1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Contiguous Memory Allocator
4  *
5  * Copyright (c) 2010-2011 by Samsung Electronics.
6  * Copyright IBM Corporation, 2013
7  * Copyright LG Electronics Inc., 2014
8  * Written by:
9  *	Marek Szyprowski <m.szyprowski@samsung.com>
10  *	Michal Nazarewicz <mina86@mina86.com>
11  *	Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
12  *	Joonsoo Kim <iamjoonsoo.kim@lge.com>
13  */
14 
15 #define pr_fmt(fmt) "cma: " fmt
16 
17 #define CREATE_TRACE_POINTS
18 
19 #include <linux/memblock.h>
20 #include <linux/err.h>
21 #include <linux/mm.h>
22 #include <linux/sizes.h>
23 #include <linux/slab.h>
24 #include <linux/log2.h>
25 #include <linux/cma.h>
26 #include <linux/highmem.h>
27 #include <linux/io.h>
28 #include <linux/kmemleak.h>
29 #include <trace/events/cma.h>
30 
31 #include "internal.h"
32 #include "cma.h"
33 
34 struct cma cma_areas[MAX_CMA_AREAS];
35 unsigned cma_area_count;
36 static DEFINE_MUTEX(cma_mutex);
37 
cma_get_base(const struct cma * cma)38 phys_addr_t cma_get_base(const struct cma *cma)
39 {
40 	return PFN_PHYS(cma->base_pfn);
41 }
42 
cma_get_size(const struct cma * cma)43 unsigned long cma_get_size(const struct cma *cma)
44 {
45 	return cma->count << PAGE_SHIFT;
46 }
47 
cma_get_name(const struct cma * cma)48 const char *cma_get_name(const struct cma *cma)
49 {
50 	return cma->name;
51 }
52 
cma_bitmap_aligned_mask(const struct cma * cma,unsigned int align_order)53 static unsigned long cma_bitmap_aligned_mask(const struct cma *cma,
54 					     unsigned int align_order)
55 {
56 	if (align_order <= cma->order_per_bit)
57 		return 0;
58 	return (1UL << (align_order - cma->order_per_bit)) - 1;
59 }
60 
61 /*
62  * Find the offset of the base PFN from the specified align_order.
63  * The value returned is represented in order_per_bits.
64  */
cma_bitmap_aligned_offset(const struct cma * cma,unsigned int align_order)65 static unsigned long cma_bitmap_aligned_offset(const struct cma *cma,
66 					       unsigned int align_order)
67 {
68 	return (cma->base_pfn & ((1UL << align_order) - 1))
69 		>> cma->order_per_bit;
70 }
71 
cma_bitmap_pages_to_bits(const struct cma * cma,unsigned long pages)72 static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma,
73 					      unsigned long pages)
74 {
75 	return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit;
76 }
77 
cma_clear_bitmap(struct cma * cma,unsigned long pfn,unsigned long count)78 static void cma_clear_bitmap(struct cma *cma, unsigned long pfn,
79 			     unsigned long count)
80 {
81 	unsigned long bitmap_no, bitmap_count;
82 	unsigned long flags;
83 
84 	bitmap_no = (pfn - cma->base_pfn) >> cma->order_per_bit;
85 	bitmap_count = cma_bitmap_pages_to_bits(cma, count);
86 
87 	spin_lock_irqsave(&cma->lock, flags);
88 	bitmap_clear(cma->bitmap, bitmap_no, bitmap_count);
89 	spin_unlock_irqrestore(&cma->lock, flags);
90 }
91 
cma_activate_area(struct cma * cma)92 static void __init cma_activate_area(struct cma *cma)
93 {
94 	unsigned long base_pfn = cma->base_pfn, pfn;
95 	struct zone *zone;
96 
97 	cma->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma), GFP_KERNEL);
98 	if (!cma->bitmap)
99 		goto out_error;
100 
101 	/*
102 	 * alloc_contig_range() requires the pfn range specified to be in the
103 	 * same zone. Simplify by forcing the entire CMA resv range to be in the
104 	 * same zone.
105 	 */
106 	WARN_ON_ONCE(!pfn_valid(base_pfn));
107 	zone = page_zone(pfn_to_page(base_pfn));
108 	for (pfn = base_pfn + 1; pfn < base_pfn + cma->count; pfn++) {
109 		WARN_ON_ONCE(!pfn_valid(pfn));
110 		if (page_zone(pfn_to_page(pfn)) != zone)
111 			goto not_in_zone;
112 	}
113 
114 	for (pfn = base_pfn; pfn < base_pfn + cma->count;
115 	     pfn += pageblock_nr_pages)
116 		init_cma_reserved_pageblock(pfn_to_page(pfn));
117 
118 	spin_lock_init(&cma->lock);
119 
120 #ifdef CONFIG_CMA_DEBUGFS
121 	INIT_HLIST_HEAD(&cma->mem_head);
122 	spin_lock_init(&cma->mem_head_lock);
123 #endif
124 
125 	return;
126 
127 not_in_zone:
128 	bitmap_free(cma->bitmap);
129 out_error:
130 	/* Expose all pages to the buddy, they are useless for CMA. */
131 	if (!cma->reserve_pages_on_error) {
132 		for (pfn = base_pfn; pfn < base_pfn + cma->count; pfn++)
133 			free_reserved_page(pfn_to_page(pfn));
134 	}
135 	totalcma_pages -= cma->count;
136 	cma->count = 0;
137 	pr_err("CMA area %s could not be activated\n", cma->name);
138 	return;
139 }
140 
cma_init_reserved_areas(void)141 static int __init cma_init_reserved_areas(void)
142 {
143 	int i;
144 
145 	for (i = 0; i < cma_area_count; i++)
146 		cma_activate_area(&cma_areas[i]);
147 
148 	return 0;
149 }
150 core_initcall(cma_init_reserved_areas);
151 
cma_reserve_pages_on_error(struct cma * cma)152 void __init cma_reserve_pages_on_error(struct cma *cma)
153 {
154 	cma->reserve_pages_on_error = true;
155 }
156 
157 /**
158  * cma_init_reserved_mem() - create custom contiguous area from reserved memory
159  * @base: Base address of the reserved area
160  * @size: Size of the reserved area (in bytes),
161  * @order_per_bit: Order of pages represented by one bit on bitmap.
162  * @name: The name of the area. If this parameter is NULL, the name of
163  *        the area will be set to "cmaN", where N is a running counter of
164  *        used areas.
165  * @res_cma: Pointer to store the created cma region.
166  *
167  * This function creates custom contiguous area from already reserved memory.
168  */
cma_init_reserved_mem(phys_addr_t base,phys_addr_t size,unsigned int order_per_bit,const char * name,struct cma ** res_cma)169 int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size,
170 				 unsigned int order_per_bit,
171 				 const char *name,
172 				 struct cma **res_cma)
173 {
174 	struct cma *cma;
175 
176 	/* Sanity checks */
177 	if (cma_area_count == ARRAY_SIZE(cma_areas)) {
178 		pr_err("Not enough slots for CMA reserved regions!\n");
179 		return -ENOSPC;
180 	}
181 
182 	if (!size || !memblock_is_region_reserved(base, size))
183 		return -EINVAL;
184 
185 	/* ensure minimal alignment required by mm core */
186 	if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES))
187 		return -EINVAL;
188 
189 	/*
190 	 * Each reserved area must be initialised later, when more kernel
191 	 * subsystems (like slab allocator) are available.
192 	 */
193 	cma = &cma_areas[cma_area_count];
194 
195 	if (name)
196 		snprintf(cma->name, CMA_MAX_NAME, name);
197 	else
198 		snprintf(cma->name, CMA_MAX_NAME,  "cma%d\n", cma_area_count);
199 
200 	cma->base_pfn = PFN_DOWN(base);
201 	cma->count = size >> PAGE_SHIFT;
202 	cma->order_per_bit = order_per_bit;
203 	*res_cma = cma;
204 	cma_area_count++;
205 	totalcma_pages += cma->count;
206 
207 	return 0;
208 }
209 
210 /**
211  * cma_declare_contiguous_nid() - reserve custom contiguous area
212  * @base: Base address of the reserved area optional, use 0 for any
213  * @size: Size of the reserved area (in bytes),
214  * @limit: End address of the reserved memory (optional, 0 for any).
215  * @alignment: Alignment for the CMA area, should be power of 2 or zero
216  * @order_per_bit: Order of pages represented by one bit on bitmap.
217  * @fixed: hint about where to place the reserved area
218  * @name: The name of the area. See function cma_init_reserved_mem()
219  * @res_cma: Pointer to store the created cma region.
220  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
221  *
222  * This function reserves memory from early allocator. It should be
223  * called by arch specific code once the early allocator (memblock or bootmem)
224  * has been activated and all other subsystems have already allocated/reserved
225  * memory. This function allows to create custom reserved areas.
226  *
227  * If @fixed is true, reserve contiguous area at exactly @base.  If false,
228  * reserve in range from @base to @limit.
229  */
cma_declare_contiguous_nid(phys_addr_t base,phys_addr_t size,phys_addr_t limit,phys_addr_t alignment,unsigned int order_per_bit,bool fixed,const char * name,struct cma ** res_cma,int nid)230 int __init cma_declare_contiguous_nid(phys_addr_t base,
231 			phys_addr_t size, phys_addr_t limit,
232 			phys_addr_t alignment, unsigned int order_per_bit,
233 			bool fixed, const char *name, struct cma **res_cma,
234 			int nid)
235 {
236 	phys_addr_t memblock_end = memblock_end_of_DRAM();
237 	phys_addr_t highmem_start;
238 	int ret;
239 
240 	/*
241 	 * We can't use __pa(high_memory) directly, since high_memory
242 	 * isn't a valid direct map VA, and DEBUG_VIRTUAL will (validly)
243 	 * complain. Find the boundary by adding one to the last valid
244 	 * address.
245 	 */
246 	highmem_start = __pa(high_memory - 1) + 1;
247 	pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n",
248 		__func__, &size, &base, &limit, &alignment);
249 
250 	if (cma_area_count == ARRAY_SIZE(cma_areas)) {
251 		pr_err("Not enough slots for CMA reserved regions!\n");
252 		return -ENOSPC;
253 	}
254 
255 	if (!size)
256 		return -EINVAL;
257 
258 	if (alignment && !is_power_of_2(alignment))
259 		return -EINVAL;
260 
261 	if (!IS_ENABLED(CONFIG_NUMA))
262 		nid = NUMA_NO_NODE;
263 
264 	/* Sanitise input arguments. */
265 	alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES);
266 	if (fixed && base & (alignment - 1)) {
267 		ret = -EINVAL;
268 		pr_err("Region at %pa must be aligned to %pa bytes\n",
269 			&base, &alignment);
270 		goto err;
271 	}
272 	base = ALIGN(base, alignment);
273 	size = ALIGN(size, alignment);
274 	limit &= ~(alignment - 1);
275 
276 	if (!base)
277 		fixed = false;
278 
279 	/* size should be aligned with order_per_bit */
280 	if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit))
281 		return -EINVAL;
282 
283 	/*
284 	 * If allocating at a fixed base the request region must not cross the
285 	 * low/high memory boundary.
286 	 */
287 	if (fixed && base < highmem_start && base + size > highmem_start) {
288 		ret = -EINVAL;
289 		pr_err("Region at %pa defined on low/high memory boundary (%pa)\n",
290 			&base, &highmem_start);
291 		goto err;
292 	}
293 
294 	/*
295 	 * If the limit is unspecified or above the memblock end, its effective
296 	 * value will be the memblock end. Set it explicitly to simplify further
297 	 * checks.
298 	 */
299 	if (limit == 0 || limit > memblock_end)
300 		limit = memblock_end;
301 
302 	if (base + size > limit) {
303 		ret = -EINVAL;
304 		pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n",
305 			&size, &base, &limit);
306 		goto err;
307 	}
308 
309 	/* Reserve memory */
310 	if (fixed) {
311 		if (memblock_is_region_reserved(base, size) ||
312 		    memblock_reserve(base, size) < 0) {
313 			ret = -EBUSY;
314 			goto err;
315 		}
316 	} else {
317 		phys_addr_t addr = 0;
318 
319 		/*
320 		 * If there is enough memory, try a bottom-up allocation first.
321 		 * It will place the new cma area close to the start of the node
322 		 * and guarantee that the compaction is moving pages out of the
323 		 * cma area and not into it.
324 		 * Avoid using first 4GB to not interfere with constrained zones
325 		 * like DMA/DMA32.
326 		 */
327 #ifdef CONFIG_PHYS_ADDR_T_64BIT
328 		if (!memblock_bottom_up() && memblock_end >= SZ_4G + size) {
329 			memblock_set_bottom_up(true);
330 			addr = memblock_alloc_range_nid(size, alignment, SZ_4G,
331 							limit, nid, true);
332 			memblock_set_bottom_up(false);
333 		}
334 #endif
335 
336 		/*
337 		 * All pages in the reserved area must come from the same zone.
338 		 * If the requested region crosses the low/high memory boundary,
339 		 * try allocating from high memory first and fall back to low
340 		 * memory in case of failure.
341 		 */
342 		if (!addr && base < highmem_start && limit > highmem_start) {
343 			addr = memblock_alloc_range_nid(size, alignment,
344 					highmem_start, limit, nid, true);
345 			limit = highmem_start;
346 		}
347 
348 		if (!addr) {
349 			addr = memblock_alloc_range_nid(size, alignment, base,
350 					limit, nid, true);
351 			if (!addr) {
352 				ret = -ENOMEM;
353 				goto err;
354 			}
355 		}
356 
357 		/*
358 		 * kmemleak scans/reads tracked objects for pointers to other
359 		 * objects but this address isn't mapped and accessible
360 		 */
361 		kmemleak_ignore_phys(addr);
362 		base = addr;
363 	}
364 
365 	ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma);
366 	if (ret)
367 		goto free_mem;
368 
369 	pr_info("Reserved %ld MiB at %pa on node %d\n", (unsigned long)size / SZ_1M,
370 		&base, nid);
371 	return 0;
372 
373 free_mem:
374 	memblock_phys_free(base, size);
375 err:
376 	pr_err("Failed to reserve %ld MiB on node %d\n", (unsigned long)size / SZ_1M,
377 	       nid);
378 	return ret;
379 }
380 
cma_debug_show_areas(struct cma * cma)381 static void cma_debug_show_areas(struct cma *cma)
382 {
383 	unsigned long next_zero_bit, next_set_bit, nr_zero;
384 	unsigned long start = 0;
385 	unsigned long nr_part, nr_total = 0;
386 	unsigned long nbits = cma_bitmap_maxno(cma);
387 
388 	spin_lock_irq(&cma->lock);
389 	pr_info("number of available pages: ");
390 	for (;;) {
391 		next_zero_bit = find_next_zero_bit(cma->bitmap, nbits, start);
392 		if (next_zero_bit >= nbits)
393 			break;
394 		next_set_bit = find_next_bit(cma->bitmap, nbits, next_zero_bit);
395 		nr_zero = next_set_bit - next_zero_bit;
396 		nr_part = nr_zero << cma->order_per_bit;
397 		pr_cont("%s%lu@%lu", nr_total ? "+" : "", nr_part,
398 			next_zero_bit);
399 		nr_total += nr_part;
400 		start = next_zero_bit + nr_zero;
401 	}
402 	pr_cont("=> %lu free of %lu total pages\n", nr_total, cma->count);
403 	spin_unlock_irq(&cma->lock);
404 }
405 
__cma_alloc(struct cma * cma,unsigned long count,unsigned int align,gfp_t gfp)406 static struct page *__cma_alloc(struct cma *cma, unsigned long count,
407 				unsigned int align, gfp_t gfp)
408 {
409 	unsigned long mask, offset;
410 	unsigned long pfn = -1;
411 	unsigned long start = 0;
412 	unsigned long bitmap_maxno, bitmap_no, bitmap_count;
413 	unsigned long i;
414 	struct page *page = NULL;
415 	int ret = -ENOMEM;
416 	const char *name = cma ? cma->name : NULL;
417 
418 	trace_cma_alloc_start(name, count, align);
419 
420 	if (!cma || !cma->count || !cma->bitmap)
421 		return page;
422 
423 	pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__,
424 		(void *)cma, cma->name, count, align);
425 
426 	if (!count)
427 		return page;
428 
429 	mask = cma_bitmap_aligned_mask(cma, align);
430 	offset = cma_bitmap_aligned_offset(cma, align);
431 	bitmap_maxno = cma_bitmap_maxno(cma);
432 	bitmap_count = cma_bitmap_pages_to_bits(cma, count);
433 
434 	if (bitmap_count > bitmap_maxno)
435 		return page;
436 
437 	for (;;) {
438 		spin_lock_irq(&cma->lock);
439 		bitmap_no = bitmap_find_next_zero_area_off(cma->bitmap,
440 				bitmap_maxno, start, bitmap_count, mask,
441 				offset);
442 		if (bitmap_no >= bitmap_maxno) {
443 			spin_unlock_irq(&cma->lock);
444 			break;
445 		}
446 		bitmap_set(cma->bitmap, bitmap_no, bitmap_count);
447 		/*
448 		 * It's safe to drop the lock here. We've marked this region for
449 		 * our exclusive use. If the migration fails we will take the
450 		 * lock again and unmark it.
451 		 */
452 		spin_unlock_irq(&cma->lock);
453 
454 		pfn = cma->base_pfn + (bitmap_no << cma->order_per_bit);
455 		mutex_lock(&cma_mutex);
456 		ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA, gfp);
457 		mutex_unlock(&cma_mutex);
458 		if (ret == 0) {
459 			page = pfn_to_page(pfn);
460 			break;
461 		}
462 
463 		cma_clear_bitmap(cma, pfn, count);
464 		if (ret != -EBUSY)
465 			break;
466 
467 		pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n",
468 			 __func__, pfn, pfn_to_page(pfn));
469 
470 		trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn),
471 					   count, align);
472 		/* try again with a bit different memory target */
473 		start = bitmap_no + mask + 1;
474 	}
475 
476 	/*
477 	 * CMA can allocate multiple page blocks, which results in different
478 	 * blocks being marked with different tags. Reset the tags to ignore
479 	 * those page blocks.
480 	 */
481 	if (page) {
482 		for (i = 0; i < count; i++)
483 			page_kasan_tag_reset(nth_page(page, i));
484 	}
485 
486 	if (ret && !(gfp & __GFP_NOWARN)) {
487 		pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n",
488 				   __func__, cma->name, count, ret);
489 		cma_debug_show_areas(cma);
490 	}
491 
492 	pr_debug("%s(): returned %p\n", __func__, page);
493 	trace_cma_alloc_finish(name, pfn, page, count, align, ret);
494 	if (page) {
495 		count_vm_event(CMA_ALLOC_SUCCESS);
496 		cma_sysfs_account_success_pages(cma, count);
497 	} else {
498 		count_vm_event(CMA_ALLOC_FAIL);
499 		cma_sysfs_account_fail_pages(cma, count);
500 	}
501 
502 	return page;
503 }
504 
505 /**
506  * cma_alloc() - allocate pages from contiguous area
507  * @cma:   Contiguous memory region for which the allocation is performed.
508  * @count: Requested number of pages.
509  * @align: Requested alignment of pages (in PAGE_SIZE order).
510  * @no_warn: Avoid printing message about failed allocation
511  *
512  * This function allocates part of contiguous memory on specific
513  * contiguous memory area.
514  */
cma_alloc(struct cma * cma,unsigned long count,unsigned int align,bool no_warn)515 struct page *cma_alloc(struct cma *cma, unsigned long count,
516 		       unsigned int align, bool no_warn)
517 {
518 	return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0));
519 }
520 
cma_alloc_folio(struct cma * cma,int order,gfp_t gfp)521 struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp)
522 {
523 	struct page *page;
524 
525 	if (WARN_ON(!order || !(gfp & __GFP_COMP)))
526 		return NULL;
527 
528 	page = __cma_alloc(cma, 1 << order, order, gfp);
529 
530 	return page ? page_folio(page) : NULL;
531 }
532 
cma_pages_valid(struct cma * cma,const struct page * pages,unsigned long count)533 bool cma_pages_valid(struct cma *cma, const struct page *pages,
534 		     unsigned long count)
535 {
536 	unsigned long pfn;
537 
538 	if (!cma || !pages)
539 		return false;
540 
541 	pfn = page_to_pfn(pages);
542 
543 	if (pfn < cma->base_pfn || pfn >= cma->base_pfn + cma->count) {
544 		pr_debug("%s(page %p, count %lu)\n", __func__,
545 						(void *)pages, count);
546 		return false;
547 	}
548 
549 	return true;
550 }
551 
552 /**
553  * cma_release() - release allocated pages
554  * @cma:   Contiguous memory region for which the allocation is performed.
555  * @pages: Allocated pages.
556  * @count: Number of allocated pages.
557  *
558  * This function releases memory allocated by cma_alloc().
559  * It returns false when provided pages do not belong to contiguous area and
560  * true otherwise.
561  */
cma_release(struct cma * cma,const struct page * pages,unsigned long count)562 bool cma_release(struct cma *cma, const struct page *pages,
563 		 unsigned long count)
564 {
565 	unsigned long pfn;
566 
567 	if (!cma_pages_valid(cma, pages, count))
568 		return false;
569 
570 	pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count);
571 
572 	pfn = page_to_pfn(pages);
573 
574 	VM_BUG_ON(pfn + count > cma->base_pfn + cma->count);
575 
576 	free_contig_range(pfn, count);
577 	cma_clear_bitmap(cma, pfn, count);
578 	cma_sysfs_account_release_pages(cma, count);
579 	trace_cma_release(cma->name, pfn, pages, count);
580 
581 	return true;
582 }
583 
cma_free_folio(struct cma * cma,const struct folio * folio)584 bool cma_free_folio(struct cma *cma, const struct folio *folio)
585 {
586 	if (WARN_ON(!folio_test_large(folio)))
587 		return false;
588 
589 	return cma_release(cma, &folio->page, folio_nr_pages(folio));
590 }
591 
cma_for_each_area(int (* it)(struct cma * cma,void * data),void * data)592 int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data)
593 {
594 	int i;
595 
596 	for (i = 0; i < cma_area_count; i++) {
597 		int ret = it(&cma_areas[i], data);
598 
599 		if (ret)
600 			return ret;
601 	}
602 
603 	return 0;
604 }
605