1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Flash Interface support:
4  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
5  *
6  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
7  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
8  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
9  *
10  * 2_by_8 routines added by Simon Munton
11  *
12  * 4_by_16 work by Carolyn J. Smith
13  *
14  * XIP support hooks by Vitaly Wool (based on code for Intel flash
15  * by Nicolas Pitre)
16  *
17  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
18  *
19  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
20  */
21 
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <asm/io.h>
27 #include <asm/byteorder.h>
28 
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/reboot.h>
34 #include <linux/of.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/cfi.h>
38 #include <linux/mtd/xip.h>
39 
40 #define AMD_BOOTLOC_BUG
41 #define FORCE_WORD_WRITE 0
42 
43 #define MAX_RETRIES 3
44 
45 #define SST49LF004B		0x0060
46 #define SST49LF040B		0x0050
47 #define SST49LF008A		0x005a
48 #define AT49BV6416		0x00d6
49 #define S29GL064N_MN12		0x0c01
50 
51 /*
52  * Status Register bit description. Used by flash devices that don't
53  * support DQ polling (e.g. HyperFlash)
54  */
55 #define CFI_SR_DRB		BIT(7)
56 #define CFI_SR_ESB		BIT(5)
57 #define CFI_SR_PSB		BIT(4)
58 #define CFI_SR_WBASB		BIT(3)
59 #define CFI_SR_SLSB		BIT(1)
60 
61 enum cfi_quirks {
62 	CFI_QUIRK_DQ_TRUE_DATA = BIT(0),
63 };
64 
65 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
67 #if !FORCE_WORD_WRITE
68 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
69 #endif
70 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
71 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
72 static void cfi_amdstd_sync (struct mtd_info *);
73 static int cfi_amdstd_suspend (struct mtd_info *);
74 static void cfi_amdstd_resume (struct mtd_info *);
75 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
76 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
77 					 size_t *, struct otp_info *);
78 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
79 					 size_t *, struct otp_info *);
80 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
81 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
82 					 size_t *, u_char *);
83 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
84 					 size_t *, u_char *);
85 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
86 					  size_t *, const u_char *);
87 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
88 
89 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
90 				  size_t *retlen, const u_char *buf);
91 
92 static void cfi_amdstd_destroy(struct mtd_info *);
93 
94 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
95 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
96 
97 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
98 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
99 #include "fwh_lock.h"
100 
101 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
102 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
103 
104 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
105 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
106 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
107 
108 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
109 	.probe		= NULL, /* Not usable directly */
110 	.destroy	= cfi_amdstd_destroy,
111 	.name		= "cfi_cmdset_0002",
112 	.module		= THIS_MODULE
113 };
114 
115 /*
116  * Use status register to poll for Erase/write completion when DQ is not
117  * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in
118  * CFI Primary Vendor-Specific Extended Query table 1.5
119  */
cfi_use_status_reg(struct cfi_private * cfi)120 static int cfi_use_status_reg(struct cfi_private *cfi)
121 {
122 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
123 	u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ;
124 
125 	return extp && extp->MinorVersion >= '5' &&
126 		(extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG;
127 }
128 
cfi_check_err_status(struct map_info * map,struct flchip * chip,unsigned long adr)129 static int cfi_check_err_status(struct map_info *map, struct flchip *chip,
130 				unsigned long adr)
131 {
132 	struct cfi_private *cfi = map->fldrv_priv;
133 	map_word status;
134 
135 	if (!cfi_use_status_reg(cfi))
136 		return 0;
137 
138 	cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
139 			 cfi->device_type, NULL);
140 	status = map_read(map, adr);
141 
142 	/* The error bits are invalid while the chip's busy */
143 	if (!map_word_bitsset(map, status, CMD(CFI_SR_DRB)))
144 		return 0;
145 
146 	if (map_word_bitsset(map, status, CMD(0x3a))) {
147 		unsigned long chipstatus = MERGESTATUS(status);
148 
149 		if (chipstatus & CFI_SR_ESB)
150 			pr_err("%s erase operation failed, status %lx\n",
151 			       map->name, chipstatus);
152 		if (chipstatus & CFI_SR_PSB)
153 			pr_err("%s program operation failed, status %lx\n",
154 			       map->name, chipstatus);
155 		if (chipstatus & CFI_SR_WBASB)
156 			pr_err("%s buffer program command aborted, status %lx\n",
157 			       map->name, chipstatus);
158 		if (chipstatus & CFI_SR_SLSB)
159 			pr_err("%s sector write protected, status %lx\n",
160 			       map->name, chipstatus);
161 
162 		/* Erase/Program status bits are set on the operation failure */
163 		if (chipstatus & (CFI_SR_ESB | CFI_SR_PSB))
164 			return 1;
165 	}
166 	return 0;
167 }
168 
169 /* #define DEBUG_CFI_FEATURES */
170 
171 
172 #ifdef DEBUG_CFI_FEATURES
cfi_tell_features(struct cfi_pri_amdstd * extp)173 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
174 {
175 	const char* erase_suspend[3] = {
176 		"Not supported", "Read only", "Read/write"
177 	};
178 	const char* top_bottom[6] = {
179 		"No WP", "8x8KiB sectors at top & bottom, no WP",
180 		"Bottom boot", "Top boot",
181 		"Uniform, Bottom WP", "Uniform, Top WP"
182 	};
183 
184 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
185 	printk("  Address sensitive unlock: %s\n",
186 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
187 
188 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
189 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
190 	else
191 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
192 
193 	if (extp->BlkProt == 0)
194 		printk("  Block protection: Not supported\n");
195 	else
196 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
197 
198 
199 	printk("  Temporary block unprotect: %s\n",
200 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
201 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
202 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
203 	printk("  Burst mode: %s\n",
204 	       extp->BurstMode ? "Supported" : "Not supported");
205 	if (extp->PageMode == 0)
206 		printk("  Page mode: Not supported\n");
207 	else
208 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
209 
210 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
211 	       extp->VppMin >> 4, extp->VppMin & 0xf);
212 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
213 	       extp->VppMax >> 4, extp->VppMax & 0xf);
214 
215 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
216 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
217 	else
218 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
219 }
220 #endif
221 
222 #ifdef AMD_BOOTLOC_BUG
223 /* Wheee. Bring me the head of someone at AMD. */
fixup_amd_bootblock(struct mtd_info * mtd)224 static void fixup_amd_bootblock(struct mtd_info *mtd)
225 {
226 	struct map_info *map = mtd->priv;
227 	struct cfi_private *cfi = map->fldrv_priv;
228 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
229 	__u8 major = extp->MajorVersion;
230 	__u8 minor = extp->MinorVersion;
231 
232 	if (((major << 8) | minor) < 0x3131) {
233 		/* CFI version 1.0 => don't trust bootloc */
234 
235 		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
236 			map->name, cfi->mfr, cfi->id);
237 
238 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
239 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
240 		 * These were badly detected as they have the 0x80 bit set
241 		 * so treat them as a special case.
242 		 */
243 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
244 
245 			/* Macronix added CFI to their 2nd generation
246 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
247 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
248 			 * has CFI.
249 			 *
250 			 * Therefore also check the manufacturer.
251 			 * This reduces the risk of false detection due to
252 			 * the 8-bit device ID.
253 			 */
254 			(cfi->mfr == CFI_MFR_MACRONIX)) {
255 			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
256 				" detected\n", map->name);
257 			extp->TopBottom = 2;	/* bottom boot */
258 		} else
259 		if (cfi->id & 0x80) {
260 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
261 			extp->TopBottom = 3;	/* top boot */
262 		} else {
263 			extp->TopBottom = 2;	/* bottom boot */
264 		}
265 
266 		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
267 			" deduced %s from Device ID\n", map->name, major, minor,
268 			extp->TopBottom == 2 ? "bottom" : "top");
269 	}
270 }
271 #endif
272 
273 #if !FORCE_WORD_WRITE
fixup_use_write_buffers(struct mtd_info * mtd)274 static void fixup_use_write_buffers(struct mtd_info *mtd)
275 {
276 	struct map_info *map = mtd->priv;
277 	struct cfi_private *cfi = map->fldrv_priv;
278 
279 	if (cfi->mfr == CFI_MFR_AMD && cfi->id == 0x2201)
280 		return;
281 
282 	if (cfi->cfiq->BufWriteTimeoutTyp) {
283 		pr_debug("Using buffer write method\n");
284 		mtd->_write = cfi_amdstd_write_buffers;
285 	}
286 }
287 #endif /* !FORCE_WORD_WRITE */
288 
289 /* Atmel chips don't use the same PRI format as AMD chips */
fixup_convert_atmel_pri(struct mtd_info * mtd)290 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
291 {
292 	struct map_info *map = mtd->priv;
293 	struct cfi_private *cfi = map->fldrv_priv;
294 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
295 	struct cfi_pri_atmel atmel_pri;
296 
297 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
298 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
299 
300 	if (atmel_pri.Features & 0x02)
301 		extp->EraseSuspend = 2;
302 
303 	/* Some chips got it backwards... */
304 	if (cfi->id == AT49BV6416) {
305 		if (atmel_pri.BottomBoot)
306 			extp->TopBottom = 3;
307 		else
308 			extp->TopBottom = 2;
309 	} else {
310 		if (atmel_pri.BottomBoot)
311 			extp->TopBottom = 2;
312 		else
313 			extp->TopBottom = 3;
314 	}
315 
316 	/* burst write mode not supported */
317 	cfi->cfiq->BufWriteTimeoutTyp = 0;
318 	cfi->cfiq->BufWriteTimeoutMax = 0;
319 }
320 
fixup_use_secsi(struct mtd_info * mtd)321 static void fixup_use_secsi(struct mtd_info *mtd)
322 {
323 	/* Setup for chips with a secsi area */
324 	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
325 	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
326 }
327 
fixup_use_erase_chip(struct mtd_info * mtd)328 static void fixup_use_erase_chip(struct mtd_info *mtd)
329 {
330 	struct map_info *map = mtd->priv;
331 	struct cfi_private *cfi = map->fldrv_priv;
332 	if ((cfi->cfiq->NumEraseRegions == 1) &&
333 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
334 		mtd->_erase = cfi_amdstd_erase_chip;
335 	}
336 
337 }
338 
339 /*
340  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
341  * locked by default.
342  */
fixup_use_atmel_lock(struct mtd_info * mtd)343 static void fixup_use_atmel_lock(struct mtd_info *mtd)
344 {
345 	mtd->_lock = cfi_atmel_lock;
346 	mtd->_unlock = cfi_atmel_unlock;
347 	mtd->flags |= MTD_POWERUP_LOCK;
348 }
349 
fixup_old_sst_eraseregion(struct mtd_info * mtd)350 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
351 {
352 	struct map_info *map = mtd->priv;
353 	struct cfi_private *cfi = map->fldrv_priv;
354 
355 	/*
356 	 * These flashes report two separate eraseblock regions based on the
357 	 * sector_erase-size and block_erase-size, although they both operate on the
358 	 * same memory. This is not allowed according to CFI, so we just pick the
359 	 * sector_erase-size.
360 	 */
361 	cfi->cfiq->NumEraseRegions = 1;
362 }
363 
fixup_sst39vf(struct mtd_info * mtd)364 static void fixup_sst39vf(struct mtd_info *mtd)
365 {
366 	struct map_info *map = mtd->priv;
367 	struct cfi_private *cfi = map->fldrv_priv;
368 
369 	fixup_old_sst_eraseregion(mtd);
370 
371 	cfi->addr_unlock1 = 0x5555;
372 	cfi->addr_unlock2 = 0x2AAA;
373 }
374 
fixup_sst39vf_rev_b(struct mtd_info * mtd)375 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
376 {
377 	struct map_info *map = mtd->priv;
378 	struct cfi_private *cfi = map->fldrv_priv;
379 
380 	fixup_old_sst_eraseregion(mtd);
381 
382 	cfi->addr_unlock1 = 0x555;
383 	cfi->addr_unlock2 = 0x2AA;
384 
385 	cfi->sector_erase_cmd = CMD(0x50);
386 }
387 
fixup_sst38vf640x_sectorsize(struct mtd_info * mtd)388 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
389 {
390 	struct map_info *map = mtd->priv;
391 	struct cfi_private *cfi = map->fldrv_priv;
392 
393 	fixup_sst39vf_rev_b(mtd);
394 
395 	/*
396 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
397 	 * it should report a size of 8KBytes (0x0020*256).
398 	 */
399 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
400 	pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
401 		mtd->name);
402 }
403 
fixup_s29gl064n_sectors(struct mtd_info * mtd)404 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
405 {
406 	struct map_info *map = mtd->priv;
407 	struct cfi_private *cfi = map->fldrv_priv;
408 
409 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
410 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
411 		pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
412 			mtd->name);
413 	}
414 }
415 
fixup_s29gl032n_sectors(struct mtd_info * mtd)416 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
417 {
418 	struct map_info *map = mtd->priv;
419 	struct cfi_private *cfi = map->fldrv_priv;
420 
421 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
422 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
423 		pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
424 			mtd->name);
425 	}
426 }
427 
fixup_s29ns512p_sectors(struct mtd_info * mtd)428 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
429 {
430 	struct map_info *map = mtd->priv;
431 	struct cfi_private *cfi = map->fldrv_priv;
432 
433 	/*
434 	 *  S29NS512P flash uses more than 8bits to report number of sectors,
435 	 * which is not permitted by CFI.
436 	 */
437 	cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
438 	pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
439 		mtd->name);
440 }
441 
fixup_quirks(struct mtd_info * mtd)442 static void fixup_quirks(struct mtd_info *mtd)
443 {
444 	struct map_info *map = mtd->priv;
445 	struct cfi_private *cfi = map->fldrv_priv;
446 
447 	if (cfi->mfr == CFI_MFR_AMD && cfi->id == S29GL064N_MN12)
448 		cfi->quirks |= CFI_QUIRK_DQ_TRUE_DATA;
449 }
450 
451 /* Used to fix CFI-Tables of chips without Extended Query Tables */
452 static struct cfi_fixup cfi_nopri_fixup_table[] = {
453 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
454 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
455 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
456 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
457 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
458 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
459 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
460 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
461 	{ 0, 0, NULL }
462 };
463 
464 static struct cfi_fixup cfi_fixup_table[] = {
465 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
466 #ifdef AMD_BOOTLOC_BUG
467 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
468 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
469 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
470 #endif
471 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
472 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
473 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
474 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
475 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
476 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
477 	{ CFI_MFR_AMD, S29GL064N_MN12, fixup_s29gl064n_sectors },
478 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
479 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
480 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
481 	{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
482 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
483 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
484 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
485 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
486 #if !FORCE_WORD_WRITE
487 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
488 #endif
489 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_quirks },
490 	{ 0, 0, NULL }
491 };
492 static struct cfi_fixup jedec_fixup_table[] = {
493 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
494 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
495 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
496 	{ 0, 0, NULL }
497 };
498 
499 static struct cfi_fixup fixup_table[] = {
500 	/* The CFI vendor ids and the JEDEC vendor IDs appear
501 	 * to be common.  It is like the devices id's are as
502 	 * well.  This table is to pick all cases where
503 	 * we know that is the case.
504 	 */
505 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
506 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
507 	{ 0, 0, NULL }
508 };
509 
510 
cfi_fixup_major_minor(struct cfi_private * cfi,struct cfi_pri_amdstd * extp)511 static void cfi_fixup_major_minor(struct cfi_private *cfi,
512 				  struct cfi_pri_amdstd *extp)
513 {
514 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
515 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
516 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
517 			/*
518 			 * Samsung K8P2815UQB and K8D6x16UxM chips
519 			 * report major=0 / minor=0.
520 			 * K8D3x16UxC chips report major=3 / minor=3.
521 			 */
522 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
523 			       " Extended Query version to 1.%c\n",
524 			       extp->MinorVersion);
525 			extp->MajorVersion = '1';
526 		}
527 	}
528 
529 	/*
530 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
531 	 */
532 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
533 		extp->MajorVersion = '1';
534 		extp->MinorVersion = '0';
535 	}
536 }
537 
is_m29ew(struct cfi_private * cfi)538 static int is_m29ew(struct cfi_private *cfi)
539 {
540 	if (cfi->mfr == CFI_MFR_INTEL &&
541 	    ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
542 	     (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
543 		return 1;
544 	return 0;
545 }
546 
547 /*
548  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
549  * Some revisions of the M29EW suffer from erase suspend hang ups. In
550  * particular, it can occur when the sequence
551  * Erase Confirm -> Suspend -> Program -> Resume
552  * causes a lockup due to internal timing issues. The consequence is that the
553  * erase cannot be resumed without inserting a dummy command after programming
554  * and prior to resuming. [...] The work-around is to issue a dummy write cycle
555  * that writes an F0 command code before the RESUME command.
556  */
cfi_fixup_m29ew_erase_suspend(struct map_info * map,unsigned long adr)557 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
558 					  unsigned long adr)
559 {
560 	struct cfi_private *cfi = map->fldrv_priv;
561 	/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
562 	if (is_m29ew(cfi))
563 		map_write(map, CMD(0xF0), adr);
564 }
565 
566 /*
567  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
568  *
569  * Some revisions of the M29EW (for example, A1 and A2 step revisions)
570  * are affected by a problem that could cause a hang up when an ERASE SUSPEND
571  * command is issued after an ERASE RESUME operation without waiting for a
572  * minimum delay.  The result is that once the ERASE seems to be completed
573  * (no bits are toggling), the contents of the Flash memory block on which
574  * the erase was ongoing could be inconsistent with the expected values
575  * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
576  * values), causing a consequent failure of the ERASE operation.
577  * The occurrence of this issue could be high, especially when file system
578  * operations on the Flash are intensive.  As a result, it is recommended
579  * that a patch be applied.  Intensive file system operations can cause many
580  * calls to the garbage routine to free Flash space (also by erasing physical
581  * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
582  * commands can occur.  The problem disappears when a delay is inserted after
583  * the RESUME command by using the udelay() function available in Linux.
584  * The DELAY value must be tuned based on the customer's platform.
585  * The maximum value that fixes the problem in all cases is 500us.
586  * But, in our experience, a delay of 30 µs to 50 µs is sufficient
587  * in most cases.
588  * We have chosen 500µs because this latency is acceptable.
589  */
cfi_fixup_m29ew_delay_after_resume(struct cfi_private * cfi)590 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
591 {
592 	/*
593 	 * Resolving the Delay After Resume Issue see Micron TN-13-07
594 	 * Worst case delay must be 500µs but 30-50µs should be ok as well
595 	 */
596 	if (is_m29ew(cfi))
597 		cfi_udelay(500);
598 }
599 
cfi_cmdset_0002(struct map_info * map,int primary)600 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
601 {
602 	struct cfi_private *cfi = map->fldrv_priv;
603 	struct device_node __maybe_unused *np = map->device_node;
604 	struct mtd_info *mtd;
605 	int i;
606 
607 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
608 	if (!mtd)
609 		return NULL;
610 	mtd->priv = map;
611 	mtd->type = MTD_NORFLASH;
612 
613 	/* Fill in the default mtd operations */
614 	mtd->_erase   = cfi_amdstd_erase_varsize;
615 	mtd->_write   = cfi_amdstd_write_words;
616 	mtd->_read    = cfi_amdstd_read;
617 	mtd->_sync    = cfi_amdstd_sync;
618 	mtd->_suspend = cfi_amdstd_suspend;
619 	mtd->_resume  = cfi_amdstd_resume;
620 	mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
621 	mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
622 	mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
623 	mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
624 	mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
625 	mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
626 	mtd->flags   = MTD_CAP_NORFLASH;
627 	mtd->name    = map->name;
628 	mtd->writesize = 1;
629 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
630 
631 	pr_debug("MTD %s(): write buffer size %d\n", __func__,
632 			mtd->writebufsize);
633 
634 	mtd->_panic_write = cfi_amdstd_panic_write;
635 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
636 
637 	if (cfi->cfi_mode==CFI_MODE_CFI){
638 		unsigned char bootloc;
639 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
640 		struct cfi_pri_amdstd *extp;
641 
642 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
643 		if (extp) {
644 			/*
645 			 * It's a real CFI chip, not one for which the probe
646 			 * routine faked a CFI structure.
647 			 */
648 			cfi_fixup_major_minor(cfi, extp);
649 
650 			/*
651 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
652 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
653 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
654 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
655 			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
656 			 */
657 			if (extp->MajorVersion != '1' ||
658 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
659 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
660 				       "version %c.%c (%#02x/%#02x).\n",
661 				       extp->MajorVersion, extp->MinorVersion,
662 				       extp->MajorVersion, extp->MinorVersion);
663 				kfree(extp);
664 				kfree(mtd);
665 				return NULL;
666 			}
667 
668 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
669 			       extp->MajorVersion, extp->MinorVersion);
670 
671 			/* Install our own private info structure */
672 			cfi->cmdset_priv = extp;
673 
674 			/* Apply cfi device specific fixups */
675 			cfi_fixup(mtd, cfi_fixup_table);
676 
677 #ifdef DEBUG_CFI_FEATURES
678 			/* Tell the user about it in lots of lovely detail */
679 			cfi_tell_features(extp);
680 #endif
681 
682 #ifdef CONFIG_OF
683 			if (np && of_property_read_bool(
684 				    np, "use-advanced-sector-protection")
685 			    && extp->BlkProtUnprot == 8) {
686 				printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
687 				mtd->_lock = cfi_ppb_lock;
688 				mtd->_unlock = cfi_ppb_unlock;
689 				mtd->_is_locked = cfi_ppb_is_locked;
690 			}
691 #endif
692 
693 			bootloc = extp->TopBottom;
694 			if ((bootloc < 2) || (bootloc > 5)) {
695 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
696 				       "bank location (%d). Assuming bottom.\n",
697 				       map->name, bootloc);
698 				bootloc = 2;
699 			}
700 
701 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
702 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
703 
704 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
705 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
706 
707 					swap(cfi->cfiq->EraseRegionInfo[i],
708 					     cfi->cfiq->EraseRegionInfo[j]);
709 				}
710 			}
711 			/* Set the default CFI lock/unlock addresses */
712 			cfi->addr_unlock1 = 0x555;
713 			cfi->addr_unlock2 = 0x2aa;
714 		}
715 		cfi_fixup(mtd, cfi_nopri_fixup_table);
716 
717 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
718 			kfree(mtd);
719 			return NULL;
720 		}
721 
722 	} /* CFI mode */
723 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
724 		/* Apply jedec specific fixups */
725 		cfi_fixup(mtd, jedec_fixup_table);
726 	}
727 	/* Apply generic fixups */
728 	cfi_fixup(mtd, fixup_table);
729 
730 	for (i=0; i< cfi->numchips; i++) {
731 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
732 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
733 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
734 		/*
735 		 * First calculate the timeout max according to timeout field
736 		 * of struct cfi_ident that probed from chip's CFI aera, if
737 		 * available. Specify a minimum of 2000us, in case the CFI data
738 		 * is wrong.
739 		 */
740 		if (cfi->cfiq->BufWriteTimeoutTyp &&
741 		    cfi->cfiq->BufWriteTimeoutMax)
742 			cfi->chips[i].buffer_write_time_max =
743 				1 << (cfi->cfiq->BufWriteTimeoutTyp +
744 				      cfi->cfiq->BufWriteTimeoutMax);
745 		else
746 			cfi->chips[i].buffer_write_time_max = 0;
747 
748 		cfi->chips[i].buffer_write_time_max =
749 			max(cfi->chips[i].buffer_write_time_max, 2000);
750 
751 		cfi->chips[i].ref_point_counter = 0;
752 		init_waitqueue_head(&(cfi->chips[i].wq));
753 	}
754 
755 	map->fldrv = &cfi_amdstd_chipdrv;
756 
757 	return cfi_amdstd_setup(mtd);
758 }
759 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
760 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
761 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
762 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
763 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
764 
cfi_amdstd_setup(struct mtd_info * mtd)765 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
766 {
767 	struct map_info *map = mtd->priv;
768 	struct cfi_private *cfi = map->fldrv_priv;
769 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
770 	unsigned long offset = 0;
771 	int i,j;
772 
773 	printk(KERN_NOTICE "number of %s chips: %d\n",
774 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
775 	/* Select the correct geometry setup */
776 	mtd->size = devsize * cfi->numchips;
777 
778 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
779 	mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
780 					  sizeof(struct mtd_erase_region_info),
781 					  GFP_KERNEL);
782 	if (!mtd->eraseregions)
783 		goto setup_err;
784 
785 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
786 		unsigned long ernum, ersize;
787 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
788 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
789 
790 		if (mtd->erasesize < ersize) {
791 			mtd->erasesize = ersize;
792 		}
793 		for (j=0; j<cfi->numchips; j++) {
794 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
795 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
796 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
797 		}
798 		offset += (ersize * ernum);
799 	}
800 	if (offset != devsize) {
801 		/* Argh */
802 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
803 		goto setup_err;
804 	}
805 
806 	__module_get(THIS_MODULE);
807 	register_reboot_notifier(&mtd->reboot_notifier);
808 	return mtd;
809 
810  setup_err:
811 	kfree(mtd->eraseregions);
812 	kfree(mtd);
813 	kfree(cfi->cmdset_priv);
814 	return NULL;
815 }
816 
817 /*
818  * Return true if the chip is ready and has the correct value.
819  *
820  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
821  * non-suspended sector) and is indicated by no toggle bits toggling.
822  *
823  * Error are indicated by toggling bits or bits held with the wrong value,
824  * or with bits toggling.
825  *
826  * Note that anything more complicated than checking if no bits are toggling
827  * (including checking DQ5 for an error status) is tricky to get working
828  * correctly and is therefore not done	(particularly with interleaved chips
829  * as each chip must be checked independently of the others).
830  */
chip_ready(struct map_info * map,struct flchip * chip,unsigned long addr,map_word * expected)831 static int __xipram chip_ready(struct map_info *map, struct flchip *chip,
832 			       unsigned long addr, map_word *expected)
833 {
834 	struct cfi_private *cfi = map->fldrv_priv;
835 	map_word oldd, curd;
836 	int ret;
837 
838 	if (cfi_use_status_reg(cfi)) {
839 		map_word ready = CMD(CFI_SR_DRB);
840 		/*
841 		 * For chips that support status register, check device
842 		 * ready bit
843 		 */
844 		cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
845 				 cfi->device_type, NULL);
846 		curd = map_read(map, addr);
847 
848 		return map_word_andequal(map, curd, ready, ready);
849 	}
850 
851 	oldd = map_read(map, addr);
852 	curd = map_read(map, addr);
853 
854 	ret = map_word_equal(map, oldd, curd);
855 
856 	if (!ret || !expected)
857 		return ret;
858 
859 	return map_word_equal(map, curd, *expected);
860 }
861 
chip_good(struct map_info * map,struct flchip * chip,unsigned long addr,map_word * expected)862 static int __xipram chip_good(struct map_info *map, struct flchip *chip,
863 			      unsigned long addr, map_word *expected)
864 {
865 	struct cfi_private *cfi = map->fldrv_priv;
866 	map_word *datum = expected;
867 
868 	if (cfi->quirks & CFI_QUIRK_DQ_TRUE_DATA)
869 		datum = NULL;
870 
871 	return chip_ready(map, chip, addr, datum);
872 }
873 
get_chip(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)874 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
875 {
876 	DECLARE_WAITQUEUE(wait, current);
877 	struct cfi_private *cfi = map->fldrv_priv;
878 	unsigned long timeo;
879 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
880 
881  resettime:
882 	timeo = jiffies + HZ;
883  retry:
884 	switch (chip->state) {
885 
886 	case FL_STATUS:
887 		for (;;) {
888 			if (chip_ready(map, chip, adr, NULL))
889 				break;
890 
891 			if (time_after(jiffies, timeo)) {
892 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
893 				return -EIO;
894 			}
895 			mutex_unlock(&chip->mutex);
896 			cfi_udelay(1);
897 			mutex_lock(&chip->mutex);
898 			/* Someone else might have been playing with it. */
899 			goto retry;
900 		}
901 		return 0;
902 
903 	case FL_READY:
904 	case FL_CFI_QUERY:
905 	case FL_JEDEC_QUERY:
906 		return 0;
907 
908 	case FL_ERASING:
909 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
910 		    !(mode == FL_READY || mode == FL_POINT ||
911 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
912 			goto sleep;
913 
914 		/* Do not allow suspend iff read/write to EB address */
915 		if ((adr & chip->in_progress_block_mask) ==
916 		    chip->in_progress_block_addr)
917 			goto sleep;
918 
919 		/* Erase suspend */
920 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
921 		 * commands when the erase algorithm isn't in progress. */
922 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
923 		chip->oldstate = FL_ERASING;
924 		chip->state = FL_ERASE_SUSPENDING;
925 		chip->erase_suspended = 1;
926 		for (;;) {
927 			if (chip_ready(map, chip, adr, NULL))
928 				break;
929 
930 			if (time_after(jiffies, timeo)) {
931 				/* Should have suspended the erase by now.
932 				 * Send an Erase-Resume command as either
933 				 * there was an error (so leave the erase
934 				 * routine to recover from it) or we trying to
935 				 * use the erase-in-progress sector. */
936 				put_chip(map, chip, adr);
937 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
938 				return -EIO;
939 			}
940 
941 			mutex_unlock(&chip->mutex);
942 			cfi_udelay(1);
943 			mutex_lock(&chip->mutex);
944 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
945 			   So we can just loop here. */
946 		}
947 		chip->state = FL_READY;
948 		return 0;
949 
950 	case FL_XIP_WHILE_ERASING:
951 		if (mode != FL_READY && mode != FL_POINT &&
952 		    (!cfip || !(cfip->EraseSuspend&2)))
953 			goto sleep;
954 		chip->oldstate = chip->state;
955 		chip->state = FL_READY;
956 		return 0;
957 
958 	case FL_SHUTDOWN:
959 		/* The machine is rebooting */
960 		return -EIO;
961 
962 	case FL_POINT:
963 		/* Only if there's no operation suspended... */
964 		if (mode == FL_READY && chip->oldstate == FL_READY)
965 			return 0;
966 		fallthrough;
967 	default:
968 	sleep:
969 		set_current_state(TASK_UNINTERRUPTIBLE);
970 		add_wait_queue(&chip->wq, &wait);
971 		mutex_unlock(&chip->mutex);
972 		schedule();
973 		remove_wait_queue(&chip->wq, &wait);
974 		mutex_lock(&chip->mutex);
975 		goto resettime;
976 	}
977 }
978 
979 
put_chip(struct map_info * map,struct flchip * chip,unsigned long adr)980 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
981 {
982 	struct cfi_private *cfi = map->fldrv_priv;
983 
984 	switch(chip->oldstate) {
985 	case FL_ERASING:
986 		cfi_fixup_m29ew_erase_suspend(map,
987 			chip->in_progress_block_addr);
988 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
989 		cfi_fixup_m29ew_delay_after_resume(cfi);
990 		chip->oldstate = FL_READY;
991 		chip->state = FL_ERASING;
992 		break;
993 
994 	case FL_XIP_WHILE_ERASING:
995 		chip->state = chip->oldstate;
996 		chip->oldstate = FL_READY;
997 		break;
998 
999 	case FL_READY:
1000 	case FL_STATUS:
1001 		break;
1002 	default:
1003 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
1004 	}
1005 	wake_up(&chip->wq);
1006 }
1007 
1008 #ifdef CONFIG_MTD_XIP
1009 
1010 /*
1011  * No interrupt what so ever can be serviced while the flash isn't in array
1012  * mode.  This is ensured by the xip_disable() and xip_enable() functions
1013  * enclosing any code path where the flash is known not to be in array mode.
1014  * And within a XIP disabled code path, only functions marked with __xipram
1015  * may be called and nothing else (it's a good thing to inspect generated
1016  * assembly to make sure inline functions were actually inlined and that gcc
1017  * didn't emit calls to its own support functions). Also configuring MTD CFI
1018  * support to a single buswidth and a single interleave is also recommended.
1019  */
1020 
xip_disable(struct map_info * map,struct flchip * chip,unsigned long adr)1021 static void xip_disable(struct map_info *map, struct flchip *chip,
1022 			unsigned long adr)
1023 {
1024 	/* TODO: chips with no XIP use should ignore and return */
1025 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
1026 	local_irq_disable();
1027 }
1028 
xip_enable(struct map_info * map,struct flchip * chip,unsigned long adr)1029 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1030 				unsigned long adr)
1031 {
1032 	struct cfi_private *cfi = map->fldrv_priv;
1033 
1034 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1035 		map_write(map, CMD(0xf0), adr);
1036 		chip->state = FL_READY;
1037 	}
1038 	(void) map_read(map, adr);
1039 	xip_iprefetch();
1040 	local_irq_enable();
1041 }
1042 
1043 /*
1044  * When a delay is required for the flash operation to complete, the
1045  * xip_udelay() function is polling for both the given timeout and pending
1046  * (but still masked) hardware interrupts.  Whenever there is an interrupt
1047  * pending then the flash erase operation is suspended, array mode restored
1048  * and interrupts unmasked.  Task scheduling might also happen at that
1049  * point.  The CPU eventually returns from the interrupt or the call to
1050  * schedule() and the suspended flash operation is resumed for the remaining
1051  * of the delay period.
1052  *
1053  * Warning: this function _will_ fool interrupt latency tracing tools.
1054  */
1055 
xip_udelay(struct map_info * map,struct flchip * chip,unsigned long adr,int usec)1056 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
1057 				unsigned long adr, int usec)
1058 {
1059 	struct cfi_private *cfi = map->fldrv_priv;
1060 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
1061 	map_word status, OK = CMD(0x80);
1062 	unsigned long suspended, start = xip_currtime();
1063 	flstate_t oldstate;
1064 
1065 	do {
1066 		cpu_relax();
1067 		if (xip_irqpending() && extp &&
1068 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
1069 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1070 			/*
1071 			 * Let's suspend the erase operation when supported.
1072 			 * Note that we currently don't try to suspend
1073 			 * interleaved chips if there is already another
1074 			 * operation suspended (imagine what happens
1075 			 * when one chip was already done with the current
1076 			 * operation while another chip suspended it, then
1077 			 * we resume the whole thing at once).  Yes, it
1078 			 * can happen!
1079 			 */
1080 			map_write(map, CMD(0xb0), adr);
1081 			usec -= xip_elapsed_since(start);
1082 			suspended = xip_currtime();
1083 			do {
1084 				if (xip_elapsed_since(suspended) > 100000) {
1085 					/*
1086 					 * The chip doesn't want to suspend
1087 					 * after waiting for 100 msecs.
1088 					 * This is a critical error but there
1089 					 * is not much we can do here.
1090 					 */
1091 					return;
1092 				}
1093 				status = map_read(map, adr);
1094 			} while (!map_word_andequal(map, status, OK, OK));
1095 
1096 			/* Suspend succeeded */
1097 			oldstate = chip->state;
1098 			if (!map_word_bitsset(map, status, CMD(0x40)))
1099 				break;
1100 			chip->state = FL_XIP_WHILE_ERASING;
1101 			chip->erase_suspended = 1;
1102 			map_write(map, CMD(0xf0), adr);
1103 			(void) map_read(map, adr);
1104 			xip_iprefetch();
1105 			local_irq_enable();
1106 			mutex_unlock(&chip->mutex);
1107 			xip_iprefetch();
1108 			cond_resched();
1109 
1110 			/*
1111 			 * We're back.  However someone else might have
1112 			 * decided to go write to the chip if we are in
1113 			 * a suspended erase state.  If so let's wait
1114 			 * until it's done.
1115 			 */
1116 			mutex_lock(&chip->mutex);
1117 			while (chip->state != FL_XIP_WHILE_ERASING) {
1118 				DECLARE_WAITQUEUE(wait, current);
1119 				set_current_state(TASK_UNINTERRUPTIBLE);
1120 				add_wait_queue(&chip->wq, &wait);
1121 				mutex_unlock(&chip->mutex);
1122 				schedule();
1123 				remove_wait_queue(&chip->wq, &wait);
1124 				mutex_lock(&chip->mutex);
1125 			}
1126 			/* Disallow XIP again */
1127 			local_irq_disable();
1128 
1129 			/* Correct Erase Suspend Hangups for M29EW */
1130 			cfi_fixup_m29ew_erase_suspend(map, adr);
1131 			/* Resume the write or erase operation */
1132 			map_write(map, cfi->sector_erase_cmd, adr);
1133 			chip->state = oldstate;
1134 			start = xip_currtime();
1135 		} else if (usec >= 1000000/HZ) {
1136 			/*
1137 			 * Try to save on CPU power when waiting delay
1138 			 * is at least a system timer tick period.
1139 			 * No need to be extremely accurate here.
1140 			 */
1141 			xip_cpu_idle();
1142 		}
1143 		status = map_read(map, adr);
1144 	} while (!map_word_andequal(map, status, OK, OK)
1145 		 && xip_elapsed_since(start) < usec);
1146 }
1147 
1148 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1149 
1150 /*
1151  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1152  * the flash is actively programming or erasing since we have to poll for
1153  * the operation to complete anyway.  We can't do that in a generic way with
1154  * a XIP setup so do it before the actual flash operation in this case
1155  * and stub it out from INVALIDATE_CACHE_UDELAY.
1156  */
1157 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1158 	INVALIDATE_CACHED_RANGE(map, from, size)
1159 
1160 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1161 	UDELAY(map, chip, adr, usec)
1162 
1163 /*
1164  * Extra notes:
1165  *
1166  * Activating this XIP support changes the way the code works a bit.  For
1167  * example the code to suspend the current process when concurrent access
1168  * happens is never executed because xip_udelay() will always return with the
1169  * same chip state as it was entered with.  This is why there is no care for
1170  * the presence of add_wait_queue() or schedule() calls from within a couple
1171  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1172  * The queueing and scheduling are always happening within xip_udelay().
1173  *
1174  * Similarly, get_chip() and put_chip() just happen to always be executed
1175  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1176  * is in array mode, therefore never executing many cases therein and not
1177  * causing any problem with XIP.
1178  */
1179 
1180 #else
1181 
1182 #define xip_disable(map, chip, adr)
1183 #define xip_enable(map, chip, adr)
1184 #define XIP_INVAL_CACHED_RANGE(x...)
1185 
1186 #define UDELAY(map, chip, adr, usec)  \
1187 do {  \
1188 	mutex_unlock(&chip->mutex);  \
1189 	cfi_udelay(usec);  \
1190 	mutex_lock(&chip->mutex);  \
1191 } while (0)
1192 
1193 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1194 do {  \
1195 	mutex_unlock(&chip->mutex);  \
1196 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
1197 	cfi_udelay(usec);  \
1198 	mutex_lock(&chip->mutex);  \
1199 } while (0)
1200 
1201 #endif
1202 
do_read_onechip(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf)1203 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1204 {
1205 	unsigned long cmd_addr;
1206 	struct cfi_private *cfi = map->fldrv_priv;
1207 	int ret;
1208 
1209 	adr += chip->start;
1210 
1211 	/* Ensure cmd read/writes are aligned. */
1212 	cmd_addr = adr & ~(map_bankwidth(map)-1);
1213 
1214 	mutex_lock(&chip->mutex);
1215 	ret = get_chip(map, chip, cmd_addr, FL_READY);
1216 	if (ret) {
1217 		mutex_unlock(&chip->mutex);
1218 		return ret;
1219 	}
1220 
1221 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1222 		map_write(map, CMD(0xf0), cmd_addr);
1223 		chip->state = FL_READY;
1224 	}
1225 
1226 	map_copy_from(map, buf, adr, len);
1227 
1228 	put_chip(map, chip, cmd_addr);
1229 
1230 	mutex_unlock(&chip->mutex);
1231 	return 0;
1232 }
1233 
1234 
cfi_amdstd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1235 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1236 {
1237 	struct map_info *map = mtd->priv;
1238 	struct cfi_private *cfi = map->fldrv_priv;
1239 	unsigned long ofs;
1240 	int chipnum;
1241 	int ret = 0;
1242 
1243 	/* ofs: offset within the first chip that the first read should start */
1244 	chipnum = (from >> cfi->chipshift);
1245 	ofs = from - (chipnum <<  cfi->chipshift);
1246 
1247 	while (len) {
1248 		unsigned long thislen;
1249 
1250 		if (chipnum >= cfi->numchips)
1251 			break;
1252 
1253 		if ((len + ofs -1) >> cfi->chipshift)
1254 			thislen = (1<<cfi->chipshift) - ofs;
1255 		else
1256 			thislen = len;
1257 
1258 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1259 		if (ret)
1260 			break;
1261 
1262 		*retlen += thislen;
1263 		len -= thislen;
1264 		buf += thislen;
1265 
1266 		ofs = 0;
1267 		chipnum++;
1268 	}
1269 	return ret;
1270 }
1271 
1272 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1273 			loff_t adr, size_t len, u_char *buf, size_t grouplen);
1274 
otp_enter(struct map_info * map,struct flchip * chip,loff_t adr,size_t len)1275 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1276 			     loff_t adr, size_t len)
1277 {
1278 	struct cfi_private *cfi = map->fldrv_priv;
1279 
1280 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1281 			 cfi->device_type, NULL);
1282 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1283 			 cfi->device_type, NULL);
1284 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1285 			 cfi->device_type, NULL);
1286 
1287 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1288 }
1289 
otp_exit(struct map_info * map,struct flchip * chip,loff_t adr,size_t len)1290 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1291 			    loff_t adr, size_t len)
1292 {
1293 	struct cfi_private *cfi = map->fldrv_priv;
1294 
1295 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1296 			 cfi->device_type, NULL);
1297 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1298 			 cfi->device_type, NULL);
1299 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1300 			 cfi->device_type, NULL);
1301 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1302 			 cfi->device_type, NULL);
1303 
1304 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1305 }
1306 
do_read_secsi_onechip(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1307 static inline int do_read_secsi_onechip(struct map_info *map,
1308 					struct flchip *chip, loff_t adr,
1309 					size_t len, u_char *buf,
1310 					size_t grouplen)
1311 {
1312 	DECLARE_WAITQUEUE(wait, current);
1313 
1314  retry:
1315 	mutex_lock(&chip->mutex);
1316 
1317 	if (chip->state != FL_READY){
1318 		set_current_state(TASK_UNINTERRUPTIBLE);
1319 		add_wait_queue(&chip->wq, &wait);
1320 
1321 		mutex_unlock(&chip->mutex);
1322 
1323 		schedule();
1324 		remove_wait_queue(&chip->wq, &wait);
1325 
1326 		goto retry;
1327 	}
1328 
1329 	adr += chip->start;
1330 
1331 	chip->state = FL_READY;
1332 
1333 	otp_enter(map, chip, adr, len);
1334 	map_copy_from(map, buf, adr, len);
1335 	otp_exit(map, chip, adr, len);
1336 
1337 	wake_up(&chip->wq);
1338 	mutex_unlock(&chip->mutex);
1339 
1340 	return 0;
1341 }
1342 
cfi_amdstd_secsi_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1343 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1344 {
1345 	struct map_info *map = mtd->priv;
1346 	struct cfi_private *cfi = map->fldrv_priv;
1347 	unsigned long ofs;
1348 	int chipnum;
1349 	int ret = 0;
1350 
1351 	/* ofs: offset within the first chip that the first read should start */
1352 	/* 8 secsi bytes per chip */
1353 	chipnum=from>>3;
1354 	ofs=from & 7;
1355 
1356 	while (len) {
1357 		unsigned long thislen;
1358 
1359 		if (chipnum >= cfi->numchips)
1360 			break;
1361 
1362 		if ((len + ofs -1) >> 3)
1363 			thislen = (1<<3) - ofs;
1364 		else
1365 			thislen = len;
1366 
1367 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1368 					    thislen, buf, 0);
1369 		if (ret)
1370 			break;
1371 
1372 		*retlen += thislen;
1373 		len -= thislen;
1374 		buf += thislen;
1375 
1376 		ofs = 0;
1377 		chipnum++;
1378 	}
1379 	return ret;
1380 }
1381 
1382 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1383 				     unsigned long adr, map_word datum,
1384 				     int mode);
1385 
do_otp_write(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1386 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1387 			size_t len, u_char *buf, size_t grouplen)
1388 {
1389 	int ret;
1390 	while (len) {
1391 		unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1392 		int gap = adr - bus_ofs;
1393 		int n = min_t(int, len, map_bankwidth(map) - gap);
1394 		map_word datum = map_word_ff(map);
1395 
1396 		if (n != map_bankwidth(map)) {
1397 			/* partial write of a word, load old contents */
1398 			otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1399 			datum = map_read(map, bus_ofs);
1400 			otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1401 		}
1402 
1403 		datum = map_word_load_partial(map, datum, buf, gap, n);
1404 		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1405 		if (ret)
1406 			return ret;
1407 
1408 		adr += n;
1409 		buf += n;
1410 		len -= n;
1411 	}
1412 
1413 	return 0;
1414 }
1415 
do_otp_lock(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1416 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1417 		       size_t len, u_char *buf, size_t grouplen)
1418 {
1419 	struct cfi_private *cfi = map->fldrv_priv;
1420 	uint8_t lockreg;
1421 	unsigned long timeo;
1422 	int ret;
1423 
1424 	/* make sure area matches group boundaries */
1425 	if ((adr != 0) || (len != grouplen))
1426 		return -EINVAL;
1427 
1428 	mutex_lock(&chip->mutex);
1429 	ret = get_chip(map, chip, chip->start, FL_LOCKING);
1430 	if (ret) {
1431 		mutex_unlock(&chip->mutex);
1432 		return ret;
1433 	}
1434 	chip->state = FL_LOCKING;
1435 
1436 	/* Enter lock register command */
1437 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1438 			 cfi->device_type, NULL);
1439 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1440 			 cfi->device_type, NULL);
1441 	cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1442 			 cfi->device_type, NULL);
1443 
1444 	/* read lock register */
1445 	lockreg = cfi_read_query(map, 0);
1446 
1447 	/* set bit 0 to protect extended memory block */
1448 	lockreg &= ~0x01;
1449 
1450 	/* set bit 0 to protect extended memory block */
1451 	/* write lock register */
1452 	map_write(map, CMD(0xA0), chip->start);
1453 	map_write(map, CMD(lockreg), chip->start);
1454 
1455 	/* wait for chip to become ready */
1456 	timeo = jiffies + msecs_to_jiffies(2);
1457 	for (;;) {
1458 		if (chip_ready(map, chip, adr, NULL))
1459 			break;
1460 
1461 		if (time_after(jiffies, timeo)) {
1462 			pr_err("Waiting for chip to be ready timed out.\n");
1463 			ret = -EIO;
1464 			break;
1465 		}
1466 		UDELAY(map, chip, 0, 1);
1467 	}
1468 
1469 	/* exit protection commands */
1470 	map_write(map, CMD(0x90), chip->start);
1471 	map_write(map, CMD(0x00), chip->start);
1472 
1473 	chip->state = FL_READY;
1474 	put_chip(map, chip, chip->start);
1475 	mutex_unlock(&chip->mutex);
1476 
1477 	return ret;
1478 }
1479 
cfi_amdstd_otp_walk(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf,otp_op_t action,int user_regs)1480 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1481 			       size_t *retlen, u_char *buf,
1482 			       otp_op_t action, int user_regs)
1483 {
1484 	struct map_info *map = mtd->priv;
1485 	struct cfi_private *cfi = map->fldrv_priv;
1486 	int ofs_factor = cfi->interleave * cfi->device_type;
1487 	unsigned long base;
1488 	int chipnum;
1489 	struct flchip *chip;
1490 	uint8_t otp, lockreg;
1491 	int ret;
1492 
1493 	size_t user_size, factory_size, otpsize;
1494 	loff_t user_offset, factory_offset, otpoffset;
1495 	int user_locked = 0, otplocked;
1496 
1497 	*retlen = 0;
1498 
1499 	for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1500 		chip = &cfi->chips[chipnum];
1501 		factory_size = 0;
1502 		user_size = 0;
1503 
1504 		/* Micron M29EW family */
1505 		if (is_m29ew(cfi)) {
1506 			base = chip->start;
1507 
1508 			/* check whether secsi area is factory locked
1509 			   or user lockable */
1510 			mutex_lock(&chip->mutex);
1511 			ret = get_chip(map, chip, base, FL_CFI_QUERY);
1512 			if (ret) {
1513 				mutex_unlock(&chip->mutex);
1514 				return ret;
1515 			}
1516 			cfi_qry_mode_on(base, map, cfi);
1517 			otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1518 			cfi_qry_mode_off(base, map, cfi);
1519 			put_chip(map, chip, base);
1520 			mutex_unlock(&chip->mutex);
1521 
1522 			if (otp & 0x80) {
1523 				/* factory locked */
1524 				factory_offset = 0;
1525 				factory_size = 0x100;
1526 			} else {
1527 				/* customer lockable */
1528 				user_offset = 0;
1529 				user_size = 0x100;
1530 
1531 				mutex_lock(&chip->mutex);
1532 				ret = get_chip(map, chip, base, FL_LOCKING);
1533 				if (ret) {
1534 					mutex_unlock(&chip->mutex);
1535 					return ret;
1536 				}
1537 
1538 				/* Enter lock register command */
1539 				cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1540 						 chip->start, map, cfi,
1541 						 cfi->device_type, NULL);
1542 				cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1543 						 chip->start, map, cfi,
1544 						 cfi->device_type, NULL);
1545 				cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1546 						 chip->start, map, cfi,
1547 						 cfi->device_type, NULL);
1548 				/* read lock register */
1549 				lockreg = cfi_read_query(map, 0);
1550 				/* exit protection commands */
1551 				map_write(map, CMD(0x90), chip->start);
1552 				map_write(map, CMD(0x00), chip->start);
1553 				put_chip(map, chip, chip->start);
1554 				mutex_unlock(&chip->mutex);
1555 
1556 				user_locked = ((lockreg & 0x01) == 0x00);
1557 			}
1558 		}
1559 
1560 		otpsize = user_regs ? user_size : factory_size;
1561 		if (!otpsize)
1562 			continue;
1563 		otpoffset = user_regs ? user_offset : factory_offset;
1564 		otplocked = user_regs ? user_locked : 1;
1565 
1566 		if (!action) {
1567 			/* return otpinfo */
1568 			struct otp_info *otpinfo;
1569 			len -= sizeof(*otpinfo);
1570 			if (len <= 0)
1571 				return -ENOSPC;
1572 			otpinfo = (struct otp_info *)buf;
1573 			otpinfo->start = from;
1574 			otpinfo->length = otpsize;
1575 			otpinfo->locked = otplocked;
1576 			buf += sizeof(*otpinfo);
1577 			*retlen += sizeof(*otpinfo);
1578 			from += otpsize;
1579 		} else if ((from < otpsize) && (len > 0)) {
1580 			size_t size;
1581 			size = (len < otpsize - from) ? len : otpsize - from;
1582 			ret = action(map, chip, otpoffset + from, size, buf,
1583 				     otpsize);
1584 			if (ret < 0)
1585 				return ret;
1586 
1587 			buf += size;
1588 			len -= size;
1589 			*retlen += size;
1590 			from = 0;
1591 		} else {
1592 			from -= otpsize;
1593 		}
1594 	}
1595 	return 0;
1596 }
1597 
cfi_amdstd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1598 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1599 					 size_t *retlen, struct otp_info *buf)
1600 {
1601 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1602 				   NULL, 0);
1603 }
1604 
cfi_amdstd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1605 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1606 					 size_t *retlen, struct otp_info *buf)
1607 {
1608 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1609 				   NULL, 1);
1610 }
1611 
cfi_amdstd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1612 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1613 					 size_t len, size_t *retlen,
1614 					 u_char *buf)
1615 {
1616 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1617 				   buf, do_read_secsi_onechip, 0);
1618 }
1619 
cfi_amdstd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1620 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1621 					 size_t len, size_t *retlen,
1622 					 u_char *buf)
1623 {
1624 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1625 				   buf, do_read_secsi_onechip, 1);
1626 }
1627 
cfi_amdstd_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,const u_char * buf)1628 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1629 					  size_t len, size_t *retlen,
1630 					  const u_char *buf)
1631 {
1632 	return cfi_amdstd_otp_walk(mtd, from, len, retlen, (u_char *)buf,
1633 				   do_otp_write, 1);
1634 }
1635 
cfi_amdstd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1636 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1637 					 size_t len)
1638 {
1639 	size_t retlen;
1640 	return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1641 				   do_otp_lock, 1);
1642 }
1643 
do_write_oneword_once(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode,struct cfi_private * cfi)1644 static int __xipram do_write_oneword_once(struct map_info *map,
1645 					  struct flchip *chip,
1646 					  unsigned long adr, map_word datum,
1647 					  int mode, struct cfi_private *cfi)
1648 {
1649 	unsigned long timeo;
1650 	/*
1651 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1652 	 * have a max write time of a few hundreds usec). However, we should
1653 	 * use the maximum timeout value given by the chip at probe time
1654 	 * instead.  Unfortunately, struct flchip does have a field for
1655 	 * maximum timeout, only for typical which can be far too short
1656 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1657 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1658 	 */
1659 	unsigned long uWriteTimeout = (HZ / 1000) + 1;
1660 	int ret = 0;
1661 
1662 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1663 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1664 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1665 	map_write(map, datum, adr);
1666 	chip->state = mode;
1667 
1668 	INVALIDATE_CACHE_UDELAY(map, chip,
1669 				adr, map_bankwidth(map),
1670 				chip->word_write_time);
1671 
1672 	/* See comment above for timeout value. */
1673 	timeo = jiffies + uWriteTimeout;
1674 	for (;;) {
1675 		if (chip->state != mode) {
1676 			/* Someone's suspended the write. Sleep */
1677 			DECLARE_WAITQUEUE(wait, current);
1678 
1679 			set_current_state(TASK_UNINTERRUPTIBLE);
1680 			add_wait_queue(&chip->wq, &wait);
1681 			mutex_unlock(&chip->mutex);
1682 			schedule();
1683 			remove_wait_queue(&chip->wq, &wait);
1684 			timeo = jiffies + (HZ / 2); /* FIXME */
1685 			mutex_lock(&chip->mutex);
1686 			continue;
1687 		}
1688 
1689 		/*
1690 		 * We check "time_after" and "!chip_good" before checking
1691 		 * "chip_good" to avoid the failure due to scheduling.
1692 		 */
1693 		if (time_after(jiffies, timeo) &&
1694 		    !chip_good(map, chip, adr, &datum)) {
1695 			xip_enable(map, chip, adr);
1696 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1697 			xip_disable(map, chip, adr);
1698 			ret = -EIO;
1699 			break;
1700 		}
1701 
1702 		if (chip_good(map, chip, adr, &datum)) {
1703 			if (cfi_check_err_status(map, chip, adr))
1704 				ret = -EIO;
1705 			break;
1706 		}
1707 
1708 		/* Latency issues. Drop the lock, wait a while and retry */
1709 		UDELAY(map, chip, adr, 1);
1710 	}
1711 
1712 	return ret;
1713 }
1714 
do_write_oneword_start(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)1715 static int __xipram do_write_oneword_start(struct map_info *map,
1716 					   struct flchip *chip,
1717 					   unsigned long adr, int mode)
1718 {
1719 	int ret;
1720 
1721 	mutex_lock(&chip->mutex);
1722 
1723 	ret = get_chip(map, chip, adr, mode);
1724 	if (ret) {
1725 		mutex_unlock(&chip->mutex);
1726 		return ret;
1727 	}
1728 
1729 	if (mode == FL_OTP_WRITE)
1730 		otp_enter(map, chip, adr, map_bankwidth(map));
1731 
1732 	return ret;
1733 }
1734 
do_write_oneword_done(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)1735 static void __xipram do_write_oneword_done(struct map_info *map,
1736 					   struct flchip *chip,
1737 					   unsigned long adr, int mode)
1738 {
1739 	if (mode == FL_OTP_WRITE)
1740 		otp_exit(map, chip, adr, map_bankwidth(map));
1741 
1742 	chip->state = FL_READY;
1743 	DISABLE_VPP(map);
1744 	put_chip(map, chip, adr);
1745 
1746 	mutex_unlock(&chip->mutex);
1747 }
1748 
do_write_oneword_retry(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode)1749 static int __xipram do_write_oneword_retry(struct map_info *map,
1750 					   struct flchip *chip,
1751 					   unsigned long adr, map_word datum,
1752 					   int mode)
1753 {
1754 	struct cfi_private *cfi = map->fldrv_priv;
1755 	int ret = 0;
1756 	map_word oldd;
1757 	int retry_cnt = 0;
1758 
1759 	/*
1760 	 * Check for a NOP for the case when the datum to write is already
1761 	 * present - it saves time and works around buggy chips that corrupt
1762 	 * data at other locations when 0xff is written to a location that
1763 	 * already contains 0xff.
1764 	 */
1765 	oldd = map_read(map, adr);
1766 	if (map_word_equal(map, oldd, datum)) {
1767 		pr_debug("MTD %s(): NOP\n", __func__);
1768 		return ret;
1769 	}
1770 
1771 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1772 	ENABLE_VPP(map);
1773 	xip_disable(map, chip, adr);
1774 
1775  retry:
1776 	ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi);
1777 	if (ret) {
1778 		/* reset on all failures. */
1779 		map_write(map, CMD(0xF0), chip->start);
1780 		/* FIXME - should have reset delay before continuing */
1781 
1782 		if (++retry_cnt <= MAX_RETRIES) {
1783 			ret = 0;
1784 			goto retry;
1785 		}
1786 	}
1787 	xip_enable(map, chip, adr);
1788 
1789 	return ret;
1790 }
1791 
do_write_oneword(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode)1792 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1793 				     unsigned long adr, map_word datum,
1794 				     int mode)
1795 {
1796 	int ret;
1797 
1798 	adr += chip->start;
1799 
1800 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr,
1801 		 datum.x[0]);
1802 
1803 	ret = do_write_oneword_start(map, chip, adr, mode);
1804 	if (ret)
1805 		return ret;
1806 
1807 	ret = do_write_oneword_retry(map, chip, adr, datum, mode);
1808 
1809 	do_write_oneword_done(map, chip, adr, mode);
1810 
1811 	return ret;
1812 }
1813 
1814 
cfi_amdstd_write_words(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1815 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1816 				  size_t *retlen, const u_char *buf)
1817 {
1818 	struct map_info *map = mtd->priv;
1819 	struct cfi_private *cfi = map->fldrv_priv;
1820 	int ret;
1821 	int chipnum;
1822 	unsigned long ofs, chipstart;
1823 	DECLARE_WAITQUEUE(wait, current);
1824 
1825 	chipnum = to >> cfi->chipshift;
1826 	ofs = to  - (chipnum << cfi->chipshift);
1827 	chipstart = cfi->chips[chipnum].start;
1828 
1829 	/* If it's not bus-aligned, do the first byte write */
1830 	if (ofs & (map_bankwidth(map)-1)) {
1831 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1832 		int i = ofs - bus_ofs;
1833 		int n = 0;
1834 		map_word tmp_buf;
1835 
1836  retry:
1837 		mutex_lock(&cfi->chips[chipnum].mutex);
1838 
1839 		if (cfi->chips[chipnum].state != FL_READY) {
1840 			set_current_state(TASK_UNINTERRUPTIBLE);
1841 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1842 
1843 			mutex_unlock(&cfi->chips[chipnum].mutex);
1844 
1845 			schedule();
1846 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1847 			goto retry;
1848 		}
1849 
1850 		/* Load 'tmp_buf' with old contents of flash */
1851 		tmp_buf = map_read(map, bus_ofs+chipstart);
1852 
1853 		mutex_unlock(&cfi->chips[chipnum].mutex);
1854 
1855 		/* Number of bytes to copy from buffer */
1856 		n = min_t(int, len, map_bankwidth(map)-i);
1857 
1858 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1859 
1860 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1861 				       bus_ofs, tmp_buf, FL_WRITING);
1862 		if (ret)
1863 			return ret;
1864 
1865 		ofs += n;
1866 		buf += n;
1867 		(*retlen) += n;
1868 		len -= n;
1869 
1870 		if (ofs >> cfi->chipshift) {
1871 			chipnum ++;
1872 			ofs = 0;
1873 			if (chipnum == cfi->numchips)
1874 				return 0;
1875 		}
1876 	}
1877 
1878 	/* We are now aligned, write as much as possible */
1879 	while(len >= map_bankwidth(map)) {
1880 		map_word datum;
1881 
1882 		datum = map_word_load(map, buf);
1883 
1884 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1885 				       ofs, datum, FL_WRITING);
1886 		if (ret)
1887 			return ret;
1888 
1889 		ofs += map_bankwidth(map);
1890 		buf += map_bankwidth(map);
1891 		(*retlen) += map_bankwidth(map);
1892 		len -= map_bankwidth(map);
1893 
1894 		if (ofs >> cfi->chipshift) {
1895 			chipnum ++;
1896 			ofs = 0;
1897 			if (chipnum == cfi->numchips)
1898 				return 0;
1899 			chipstart = cfi->chips[chipnum].start;
1900 		}
1901 	}
1902 
1903 	/* Write the trailing bytes if any */
1904 	if (len & (map_bankwidth(map)-1)) {
1905 		map_word tmp_buf;
1906 
1907  retry1:
1908 		mutex_lock(&cfi->chips[chipnum].mutex);
1909 
1910 		if (cfi->chips[chipnum].state != FL_READY) {
1911 			set_current_state(TASK_UNINTERRUPTIBLE);
1912 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1913 
1914 			mutex_unlock(&cfi->chips[chipnum].mutex);
1915 
1916 			schedule();
1917 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1918 			goto retry1;
1919 		}
1920 
1921 		tmp_buf = map_read(map, ofs + chipstart);
1922 
1923 		mutex_unlock(&cfi->chips[chipnum].mutex);
1924 
1925 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1926 
1927 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1928 				       ofs, tmp_buf, FL_WRITING);
1929 		if (ret)
1930 			return ret;
1931 
1932 		(*retlen) += len;
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 #if !FORCE_WORD_WRITE
do_write_buffer_wait(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum)1939 static int __xipram do_write_buffer_wait(struct map_info *map,
1940 					 struct flchip *chip, unsigned long adr,
1941 					 map_word datum)
1942 {
1943 	unsigned long timeo;
1944 	unsigned long u_write_timeout;
1945 	int ret = 0;
1946 
1947 	/*
1948 	 * Timeout is calculated according to CFI data, if available.
1949 	 * See more comments in cfi_cmdset_0002().
1950 	 */
1951 	u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max);
1952 	timeo = jiffies + u_write_timeout;
1953 
1954 	for (;;) {
1955 		if (chip->state != FL_WRITING) {
1956 			/* Someone's suspended the write. Sleep */
1957 			DECLARE_WAITQUEUE(wait, current);
1958 
1959 			set_current_state(TASK_UNINTERRUPTIBLE);
1960 			add_wait_queue(&chip->wq, &wait);
1961 			mutex_unlock(&chip->mutex);
1962 			schedule();
1963 			remove_wait_queue(&chip->wq, &wait);
1964 			timeo = jiffies + (HZ / 2); /* FIXME */
1965 			mutex_lock(&chip->mutex);
1966 			continue;
1967 		}
1968 
1969 		/*
1970 		 * We check "time_after" and "!chip_good" before checking
1971 		 * "chip_good" to avoid the failure due to scheduling.
1972 		 */
1973 		if (time_after(jiffies, timeo) &&
1974 		    !chip_good(map, chip, adr, &datum)) {
1975 			pr_err("MTD %s(): software timeout, address:0x%.8lx.\n",
1976 			       __func__, adr);
1977 			ret = -EIO;
1978 			break;
1979 		}
1980 
1981 		if (chip_good(map, chip, adr, &datum)) {
1982 			if (cfi_check_err_status(map, chip, adr))
1983 				ret = -EIO;
1984 			break;
1985 		}
1986 
1987 		/* Latency issues. Drop the lock, wait a while and retry */
1988 		UDELAY(map, chip, adr, 1);
1989 	}
1990 
1991 	return ret;
1992 }
1993 
do_write_buffer_reset(struct map_info * map,struct flchip * chip,struct cfi_private * cfi)1994 static void __xipram do_write_buffer_reset(struct map_info *map,
1995 					   struct flchip *chip,
1996 					   struct cfi_private *cfi)
1997 {
1998 	/*
1999 	 * Recovery from write-buffer programming failures requires
2000 	 * the write-to-buffer-reset sequence.  Since the last part
2001 	 * of the sequence also works as a normal reset, we can run
2002 	 * the same commands regardless of why we are here.
2003 	 * See e.g.
2004 	 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
2005 	 */
2006 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2007 			 cfi->device_type, NULL);
2008 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2009 			 cfi->device_type, NULL);
2010 	cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
2011 			 cfi->device_type, NULL);
2012 
2013 	/* FIXME - should have reset delay before continuing */
2014 }
2015 
2016 /*
2017  * FIXME: interleaved mode not tested, and probably not supported!
2018  */
do_write_buffer(struct map_info * map,struct flchip * chip,unsigned long adr,const u_char * buf,int len)2019 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
2020 				    unsigned long adr, const u_char *buf,
2021 				    int len)
2022 {
2023 	struct cfi_private *cfi = map->fldrv_priv;
2024 	int ret;
2025 	unsigned long cmd_adr;
2026 	int z, words;
2027 	map_word datum;
2028 
2029 	adr += chip->start;
2030 	cmd_adr = adr;
2031 
2032 	mutex_lock(&chip->mutex);
2033 	ret = get_chip(map, chip, adr, FL_WRITING);
2034 	if (ret) {
2035 		mutex_unlock(&chip->mutex);
2036 		return ret;
2037 	}
2038 
2039 	datum = map_word_load(map, buf);
2040 
2041 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
2042 		 __func__, adr, datum.x[0]);
2043 
2044 	XIP_INVAL_CACHED_RANGE(map, adr, len);
2045 	ENABLE_VPP(map);
2046 	xip_disable(map, chip, cmd_adr);
2047 
2048 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2049 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2050 
2051 	/* Write Buffer Load */
2052 	map_write(map, CMD(0x25), cmd_adr);
2053 
2054 	chip->state = FL_WRITING_TO_BUFFER;
2055 
2056 	/* Write length of data to come */
2057 	words = len / map_bankwidth(map);
2058 	map_write(map, CMD(words - 1), cmd_adr);
2059 	/* Write data */
2060 	z = 0;
2061 	while(z < words * map_bankwidth(map)) {
2062 		datum = map_word_load(map, buf);
2063 		map_write(map, datum, adr + z);
2064 
2065 		z += map_bankwidth(map);
2066 		buf += map_bankwidth(map);
2067 	}
2068 	z -= map_bankwidth(map);
2069 
2070 	adr += z;
2071 
2072 	/* Write Buffer Program Confirm: GO GO GO */
2073 	map_write(map, CMD(0x29), cmd_adr);
2074 	chip->state = FL_WRITING;
2075 
2076 	INVALIDATE_CACHE_UDELAY(map, chip,
2077 				adr, map_bankwidth(map),
2078 				chip->word_write_time);
2079 
2080 	ret = do_write_buffer_wait(map, chip, adr, datum);
2081 	if (ret)
2082 		do_write_buffer_reset(map, chip, cfi);
2083 
2084 	xip_enable(map, chip, adr);
2085 
2086 	chip->state = FL_READY;
2087 	DISABLE_VPP(map);
2088 	put_chip(map, chip, adr);
2089 	mutex_unlock(&chip->mutex);
2090 
2091 	return ret;
2092 }
2093 
2094 
cfi_amdstd_write_buffers(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2095 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
2096 				    size_t *retlen, const u_char *buf)
2097 {
2098 	struct map_info *map = mtd->priv;
2099 	struct cfi_private *cfi = map->fldrv_priv;
2100 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
2101 	int ret;
2102 	int chipnum;
2103 	unsigned long ofs;
2104 
2105 	chipnum = to >> cfi->chipshift;
2106 	ofs = to  - (chipnum << cfi->chipshift);
2107 
2108 	/* If it's not bus-aligned, do the first word write */
2109 	if (ofs & (map_bankwidth(map)-1)) {
2110 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
2111 		if (local_len > len)
2112 			local_len = len;
2113 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2114 					     local_len, retlen, buf);
2115 		if (ret)
2116 			return ret;
2117 		ofs += local_len;
2118 		buf += local_len;
2119 		len -= local_len;
2120 
2121 		if (ofs >> cfi->chipshift) {
2122 			chipnum ++;
2123 			ofs = 0;
2124 			if (chipnum == cfi->numchips)
2125 				return 0;
2126 		}
2127 	}
2128 
2129 	/* Write buffer is worth it only if more than one word to write... */
2130 	while (len >= map_bankwidth(map) * 2) {
2131 		/* We must not cross write block boundaries */
2132 		int size = wbufsize - (ofs & (wbufsize-1));
2133 
2134 		if (size > len)
2135 			size = len;
2136 		if (size % map_bankwidth(map))
2137 			size -= size % map_bankwidth(map);
2138 
2139 		ret = do_write_buffer(map, &cfi->chips[chipnum],
2140 				      ofs, buf, size);
2141 		if (ret)
2142 			return ret;
2143 
2144 		ofs += size;
2145 		buf += size;
2146 		(*retlen) += size;
2147 		len -= size;
2148 
2149 		if (ofs >> cfi->chipshift) {
2150 			chipnum ++;
2151 			ofs = 0;
2152 			if (chipnum == cfi->numchips)
2153 				return 0;
2154 		}
2155 	}
2156 
2157 	if (len) {
2158 		size_t retlen_dregs = 0;
2159 
2160 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2161 					     len, &retlen_dregs, buf);
2162 
2163 		*retlen += retlen_dregs;
2164 		return ret;
2165 	}
2166 
2167 	return 0;
2168 }
2169 #endif /* !FORCE_WORD_WRITE */
2170 
2171 /*
2172  * Wait for the flash chip to become ready to write data
2173  *
2174  * This is only called during the panic_write() path. When panic_write()
2175  * is called, the kernel is in the process of a panic, and will soon be
2176  * dead. Therefore we don't take any locks, and attempt to get access
2177  * to the chip as soon as possible.
2178  */
cfi_amdstd_panic_wait(struct map_info * map,struct flchip * chip,unsigned long adr)2179 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2180 				 unsigned long adr)
2181 {
2182 	struct cfi_private *cfi = map->fldrv_priv;
2183 	int retries = 10;
2184 	int i;
2185 
2186 	/*
2187 	 * If the driver thinks the chip is idle, and no toggle bits
2188 	 * are changing, then the chip is actually idle for sure.
2189 	 */
2190 	if (chip->state == FL_READY && chip_ready(map, chip, adr, NULL))
2191 		return 0;
2192 
2193 	/*
2194 	 * Try several times to reset the chip and then wait for it
2195 	 * to become idle. The upper limit of a few milliseconds of
2196 	 * delay isn't a big problem: the kernel is dying anyway. It
2197 	 * is more important to save the messages.
2198 	 */
2199 	while (retries > 0) {
2200 		const unsigned long timeo = (HZ / 1000) + 1;
2201 
2202 		/* send the reset command */
2203 		map_write(map, CMD(0xF0), chip->start);
2204 
2205 		/* wait for the chip to become ready */
2206 		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2207 			if (chip_ready(map, chip, adr, NULL))
2208 				return 0;
2209 
2210 			udelay(1);
2211 		}
2212 
2213 		retries--;
2214 	}
2215 
2216 	/* the chip never became ready */
2217 	return -EBUSY;
2218 }
2219 
2220 /*
2221  * Write out one word of data to a single flash chip during a kernel panic
2222  *
2223  * This is only called during the panic_write() path. When panic_write()
2224  * is called, the kernel is in the process of a panic, and will soon be
2225  * dead. Therefore we don't take any locks, and attempt to get access
2226  * to the chip as soon as possible.
2227  *
2228  * The implementation of this routine is intentionally similar to
2229  * do_write_oneword(), in order to ease code maintenance.
2230  */
do_panic_write_oneword(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum)2231 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2232 				  unsigned long adr, map_word datum)
2233 {
2234 	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2235 	struct cfi_private *cfi = map->fldrv_priv;
2236 	int retry_cnt = 0;
2237 	map_word oldd;
2238 	int ret;
2239 	int i;
2240 
2241 	adr += chip->start;
2242 
2243 	ret = cfi_amdstd_panic_wait(map, chip, adr);
2244 	if (ret)
2245 		return ret;
2246 
2247 	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2248 			__func__, adr, datum.x[0]);
2249 
2250 	/*
2251 	 * Check for a NOP for the case when the datum to write is already
2252 	 * present - it saves time and works around buggy chips that corrupt
2253 	 * data at other locations when 0xff is written to a location that
2254 	 * already contains 0xff.
2255 	 */
2256 	oldd = map_read(map, adr);
2257 	if (map_word_equal(map, oldd, datum)) {
2258 		pr_debug("MTD %s(): NOP\n", __func__);
2259 		goto op_done;
2260 	}
2261 
2262 	ENABLE_VPP(map);
2263 
2264 retry:
2265 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2266 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2267 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2268 	map_write(map, datum, adr);
2269 
2270 	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2271 		if (chip_ready(map, chip, adr, NULL))
2272 			break;
2273 
2274 		udelay(1);
2275 	}
2276 
2277 	if (!chip_ready(map, chip, adr, &datum) ||
2278 	    cfi_check_err_status(map, chip, adr)) {
2279 		/* reset on all failures. */
2280 		map_write(map, CMD(0xF0), chip->start);
2281 		/* FIXME - should have reset delay before continuing */
2282 
2283 		if (++retry_cnt <= MAX_RETRIES)
2284 			goto retry;
2285 
2286 		ret = -EIO;
2287 	}
2288 
2289 op_done:
2290 	DISABLE_VPP(map);
2291 	return ret;
2292 }
2293 
2294 /*
2295  * Write out some data during a kernel panic
2296  *
2297  * This is used by the mtdoops driver to save the dying messages from a
2298  * kernel which has panic'd.
2299  *
2300  * This routine ignores all of the locking used throughout the rest of the
2301  * driver, in order to ensure that the data gets written out no matter what
2302  * state this driver (and the flash chip itself) was in when the kernel crashed.
2303  *
2304  * The implementation of this routine is intentionally similar to
2305  * cfi_amdstd_write_words(), in order to ease code maintenance.
2306  */
cfi_amdstd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2307 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2308 				  size_t *retlen, const u_char *buf)
2309 {
2310 	struct map_info *map = mtd->priv;
2311 	struct cfi_private *cfi = map->fldrv_priv;
2312 	unsigned long ofs, chipstart;
2313 	int ret;
2314 	int chipnum;
2315 
2316 	chipnum = to >> cfi->chipshift;
2317 	ofs = to - (chipnum << cfi->chipshift);
2318 	chipstart = cfi->chips[chipnum].start;
2319 
2320 	/* If it's not bus aligned, do the first byte write */
2321 	if (ofs & (map_bankwidth(map) - 1)) {
2322 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2323 		int i = ofs - bus_ofs;
2324 		int n = 0;
2325 		map_word tmp_buf;
2326 
2327 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2328 		if (ret)
2329 			return ret;
2330 
2331 		/* Load 'tmp_buf' with old contents of flash */
2332 		tmp_buf = map_read(map, bus_ofs + chipstart);
2333 
2334 		/* Number of bytes to copy from buffer */
2335 		n = min_t(int, len, map_bankwidth(map) - i);
2336 
2337 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2338 
2339 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2340 					     bus_ofs, tmp_buf);
2341 		if (ret)
2342 			return ret;
2343 
2344 		ofs += n;
2345 		buf += n;
2346 		(*retlen) += n;
2347 		len -= n;
2348 
2349 		if (ofs >> cfi->chipshift) {
2350 			chipnum++;
2351 			ofs = 0;
2352 			if (chipnum == cfi->numchips)
2353 				return 0;
2354 		}
2355 	}
2356 
2357 	/* We are now aligned, write as much as possible */
2358 	while (len >= map_bankwidth(map)) {
2359 		map_word datum;
2360 
2361 		datum = map_word_load(map, buf);
2362 
2363 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2364 					     ofs, datum);
2365 		if (ret)
2366 			return ret;
2367 
2368 		ofs += map_bankwidth(map);
2369 		buf += map_bankwidth(map);
2370 		(*retlen) += map_bankwidth(map);
2371 		len -= map_bankwidth(map);
2372 
2373 		if (ofs >> cfi->chipshift) {
2374 			chipnum++;
2375 			ofs = 0;
2376 			if (chipnum == cfi->numchips)
2377 				return 0;
2378 
2379 			chipstart = cfi->chips[chipnum].start;
2380 		}
2381 	}
2382 
2383 	/* Write the trailing bytes if any */
2384 	if (len & (map_bankwidth(map) - 1)) {
2385 		map_word tmp_buf;
2386 
2387 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2388 		if (ret)
2389 			return ret;
2390 
2391 		tmp_buf = map_read(map, ofs + chipstart);
2392 
2393 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2394 
2395 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2396 					     ofs, tmp_buf);
2397 		if (ret)
2398 			return ret;
2399 
2400 		(*retlen) += len;
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 
2407 /*
2408  * Handle devices with one erase region, that only implement
2409  * the chip erase command.
2410  */
do_erase_chip(struct map_info * map,struct flchip * chip)2411 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2412 {
2413 	struct cfi_private *cfi = map->fldrv_priv;
2414 	unsigned long timeo;
2415 	unsigned long int adr;
2416 	DECLARE_WAITQUEUE(wait, current);
2417 	int ret;
2418 	int retry_cnt = 0;
2419 	map_word datum = map_word_ff(map);
2420 
2421 	adr = cfi->addr_unlock1;
2422 
2423 	mutex_lock(&chip->mutex);
2424 	ret = get_chip(map, chip, adr, FL_ERASING);
2425 	if (ret) {
2426 		mutex_unlock(&chip->mutex);
2427 		return ret;
2428 	}
2429 
2430 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2431 	       __func__, chip->start);
2432 
2433 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2434 	ENABLE_VPP(map);
2435 	xip_disable(map, chip, adr);
2436 
2437  retry:
2438 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2439 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2440 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2441 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2442 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2443 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2444 
2445 	chip->state = FL_ERASING;
2446 	chip->erase_suspended = 0;
2447 	chip->in_progress_block_addr = adr;
2448 	chip->in_progress_block_mask = ~(map->size - 1);
2449 
2450 	INVALIDATE_CACHE_UDELAY(map, chip,
2451 				adr, map->size,
2452 				chip->erase_time*500);
2453 
2454 	timeo = jiffies + (HZ*20);
2455 
2456 	for (;;) {
2457 		if (chip->state != FL_ERASING) {
2458 			/* Someone's suspended the erase. Sleep */
2459 			set_current_state(TASK_UNINTERRUPTIBLE);
2460 			add_wait_queue(&chip->wq, &wait);
2461 			mutex_unlock(&chip->mutex);
2462 			schedule();
2463 			remove_wait_queue(&chip->wq, &wait);
2464 			mutex_lock(&chip->mutex);
2465 			continue;
2466 		}
2467 		if (chip->erase_suspended) {
2468 			/* This erase was suspended and resumed.
2469 			   Adjust the timeout */
2470 			timeo = jiffies + (HZ*20); /* FIXME */
2471 			chip->erase_suspended = 0;
2472 		}
2473 
2474 		if (chip_ready(map, chip, adr, &datum)) {
2475 			if (cfi_check_err_status(map, chip, adr))
2476 				ret = -EIO;
2477 			break;
2478 		}
2479 
2480 		if (time_after(jiffies, timeo)) {
2481 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2482 			       __func__);
2483 			ret = -EIO;
2484 			break;
2485 		}
2486 
2487 		/* Latency issues. Drop the lock, wait a while and retry */
2488 		UDELAY(map, chip, adr, 1000000/HZ);
2489 	}
2490 	/* Did we succeed? */
2491 	if (ret) {
2492 		/* reset on all failures. */
2493 		map_write(map, CMD(0xF0), chip->start);
2494 		/* FIXME - should have reset delay before continuing */
2495 
2496 		if (++retry_cnt <= MAX_RETRIES) {
2497 			ret = 0;
2498 			goto retry;
2499 		}
2500 	}
2501 
2502 	chip->state = FL_READY;
2503 	xip_enable(map, chip, adr);
2504 	DISABLE_VPP(map);
2505 	put_chip(map, chip, adr);
2506 	mutex_unlock(&chip->mutex);
2507 
2508 	return ret;
2509 }
2510 
2511 
do_erase_oneblock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2512 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2513 {
2514 	struct cfi_private *cfi = map->fldrv_priv;
2515 	unsigned long timeo;
2516 	DECLARE_WAITQUEUE(wait, current);
2517 	int ret;
2518 	int retry_cnt = 0;
2519 	map_word datum = map_word_ff(map);
2520 
2521 	adr += chip->start;
2522 
2523 	mutex_lock(&chip->mutex);
2524 	ret = get_chip(map, chip, adr, FL_ERASING);
2525 	if (ret) {
2526 		mutex_unlock(&chip->mutex);
2527 		return ret;
2528 	}
2529 
2530 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2531 		 __func__, adr);
2532 
2533 	XIP_INVAL_CACHED_RANGE(map, adr, len);
2534 	ENABLE_VPP(map);
2535 	xip_disable(map, chip, adr);
2536 
2537  retry:
2538 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2539 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2540 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2541 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2542 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2543 	map_write(map, cfi->sector_erase_cmd, adr);
2544 
2545 	chip->state = FL_ERASING;
2546 	chip->erase_suspended = 0;
2547 	chip->in_progress_block_addr = adr;
2548 	chip->in_progress_block_mask = ~(len - 1);
2549 
2550 	INVALIDATE_CACHE_UDELAY(map, chip,
2551 				adr, len,
2552 				chip->erase_time*500);
2553 
2554 	timeo = jiffies + (HZ*20);
2555 
2556 	for (;;) {
2557 		if (chip->state != FL_ERASING) {
2558 			/* Someone's suspended the erase. Sleep */
2559 			set_current_state(TASK_UNINTERRUPTIBLE);
2560 			add_wait_queue(&chip->wq, &wait);
2561 			mutex_unlock(&chip->mutex);
2562 			schedule();
2563 			remove_wait_queue(&chip->wq, &wait);
2564 			mutex_lock(&chip->mutex);
2565 			continue;
2566 		}
2567 		if (chip->erase_suspended) {
2568 			/* This erase was suspended and resumed.
2569 			   Adjust the timeout */
2570 			timeo = jiffies + (HZ*20); /* FIXME */
2571 			chip->erase_suspended = 0;
2572 		}
2573 
2574 		if (chip_ready(map, chip, adr, &datum)) {
2575 			if (cfi_check_err_status(map, chip, adr))
2576 				ret = -EIO;
2577 			break;
2578 		}
2579 
2580 		if (time_after(jiffies, timeo)) {
2581 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2582 			       __func__);
2583 			ret = -EIO;
2584 			break;
2585 		}
2586 
2587 		/* Latency issues. Drop the lock, wait a while and retry */
2588 		UDELAY(map, chip, adr, 1000000/HZ);
2589 	}
2590 	/* Did we succeed? */
2591 	if (ret) {
2592 		/* reset on all failures. */
2593 		map_write(map, CMD(0xF0), chip->start);
2594 		/* FIXME - should have reset delay before continuing */
2595 
2596 		if (++retry_cnt <= MAX_RETRIES) {
2597 			ret = 0;
2598 			goto retry;
2599 		}
2600 	}
2601 
2602 	chip->state = FL_READY;
2603 	xip_enable(map, chip, adr);
2604 	DISABLE_VPP(map);
2605 	put_chip(map, chip, adr);
2606 	mutex_unlock(&chip->mutex);
2607 	return ret;
2608 }
2609 
2610 
cfi_amdstd_erase_varsize(struct mtd_info * mtd,struct erase_info * instr)2611 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2612 {
2613 	return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2614 				instr->len, NULL);
2615 }
2616 
2617 
cfi_amdstd_erase_chip(struct mtd_info * mtd,struct erase_info * instr)2618 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2619 {
2620 	struct map_info *map = mtd->priv;
2621 	struct cfi_private *cfi = map->fldrv_priv;
2622 
2623 	if (instr->addr != 0)
2624 		return -EINVAL;
2625 
2626 	if (instr->len != mtd->size)
2627 		return -EINVAL;
2628 
2629 	return do_erase_chip(map, &cfi->chips[0]);
2630 }
2631 
do_atmel_lock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2632 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2633 			 unsigned long adr, int len, void *thunk)
2634 {
2635 	struct cfi_private *cfi = map->fldrv_priv;
2636 	int ret;
2637 
2638 	mutex_lock(&chip->mutex);
2639 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2640 	if (ret)
2641 		goto out_unlock;
2642 	chip->state = FL_LOCKING;
2643 
2644 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2645 
2646 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2647 			 cfi->device_type, NULL);
2648 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2649 			 cfi->device_type, NULL);
2650 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2651 			 cfi->device_type, NULL);
2652 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2653 			 cfi->device_type, NULL);
2654 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2655 			 cfi->device_type, NULL);
2656 	map_write(map, CMD(0x40), chip->start + adr);
2657 
2658 	chip->state = FL_READY;
2659 	put_chip(map, chip, adr + chip->start);
2660 	ret = 0;
2661 
2662 out_unlock:
2663 	mutex_unlock(&chip->mutex);
2664 	return ret;
2665 }
2666 
do_atmel_unlock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2667 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2668 			   unsigned long adr, int len, void *thunk)
2669 {
2670 	struct cfi_private *cfi = map->fldrv_priv;
2671 	int ret;
2672 
2673 	mutex_lock(&chip->mutex);
2674 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2675 	if (ret)
2676 		goto out_unlock;
2677 	chip->state = FL_UNLOCKING;
2678 
2679 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2680 
2681 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2682 			 cfi->device_type, NULL);
2683 	map_write(map, CMD(0x70), adr);
2684 
2685 	chip->state = FL_READY;
2686 	put_chip(map, chip, adr + chip->start);
2687 	ret = 0;
2688 
2689 out_unlock:
2690 	mutex_unlock(&chip->mutex);
2691 	return ret;
2692 }
2693 
cfi_atmel_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2694 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2695 {
2696 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2697 }
2698 
cfi_atmel_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2699 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2700 {
2701 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2702 }
2703 
2704 /*
2705  * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2706  */
2707 
2708 struct ppb_lock {
2709 	struct flchip *chip;
2710 	unsigned long adr;
2711 	int locked;
2712 };
2713 
2714 #define DO_XXLOCK_ONEBLOCK_LOCK		((void *)1)
2715 #define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *)2)
2716 #define DO_XXLOCK_ONEBLOCK_GETLOCK	((void *)3)
2717 
do_ppb_xxlock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2718 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2719 					struct flchip *chip,
2720 					unsigned long adr, int len, void *thunk)
2721 {
2722 	struct cfi_private *cfi = map->fldrv_priv;
2723 	unsigned long timeo;
2724 	int ret;
2725 
2726 	adr += chip->start;
2727 	mutex_lock(&chip->mutex);
2728 	ret = get_chip(map, chip, adr, FL_LOCKING);
2729 	if (ret) {
2730 		mutex_unlock(&chip->mutex);
2731 		return ret;
2732 	}
2733 
2734 	pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2735 
2736 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2737 			 cfi->device_type, NULL);
2738 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2739 			 cfi->device_type, NULL);
2740 	/* PPB entry command */
2741 	cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2742 			 cfi->device_type, NULL);
2743 
2744 	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2745 		chip->state = FL_LOCKING;
2746 		map_write(map, CMD(0xA0), adr);
2747 		map_write(map, CMD(0x00), adr);
2748 	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2749 		/*
2750 		 * Unlocking of one specific sector is not supported, so we
2751 		 * have to unlock all sectors of this device instead
2752 		 */
2753 		chip->state = FL_UNLOCKING;
2754 		map_write(map, CMD(0x80), chip->start);
2755 		map_write(map, CMD(0x30), chip->start);
2756 	} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2757 		chip->state = FL_JEDEC_QUERY;
2758 		/* Return locked status: 0->locked, 1->unlocked */
2759 		ret = !cfi_read_query(map, adr);
2760 	} else
2761 		BUG();
2762 
2763 	/*
2764 	 * Wait for some time as unlocking of all sectors takes quite long
2765 	 */
2766 	timeo = jiffies + msecs_to_jiffies(2000);	/* 2s max (un)locking */
2767 	for (;;) {
2768 		if (chip_ready(map, chip, adr, NULL))
2769 			break;
2770 
2771 		if (time_after(jiffies, timeo)) {
2772 			printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2773 			ret = -EIO;
2774 			break;
2775 		}
2776 
2777 		UDELAY(map, chip, adr, 1);
2778 	}
2779 
2780 	/* Exit BC commands */
2781 	map_write(map, CMD(0x90), chip->start);
2782 	map_write(map, CMD(0x00), chip->start);
2783 
2784 	chip->state = FL_READY;
2785 	put_chip(map, chip, adr);
2786 	mutex_unlock(&chip->mutex);
2787 
2788 	return ret;
2789 }
2790 
cfi_ppb_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2791 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2792 				       uint64_t len)
2793 {
2794 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2795 				DO_XXLOCK_ONEBLOCK_LOCK);
2796 }
2797 
cfi_ppb_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2798 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2799 					 uint64_t len)
2800 {
2801 	struct mtd_erase_region_info *regions = mtd->eraseregions;
2802 	struct map_info *map = mtd->priv;
2803 	struct cfi_private *cfi = map->fldrv_priv;
2804 	struct ppb_lock *sect;
2805 	unsigned long adr;
2806 	loff_t offset;
2807 	uint64_t length;
2808 	int chipnum;
2809 	int i;
2810 	int sectors;
2811 	int ret;
2812 	int max_sectors;
2813 
2814 	/*
2815 	 * PPB unlocking always unlocks all sectors of the flash chip.
2816 	 * We need to re-lock all previously locked sectors. So lets
2817 	 * first check the locking status of all sectors and save
2818 	 * it for future use.
2819 	 */
2820 	max_sectors = 0;
2821 	for (i = 0; i < mtd->numeraseregions; i++)
2822 		max_sectors += regions[i].numblocks;
2823 
2824 	sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL);
2825 	if (!sect)
2826 		return -ENOMEM;
2827 
2828 	/*
2829 	 * This code to walk all sectors is a slightly modified version
2830 	 * of the cfi_varsize_frob() code.
2831 	 */
2832 	i = 0;
2833 	chipnum = 0;
2834 	adr = 0;
2835 	sectors = 0;
2836 	offset = 0;
2837 	length = mtd->size;
2838 
2839 	while (length) {
2840 		int size = regions[i].erasesize;
2841 
2842 		/*
2843 		 * Only test sectors that shall not be unlocked. The other
2844 		 * sectors shall be unlocked, so lets keep their locking
2845 		 * status at "unlocked" (locked=0) for the final re-locking.
2846 		 */
2847 		if ((offset < ofs) || (offset >= (ofs + len))) {
2848 			sect[sectors].chip = &cfi->chips[chipnum];
2849 			sect[sectors].adr = adr;
2850 			sect[sectors].locked = do_ppb_xxlock(
2851 				map, &cfi->chips[chipnum], adr, 0,
2852 				DO_XXLOCK_ONEBLOCK_GETLOCK);
2853 		}
2854 
2855 		adr += size;
2856 		offset += size;
2857 		length -= size;
2858 
2859 		if (offset == regions[i].offset + size * regions[i].numblocks)
2860 			i++;
2861 
2862 		if (adr >> cfi->chipshift) {
2863 			if (offset >= (ofs + len))
2864 				break;
2865 			adr = 0;
2866 			chipnum++;
2867 
2868 			if (chipnum >= cfi->numchips)
2869 				break;
2870 		}
2871 
2872 		sectors++;
2873 		if (sectors >= max_sectors) {
2874 			printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2875 			       max_sectors);
2876 			kfree(sect);
2877 			return -EINVAL;
2878 		}
2879 	}
2880 
2881 	/* Now unlock the whole chip */
2882 	ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2883 			       DO_XXLOCK_ONEBLOCK_UNLOCK);
2884 	if (ret) {
2885 		kfree(sect);
2886 		return ret;
2887 	}
2888 
2889 	/*
2890 	 * PPB unlocking always unlocks all sectors of the flash chip.
2891 	 * We need to re-lock all previously locked sectors.
2892 	 */
2893 	for (i = 0; i < sectors; i++) {
2894 		if (sect[i].locked)
2895 			do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2896 				      DO_XXLOCK_ONEBLOCK_LOCK);
2897 	}
2898 
2899 	kfree(sect);
2900 	return ret;
2901 }
2902 
cfi_ppb_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2903 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2904 					    uint64_t len)
2905 {
2906 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2907 				DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2908 }
2909 
cfi_amdstd_sync(struct mtd_info * mtd)2910 static void cfi_amdstd_sync (struct mtd_info *mtd)
2911 {
2912 	struct map_info *map = mtd->priv;
2913 	struct cfi_private *cfi = map->fldrv_priv;
2914 	int i;
2915 	struct flchip *chip;
2916 	int ret = 0;
2917 	DECLARE_WAITQUEUE(wait, current);
2918 
2919 	for (i=0; !ret && i<cfi->numchips; i++) {
2920 		chip = &cfi->chips[i];
2921 
2922 	retry:
2923 		mutex_lock(&chip->mutex);
2924 
2925 		switch(chip->state) {
2926 		case FL_READY:
2927 		case FL_STATUS:
2928 		case FL_CFI_QUERY:
2929 		case FL_JEDEC_QUERY:
2930 			chip->oldstate = chip->state;
2931 			chip->state = FL_SYNCING;
2932 			/* No need to wake_up() on this state change -
2933 			 * as the whole point is that nobody can do anything
2934 			 * with the chip now anyway.
2935 			 */
2936 			fallthrough;
2937 		case FL_SYNCING:
2938 			mutex_unlock(&chip->mutex);
2939 			break;
2940 
2941 		default:
2942 			/* Not an idle state */
2943 			set_current_state(TASK_UNINTERRUPTIBLE);
2944 			add_wait_queue(&chip->wq, &wait);
2945 
2946 			mutex_unlock(&chip->mutex);
2947 
2948 			schedule();
2949 
2950 			remove_wait_queue(&chip->wq, &wait);
2951 
2952 			goto retry;
2953 		}
2954 	}
2955 
2956 	/* Unlock the chips again */
2957 
2958 	for (i--; i >=0; i--) {
2959 		chip = &cfi->chips[i];
2960 
2961 		mutex_lock(&chip->mutex);
2962 
2963 		if (chip->state == FL_SYNCING) {
2964 			chip->state = chip->oldstate;
2965 			wake_up(&chip->wq);
2966 		}
2967 		mutex_unlock(&chip->mutex);
2968 	}
2969 }
2970 
2971 
cfi_amdstd_suspend(struct mtd_info * mtd)2972 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2973 {
2974 	struct map_info *map = mtd->priv;
2975 	struct cfi_private *cfi = map->fldrv_priv;
2976 	int i;
2977 	struct flchip *chip;
2978 	int ret = 0;
2979 
2980 	for (i=0; !ret && i<cfi->numchips; i++) {
2981 		chip = &cfi->chips[i];
2982 
2983 		mutex_lock(&chip->mutex);
2984 
2985 		switch(chip->state) {
2986 		case FL_READY:
2987 		case FL_STATUS:
2988 		case FL_CFI_QUERY:
2989 		case FL_JEDEC_QUERY:
2990 			chip->oldstate = chip->state;
2991 			chip->state = FL_PM_SUSPENDED;
2992 			/* No need to wake_up() on this state change -
2993 			 * as the whole point is that nobody can do anything
2994 			 * with the chip now anyway.
2995 			 */
2996 			break;
2997 		case FL_PM_SUSPENDED:
2998 			break;
2999 
3000 		default:
3001 			ret = -EAGAIN;
3002 			break;
3003 		}
3004 		mutex_unlock(&chip->mutex);
3005 	}
3006 
3007 	/* Unlock the chips again */
3008 
3009 	if (ret) {
3010 		for (i--; i >=0; i--) {
3011 			chip = &cfi->chips[i];
3012 
3013 			mutex_lock(&chip->mutex);
3014 
3015 			if (chip->state == FL_PM_SUSPENDED) {
3016 				chip->state = chip->oldstate;
3017 				wake_up(&chip->wq);
3018 			}
3019 			mutex_unlock(&chip->mutex);
3020 		}
3021 	}
3022 
3023 	return ret;
3024 }
3025 
3026 
cfi_amdstd_resume(struct mtd_info * mtd)3027 static void cfi_amdstd_resume(struct mtd_info *mtd)
3028 {
3029 	struct map_info *map = mtd->priv;
3030 	struct cfi_private *cfi = map->fldrv_priv;
3031 	int i;
3032 	struct flchip *chip;
3033 
3034 	for (i=0; i<cfi->numchips; i++) {
3035 
3036 		chip = &cfi->chips[i];
3037 
3038 		mutex_lock(&chip->mutex);
3039 
3040 		if (chip->state == FL_PM_SUSPENDED) {
3041 			chip->state = FL_READY;
3042 			map_write(map, CMD(0xF0), chip->start);
3043 			wake_up(&chip->wq);
3044 		}
3045 		else
3046 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
3047 
3048 		mutex_unlock(&chip->mutex);
3049 	}
3050 }
3051 
3052 
3053 /*
3054  * Ensure that the flash device is put back into read array mode before
3055  * unloading the driver or rebooting.  On some systems, rebooting while
3056  * the flash is in query/program/erase mode will prevent the CPU from
3057  * fetching the bootloader code, requiring a hard reset or power cycle.
3058  */
cfi_amdstd_reset(struct mtd_info * mtd)3059 static int cfi_amdstd_reset(struct mtd_info *mtd)
3060 {
3061 	struct map_info *map = mtd->priv;
3062 	struct cfi_private *cfi = map->fldrv_priv;
3063 	int i, ret;
3064 	struct flchip *chip;
3065 
3066 	for (i = 0; i < cfi->numchips; i++) {
3067 
3068 		chip = &cfi->chips[i];
3069 
3070 		mutex_lock(&chip->mutex);
3071 
3072 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
3073 		if (!ret) {
3074 			map_write(map, CMD(0xF0), chip->start);
3075 			chip->state = FL_SHUTDOWN;
3076 			put_chip(map, chip, chip->start);
3077 		}
3078 
3079 		mutex_unlock(&chip->mutex);
3080 	}
3081 
3082 	return 0;
3083 }
3084 
3085 
cfi_amdstd_reboot(struct notifier_block * nb,unsigned long val,void * v)3086 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
3087 			       void *v)
3088 {
3089 	struct mtd_info *mtd;
3090 
3091 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
3092 	cfi_amdstd_reset(mtd);
3093 	return NOTIFY_DONE;
3094 }
3095 
3096 
cfi_amdstd_destroy(struct mtd_info * mtd)3097 static void cfi_amdstd_destroy(struct mtd_info *mtd)
3098 {
3099 	struct map_info *map = mtd->priv;
3100 	struct cfi_private *cfi = map->fldrv_priv;
3101 
3102 	cfi_amdstd_reset(mtd);
3103 	unregister_reboot_notifier(&mtd->reboot_notifier);
3104 	kfree(cfi->cmdset_priv);
3105 	kfree(cfi->cfiq);
3106 	kfree(cfi);
3107 	kfree(mtd->eraseregions);
3108 }
3109 
3110 MODULE_LICENSE("GPL");
3111 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
3112 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
3113 MODULE_ALIAS("cfi_cmdset_0006");
3114 MODULE_ALIAS("cfi_cmdset_0701");
3115