1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Common interrupt code for 32 and 64 bit
4   */
5  #include <linux/cpu.h>
6  #include <linux/interrupt.h>
7  #include <linux/kernel_stat.h>
8  #include <linux/of.h>
9  #include <linux/seq_file.h>
10  #include <linux/smp.h>
11  #include <linux/ftrace.h>
12  #include <linux/delay.h>
13  #include <linux/export.h>
14  #include <linux/irq.h>
15  
16  #include <asm/irq_stack.h>
17  #include <asm/apic.h>
18  #include <asm/io_apic.h>
19  #include <asm/irq.h>
20  #include <asm/mce.h>
21  #include <asm/hw_irq.h>
22  #include <asm/desc.h>
23  #include <asm/traps.h>
24  #include <asm/thermal.h>
25  #include <asm/posted_intr.h>
26  #include <asm/irq_remapping.h>
27  
28  #define CREATE_TRACE_POINTS
29  #include <asm/trace/irq_vectors.h>
30  
31  DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
32  EXPORT_PER_CPU_SYMBOL(irq_stat);
33  
34  atomic_t irq_err_count;
35  
36  /*
37   * 'what should we do if we get a hw irq event on an illegal vector'.
38   * each architecture has to answer this themselves.
39   */
ack_bad_irq(unsigned int irq)40  void ack_bad_irq(unsigned int irq)
41  {
42  	if (printk_ratelimit())
43  		pr_err("unexpected IRQ trap at vector %02x\n", irq);
44  
45  	/*
46  	 * Currently unexpected vectors happen only on SMP and APIC.
47  	 * We _must_ ack these because every local APIC has only N
48  	 * irq slots per priority level, and a 'hanging, unacked' IRQ
49  	 * holds up an irq slot - in excessive cases (when multiple
50  	 * unexpected vectors occur) that might lock up the APIC
51  	 * completely.
52  	 * But only ack when the APIC is enabled -AK
53  	 */
54  	apic_eoi();
55  }
56  
57  #define irq_stats(x)		(&per_cpu(irq_stat, x))
58  /*
59   * /proc/interrupts printing for arch specific interrupts
60   */
arch_show_interrupts(struct seq_file * p,int prec)61  int arch_show_interrupts(struct seq_file *p, int prec)
62  {
63  	int j;
64  
65  	seq_printf(p, "%*s: ", prec, "NMI");
66  	for_each_online_cpu(j)
67  		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
68  	seq_puts(p, "  Non-maskable interrupts\n");
69  #ifdef CONFIG_X86_LOCAL_APIC
70  	seq_printf(p, "%*s: ", prec, "LOC");
71  	for_each_online_cpu(j)
72  		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
73  	seq_puts(p, "  Local timer interrupts\n");
74  
75  	seq_printf(p, "%*s: ", prec, "SPU");
76  	for_each_online_cpu(j)
77  		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
78  	seq_puts(p, "  Spurious interrupts\n");
79  	seq_printf(p, "%*s: ", prec, "PMI");
80  	for_each_online_cpu(j)
81  		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
82  	seq_puts(p, "  Performance monitoring interrupts\n");
83  	seq_printf(p, "%*s: ", prec, "IWI");
84  	for_each_online_cpu(j)
85  		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
86  	seq_puts(p, "  IRQ work interrupts\n");
87  	seq_printf(p, "%*s: ", prec, "RTR");
88  	for_each_online_cpu(j)
89  		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
90  	seq_puts(p, "  APIC ICR read retries\n");
91  	if (x86_platform_ipi_callback) {
92  		seq_printf(p, "%*s: ", prec, "PLT");
93  		for_each_online_cpu(j)
94  			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
95  		seq_puts(p, "  Platform interrupts\n");
96  	}
97  #endif
98  #ifdef CONFIG_SMP
99  	seq_printf(p, "%*s: ", prec, "RES");
100  	for_each_online_cpu(j)
101  		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
102  	seq_puts(p, "  Rescheduling interrupts\n");
103  	seq_printf(p, "%*s: ", prec, "CAL");
104  	for_each_online_cpu(j)
105  		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
106  	seq_puts(p, "  Function call interrupts\n");
107  	seq_printf(p, "%*s: ", prec, "TLB");
108  	for_each_online_cpu(j)
109  		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
110  	seq_puts(p, "  TLB shootdowns\n");
111  #endif
112  #ifdef CONFIG_X86_THERMAL_VECTOR
113  	seq_printf(p, "%*s: ", prec, "TRM");
114  	for_each_online_cpu(j)
115  		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
116  	seq_puts(p, "  Thermal event interrupts\n");
117  #endif
118  #ifdef CONFIG_X86_MCE_THRESHOLD
119  	seq_printf(p, "%*s: ", prec, "THR");
120  	for_each_online_cpu(j)
121  		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
122  	seq_puts(p, "  Threshold APIC interrupts\n");
123  #endif
124  #ifdef CONFIG_X86_MCE_AMD
125  	seq_printf(p, "%*s: ", prec, "DFR");
126  	for_each_online_cpu(j)
127  		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
128  	seq_puts(p, "  Deferred Error APIC interrupts\n");
129  #endif
130  #ifdef CONFIG_X86_MCE
131  	seq_printf(p, "%*s: ", prec, "MCE");
132  	for_each_online_cpu(j)
133  		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
134  	seq_puts(p, "  Machine check exceptions\n");
135  	seq_printf(p, "%*s: ", prec, "MCP");
136  	for_each_online_cpu(j)
137  		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
138  	seq_puts(p, "  Machine check polls\n");
139  #endif
140  #ifdef CONFIG_X86_HV_CALLBACK_VECTOR
141  	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) {
142  		seq_printf(p, "%*s: ", prec, "HYP");
143  		for_each_online_cpu(j)
144  			seq_printf(p, "%10u ",
145  				   irq_stats(j)->irq_hv_callback_count);
146  		seq_puts(p, "  Hypervisor callback interrupts\n");
147  	}
148  #endif
149  #if IS_ENABLED(CONFIG_HYPERV)
150  	if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) {
151  		seq_printf(p, "%*s: ", prec, "HRE");
152  		for_each_online_cpu(j)
153  			seq_printf(p, "%10u ",
154  				   irq_stats(j)->irq_hv_reenlightenment_count);
155  		seq_puts(p, "  Hyper-V reenlightenment interrupts\n");
156  	}
157  	if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) {
158  		seq_printf(p, "%*s: ", prec, "HVS");
159  		for_each_online_cpu(j)
160  			seq_printf(p, "%10u ",
161  				   irq_stats(j)->hyperv_stimer0_count);
162  		seq_puts(p, "  Hyper-V stimer0 interrupts\n");
163  	}
164  #endif
165  	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
166  #if defined(CONFIG_X86_IO_APIC)
167  	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
168  #endif
169  #if IS_ENABLED(CONFIG_KVM)
170  	seq_printf(p, "%*s: ", prec, "PIN");
171  	for_each_online_cpu(j)
172  		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
173  	seq_puts(p, "  Posted-interrupt notification event\n");
174  
175  	seq_printf(p, "%*s: ", prec, "NPI");
176  	for_each_online_cpu(j)
177  		seq_printf(p, "%10u ",
178  			   irq_stats(j)->kvm_posted_intr_nested_ipis);
179  	seq_puts(p, "  Nested posted-interrupt event\n");
180  
181  	seq_printf(p, "%*s: ", prec, "PIW");
182  	for_each_online_cpu(j)
183  		seq_printf(p, "%10u ",
184  			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
185  	seq_puts(p, "  Posted-interrupt wakeup event\n");
186  #endif
187  #ifdef CONFIG_X86_POSTED_MSI
188  	seq_printf(p, "%*s: ", prec, "PMN");
189  	for_each_online_cpu(j)
190  		seq_printf(p, "%10u ",
191  			   irq_stats(j)->posted_msi_notification_count);
192  	seq_puts(p, "  Posted MSI notification event\n");
193  #endif
194  	return 0;
195  }
196  
197  /*
198   * /proc/stat helpers
199   */
arch_irq_stat_cpu(unsigned int cpu)200  u64 arch_irq_stat_cpu(unsigned int cpu)
201  {
202  	u64 sum = irq_stats(cpu)->__nmi_count;
203  
204  #ifdef CONFIG_X86_LOCAL_APIC
205  	sum += irq_stats(cpu)->apic_timer_irqs;
206  	sum += irq_stats(cpu)->irq_spurious_count;
207  	sum += irq_stats(cpu)->apic_perf_irqs;
208  	sum += irq_stats(cpu)->apic_irq_work_irqs;
209  	sum += irq_stats(cpu)->icr_read_retry_count;
210  	if (x86_platform_ipi_callback)
211  		sum += irq_stats(cpu)->x86_platform_ipis;
212  #endif
213  #ifdef CONFIG_SMP
214  	sum += irq_stats(cpu)->irq_resched_count;
215  	sum += irq_stats(cpu)->irq_call_count;
216  #endif
217  #ifdef CONFIG_X86_THERMAL_VECTOR
218  	sum += irq_stats(cpu)->irq_thermal_count;
219  #endif
220  #ifdef CONFIG_X86_MCE_THRESHOLD
221  	sum += irq_stats(cpu)->irq_threshold_count;
222  #endif
223  #ifdef CONFIG_X86_HV_CALLBACK_VECTOR
224  	sum += irq_stats(cpu)->irq_hv_callback_count;
225  #endif
226  #if IS_ENABLED(CONFIG_HYPERV)
227  	sum += irq_stats(cpu)->irq_hv_reenlightenment_count;
228  	sum += irq_stats(cpu)->hyperv_stimer0_count;
229  #endif
230  #ifdef CONFIG_X86_MCE
231  	sum += per_cpu(mce_exception_count, cpu);
232  	sum += per_cpu(mce_poll_count, cpu);
233  #endif
234  	return sum;
235  }
236  
arch_irq_stat(void)237  u64 arch_irq_stat(void)
238  {
239  	u64 sum = atomic_read(&irq_err_count);
240  	return sum;
241  }
242  
handle_irq(struct irq_desc * desc,struct pt_regs * regs)243  static __always_inline void handle_irq(struct irq_desc *desc,
244  				       struct pt_regs *regs)
245  {
246  	if (IS_ENABLED(CONFIG_X86_64))
247  		generic_handle_irq_desc(desc);
248  	else
249  		__handle_irq(desc, regs);
250  }
251  
call_irq_handler(int vector,struct pt_regs * regs)252  static __always_inline int call_irq_handler(int vector, struct pt_regs *regs)
253  {
254  	struct irq_desc *desc;
255  	int ret = 0;
256  
257  	desc = __this_cpu_read(vector_irq[vector]);
258  	if (likely(!IS_ERR_OR_NULL(desc))) {
259  		handle_irq(desc, regs);
260  	} else {
261  		ret = -EINVAL;
262  		if (desc == VECTOR_UNUSED) {
263  			pr_emerg_ratelimited("%s: %d.%u No irq handler for vector\n",
264  					     __func__, smp_processor_id(),
265  					     vector);
266  		} else {
267  			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
268  		}
269  	}
270  
271  	return ret;
272  }
273  
274  /*
275   * common_interrupt() handles all normal device IRQ's (the special SMP
276   * cross-CPU interrupts have their own entry points).
277   */
DEFINE_IDTENTRY_IRQ(common_interrupt)278  DEFINE_IDTENTRY_IRQ(common_interrupt)
279  {
280  	struct pt_regs *old_regs = set_irq_regs(regs);
281  
282  	/* entry code tells RCU that we're not quiescent.  Check it. */
283  	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
284  
285  	if (unlikely(call_irq_handler(vector, regs)))
286  		apic_eoi();
287  
288  	set_irq_regs(old_regs);
289  }
290  
291  #ifdef CONFIG_X86_LOCAL_APIC
292  /* Function pointer for generic interrupt vector handling */
293  void (*x86_platform_ipi_callback)(void) = NULL;
294  /*
295   * Handler for X86_PLATFORM_IPI_VECTOR.
296   */
DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi)297  DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi)
298  {
299  	struct pt_regs *old_regs = set_irq_regs(regs);
300  
301  	apic_eoi();
302  	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
303  	inc_irq_stat(x86_platform_ipis);
304  	if (x86_platform_ipi_callback)
305  		x86_platform_ipi_callback();
306  	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
307  	set_irq_regs(old_regs);
308  }
309  #endif
310  
311  #if IS_ENABLED(CONFIG_KVM)
dummy_handler(void)312  static void dummy_handler(void) {}
313  static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
314  
kvm_set_posted_intr_wakeup_handler(void (* handler)(void))315  void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
316  {
317  	if (handler)
318  		kvm_posted_intr_wakeup_handler = handler;
319  	else {
320  		kvm_posted_intr_wakeup_handler = dummy_handler;
321  		synchronize_rcu();
322  	}
323  }
324  EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
325  
326  /*
327   * Handler for POSTED_INTERRUPT_VECTOR.
328   */
DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi)329  DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi)
330  {
331  	apic_eoi();
332  	inc_irq_stat(kvm_posted_intr_ipis);
333  }
334  
335  /*
336   * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
337   */
DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi)338  DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi)
339  {
340  	apic_eoi();
341  	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
342  	kvm_posted_intr_wakeup_handler();
343  }
344  
345  /*
346   * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
347   */
DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi)348  DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi)
349  {
350  	apic_eoi();
351  	inc_irq_stat(kvm_posted_intr_nested_ipis);
352  }
353  #endif
354  
355  #ifdef CONFIG_X86_POSTED_MSI
356  
357  /* Posted Interrupt Descriptors for coalesced MSIs to be posted */
358  DEFINE_PER_CPU_ALIGNED(struct pi_desc, posted_msi_pi_desc);
359  
intel_posted_msi_init(void)360  void intel_posted_msi_init(void)
361  {
362  	u32 destination;
363  	u32 apic_id;
364  
365  	this_cpu_write(posted_msi_pi_desc.nv, POSTED_MSI_NOTIFICATION_VECTOR);
366  
367  	/*
368  	 * APIC destination ID is stored in bit 8:15 while in XAPIC mode.
369  	 * VT-d spec. CH 9.11
370  	 */
371  	apic_id = this_cpu_read(x86_cpu_to_apicid);
372  	destination = x2apic_enabled() ? apic_id : apic_id << 8;
373  	this_cpu_write(posted_msi_pi_desc.ndst, destination);
374  }
375  
376  /*
377   * De-multiplexing posted interrupts is on the performance path, the code
378   * below is written to optimize the cache performance based on the following
379   * considerations:
380   * 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently
381   *   accessed by both CPU and IOMMU.
382   * 2.During posted MSI processing, the CPU needs to do 64-bit read and xchg
383   *   for checking and clearing posted interrupt request (PIR), a 256 bit field
384   *   within the PID.
385   * 3.On the other side, the IOMMU does atomic swaps of the entire PID cache
386   *   line when posting interrupts and setting control bits.
387   * 4.The CPU can access the cache line a magnitude faster than the IOMMU.
388   * 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID
389   *   cache line. The cache line states after each operation are as follows:
390   *   CPU		IOMMU			PID Cache line state
391   *   ---------------------------------------------------------------
392   *...read64					exclusive
393   *...lock xchg64				modified
394   *...			post/atomic swap	invalid
395   *...-------------------------------------------------------------
396   *
397   * To reduce L1 data cache miss, it is important to avoid contention with
398   * IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used
399   * to dispatch interrupt handlers.
400   *
401   * In addition, the code is trying to keep the cache line state consistent
402   * as much as possible. e.g. when making a copy and clearing the PIR
403   * (assuming non-zero PIR bits are present in the entire PIR), it does:
404   *		read, read, read, read, xchg, xchg, xchg, xchg
405   * instead of:
406   *		read, xchg, read, xchg, read, xchg, read, xchg
407   */
handle_pending_pir(u64 * pir,struct pt_regs * regs)408  static __always_inline bool handle_pending_pir(u64 *pir, struct pt_regs *regs)
409  {
410  	int i, vec = FIRST_EXTERNAL_VECTOR;
411  	unsigned long pir_copy[4];
412  	bool handled = false;
413  
414  	for (i = 0; i < 4; i++)
415  		pir_copy[i] = pir[i];
416  
417  	for (i = 0; i < 4; i++) {
418  		if (!pir_copy[i])
419  			continue;
420  
421  		pir_copy[i] = arch_xchg(&pir[i], 0);
422  		handled = true;
423  	}
424  
425  	if (handled) {
426  		for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR)
427  			call_irq_handler(vec, regs);
428  	}
429  
430  	return handled;
431  }
432  
433  /*
434   * Performance data shows that 3 is good enough to harvest 90+% of the benefit
435   * on high IRQ rate workload.
436   */
437  #define MAX_POSTED_MSI_COALESCING_LOOP 3
438  
439  /*
440   * For MSIs that are delivered as posted interrupts, the CPU notifications
441   * can be coalesced if the MSIs arrive in high frequency bursts.
442   */
DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)443  DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)
444  {
445  	struct pt_regs *old_regs = set_irq_regs(regs);
446  	struct pi_desc *pid;
447  	int i = 0;
448  
449  	pid = this_cpu_ptr(&posted_msi_pi_desc);
450  
451  	inc_irq_stat(posted_msi_notification_count);
452  	irq_enter();
453  
454  	/*
455  	 * Max coalescing count includes the extra round of handle_pending_pir
456  	 * after clearing the outstanding notification bit. Hence, at most
457  	 * MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here.
458  	 */
459  	while (++i < MAX_POSTED_MSI_COALESCING_LOOP) {
460  		if (!handle_pending_pir(pid->pir64, regs))
461  			break;
462  	}
463  
464  	/*
465  	 * Clear outstanding notification bit to allow new IRQ notifications,
466  	 * do this last to maximize the window of interrupt coalescing.
467  	 */
468  	pi_clear_on(pid);
469  
470  	/*
471  	 * There could be a race of PI notification and the clearing of ON bit,
472  	 * process PIR bits one last time such that handling the new interrupts
473  	 * are not delayed until the next IRQ.
474  	 */
475  	handle_pending_pir(pid->pir64, regs);
476  
477  	apic_eoi();
478  	irq_exit();
479  	set_irq_regs(old_regs);
480  }
481  #endif /* X86_POSTED_MSI */
482  
483  #ifdef CONFIG_HOTPLUG_CPU
484  /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
fixup_irqs(void)485  void fixup_irqs(void)
486  {
487  	unsigned int vector;
488  	struct irq_desc *desc;
489  	struct irq_data *data;
490  	struct irq_chip *chip;
491  
492  	irq_migrate_all_off_this_cpu();
493  
494  	/*
495  	 * We can remove mdelay() and then send spurious interrupts to
496  	 * new cpu targets for all the irqs that were handled previously by
497  	 * this cpu. While it works, I have seen spurious interrupt messages
498  	 * (nothing wrong but still...).
499  	 *
500  	 * So for now, retain mdelay(1) and check the IRR and then send those
501  	 * interrupts to new targets as this cpu is already offlined...
502  	 */
503  	mdelay(1);
504  
505  	/*
506  	 * We can walk the vector array of this cpu without holding
507  	 * vector_lock because the cpu is already marked !online, so
508  	 * nothing else will touch it.
509  	 */
510  	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
511  		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
512  			continue;
513  
514  		if (is_vector_pending(vector)) {
515  			desc = __this_cpu_read(vector_irq[vector]);
516  
517  			raw_spin_lock(&desc->lock);
518  			data = irq_desc_get_irq_data(desc);
519  			chip = irq_data_get_irq_chip(data);
520  			if (chip->irq_retrigger) {
521  				chip->irq_retrigger(data);
522  				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
523  			}
524  			raw_spin_unlock(&desc->lock);
525  		}
526  		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
527  			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
528  	}
529  }
530  #endif
531  
532  #ifdef CONFIG_X86_THERMAL_VECTOR
smp_thermal_vector(void)533  static void smp_thermal_vector(void)
534  {
535  	if (x86_thermal_enabled())
536  		intel_thermal_interrupt();
537  	else
538  		pr_err("CPU%d: Unexpected LVT thermal interrupt!\n",
539  		       smp_processor_id());
540  }
541  
DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)542  DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)
543  {
544  	trace_thermal_apic_entry(THERMAL_APIC_VECTOR);
545  	inc_irq_stat(irq_thermal_count);
546  	smp_thermal_vector();
547  	trace_thermal_apic_exit(THERMAL_APIC_VECTOR);
548  	apic_eoi();
549  }
550  #endif
551