1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  /*
3  	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4  	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5  	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6  	<http://rt2x00.serialmonkey.com>
7  
8   */
9  
10  /*
11  	Module: rt2x00
12  	Abstract: rt2x00 global information.
13   */
14  
15  #ifndef RT2X00_H
16  #define RT2X00_H
17  
18  #include <linux/bitops.h>
19  #include <linux/interrupt.h>
20  #include <linux/skbuff.h>
21  #include <linux/workqueue.h>
22  #include <linux/firmware.h>
23  #include <linux/leds.h>
24  #include <linux/mutex.h>
25  #include <linux/etherdevice.h>
26  #include <linux/kfifo.h>
27  #include <linux/hrtimer.h>
28  #include <linux/average.h>
29  #include <linux/usb.h>
30  #include <linux/clk.h>
31  
32  #include <net/mac80211.h>
33  
34  #include "rt2x00debug.h"
35  #include "rt2x00dump.h"
36  #include "rt2x00leds.h"
37  #include "rt2x00reg.h"
38  #include "rt2x00queue.h"
39  
40  /*
41   * Module information.
42   */
43  #define DRV_VERSION	"2.3.0"
44  #define DRV_PROJECT	"http://rt2x00.serialmonkey.com"
45  
46  /* Debug definitions.
47   * Debug output has to be enabled during compile time.
48   */
49  #ifdef CONFIG_RT2X00_DEBUG
50  #define DEBUG
51  #endif /* CONFIG_RT2X00_DEBUG */
52  
53  /* Utility printing macros
54   * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
55   */
56  #define rt2x00_probe_err(fmt, ...)					\
57  	printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt,		\
58  	       __func__, ##__VA_ARGS__)
59  #define rt2x00_err(dev, fmt, ...)					\
60  	wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt,	\
61  		  __func__, ##__VA_ARGS__)
62  #define rt2x00_warn(dev, fmt, ...)					\
63  	wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt,	\
64  		   __func__, ##__VA_ARGS__)
65  #define rt2x00_info(dev, fmt, ...)					\
66  	wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt,			\
67  		   __func__, ##__VA_ARGS__)
68  
69  /* Various debug levels */
70  #define rt2x00_dbg(dev, fmt, ...)					\
71  	wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt,			\
72  		  __func__, ##__VA_ARGS__)
73  #define rt2x00_eeprom_dbg(dev, fmt, ...)				\
74  	wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt,	\
75  		  __func__, ##__VA_ARGS__)
76  
77  /*
78   * Duration calculations
79   * The rate variable passed is: 100kbs.
80   * To convert from bytes to bits we multiply size with 8,
81   * then the size is multiplied with 10 to make the
82   * real rate -> rate argument correction.
83   */
84  #define GET_DURATION(__size, __rate)	(((__size) * 8 * 10) / (__rate))
85  #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
86  
87  /*
88   * Determine the number of L2 padding bytes required between the header and
89   * the payload.
90   */
91  #define L2PAD_SIZE(__hdrlen)	(-(__hdrlen) & 3)
92  
93  /*
94   * Determine the alignment requirement,
95   * to make sure the 802.11 payload is padded to a 4-byte boundrary
96   * we must determine the address of the payload and calculate the
97   * amount of bytes needed to move the data.
98   */
99  #define ALIGN_SIZE(__skb, __header) \
100  	(((unsigned long)((__skb)->data + (__header))) & 3)
101  
102  /*
103   * Constants for extra TX headroom for alignment purposes.
104   */
105  #define RT2X00_ALIGN_SIZE	4 /* Only whole frame needs alignment */
106  #define RT2X00_L2PAD_SIZE	8 /* Both header & payload need alignment */
107  
108  /*
109   * Standard timing and size defines.
110   * These values should follow the ieee80211 specifications.
111   */
112  #define ACK_SIZE		14
113  #define IEEE80211_HEADER	24
114  #define PLCP			48
115  #define BEACON			100
116  #define PREAMBLE		144
117  #define SHORT_PREAMBLE		72
118  #define SLOT_TIME		20
119  #define SHORT_SLOT_TIME		9
120  #define SIFS			10
121  #define PIFS			(SIFS + SLOT_TIME)
122  #define SHORT_PIFS		(SIFS + SHORT_SLOT_TIME)
123  #define DIFS			(PIFS + SLOT_TIME)
124  #define SHORT_DIFS		(SHORT_PIFS + SHORT_SLOT_TIME)
125  #define EIFS			(SIFS + DIFS + \
126  				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
127  #define SHORT_EIFS		(SIFS + SHORT_DIFS + \
128  				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
129  
130  enum rt2x00_chip_intf {
131  	RT2X00_CHIP_INTF_PCI,
132  	RT2X00_CHIP_INTF_PCIE,
133  	RT2X00_CHIP_INTF_USB,
134  	RT2X00_CHIP_INTF_SOC,
135  };
136  
137  /*
138   * Chipset identification
139   * The chipset on the device is composed of a RT and RF chip.
140   * The chipset combination is important for determining device capabilities.
141   */
142  struct rt2x00_chip {
143  	u16 rt;
144  #define RT2460		0x2460
145  #define RT2560		0x2560
146  #define RT2570		0x2570
147  #define RT2661		0x2661
148  #define RT2573		0x2573
149  #define RT2860		0x2860	/* 2.4GHz */
150  #define RT2872		0x2872	/* WSOC */
151  #define RT2883		0x2883	/* WSOC */
152  #define RT3070		0x3070
153  #define RT3071		0x3071
154  #define RT3090		0x3090	/* 2.4GHz PCIe */
155  #define RT3290		0x3290
156  #define RT3352		0x3352  /* WSOC */
157  #define RT3390		0x3390
158  #define RT3572		0x3572
159  #define RT3593		0x3593
160  #define RT3883		0x3883	/* WSOC */
161  #define RT5350		0x5350  /* WSOC 2.4GHz */
162  #define RT5390		0x5390  /* 2.4GHz */
163  #define RT5392		0x5392  /* 2.4GHz */
164  #define RT5592		0x5592
165  #define RT6352		0x6352  /* WSOC 2.4GHz */
166  
167  	u16 rf;
168  	u16 rev;
169  
170  	enum rt2x00_chip_intf intf;
171  };
172  
173  /*
174   * RF register values that belong to a particular channel.
175   */
176  struct rf_channel {
177  	int channel;
178  	u32 rf1;
179  	u32 rf2;
180  	u32 rf3;
181  	u32 rf4;
182  };
183  
184  /*
185   * Information structure for channel survey.
186   */
187  struct rt2x00_chan_survey {
188  	u64 time_idle;
189  	u64 time_busy;
190  	u64 time_ext_busy;
191  };
192  
193  /*
194   * Channel information structure
195   */
196  struct channel_info {
197  	unsigned int flags;
198  #define GEOGRAPHY_ALLOWED	0x00000001
199  
200  	short max_power;
201  	short default_power1;
202  	short default_power2;
203  	short default_power3;
204  };
205  
206  /*
207   * Antenna setup values.
208   */
209  struct antenna_setup {
210  	enum antenna rx;
211  	enum antenna tx;
212  	u8 rx_chain_num;
213  	u8 tx_chain_num;
214  };
215  
216  /*
217   * Quality statistics about the currently active link.
218   */
219  struct link_qual {
220  	/*
221  	 * Statistics required for Link tuning by driver
222  	 * The rssi value is provided by rt2x00lib during the
223  	 * link_tuner() callback function.
224  	 * The false_cca field is filled during the link_stats()
225  	 * callback function and could be used during the
226  	 * link_tuner() callback function.
227  	 */
228  	int rssi;
229  	int false_cca;
230  
231  	/*
232  	 * VGC levels
233  	 * Hardware driver will tune the VGC level during each call
234  	 * to the link_tuner() callback function. This vgc_level is
235  	 * determined based on the link quality statistics like
236  	 * average RSSI and the false CCA count.
237  	 *
238  	 * In some cases the drivers need to differentiate between
239  	 * the currently "desired" VGC level and the level configured
240  	 * in the hardware. The latter is important to reduce the
241  	 * number of BBP register reads to reduce register access
242  	 * overhead. For this reason we store both values here.
243  	 */
244  	u8 vgc_level;
245  	u8 vgc_level_reg;
246  
247  	/*
248  	 * Statistics required for Signal quality calculation.
249  	 * These fields might be changed during the link_stats()
250  	 * callback function.
251  	 */
252  	int rx_success;
253  	int rx_failed;
254  	int tx_success;
255  	int tx_failed;
256  };
257  
258  DECLARE_EWMA(rssi, 10, 8)
259  
260  /*
261   * Antenna settings about the currently active link.
262   */
263  struct link_ant {
264  	/*
265  	 * Antenna flags
266  	 */
267  	unsigned int flags;
268  #define ANTENNA_RX_DIVERSITY	0x00000001
269  #define ANTENNA_TX_DIVERSITY	0x00000002
270  #define ANTENNA_MODE_SAMPLE	0x00000004
271  
272  	/*
273  	 * Currently active TX/RX antenna setup.
274  	 * When software diversity is used, this will indicate
275  	 * which antenna is actually used at this time.
276  	 */
277  	struct antenna_setup active;
278  
279  	/*
280  	 * RSSI history information for the antenna.
281  	 * Used to determine when to switch antenna
282  	 * when using software diversity.
283  	 */
284  	int rssi_history;
285  
286  	/*
287  	 * Current RSSI average of the currently active antenna.
288  	 * Similar to the avg_rssi in the link_qual structure
289  	 * this value is updated by using the walking average.
290  	 */
291  	struct ewma_rssi rssi_ant;
292  };
293  
294  /*
295   * To optimize the quality of the link we need to store
296   * the quality of received frames and periodically
297   * optimize the link.
298   */
299  struct link {
300  	/*
301  	 * Link tuner counter
302  	 * The number of times the link has been tuned
303  	 * since the radio has been switched on.
304  	 */
305  	u32 count;
306  
307  	/*
308  	 * Quality measurement values.
309  	 */
310  	struct link_qual qual;
311  
312  	/*
313  	 * TX/RX antenna setup.
314  	 */
315  	struct link_ant ant;
316  
317  	/*
318  	 * Currently active average RSSI value
319  	 */
320  	struct ewma_rssi avg_rssi;
321  
322  	/*
323  	 * Work structure for scheduling periodic link tuning.
324  	 */
325  	struct delayed_work work;
326  
327  	/*
328  	 * Work structure for scheduling periodic watchdog monitoring.
329  	 * This work must be scheduled on the kernel workqueue, while
330  	 * all other work structures must be queued on the mac80211
331  	 * workqueue. This guarantees that the watchdog can schedule
332  	 * other work structures and wait for their completion in order
333  	 * to bring the device/driver back into the desired state.
334  	 */
335  	struct delayed_work watchdog_work;
336  	unsigned int watchdog_interval;
337  	unsigned int watchdog;
338  };
339  
340  enum rt2x00_delayed_flags {
341  	DELAYED_UPDATE_BEACON,
342  };
343  
344  /*
345   * Interface structure
346   * Per interface configuration details, this structure
347   * is allocated as the private data for ieee80211_vif.
348   */
349  struct rt2x00_intf {
350  	/*
351  	 * beacon->skb must be protected with the mutex.
352  	 */
353  	struct mutex beacon_skb_mutex;
354  
355  	/*
356  	 * Entry in the beacon queue which belongs to
357  	 * this interface. Each interface has its own
358  	 * dedicated beacon entry.
359  	 */
360  	struct queue_entry *beacon;
361  	bool enable_beacon;
362  
363  	/*
364  	 * Actions that needed rescheduling.
365  	 */
366  	unsigned long delayed_flags;
367  
368  	/*
369  	 * Software sequence counter, this is only required
370  	 * for hardware which doesn't support hardware
371  	 * sequence counting.
372  	 */
373  	atomic_t seqno;
374  };
375  
vif_to_intf(struct ieee80211_vif * vif)376  static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
377  {
378  	return (struct rt2x00_intf *)vif->drv_priv;
379  }
380  
381  /**
382   * struct hw_mode_spec: Hardware specifications structure
383   *
384   * Details about the supported modes, rates and channels
385   * of a particular chipset. This is used by rt2x00lib
386   * to build the ieee80211_hw_mode array for mac80211.
387   *
388   * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
389   * @supported_rates: Rate types which are supported (CCK, OFDM).
390   * @num_channels: Number of supported channels. This is used as array size
391   *	for @tx_power_a, @tx_power_bg and @channels.
392   * @channels: Device/chipset specific channel values (See &struct rf_channel).
393   * @channels_info: Additional information for channels (See &struct channel_info).
394   * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
395   */
396  struct hw_mode_spec {
397  	unsigned int supported_bands;
398  #define SUPPORT_BAND_2GHZ	0x00000001
399  #define SUPPORT_BAND_5GHZ	0x00000002
400  
401  	unsigned int supported_rates;
402  #define SUPPORT_RATE_CCK	0x00000001
403  #define SUPPORT_RATE_OFDM	0x00000002
404  
405  	unsigned int num_channels;
406  	const struct rf_channel *channels;
407  	const struct channel_info *channels_info;
408  
409  	struct ieee80211_sta_ht_cap ht;
410  };
411  
412  /*
413   * Configuration structure wrapper around the
414   * mac80211 configuration structure.
415   * When mac80211 configures the driver, rt2x00lib
416   * can precalculate values which are equal for all
417   * rt2x00 drivers. Those values can be stored in here.
418   */
419  struct rt2x00lib_conf {
420  	struct ieee80211_conf *conf;
421  
422  	struct rf_channel rf;
423  	struct channel_info channel;
424  };
425  
426  /*
427   * Configuration structure for erp settings.
428   */
429  struct rt2x00lib_erp {
430  	int short_preamble;
431  	int cts_protection;
432  
433  	u32 basic_rates;
434  
435  	int slot_time;
436  
437  	short sifs;
438  	short pifs;
439  	short difs;
440  	short eifs;
441  
442  	u16 beacon_int;
443  	u16 ht_opmode;
444  };
445  
446  /*
447   * Configuration structure for hardware encryption.
448   */
449  struct rt2x00lib_crypto {
450  	enum cipher cipher;
451  
452  	enum set_key_cmd cmd;
453  	const u8 *address;
454  
455  	u32 bssidx;
456  
457  	u8 key[16];
458  	u8 tx_mic[8];
459  	u8 rx_mic[8];
460  
461  	int wcid;
462  };
463  
464  /*
465   * Configuration structure wrapper around the
466   * rt2x00 interface configuration handler.
467   */
468  struct rt2x00intf_conf {
469  	/*
470  	 * Interface type
471  	 */
472  	enum nl80211_iftype type;
473  
474  	/*
475  	 * TSF sync value, this is dependent on the operation type.
476  	 */
477  	enum tsf_sync sync;
478  
479  	/*
480  	 * The MAC and BSSID addresses are simple array of bytes,
481  	 * these arrays are little endian, so when sending the addresses
482  	 * to the drivers, copy the it into a endian-signed variable.
483  	 *
484  	 * Note that all devices (except rt2500usb) have 32 bits
485  	 * register word sizes. This means that whatever variable we
486  	 * pass _must_ be a multiple of 32 bits. Otherwise the device
487  	 * might not accept what we are sending to it.
488  	 * This will also make it easier for the driver to write
489  	 * the data to the device.
490  	 */
491  	__le32 mac[2];
492  	__le32 bssid[2];
493  };
494  
495  /*
496   * Private structure for storing STA details
497   * wcid: Wireless Client ID
498   */
499  struct rt2x00_sta {
500  	int wcid;
501  };
502  
sta_to_rt2x00_sta(struct ieee80211_sta * sta)503  static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
504  {
505  	return (struct rt2x00_sta *)sta->drv_priv;
506  }
507  
508  /*
509   * rt2x00lib callback functions.
510   */
511  struct rt2x00lib_ops {
512  	/*
513  	 * Interrupt handlers.
514  	 */
515  	irq_handler_t irq_handler;
516  
517  	/*
518  	 * TX status tasklet handler.
519  	 */
520  	void (*txstatus_tasklet) (struct tasklet_struct *t);
521  	void (*pretbtt_tasklet) (struct tasklet_struct *t);
522  	void (*tbtt_tasklet) (struct tasklet_struct *t);
523  	void (*rxdone_tasklet) (struct tasklet_struct *t);
524  	void (*autowake_tasklet) (struct tasklet_struct *t);
525  
526  	/*
527  	 * Device init handlers.
528  	 */
529  	int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
530  	char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
531  	int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
532  			       const u8 *data, const size_t len);
533  	int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
534  			      const u8 *data, const size_t len);
535  
536  	/*
537  	 * Device initialization/deinitialization handlers.
538  	 */
539  	int (*initialize) (struct rt2x00_dev *rt2x00dev);
540  	void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
541  
542  	/*
543  	 * queue initialization handlers
544  	 */
545  	bool (*get_entry_state) (struct queue_entry *entry);
546  	void (*clear_entry) (struct queue_entry *entry);
547  
548  	/*
549  	 * Radio control handlers.
550  	 */
551  	int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
552  				 enum dev_state state);
553  	int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
554  	void (*link_stats) (struct rt2x00_dev *rt2x00dev,
555  			    struct link_qual *qual);
556  	void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
557  			     struct link_qual *qual);
558  	void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
559  			    struct link_qual *qual, const u32 count);
560  	void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
561  	void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
562  
563  	/*
564  	 * Data queue handlers.
565  	 */
566  	void (*watchdog) (struct rt2x00_dev *rt2x00dev);
567  	void (*start_queue) (struct data_queue *queue);
568  	void (*kick_queue) (struct data_queue *queue);
569  	void (*stop_queue) (struct data_queue *queue);
570  	void (*flush_queue) (struct data_queue *queue, bool drop);
571  	void (*tx_dma_done) (struct queue_entry *entry);
572  
573  	/*
574  	 * TX control handlers
575  	 */
576  	void (*write_tx_desc) (struct queue_entry *entry,
577  			       struct txentry_desc *txdesc);
578  	void (*write_tx_data) (struct queue_entry *entry,
579  			       struct txentry_desc *txdesc);
580  	void (*write_beacon) (struct queue_entry *entry,
581  			      struct txentry_desc *txdesc);
582  	void (*clear_beacon) (struct queue_entry *entry);
583  	int (*get_tx_data_len) (struct queue_entry *entry);
584  
585  	/*
586  	 * RX control handlers
587  	 */
588  	void (*fill_rxdone) (struct queue_entry *entry,
589  			     struct rxdone_entry_desc *rxdesc);
590  
591  	/*
592  	 * Configuration handlers.
593  	 */
594  	int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
595  				  struct rt2x00lib_crypto *crypto,
596  				  struct ieee80211_key_conf *key);
597  	int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
598  				    struct rt2x00lib_crypto *crypto,
599  				    struct ieee80211_key_conf *key);
600  	void (*config_filter) (struct rt2x00_dev *rt2x00dev,
601  			       const unsigned int filter_flags);
602  	void (*config_intf) (struct rt2x00_dev *rt2x00dev,
603  			     struct rt2x00_intf *intf,
604  			     struct rt2x00intf_conf *conf,
605  			     const unsigned int flags);
606  #define CONFIG_UPDATE_TYPE		( 1 << 1 )
607  #define CONFIG_UPDATE_MAC		( 1 << 2 )
608  #define CONFIG_UPDATE_BSSID		( 1 << 3 )
609  
610  	void (*config_erp) (struct rt2x00_dev *rt2x00dev,
611  			    struct rt2x00lib_erp *erp,
612  			    u32 changed);
613  	void (*config_ant) (struct rt2x00_dev *rt2x00dev,
614  			    struct antenna_setup *ant);
615  	void (*config) (struct rt2x00_dev *rt2x00dev,
616  			struct rt2x00lib_conf *libconf,
617  			const unsigned int changed_flags);
618  	void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev);
619  	int (*sta_add) (struct rt2x00_dev *rt2x00dev,
620  			struct ieee80211_vif *vif,
621  			struct ieee80211_sta *sta);
622  	int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
623  			   struct ieee80211_sta *sta);
624  };
625  
626  /*
627   * rt2x00 driver callback operation structure.
628   */
629  struct rt2x00_ops {
630  	const char *name;
631  	const unsigned int drv_data_size;
632  	const unsigned int max_ap_intf;
633  	const unsigned int eeprom_size;
634  	const unsigned int rf_size;
635  	const unsigned int tx_queues;
636  	void (*queue_init)(struct data_queue *queue);
637  	const struct rt2x00lib_ops *lib;
638  	const void *drv;
639  	const struct ieee80211_ops *hw;
640  #ifdef CONFIG_RT2X00_LIB_DEBUGFS
641  	const struct rt2x00debug *debugfs;
642  #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
643  };
644  
645  /*
646   * rt2x00 state flags
647   */
648  enum rt2x00_state_flags {
649  	/*
650  	 * Device flags
651  	 */
652  	DEVICE_STATE_PRESENT,
653  	DEVICE_STATE_REGISTERED_HW,
654  	DEVICE_STATE_INITIALIZED,
655  	DEVICE_STATE_STARTED,
656  	DEVICE_STATE_ENABLED_RADIO,
657  	DEVICE_STATE_SCANNING,
658  	DEVICE_STATE_FLUSHING,
659  	DEVICE_STATE_RESET,
660  
661  	/*
662  	 * Driver configuration
663  	 */
664  	CONFIG_CHANNEL_HT40,
665  	CONFIG_POWERSAVING,
666  	CONFIG_HT_DISABLED,
667  	CONFIG_MONITORING,
668  
669  	/*
670  	 * Mark we currently are sequentially reading TX_STA_FIFO register
671  	 * FIXME: this is for only rt2800usb, should go to private data
672  	 */
673  	TX_STATUS_READING,
674  };
675  
676  /*
677   * rt2x00 capability flags
678   */
679  enum rt2x00_capability_flags {
680  	/*
681  	 * Requirements
682  	 */
683  	REQUIRE_FIRMWARE,
684  	REQUIRE_BEACON_GUARD,
685  	REQUIRE_ATIM_QUEUE,
686  	REQUIRE_DMA,
687  	REQUIRE_COPY_IV,
688  	REQUIRE_L2PAD,
689  	REQUIRE_TXSTATUS_FIFO,
690  	REQUIRE_TASKLET_CONTEXT,
691  	REQUIRE_SW_SEQNO,
692  	REQUIRE_HT_TX_DESC,
693  	REQUIRE_PS_AUTOWAKE,
694  	REQUIRE_DELAYED_RFKILL,
695  
696  	/*
697  	 * Capabilities
698  	 */
699  	CAPABILITY_HW_BUTTON,
700  	CAPABILITY_HW_CRYPTO,
701  	CAPABILITY_POWER_LIMIT,
702  	CAPABILITY_CONTROL_FILTERS,
703  	CAPABILITY_CONTROL_FILTER_PSPOLL,
704  	CAPABILITY_PRE_TBTT_INTERRUPT,
705  	CAPABILITY_LINK_TUNING,
706  	CAPABILITY_FRAME_TYPE,
707  	CAPABILITY_RF_SEQUENCE,
708  	CAPABILITY_EXTERNAL_LNA_A,
709  	CAPABILITY_EXTERNAL_LNA_BG,
710  	CAPABILITY_DOUBLE_ANTENNA,
711  	CAPABILITY_BT_COEXIST,
712  	CAPABILITY_VCO_RECALIBRATION,
713  	CAPABILITY_EXTERNAL_PA_TX0,
714  	CAPABILITY_EXTERNAL_PA_TX1,
715  	CAPABILITY_RESTART_HW,
716  };
717  
718  /*
719   * Interface combinations
720   */
721  enum {
722  	IF_COMB_AP = 0,
723  	NUM_IF_COMB,
724  };
725  
726  /*
727   * rt2x00 device structure.
728   */
729  struct rt2x00_dev {
730  	/*
731  	 * Device structure.
732  	 * The structure stored in here depends on the
733  	 * system bus (PCI or USB).
734  	 * When accessing this variable, the rt2x00dev_{pci,usb}
735  	 * macros should be used for correct typecasting.
736  	 */
737  	struct device *dev;
738  
739  	/*
740  	 * Callback functions.
741  	 */
742  	const struct rt2x00_ops *ops;
743  
744  	/*
745  	 * Driver data.
746  	 */
747  	void *drv_data;
748  
749  	/*
750  	 * IEEE80211 control structure.
751  	 */
752  	struct ieee80211_hw *hw;
753  	struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
754  	struct rt2x00_chan_survey *chan_survey;
755  	enum nl80211_band curr_band;
756  	int curr_freq;
757  
758  	/*
759  	 * If enabled, the debugfs interface structures
760  	 * required for deregistration of debugfs.
761  	 */
762  #ifdef CONFIG_RT2X00_LIB_DEBUGFS
763  	struct rt2x00debug_intf *debugfs_intf;
764  #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
765  
766  	/*
767  	 * LED structure for changing the LED status
768  	 * by mac8011 or the kernel.
769  	 */
770  #ifdef CONFIG_RT2X00_LIB_LEDS
771  	struct rt2x00_led led_radio;
772  	struct rt2x00_led led_assoc;
773  	struct rt2x00_led led_qual;
774  	u16 led_mcu_reg;
775  #endif /* CONFIG_RT2X00_LIB_LEDS */
776  
777  	/*
778  	 * Device state flags.
779  	 * In these flags the current status is stored.
780  	 * Access to these flags should occur atomically.
781  	 */
782  	unsigned long flags;
783  
784  	/*
785  	 * Device capabiltiy flags.
786  	 * In these flags the device/driver capabilities are stored.
787  	 * Access to these flags should occur non-atomically.
788  	 */
789  	unsigned long cap_flags;
790  
791  	/*
792  	 * Device information, Bus IRQ and name (PCI, SoC)
793  	 */
794  	int irq;
795  	const char *name;
796  
797  	/*
798  	 * Chipset identification.
799  	 */
800  	struct rt2x00_chip chip;
801  
802  	/*
803  	 * hw capability specifications.
804  	 */
805  	struct hw_mode_spec spec;
806  
807  	/*
808  	 * This is the default TX/RX antenna setup as indicated
809  	 * by the device's EEPROM.
810  	 */
811  	struct antenna_setup default_ant;
812  
813  	/*
814  	 * Register pointers
815  	 * csr.base: CSR base register address. (PCI)
816  	 * csr.cache: CSR cache for usb_control_msg. (USB)
817  	 */
818  	union csr {
819  		void __iomem *base;
820  		void *cache;
821  	} csr;
822  
823  	/*
824  	 * Mutex to protect register accesses.
825  	 * For PCI and USB devices it protects against concurrent indirect
826  	 * register access (BBP, RF, MCU) since accessing those
827  	 * registers require multiple calls to the CSR registers.
828  	 * For USB devices it also protects the csr_cache since that
829  	 * field is used for normal CSR access and it cannot support
830  	 * multiple callers simultaneously.
831  	 */
832  	struct mutex csr_mutex;
833  
834  	/*
835  	 * Mutex to synchronize config and link tuner.
836  	 */
837  	struct mutex conf_mutex;
838  	/*
839  	 * Current packet filter configuration for the device.
840  	 * This contains all currently active FIF_* flags send
841  	 * to us by mac80211 during configure_filter().
842  	 */
843  	unsigned int packet_filter;
844  
845  	/*
846  	 * Interface details:
847  	 *  - Open ap interface count.
848  	 *  - Open sta interface count.
849  	 *  - Association count.
850  	 *  - Beaconing enabled count.
851  	 */
852  	unsigned int intf_ap_count;
853  	unsigned int intf_sta_count;
854  	unsigned int intf_associated;
855  	unsigned int intf_beaconing;
856  
857  	/*
858  	 * Interface combinations
859  	 */
860  	struct ieee80211_iface_limit if_limits_ap;
861  	struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
862  
863  	/*
864  	 * Link quality
865  	 */
866  	struct link link;
867  
868  	/*
869  	 * EEPROM data.
870  	 */
871  	__le16 *eeprom;
872  
873  	/*
874  	 * Active RF register values.
875  	 * These are stored here so we don't need
876  	 * to read the rf registers and can directly
877  	 * use this value instead.
878  	 * This field should be accessed by using
879  	 * rt2x00_rf_read() and rt2x00_rf_write().
880  	 */
881  	u32 *rf;
882  
883  	/*
884  	 * LNA gain
885  	 */
886  	short lna_gain;
887  
888  	/*
889  	 * Current TX power value.
890  	 */
891  	u16 tx_power;
892  
893  	/*
894  	 * Current retry values.
895  	 */
896  	u8 short_retry;
897  	u8 long_retry;
898  
899  	/*
900  	 * Rssi <-> Dbm offset
901  	 */
902  	u8 rssi_offset;
903  
904  	/*
905  	 * Frequency offset.
906  	 */
907  	u8 freq_offset;
908  
909  	/*
910  	 * Association id.
911  	 */
912  	u16 aid;
913  
914  	/*
915  	 * Beacon interval.
916  	 */
917  	u16 beacon_int;
918  
919  	/* Rx/Tx DMA busy watchdog counter */
920  	u16 rxdma_busy, txdma_busy;
921  
922  	/**
923  	 * Timestamp of last received beacon
924  	 */
925  	unsigned long last_beacon;
926  
927  	/*
928  	 * Low level statistics which will have
929  	 * to be kept up to date while device is running.
930  	 */
931  	struct ieee80211_low_level_stats low_level_stats;
932  
933  	/**
934  	 * Work queue for all work which should not be placed
935  	 * on the mac80211 workqueue (because of dependencies
936  	 * between various work structures).
937  	 */
938  	struct workqueue_struct *workqueue;
939  
940  	/*
941  	 * Scheduled work.
942  	 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
943  	 * which means it cannot be placed on the hw->workqueue
944  	 * due to RTNL locking requirements.
945  	 */
946  	struct work_struct intf_work;
947  
948  	/**
949  	 * Scheduled work for TX/RX done handling (USB devices)
950  	 */
951  	struct work_struct rxdone_work;
952  	struct work_struct txdone_work;
953  
954  	/*
955  	 * Powersaving work
956  	 */
957  	struct delayed_work autowakeup_work;
958  	struct work_struct sleep_work;
959  
960  	/*
961  	 * Data queue arrays for RX, TX, Beacon and ATIM.
962  	 */
963  	unsigned int data_queues;
964  	struct data_queue *rx;
965  	struct data_queue *tx;
966  	struct data_queue *bcn;
967  	struct data_queue *atim;
968  
969  	/*
970  	 * Firmware image.
971  	 */
972  	const struct firmware *fw;
973  
974  	/*
975  	 * FIFO for storing tx status reports between isr and tasklet.
976  	 */
977  	DECLARE_KFIFO_PTR(txstatus_fifo, u32);
978  
979  	/*
980  	 * Timer to ensure tx status reports are read (rt2800usb).
981  	 */
982  	struct hrtimer txstatus_timer;
983  
984  	/*
985  	 * Tasklet for processing tx status reports (rt2800pci).
986  	 */
987  	struct tasklet_struct txstatus_tasklet;
988  	struct tasklet_struct pretbtt_tasklet;
989  	struct tasklet_struct tbtt_tasklet;
990  	struct tasklet_struct rxdone_tasklet;
991  	struct tasklet_struct autowake_tasklet;
992  
993  	/*
994  	 * Used for VCO periodic calibration.
995  	 */
996  	int rf_channel;
997  
998  	/*
999  	 * Protect the interrupt mask register.
1000  	 */
1001  	spinlock_t irqmask_lock;
1002  
1003  	/*
1004  	 * List of BlockAckReq TX entries that need driver BlockAck processing.
1005  	 */
1006  	struct list_head bar_list;
1007  	spinlock_t bar_list_lock;
1008  
1009  	/* Extra TX headroom required for alignment purposes. */
1010  	unsigned int extra_tx_headroom;
1011  
1012  	struct usb_anchor *anchor;
1013  	unsigned int num_proto_errs;
1014  
1015  	/* Clock for System On Chip devices. */
1016  	struct clk *clk;
1017  };
1018  
1019  struct rt2x00_bar_list_entry {
1020  	struct list_head list;
1021  	struct rcu_head head;
1022  
1023  	struct queue_entry *entry;
1024  	int block_acked;
1025  
1026  	/* Relevant parts of the IEEE80211 BAR header */
1027  	__u8 ra[6];
1028  	__u8 ta[6];
1029  	__le16 control;
1030  	__le16 start_seq_num;
1031  };
1032  
1033  /*
1034   * Register defines.
1035   * Some registers require multiple attempts before success,
1036   * in those cases REGISTER_BUSY_COUNT attempts should be
1037   * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1038   * bus delays, we do not have to loop so many times to wait
1039   * for valid register value on that bus.
1040   */
1041  #define REGISTER_BUSY_COUNT	100
1042  #define REGISTER_USB_BUSY_COUNT 20
1043  #define REGISTER_BUSY_DELAY	100
1044  
1045  /*
1046   * Generic RF access.
1047   * The RF is being accessed by word index.
1048   */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1049  static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1050  				 const unsigned int word)
1051  {
1052  	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1053  	return rt2x00dev->rf[word - 1];
1054  }
1055  
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1056  static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1057  				   const unsigned int word, u32 data)
1058  {
1059  	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1060  	rt2x00dev->rf[word - 1] = data;
1061  }
1062  
1063  /*
1064   * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1065   */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1066  static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1067  				       const unsigned int word)
1068  {
1069  	return (void *)&rt2x00dev->eeprom[word];
1070  }
1071  
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1072  static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1073  				     const unsigned int word)
1074  {
1075  	return le16_to_cpu(rt2x00dev->eeprom[word]);
1076  }
1077  
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1078  static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1079  				       const unsigned int word, u16 data)
1080  {
1081  	rt2x00dev->eeprom[word] = cpu_to_le16(data);
1082  }
1083  
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1084  static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1085  				    const unsigned int byte)
1086  {
1087  	return *(((u8 *)rt2x00dev->eeprom) + byte);
1088  }
1089  
1090  /*
1091   * Chipset handlers
1092   */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1093  static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1094  				   const u16 rt, const u16 rf, const u16 rev)
1095  {
1096  	rt2x00dev->chip.rt = rt;
1097  	rt2x00dev->chip.rf = rf;
1098  	rt2x00dev->chip.rev = rev;
1099  
1100  	rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1101  		    rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1102  		    rt2x00dev->chip.rev);
1103  }
1104  
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1105  static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1106  				 const u16 rt, const u16 rev)
1107  {
1108  	rt2x00dev->chip.rt = rt;
1109  	rt2x00dev->chip.rev = rev;
1110  
1111  	rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1112  		    rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1113  }
1114  
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1115  static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1116  {
1117  	rt2x00dev->chip.rf = rf;
1118  
1119  	rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1120  		    rt2x00dev->chip.rf);
1121  }
1122  
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1123  static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1124  {
1125  	return (rt2x00dev->chip.rt == rt);
1126  }
1127  
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1128  static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1129  {
1130  	return (rt2x00dev->chip.rf == rf);
1131  }
1132  
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1133  static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1134  {
1135  	return rt2x00dev->chip.rev;
1136  }
1137  
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1138  static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1139  				 const u16 rt, const u16 rev)
1140  {
1141  	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1142  }
1143  
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1144  static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1145  				    const u16 rt, const u16 rev)
1146  {
1147  	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1148  }
1149  
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1150  static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1151  				     const u16 rt, const u16 rev)
1152  {
1153  	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1154  }
1155  
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1156  static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1157  					enum rt2x00_chip_intf intf)
1158  {
1159  	rt2x00dev->chip.intf = intf;
1160  }
1161  
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1162  static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1163  			       enum rt2x00_chip_intf intf)
1164  {
1165  	return (rt2x00dev->chip.intf == intf);
1166  }
1167  
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1168  static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1169  {
1170  	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1171  	       rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1172  }
1173  
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1174  static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1175  {
1176  	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1177  }
1178  
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1179  static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1180  {
1181  	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1182  }
1183  
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1184  static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1185  {
1186  	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1187  }
1188  
1189  /* Helpers for capability flags */
1190  
1191  static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1192  rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1193  		    enum rt2x00_capability_flags cap_flag)
1194  {
1195  	return test_bit(cap_flag, &rt2x00dev->cap_flags);
1196  }
1197  
1198  static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1199  rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1200  {
1201  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1202  }
1203  
1204  static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1205  rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1206  {
1207  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1208  }
1209  
1210  static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1211  rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1212  {
1213  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1214  }
1215  
1216  static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1217  rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1218  {
1219  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1220  }
1221  
1222  static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1223  rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1224  {
1225  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1226  }
1227  
1228  static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1229  rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1230  {
1231  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1232  }
1233  
1234  static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1235  rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1236  {
1237  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1238  }
1239  
1240  static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1241  rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1242  {
1243  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1244  }
1245  
1246  static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1247  rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1248  {
1249  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1250  }
1251  
1252  static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1253  rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1254  {
1255  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1256  }
1257  
1258  static inline bool
rt2x00_has_cap_external_pa(struct rt2x00_dev * rt2x00dev)1259  rt2x00_has_cap_external_pa(struct rt2x00_dev *rt2x00dev)
1260  {
1261  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_PA_TX0);
1262  }
1263  
1264  static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1265  rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1266  {
1267  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1268  }
1269  
1270  static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1271  rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1272  {
1273  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1274  }
1275  
1276  static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1277  rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1278  {
1279  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1280  }
1281  
1282  static inline bool
rt2x00_has_cap_restart_hw(struct rt2x00_dev * rt2x00dev)1283  rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev)
1284  {
1285  	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW);
1286  }
1287  
1288  /**
1289   * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1290   * @entry: Pointer to &struct queue_entry
1291   *
1292   * Returns -ENOMEM if mapping fail, 0 otherwise.
1293   */
1294  int rt2x00queue_map_txskb(struct queue_entry *entry);
1295  
1296  /**
1297   * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1298   * @entry: Pointer to &struct queue_entry
1299   */
1300  void rt2x00queue_unmap_skb(struct queue_entry *entry);
1301  
1302  /**
1303   * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1304   * @rt2x00dev: Pointer to &struct rt2x00_dev.
1305   * @queue: rt2x00 queue index (see &enum data_queue_qid).
1306   *
1307   * Returns NULL for non tx queues.
1308   */
1309  static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,enum data_queue_qid queue)1310  rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1311  			 enum data_queue_qid queue)
1312  {
1313  	if (queue >= rt2x00dev->ops->tx_queues && queue < IEEE80211_NUM_ACS)
1314  		queue = rt2x00dev->ops->tx_queues - 1;
1315  
1316  	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1317  		return &rt2x00dev->tx[queue];
1318  
1319  	if (queue == QID_ATIM)
1320  		return rt2x00dev->atim;
1321  
1322  	return NULL;
1323  }
1324  
1325  /**
1326   * rt2x00queue_get_entry - Get queue entry where the given index points to.
1327   * @queue: Pointer to &struct data_queue from where we obtain the entry.
1328   * @index: Index identifier for obtaining the correct index.
1329   */
1330  struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1331  					  enum queue_index index);
1332  
1333  /**
1334   * rt2x00queue_pause_queue - Pause a data queue
1335   * @queue: Pointer to &struct data_queue.
1336   *
1337   * This function will pause the data queue locally, preventing
1338   * new frames to be added to the queue (while the hardware is
1339   * still allowed to run).
1340   */
1341  void rt2x00queue_pause_queue(struct data_queue *queue);
1342  
1343  /**
1344   * rt2x00queue_unpause_queue - unpause a data queue
1345   * @queue: Pointer to &struct data_queue.
1346   *
1347   * This function will unpause the data queue locally, allowing
1348   * new frames to be added to the queue again.
1349   */
1350  void rt2x00queue_unpause_queue(struct data_queue *queue);
1351  
1352  /**
1353   * rt2x00queue_start_queue - Start a data queue
1354   * @queue: Pointer to &struct data_queue.
1355   *
1356   * This function will start handling all pending frames in the queue.
1357   */
1358  void rt2x00queue_start_queue(struct data_queue *queue);
1359  
1360  /**
1361   * rt2x00queue_stop_queue - Halt a data queue
1362   * @queue: Pointer to &struct data_queue.
1363   *
1364   * This function will stop all pending frames in the queue.
1365   */
1366  void rt2x00queue_stop_queue(struct data_queue *queue);
1367  
1368  /**
1369   * rt2x00queue_flush_queue - Flush a data queue
1370   * @queue: Pointer to &struct data_queue.
1371   * @drop: True to drop all pending frames.
1372   *
1373   * This function will flush the queue. After this call
1374   * the queue is guaranteed to be empty.
1375   */
1376  void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1377  
1378  /**
1379   * rt2x00queue_start_queues - Start all data queues
1380   * @rt2x00dev: Pointer to &struct rt2x00_dev.
1381   *
1382   * This function will loop through all available queues to start them
1383   */
1384  void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1385  
1386  /**
1387   * rt2x00queue_stop_queues - Halt all data queues
1388   * @rt2x00dev: Pointer to &struct rt2x00_dev.
1389   *
1390   * This function will loop through all available queues to stop
1391   * any pending frames.
1392   */
1393  void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1394  
1395  /**
1396   * rt2x00queue_flush_queues - Flush all data queues
1397   * @rt2x00dev: Pointer to &struct rt2x00_dev.
1398   * @drop: True to drop all pending frames.
1399   *
1400   * This function will loop through all available queues to flush
1401   * any pending frames.
1402   */
1403  void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1404  
1405  /*
1406   * Debugfs handlers.
1407   */
1408  /**
1409   * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1410   * @rt2x00dev: Pointer to &struct rt2x00_dev.
1411   * @type: The type of frame that is being dumped.
1412   * @entry: The queue entry containing the frame to be dumped.
1413   */
1414  #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1415  void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1416  			    enum rt2x00_dump_type type, struct queue_entry *entry);
1417  #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct queue_entry * entry)1418  static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1419  					  enum rt2x00_dump_type type,
1420  					  struct queue_entry *entry)
1421  {
1422  }
1423  #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1424  
1425  /*
1426   * Utility functions.
1427   */
1428  u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1429  			 struct ieee80211_vif *vif);
1430  void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr);
1431  
1432  /*
1433   * Interrupt context handlers.
1434   */
1435  void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1436  void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1437  void rt2x00lib_dmastart(struct queue_entry *entry);
1438  void rt2x00lib_dmadone(struct queue_entry *entry);
1439  void rt2x00lib_txdone(struct queue_entry *entry,
1440  		      struct txdone_entry_desc *txdesc);
1441  void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
1442  			      struct txdone_entry_desc *txdesc);
1443  void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1444  void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1445  
1446  /*
1447   * mac80211 handlers.
1448   */
1449  void rt2x00mac_tx(struct ieee80211_hw *hw,
1450  		  struct ieee80211_tx_control *control,
1451  		  struct sk_buff *skb);
1452  int rt2x00mac_start(struct ieee80211_hw *hw);
1453  void rt2x00mac_stop(struct ieee80211_hw *hw, bool suspend);
1454  void rt2x00mac_reconfig_complete(struct ieee80211_hw *hw,
1455  				 enum ieee80211_reconfig_type reconfig_type);
1456  int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1457  			    struct ieee80211_vif *vif);
1458  void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1459  				struct ieee80211_vif *vif);
1460  int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1461  void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1462  				unsigned int changed_flags,
1463  				unsigned int *total_flags,
1464  				u64 multicast);
1465  int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1466  		      bool set);
1467  #ifdef CONFIG_RT2X00_LIB_CRYPTO
1468  int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1469  		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1470  		      struct ieee80211_key_conf *key);
1471  #else
1472  #define rt2x00mac_set_key	NULL
1473  #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1474  void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1475  			     struct ieee80211_vif *vif,
1476  			     const u8 *mac_addr);
1477  void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1478  				struct ieee80211_vif *vif);
1479  int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1480  			struct ieee80211_low_level_stats *stats);
1481  void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1482  				struct ieee80211_vif *vif,
1483  				struct ieee80211_bss_conf *bss_conf,
1484  				u64 changes);
1485  int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1486  		      struct ieee80211_vif *vif,
1487  		      unsigned int link_id, u16 queue,
1488  		      const struct ieee80211_tx_queue_params *params);
1489  void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1490  void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1491  		     u32 queues, bool drop);
1492  int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1493  int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1494  void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1495  			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1496  bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1497  
1498  /*
1499   * Driver allocation handlers.
1500   */
1501  int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1502  void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1503  
1504  int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev);
1505  int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1506  
1507  #endif /* RT2X00_H */
1508