);
420 printk("%s""slot: %d\n", pfx,
421 pcie->device_id.slot >> CPER_PCIE_SLOT_SHIFT);
422 printk("%s""secondary_bus: 0x%02x\n", pfx,
423 pcie->device_id.secondary_bus);
424 printk("%s""vendor_id: 0x%04x, device_id: 0x%04x\n", pfx,
425 pcie->device_id.vendor_id, pcie->device_id.device_id);
426 p = pcie->device_id.class_code;
427 printk("%s""class_code: %02x%02x%02x\n", pfx, p[2], p[1], p[0]);
428 }
429 if (pcie->validation_bits & CPER_PCIE_VALID_SERIAL_NUMBER)
430 printk("%s""serial number: 0x%04x, 0x%04x\n", pfx,
431 pcie->serial_number.lower, pcie->serial_number.upper);
432 if (pcie->validation_bits & CPER_PCIE_VALID_BRIDGE_CONTROL_STATUS)
433 printk(
434 "%s""bridge: secondary_status: 0x%04x, control: 0x%04x\n",
435 pfx, pcie->bridge.secondary_status, pcie->bridge.control);
436
437 /*
438 * Print all valid AER info. Record may be from BERT (boot-time) or GHES (run-time).
439 *
440 * Fatal errors call __ghes_panic() before AER handler prints this.
441 */
442 if (pcie->validation_bits & CPER_PCIE_VALID_AER_INFO) {
443 struct aer_capability_regs *aer;
444
445 aer = (struct aer_capability_regs *)pcie->aer_info;
446 printk("%saer_cor_status: 0x%08x, aer_cor_mask: 0x%08x\n",
447 pfx, aer->cor_status, aer->cor_mask);
448 printk("%saer_uncor_status: 0x%08x, aer_uncor_mask: 0x%08x\n",
449 pfx, aer->uncor_status, aer->uncor_mask);
450 printk("%saer_uncor_severity: 0x%08x\n",
451 pfx, aer->uncor_severity);
452 printk("%sTLP Header: %08x %08x %08x %08x\n", pfx,
453 aer->header_log.dw[0], aer->header_log.dw[1],
454 aer->header_log.dw[2], aer->header_log.dw[3]);
455 }
456 }
457
458 static const char * const fw_err_rec_type_strs[] = {
459 "IPF SAL Error Record",
460 "SOC Firmware Error Record Type1 (Legacy CrashLog Support)",
461 "SOC Firmware Error Record Type2",
462 };
463
cper_print_fw_err(const char * pfx,struct acpi_hest_generic_data * gdata,const struct cper_sec_fw_err_rec_ref * fw_err)464 static void cper_print_fw_err(const char *pfx,
465 struct acpi_hest_generic_data *gdata,
466 const struct cper_sec_fw_err_rec_ref *fw_err)
467 {
468 void *buf = acpi_hest_get_payload(gdata);
469 u32 offset, length = gdata->error_data_length;
470
471 printk("%s""Firmware Error Record Type: %s\n", pfx,
472 fw_err->record_type < ARRAY_SIZE(fw_err_rec_type_strs) ?
473 fw_err_rec_type_strs[fw_err->record_type] : "unknown");
474 printk("%s""Revision: %d\n", pfx, fw_err->revision);
475
476 /* Record Type based on UEFI 2.7 */
477 if (fw_err->revision == 0) {
478 printk("%s""Record Identifier: %08llx\n", pfx,
479 fw_err->record_identifier);
480 } else if (fw_err->revision == 2) {
481 printk("%s""Record Identifier: %pUl\n", pfx,
482 &fw_err->record_identifier_guid);
483 }
484
485 /*
486 * The FW error record may contain trailing data beyond the
487 * structure defined by the specification. As the fields
488 * defined (and hence the offset of any trailing data) vary
489 * with the revision, set the offset to account for this
490 * variation.
491 */
492 if (fw_err->revision == 0) {
493 /* record_identifier_guid not defined */
494 offset = offsetof(struct cper_sec_fw_err_rec_ref,
495 record_identifier_guid);
496 } else if (fw_err->revision == 1) {
497 /* record_identifier not defined */
498 offset = offsetof(struct cper_sec_fw_err_rec_ref,
499 record_identifier);
500 } else {
501 offset = sizeof(*fw_err);
502 }
503
504 buf += offset;
505 length -= offset;
506
507 print_hex_dump(pfx, "", DUMP_PREFIX_OFFSET, 16, 4, buf, length, true);
508 }
509
cper_print_tstamp(const char * pfx,struct acpi_hest_generic_data_v300 * gdata)510 static void cper_print_tstamp(const char *pfx,
511 struct acpi_hest_generic_data_v300 *gdata)
512 {
513 __u8 hour, min, sec, day, mon, year, century, *timestamp;
514
515 if (gdata->validation_bits & ACPI_HEST_GEN_VALID_TIMESTAMP) {
516 timestamp = (__u8 *)&(gdata->time_stamp);
517 sec = bcd2bin(timestamp[0]);
518 min = bcd2bin(timestamp[1]);
519 hour = bcd2bin(timestamp[2]);
520 day = bcd2bin(timestamp[4]);
521 mon = bcd2bin(timestamp[5]);
522 year = bcd2bin(timestamp[6]);
523 century = bcd2bin(timestamp[7]);
524
525 printk("%s%ststamp: %02d%02d-%02d-%02d %02d:%02d:%02d\n", pfx,
526 (timestamp[3] & 0x1 ? "precise " : "imprecise "),
527 century, year, mon, day, hour, min, sec);
528 }
529 }
530
531 struct ignore_section {
532 guid_t guid;
533 const char *name;
534 };
535
536 static const struct ignore_section ignore_sections[] = {
537 { .guid = CPER_SEC_CXL_GEN_MEDIA_GUID, .name = "CXL General Media Event" },
538 { .guid = CPER_SEC_CXL_DRAM_GUID, .name = "CXL DRAM Event" },
539 { .guid = CPER_SEC_CXL_MEM_MODULE_GUID, .name = "CXL Memory Module Event" },
540 };
541
542 static void
cper_estatus_print_section(const char * pfx,struct acpi_hest_generic_data * gdata,int sec_no)543 cper_estatus_print_section(const char *pfx, struct acpi_hest_generic_data *gdata,
544 int sec_no)
545 {
546 guid_t *sec_type = (guid_t *)gdata->section_type;
547 __u16 severity;
548 char newpfx[64];
549
550 if (acpi_hest_get_version(gdata) >= 3)
551 cper_print_tstamp(pfx, (struct acpi_hest_generic_data_v300 *)gdata);
552
553 severity = gdata->error_severity;
554 printk("%s""Error %d, type: %s\n", pfx, sec_no,
555 cper_severity_str(severity));
556 if (gdata->validation_bits & CPER_SEC_VALID_FRU_ID)
557 printk("%s""fru_id: %pUl\n", pfx, gdata->fru_id);
558 if (gdata->validation_bits & CPER_SEC_VALID_FRU_TEXT)
559 printk("%s""fru_text: %.20s\n", pfx, gdata->fru_text);
560
561 snprintf(newpfx, sizeof(newpfx), "%s ", pfx);
562
563 for (int i = 0; i < ARRAY_SIZE(ignore_sections); i++) {
564 if (guid_equal(sec_type, &ignore_sections[i].guid)) {
565 printk("%ssection_type: %s\n", newpfx, ignore_sections[i].name);
566 return;
567 }
568 }
569
570 if (guid_equal(sec_type, &CPER_SEC_PROC_GENERIC)) {
571 struct cper_sec_proc_generic *proc_err = acpi_hest_get_payload(gdata);
572
573 printk("%s""section_type: general processor error\n", newpfx);
574 if (gdata->error_data_length >= sizeof(*proc_err))
575 cper_print_proc_generic(newpfx, proc_err);
576 else
577 goto err_section_too_small;
578 } else if (guid_equal(sec_type, &CPER_SEC_PLATFORM_MEM)) {
579 struct cper_sec_mem_err *mem_err = acpi_hest_get_payload(gdata);
580
581 printk("%s""section_type: memory error\n", newpfx);
582 if (gdata->error_data_length >=
583 sizeof(struct cper_sec_mem_err_old))
584 cper_print_mem(newpfx, mem_err,
585 gdata->error_data_length);
586 else
587 goto err_section_too_small;
588 } else if (guid_equal(sec_type, &CPER_SEC_PCIE)) {
589 struct cper_sec_pcie *pcie = acpi_hest_get_payload(gdata);
590
591 printk("%s""section_type: PCIe error\n", newpfx);
592 if (gdata->error_data_length >= sizeof(*pcie))
593 cper_print_pcie(newpfx, pcie, gdata);
594 else
595 goto err_section_too_small;
596 #if defined(CONFIG_ARM64) || defined(CONFIG_ARM)
597 } else if (guid_equal(sec_type, &CPER_SEC_PROC_ARM)) {
598 struct cper_sec_proc_arm *arm_err = acpi_hest_get_payload(gdata);
599
600 printk("%ssection_type: ARM processor error\n", newpfx);
601 if (gdata->error_data_length >= sizeof(*arm_err))
602 cper_print_proc_arm(newpfx, arm_err);
603 else
604 goto err_section_too_small;
605 #endif
606 #if defined(CONFIG_UEFI_CPER_X86)
607 } else if (guid_equal(sec_type, &CPER_SEC_PROC_IA)) {
608 struct cper_sec_proc_ia *ia_err = acpi_hest_get_payload(gdata);
609
610 printk("%ssection_type: IA32/X64 processor error\n", newpfx);
611 if (gdata->error_data_length >= sizeof(*ia_err))
612 cper_print_proc_ia(newpfx, ia_err);
613 else
614 goto err_section_too_small;
615 #endif
616 } else if (guid_equal(sec_type, &CPER_SEC_FW_ERR_REC_REF)) {
617 struct cper_sec_fw_err_rec_ref *fw_err = acpi_hest_get_payload(gdata);
618
619 printk("%ssection_type: Firmware Error Record Reference\n",
620 newpfx);
621 /* The minimal FW Error Record contains 16 bytes */
622 if (gdata->error_data_length >= SZ_16)
623 cper_print_fw_err(newpfx, gdata, fw_err);
624 else
625 goto err_section_too_small;
626 } else if (guid_equal(sec_type, &CPER_SEC_CXL_PROT_ERR)) {
627 struct cper_sec_prot_err *prot_err = acpi_hest_get_payload(gdata);
628
629 printk("%ssection_type: CXL Protocol Error\n", newpfx);
630 if (gdata->error_data_length >= sizeof(*prot_err))
631 cper_print_prot_err(newpfx, prot_err);
632 else
633 goto err_section_too_small;
634 } else {
635 const void *err = acpi_hest_get_payload(gdata);
636
637 printk("%ssection type: unknown, %pUl\n", newpfx, sec_type);
638 printk("%ssection length: %#x\n", newpfx,
639 gdata->error_data_length);
640 print_hex_dump(newpfx, "", DUMP_PREFIX_OFFSET, 16, 4, err,
641 gdata->error_data_length, true);
642 }
643
644 return;
645
646 err_section_too_small:
647 pr_err(FW_WARN "error section length is too small\n");
648 }
649
cper_estatus_print(const char * pfx,const struct acpi_hest_generic_status * estatus)650 void cper_estatus_print(const char *pfx,
651 const struct acpi_hest_generic_status *estatus)
652 {
653 struct acpi_hest_generic_data *gdata;
654 int sec_no = 0;
655 char newpfx[64];
656 __u16 severity;
657
658 severity = estatus->error_severity;
659 if (severity == CPER_SEV_CORRECTED)
660 printk("%s%s\n", pfx,
661 "It has been corrected by h/w "
662 "and requires no further action");
663 printk("%s""event severity: %s\n", pfx, cper_severity_str(severity));
664 snprintf(newpfx, sizeof(newpfx), "%s ", pfx);
665
666 apei_estatus_for_each_section(estatus, gdata) {
667 cper_estatus_print_section(newpfx, gdata, sec_no);
668 sec_no++;
669 }
670 }
671 EXPORT_SYMBOL_GPL(cper_estatus_print);
672
cper_estatus_check_header(const struct acpi_hest_generic_status * estatus)673 int cper_estatus_check_header(const struct acpi_hest_generic_status *estatus)
674 {
675 if (estatus->data_length &&
676 estatus->data_length < sizeof(struct acpi_hest_generic_data))
677 return -EINVAL;
678 if (estatus->raw_data_length &&
679 estatus->raw_data_offset < sizeof(*estatus) + estatus->data_length)
680 return -EINVAL;
681
682 return 0;
683 }
684 EXPORT_SYMBOL_GPL(cper_estatus_check_header);
685
cper_estatus_check(const struct acpi_hest_generic_status * estatus)686 int cper_estatus_check(const struct acpi_hest_generic_status *estatus)
687 {
688 struct acpi_hest_generic_data *gdata;
689 unsigned int data_len, record_size;
690 int rc;
691
692 rc = cper_estatus_check_header(estatus);
693 if (rc)
694 return rc;
695
696 data_len = estatus->data_length;
697
698 apei_estatus_for_each_section(estatus, gdata) {
699 if (acpi_hest_get_size(gdata) > data_len)
700 return -EINVAL;
701
702 record_size = acpi_hest_get_record_size(gdata);
703 if (record_size > data_len)
704 return -EINVAL;
705
706 data_len -= record_size;
707 }
708 if (data_len)
709 return -EINVAL;
710
711 return 0;
712 }
713 EXPORT_SYMBOL_GPL(cper_estatus_check);
714