1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Western Digital Corporation or its affiliates.
4  */
5 #include <linux/kernel.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/module.h>
9 #include <linux/perf_event.h>
10 #include <linux/irq.h>
11 #include <linux/stringify.h>
12 
13 #include <asm/processor.h>
14 #include <asm/ptrace.h>
15 #include <asm/csr.h>
16 #include <asm/entry-common.h>
17 #include <asm/hwprobe.h>
18 #include <asm/cpufeature.h>
19 
20 #define INSN_MATCH_LB			0x3
21 #define INSN_MASK_LB			0x707f
22 #define INSN_MATCH_LH			0x1003
23 #define INSN_MASK_LH			0x707f
24 #define INSN_MATCH_LW			0x2003
25 #define INSN_MASK_LW			0x707f
26 #define INSN_MATCH_LD			0x3003
27 #define INSN_MASK_LD			0x707f
28 #define INSN_MATCH_LBU			0x4003
29 #define INSN_MASK_LBU			0x707f
30 #define INSN_MATCH_LHU			0x5003
31 #define INSN_MASK_LHU			0x707f
32 #define INSN_MATCH_LWU			0x6003
33 #define INSN_MASK_LWU			0x707f
34 #define INSN_MATCH_SB			0x23
35 #define INSN_MASK_SB			0x707f
36 #define INSN_MATCH_SH			0x1023
37 #define INSN_MASK_SH			0x707f
38 #define INSN_MATCH_SW			0x2023
39 #define INSN_MASK_SW			0x707f
40 #define INSN_MATCH_SD			0x3023
41 #define INSN_MASK_SD			0x707f
42 
43 #define INSN_MATCH_FLW			0x2007
44 #define INSN_MASK_FLW			0x707f
45 #define INSN_MATCH_FLD			0x3007
46 #define INSN_MASK_FLD			0x707f
47 #define INSN_MATCH_FLQ			0x4007
48 #define INSN_MASK_FLQ			0x707f
49 #define INSN_MATCH_FSW			0x2027
50 #define INSN_MASK_FSW			0x707f
51 #define INSN_MATCH_FSD			0x3027
52 #define INSN_MASK_FSD			0x707f
53 #define INSN_MATCH_FSQ			0x4027
54 #define INSN_MASK_FSQ			0x707f
55 
56 #define INSN_MATCH_C_LD			0x6000
57 #define INSN_MASK_C_LD			0xe003
58 #define INSN_MATCH_C_SD			0xe000
59 #define INSN_MASK_C_SD			0xe003
60 #define INSN_MATCH_C_LW			0x4000
61 #define INSN_MASK_C_LW			0xe003
62 #define INSN_MATCH_C_SW			0xc000
63 #define INSN_MASK_C_SW			0xe003
64 #define INSN_MATCH_C_LDSP		0x6002
65 #define INSN_MASK_C_LDSP		0xe003
66 #define INSN_MATCH_C_SDSP		0xe002
67 #define INSN_MASK_C_SDSP		0xe003
68 #define INSN_MATCH_C_LWSP		0x4002
69 #define INSN_MASK_C_LWSP		0xe003
70 #define INSN_MATCH_C_SWSP		0xc002
71 #define INSN_MASK_C_SWSP		0xe003
72 
73 #define INSN_MATCH_C_FLD		0x2000
74 #define INSN_MASK_C_FLD			0xe003
75 #define INSN_MATCH_C_FLW		0x6000
76 #define INSN_MASK_C_FLW			0xe003
77 #define INSN_MATCH_C_FSD		0xa000
78 #define INSN_MASK_C_FSD			0xe003
79 #define INSN_MATCH_C_FSW		0xe000
80 #define INSN_MASK_C_FSW			0xe003
81 #define INSN_MATCH_C_FLDSP		0x2002
82 #define INSN_MASK_C_FLDSP		0xe003
83 #define INSN_MATCH_C_FSDSP		0xa002
84 #define INSN_MASK_C_FSDSP		0xe003
85 #define INSN_MATCH_C_FLWSP		0x6002
86 #define INSN_MASK_C_FLWSP		0xe003
87 #define INSN_MATCH_C_FSWSP		0xe002
88 #define INSN_MASK_C_FSWSP		0xe003
89 
90 #define INSN_LEN(insn)			((((insn) & 0x3) < 0x3) ? 2 : 4)
91 
92 #if defined(CONFIG_64BIT)
93 #define LOG_REGBYTES			3
94 #define XLEN				64
95 #else
96 #define LOG_REGBYTES			2
97 #define XLEN				32
98 #endif
99 #define REGBYTES			(1 << LOG_REGBYTES)
100 #define XLEN_MINUS_16			((XLEN) - 16)
101 
102 #define SH_RD				7
103 #define SH_RS1				15
104 #define SH_RS2				20
105 #define SH_RS2C				2
106 
107 #define RV_X(x, s, n)			(((x) >> (s)) & ((1 << (n)) - 1))
108 #define RVC_LW_IMM(x)			((RV_X(x, 6, 1) << 2) | \
109 					 (RV_X(x, 10, 3) << 3) | \
110 					 (RV_X(x, 5, 1) << 6))
111 #define RVC_LD_IMM(x)			((RV_X(x, 10, 3) << 3) | \
112 					 (RV_X(x, 5, 2) << 6))
113 #define RVC_LWSP_IMM(x)			((RV_X(x, 4, 3) << 2) | \
114 					 (RV_X(x, 12, 1) << 5) | \
115 					 (RV_X(x, 2, 2) << 6))
116 #define RVC_LDSP_IMM(x)			((RV_X(x, 5, 2) << 3) | \
117 					 (RV_X(x, 12, 1) << 5) | \
118 					 (RV_X(x, 2, 3) << 6))
119 #define RVC_SWSP_IMM(x)			((RV_X(x, 9, 4) << 2) | \
120 					 (RV_X(x, 7, 2) << 6))
121 #define RVC_SDSP_IMM(x)			((RV_X(x, 10, 3) << 3) | \
122 					 (RV_X(x, 7, 3) << 6))
123 #define RVC_RS1S(insn)			(8 + RV_X(insn, SH_RD, 3))
124 #define RVC_RS2S(insn)			(8 + RV_X(insn, SH_RS2C, 3))
125 #define RVC_RS2(insn)			RV_X(insn, SH_RS2C, 5)
126 
127 #define SHIFT_RIGHT(x, y)		\
128 	((y) < 0 ? ((x) << -(y)) : ((x) >> (y)))
129 
130 #define REG_MASK			\
131 	((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES))
132 
133 #define REG_OFFSET(insn, pos)		\
134 	(SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK)
135 
136 #define REG_PTR(insn, pos, regs)	\
137 	(ulong *)((ulong)(regs) + REG_OFFSET(insn, pos))
138 
139 #define GET_RS1(insn, regs)		(*REG_PTR(insn, SH_RS1, regs))
140 #define GET_RS2(insn, regs)		(*REG_PTR(insn, SH_RS2, regs))
141 #define GET_RS1S(insn, regs)		(*REG_PTR(RVC_RS1S(insn), 0, regs))
142 #define GET_RS2S(insn, regs)		(*REG_PTR(RVC_RS2S(insn), 0, regs))
143 #define GET_RS2C(insn, regs)		(*REG_PTR(insn, SH_RS2C, regs))
144 #define GET_SP(regs)			(*REG_PTR(2, 0, regs))
145 #define SET_RD(insn, regs, val)		(*REG_PTR(insn, SH_RD, regs) = (val))
146 #define IMM_I(insn)			((s32)(insn) >> 20)
147 #define IMM_S(insn)			(((s32)(insn) >> 25 << 5) | \
148 					 (s32)(((insn) >> 7) & 0x1f))
149 #define MASK_FUNCT3			0x7000
150 
151 #define GET_PRECISION(insn) (((insn) >> 25) & 3)
152 #define GET_RM(insn) (((insn) >> 12) & 7)
153 #define PRECISION_S 0
154 #define PRECISION_D 1
155 
156 #ifdef CONFIG_FPU
157 
158 #define FP_GET_RD(insn)		(insn >> 7 & 0x1F)
159 
160 extern void put_f32_reg(unsigned long fp_reg, unsigned long value);
161 
set_f32_rd(unsigned long insn,struct pt_regs * regs,unsigned long val)162 static int set_f32_rd(unsigned long insn, struct pt_regs *regs,
163 		      unsigned long val)
164 {
165 	unsigned long fp_reg = FP_GET_RD(insn);
166 
167 	put_f32_reg(fp_reg, val);
168 	regs->status |= SR_FS_DIRTY;
169 
170 	return 0;
171 }
172 
173 extern void put_f64_reg(unsigned long fp_reg, unsigned long value);
174 
set_f64_rd(unsigned long insn,struct pt_regs * regs,u64 val)175 static int set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val)
176 {
177 	unsigned long fp_reg = FP_GET_RD(insn);
178 	unsigned long value;
179 
180 #if __riscv_xlen == 32
181 	value = (unsigned long) &val;
182 #else
183 	value = val;
184 #endif
185 	put_f64_reg(fp_reg, value);
186 	regs->status |= SR_FS_DIRTY;
187 
188 	return 0;
189 }
190 
191 #if __riscv_xlen == 32
192 extern void get_f64_reg(unsigned long fp_reg, u64 *value);
193 
get_f64_rs(unsigned long insn,u8 fp_reg_offset,struct pt_regs * regs)194 static u64 get_f64_rs(unsigned long insn, u8 fp_reg_offset,
195 		      struct pt_regs *regs)
196 {
197 	unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
198 	u64 val;
199 
200 	get_f64_reg(fp_reg, &val);
201 	regs->status |= SR_FS_DIRTY;
202 
203 	return val;
204 }
205 #else
206 
207 extern unsigned long get_f64_reg(unsigned long fp_reg);
208 
get_f64_rs(unsigned long insn,u8 fp_reg_offset,struct pt_regs * regs)209 static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset,
210 				struct pt_regs *regs)
211 {
212 	unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
213 	unsigned long val;
214 
215 	val = get_f64_reg(fp_reg);
216 	regs->status |= SR_FS_DIRTY;
217 
218 	return val;
219 }
220 
221 #endif
222 
223 extern unsigned long get_f32_reg(unsigned long fp_reg);
224 
get_f32_rs(unsigned long insn,u8 fp_reg_offset,struct pt_regs * regs)225 static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset,
226 				struct pt_regs *regs)
227 {
228 	unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
229 	unsigned long val;
230 
231 	val = get_f32_reg(fp_reg);
232 	regs->status |= SR_FS_DIRTY;
233 
234 	return val;
235 }
236 
237 #else /* CONFIG_FPU */
set_f32_rd(unsigned long insn,struct pt_regs * regs,unsigned long val)238 static void set_f32_rd(unsigned long insn, struct pt_regs *regs,
239 		       unsigned long val) {}
240 
set_f64_rd(unsigned long insn,struct pt_regs * regs,u64 val)241 static void set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val) {}
242 
get_f64_rs(unsigned long insn,u8 fp_reg_offset,struct pt_regs * regs)243 static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset,
244 				struct pt_regs *regs)
245 {
246 	return 0;
247 }
248 
get_f32_rs(unsigned long insn,u8 fp_reg_offset,struct pt_regs * regs)249 static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset,
250 				struct pt_regs *regs)
251 {
252 	return 0;
253 }
254 
255 #endif
256 
257 #define GET_F64_RS2(insn, regs) (get_f64_rs(insn, 20, regs))
258 #define GET_F64_RS2C(insn, regs) (get_f64_rs(insn, 2, regs))
259 #define GET_F64_RS2S(insn, regs) (get_f64_rs(RVC_RS2S(insn), 0, regs))
260 
261 #define GET_F32_RS2(insn, regs) (get_f32_rs(insn, 20, regs))
262 #define GET_F32_RS2C(insn, regs) (get_f32_rs(insn, 2, regs))
263 #define GET_F32_RS2S(insn, regs) (get_f32_rs(RVC_RS2S(insn), 0, regs))
264 
265 #define __read_insn(regs, insn, insn_addr, type)	\
266 ({							\
267 	int __ret;					\
268 							\
269 	if (user_mode(regs)) {				\
270 		__ret = __get_user(insn, (type __user *) insn_addr); \
271 	} else {					\
272 		insn = *(type *)insn_addr;		\
273 		__ret = 0;				\
274 	}						\
275 							\
276 	__ret;						\
277 })
278 
get_insn(struct pt_regs * regs,ulong epc,ulong * r_insn)279 static inline int get_insn(struct pt_regs *regs, ulong epc, ulong *r_insn)
280 {
281 	ulong insn = 0;
282 
283 	if (epc & 0x2) {
284 		ulong tmp = 0;
285 
286 		if (__read_insn(regs, insn, epc, u16))
287 			return -EFAULT;
288 		/* __get_user() uses regular "lw" which sign extend the loaded
289 		 * value make sure to clear higher order bits in case we "or" it
290 		 * below with the upper 16 bits half.
291 		 */
292 		insn &= GENMASK(15, 0);
293 		if ((insn & __INSN_LENGTH_MASK) != __INSN_LENGTH_32) {
294 			*r_insn = insn;
295 			return 0;
296 		}
297 		epc += sizeof(u16);
298 		if (__read_insn(regs, tmp, epc, u16))
299 			return -EFAULT;
300 		*r_insn = (tmp << 16) | insn;
301 
302 		return 0;
303 	} else {
304 		if (__read_insn(regs, insn, epc, u32))
305 			return -EFAULT;
306 		if ((insn & __INSN_LENGTH_MASK) == __INSN_LENGTH_32) {
307 			*r_insn = insn;
308 			return 0;
309 		}
310 		insn &= GENMASK(15, 0);
311 		*r_insn = insn;
312 
313 		return 0;
314 	}
315 }
316 
317 union reg_data {
318 	u8 data_bytes[8];
319 	ulong data_ulong;
320 	u64 data_u64;
321 };
322 
323 static bool unaligned_ctl __read_mostly;
324 
325 /* sysctl hooks */
326 int unaligned_enabled __read_mostly = 1;	/* Enabled by default */
327 
handle_misaligned_load(struct pt_regs * regs)328 int handle_misaligned_load(struct pt_regs *regs)
329 {
330 	union reg_data val;
331 	unsigned long epc = regs->epc;
332 	unsigned long insn;
333 	unsigned long addr = regs->badaddr;
334 	int fp = 0, shift = 0, len = 0;
335 
336 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
337 
338 #ifdef CONFIG_RISCV_PROBE_UNALIGNED_ACCESS
339 	*this_cpu_ptr(&misaligned_access_speed) = RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED;
340 #endif
341 
342 	if (!unaligned_enabled)
343 		return -1;
344 
345 	if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS))
346 		return -1;
347 
348 	if (get_insn(regs, epc, &insn))
349 		return -1;
350 
351 	regs->epc = 0;
352 
353 	if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
354 		len = 4;
355 		shift = 8 * (sizeof(unsigned long) - len);
356 #if defined(CONFIG_64BIT)
357 	} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
358 		len = 8;
359 		shift = 8 * (sizeof(unsigned long) - len);
360 	} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
361 		len = 4;
362 #endif
363 	} else if ((insn & INSN_MASK_FLD) == INSN_MATCH_FLD) {
364 		fp = 1;
365 		len = 8;
366 	} else if ((insn & INSN_MASK_FLW) == INSN_MATCH_FLW) {
367 		fp = 1;
368 		len = 4;
369 	} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
370 		len = 2;
371 		shift = 8 * (sizeof(unsigned long) - len);
372 	} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
373 		len = 2;
374 #if defined(CONFIG_64BIT)
375 	} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
376 		len = 8;
377 		shift = 8 * (sizeof(unsigned long) - len);
378 		insn = RVC_RS2S(insn) << SH_RD;
379 	} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
380 		   ((insn >> SH_RD) & 0x1f)) {
381 		len = 8;
382 		shift = 8 * (sizeof(unsigned long) - len);
383 #endif
384 	} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
385 		len = 4;
386 		shift = 8 * (sizeof(unsigned long) - len);
387 		insn = RVC_RS2S(insn) << SH_RD;
388 	} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
389 		   ((insn >> SH_RD) & 0x1f)) {
390 		len = 4;
391 		shift = 8 * (sizeof(unsigned long) - len);
392 	} else if ((insn & INSN_MASK_C_FLD) == INSN_MATCH_C_FLD) {
393 		fp = 1;
394 		len = 8;
395 		insn = RVC_RS2S(insn) << SH_RD;
396 	} else if ((insn & INSN_MASK_C_FLDSP) == INSN_MATCH_C_FLDSP) {
397 		fp = 1;
398 		len = 8;
399 #if defined(CONFIG_32BIT)
400 	} else if ((insn & INSN_MASK_C_FLW) == INSN_MATCH_C_FLW) {
401 		fp = 1;
402 		len = 4;
403 		insn = RVC_RS2S(insn) << SH_RD;
404 	} else if ((insn & INSN_MASK_C_FLWSP) == INSN_MATCH_C_FLWSP) {
405 		fp = 1;
406 		len = 4;
407 #endif
408 	} else {
409 		regs->epc = epc;
410 		return -1;
411 	}
412 
413 	if (!IS_ENABLED(CONFIG_FPU) && fp)
414 		return -EOPNOTSUPP;
415 
416 	val.data_u64 = 0;
417 	if (user_mode(regs)) {
418 		if (copy_from_user(&val, (u8 __user *)addr, len))
419 			return -1;
420 	} else {
421 		memcpy(&val, (u8 *)addr, len);
422 	}
423 
424 	if (!fp)
425 		SET_RD(insn, regs, val.data_ulong << shift >> shift);
426 	else if (len == 8)
427 		set_f64_rd(insn, regs, val.data_u64);
428 	else
429 		set_f32_rd(insn, regs, val.data_ulong);
430 
431 	regs->epc = epc + INSN_LEN(insn);
432 
433 	return 0;
434 }
435 
handle_misaligned_store(struct pt_regs * regs)436 int handle_misaligned_store(struct pt_regs *regs)
437 {
438 	union reg_data val;
439 	unsigned long epc = regs->epc;
440 	unsigned long insn;
441 	unsigned long addr = regs->badaddr;
442 	int len = 0, fp = 0;
443 
444 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
445 
446 	if (!unaligned_enabled)
447 		return -1;
448 
449 	if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS))
450 		return -1;
451 
452 	if (get_insn(regs, epc, &insn))
453 		return -1;
454 
455 	regs->epc = 0;
456 
457 	val.data_ulong = GET_RS2(insn, regs);
458 
459 	if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
460 		len = 4;
461 #if defined(CONFIG_64BIT)
462 	} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
463 		len = 8;
464 #endif
465 	} else if ((insn & INSN_MASK_FSD) == INSN_MATCH_FSD) {
466 		fp = 1;
467 		len = 8;
468 		val.data_u64 = GET_F64_RS2(insn, regs);
469 	} else if ((insn & INSN_MASK_FSW) == INSN_MATCH_FSW) {
470 		fp = 1;
471 		len = 4;
472 		val.data_ulong = GET_F32_RS2(insn, regs);
473 	} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
474 		len = 2;
475 #if defined(CONFIG_64BIT)
476 	} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
477 		len = 8;
478 		val.data_ulong = GET_RS2S(insn, regs);
479 	} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP) {
480 		len = 8;
481 		val.data_ulong = GET_RS2C(insn, regs);
482 #endif
483 	} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
484 		len = 4;
485 		val.data_ulong = GET_RS2S(insn, regs);
486 	} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP) {
487 		len = 4;
488 		val.data_ulong = GET_RS2C(insn, regs);
489 	} else if ((insn & INSN_MASK_C_FSD) == INSN_MATCH_C_FSD) {
490 		fp = 1;
491 		len = 8;
492 		val.data_u64 = GET_F64_RS2S(insn, regs);
493 	} else if ((insn & INSN_MASK_C_FSDSP) == INSN_MATCH_C_FSDSP) {
494 		fp = 1;
495 		len = 8;
496 		val.data_u64 = GET_F64_RS2C(insn, regs);
497 #if !defined(CONFIG_64BIT)
498 	} else if ((insn & INSN_MASK_C_FSW) == INSN_MATCH_C_FSW) {
499 		fp = 1;
500 		len = 4;
501 		val.data_ulong = GET_F32_RS2S(insn, regs);
502 	} else if ((insn & INSN_MASK_C_FSWSP) == INSN_MATCH_C_FSWSP) {
503 		fp = 1;
504 		len = 4;
505 		val.data_ulong = GET_F32_RS2C(insn, regs);
506 #endif
507 	} else {
508 		regs->epc = epc;
509 		return -1;
510 	}
511 
512 	if (!IS_ENABLED(CONFIG_FPU) && fp)
513 		return -EOPNOTSUPP;
514 
515 	if (user_mode(regs)) {
516 		if (copy_to_user((u8 __user *)addr, &val, len))
517 			return -1;
518 	} else {
519 		memcpy((u8 *)addr, &val, len);
520 	}
521 
522 	regs->epc = epc + INSN_LEN(insn);
523 
524 	return 0;
525 }
526 
check_unaligned_access_emulated(int cpu)527 static bool check_unaligned_access_emulated(int cpu)
528 {
529 	long *mas_ptr = per_cpu_ptr(&misaligned_access_speed, cpu);
530 	unsigned long tmp_var, tmp_val;
531 	bool misaligned_emu_detected;
532 
533 	*mas_ptr = RISCV_HWPROBE_MISALIGNED_SCALAR_UNKNOWN;
534 
535 	__asm__ __volatile__ (
536 		"       "REG_L" %[tmp], 1(%[ptr])\n"
537 		: [tmp] "=r" (tmp_val) : [ptr] "r" (&tmp_var) : "memory");
538 
539 	misaligned_emu_detected = (*mas_ptr == RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED);
540 	/*
541 	 * If unaligned_ctl is already set, this means that we detected that all
542 	 * CPUS uses emulated misaligned access at boot time. If that changed
543 	 * when hotplugging the new cpu, this is something we don't handle.
544 	 */
545 	if (unlikely(unaligned_ctl && !misaligned_emu_detected)) {
546 		pr_crit("CPU misaligned accesses non homogeneous (expected all emulated)\n");
547 		while (true)
548 			cpu_relax();
549 	}
550 
551 	return misaligned_emu_detected;
552 }
553 
check_unaligned_access_emulated_all_cpus(void)554 bool check_unaligned_access_emulated_all_cpus(void)
555 {
556 	int cpu;
557 
558 	/*
559 	 * We can only support PR_UNALIGN controls if all CPUs have misaligned
560 	 * accesses emulated since tasks requesting such control can run on any
561 	 * CPU.
562 	 */
563 	for_each_online_cpu(cpu)
564 		if (!check_unaligned_access_emulated(cpu))
565 			return false;
566 
567 	unaligned_ctl = true;
568 	return true;
569 }
570 
unaligned_ctl_available(void)571 bool unaligned_ctl_available(void)
572 {
573 	return unaligned_ctl;
574 }
575