1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * cfg80211 scan result handling
4   *
5   * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6   * Copyright 2013-2014  Intel Mobile Communications GmbH
7   * Copyright 2016	Intel Deutschland GmbH
8   * Copyright (C) 2018-2024 Intel Corporation
9   */
10  #include <linux/kernel.h>
11  #include <linux/slab.h>
12  #include <linux/module.h>
13  #include <linux/netdevice.h>
14  #include <linux/wireless.h>
15  #include <linux/nl80211.h>
16  #include <linux/etherdevice.h>
17  #include <linux/crc32.h>
18  #include <linux/bitfield.h>
19  #include <net/arp.h>
20  #include <net/cfg80211.h>
21  #include <net/cfg80211-wext.h>
22  #include <net/iw_handler.h>
23  #include <kunit/visibility.h>
24  #include "core.h"
25  #include "nl80211.h"
26  #include "wext-compat.h"
27  #include "rdev-ops.h"
28  
29  /**
30   * DOC: BSS tree/list structure
31   *
32   * At the top level, the BSS list is kept in both a list in each
33   * registered device (@bss_list) as well as an RB-tree for faster
34   * lookup. In the RB-tree, entries can be looked up using their
35   * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36   * for other BSSes.
37   *
38   * Due to the possibility of hidden SSIDs, there's a second level
39   * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40   * The hidden_list connects all BSSes belonging to a single AP
41   * that has a hidden SSID, and connects beacon and probe response
42   * entries. For a probe response entry for a hidden SSID, the
43   * hidden_beacon_bss pointer points to the BSS struct holding the
44   * beacon's information.
45   *
46   * Reference counting is done for all these references except for
47   * the hidden_list, so that a beacon BSS struct that is otherwise
48   * not referenced has one reference for being on the bss_list and
49   * one for each probe response entry that points to it using the
50   * hidden_beacon_bss pointer. When a BSS struct that has such a
51   * pointer is get/put, the refcount update is also propagated to
52   * the referenced struct, this ensure that it cannot get removed
53   * while somebody is using the probe response version.
54   *
55   * Note that the hidden_beacon_bss pointer never changes, due to
56   * the reference counting. Therefore, no locking is needed for
57   * it.
58   *
59   * Also note that the hidden_beacon_bss pointer is only relevant
60   * if the driver uses something other than the IEs, e.g. private
61   * data stored in the BSS struct, since the beacon IEs are
62   * also linked into the probe response struct.
63   */
64  
65  /*
66   * Limit the number of BSS entries stored in mac80211. Each one is
67   * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68   * If somebody wants to really attack this though, they'd likely
69   * use small beacons, and only one type of frame, limiting each of
70   * the entries to a much smaller size (in order to generate more
71   * entries in total, so overhead is bigger.)
72   */
73  static int bss_entries_limit = 1000;
74  module_param(bss_entries_limit, int, 0644);
75  MODULE_PARM_DESC(bss_entries_limit,
76                   "limit to number of scan BSS entries (per wiphy, default 1000)");
77  
78  #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
79  
bss_free(struct cfg80211_internal_bss * bss)80  static void bss_free(struct cfg80211_internal_bss *bss)
81  {
82  	struct cfg80211_bss_ies *ies;
83  
84  	if (WARN_ON(atomic_read(&bss->hold)))
85  		return;
86  
87  	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88  	if (ies && !bss->pub.hidden_beacon_bss)
89  		kfree_rcu(ies, rcu_head);
90  	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91  	if (ies)
92  		kfree_rcu(ies, rcu_head);
93  
94  	/*
95  	 * This happens when the module is removed, it doesn't
96  	 * really matter any more save for completeness
97  	 */
98  	if (!list_empty(&bss->hidden_list))
99  		list_del(&bss->hidden_list);
100  
101  	kfree(bss);
102  }
103  
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)104  static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105  			       struct cfg80211_internal_bss *bss)
106  {
107  	lockdep_assert_held(&rdev->bss_lock);
108  
109  	bss->refcount++;
110  
111  	if (bss->pub.hidden_beacon_bss)
112  		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113  
114  	if (bss->pub.transmitted_bss)
115  		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116  }
117  
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)118  static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119  			       struct cfg80211_internal_bss *bss)
120  {
121  	lockdep_assert_held(&rdev->bss_lock);
122  
123  	if (bss->pub.hidden_beacon_bss) {
124  		struct cfg80211_internal_bss *hbss;
125  
126  		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127  		hbss->refcount--;
128  		if (hbss->refcount == 0)
129  			bss_free(hbss);
130  	}
131  
132  	if (bss->pub.transmitted_bss) {
133  		struct cfg80211_internal_bss *tbss;
134  
135  		tbss = bss_from_pub(bss->pub.transmitted_bss);
136  		tbss->refcount--;
137  		if (tbss->refcount == 0)
138  			bss_free(tbss);
139  	}
140  
141  	bss->refcount--;
142  	if (bss->refcount == 0)
143  		bss_free(bss);
144  }
145  
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)146  static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147  				  struct cfg80211_internal_bss *bss)
148  {
149  	lockdep_assert_held(&rdev->bss_lock);
150  
151  	if (!list_empty(&bss->hidden_list)) {
152  		/*
153  		 * don't remove the beacon entry if it has
154  		 * probe responses associated with it
155  		 */
156  		if (!bss->pub.hidden_beacon_bss)
157  			return false;
158  		/*
159  		 * if it's a probe response entry break its
160  		 * link to the other entries in the group
161  		 */
162  		list_del_init(&bss->hidden_list);
163  	}
164  
165  	list_del_init(&bss->list);
166  	list_del_init(&bss->pub.nontrans_list);
167  	rb_erase(&bss->rbn, &rdev->bss_tree);
168  	rdev->bss_entries--;
169  	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170  		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
171  		  rdev->bss_entries, list_empty(&rdev->bss_list));
172  	bss_ref_put(rdev, bss);
173  	return true;
174  }
175  
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)176  bool cfg80211_is_element_inherited(const struct element *elem,
177  				   const struct element *non_inherit_elem)
178  {
179  	u8 id_len, ext_id_len, i, loop_len, id;
180  	const u8 *list;
181  
182  	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183  		return false;
184  
185  	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186  	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187  		return false;
188  
189  	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190  		return true;
191  
192  	/*
193  	 * non inheritance element format is:
194  	 * ext ID (56) | IDs list len | list | extension IDs list len | list
195  	 * Both lists are optional. Both lengths are mandatory.
196  	 * This means valid length is:
197  	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198  	 */
199  	id_len = non_inherit_elem->data[1];
200  	if (non_inherit_elem->datalen < 3 + id_len)
201  		return true;
202  
203  	ext_id_len = non_inherit_elem->data[2 + id_len];
204  	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205  		return true;
206  
207  	if (elem->id == WLAN_EID_EXTENSION) {
208  		if (!ext_id_len)
209  			return true;
210  		loop_len = ext_id_len;
211  		list = &non_inherit_elem->data[3 + id_len];
212  		id = elem->data[0];
213  	} else {
214  		if (!id_len)
215  			return true;
216  		loop_len = id_len;
217  		list = &non_inherit_elem->data[2];
218  		id = elem->id;
219  	}
220  
221  	for (i = 0; i < loop_len; i++) {
222  		if (list[i] == id)
223  			return false;
224  	}
225  
226  	return true;
227  }
228  EXPORT_SYMBOL(cfg80211_is_element_inherited);
229  
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)230  static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231  					    const u8 *ie, size_t ie_len,
232  					    u8 **pos, u8 *buf, size_t buf_len)
233  {
234  	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235  		    elem->data + elem->datalen > ie + ie_len))
236  		return 0;
237  
238  	if (elem->datalen + 2 > buf + buf_len - *pos)
239  		return 0;
240  
241  	memcpy(*pos, elem, elem->datalen + 2);
242  	*pos += elem->datalen + 2;
243  
244  	/* Finish if it is not fragmented  */
245  	if (elem->datalen != 255)
246  		return *pos - buf;
247  
248  	ie_len = ie + ie_len - elem->data - elem->datalen;
249  	ie = (const u8 *)elem->data + elem->datalen;
250  
251  	for_each_element(elem, ie, ie_len) {
252  		if (elem->id != WLAN_EID_FRAGMENT)
253  			break;
254  
255  		if (elem->datalen + 2 > buf + buf_len - *pos)
256  			return 0;
257  
258  		memcpy(*pos, elem, elem->datalen + 2);
259  		*pos += elem->datalen + 2;
260  
261  		if (elem->datalen != 255)
262  			break;
263  	}
264  
265  	return *pos - buf;
266  }
267  
268  VISIBLE_IF_CFG80211_KUNIT size_t
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)269  cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270  		    const u8 *subie, size_t subie_len,
271  		    u8 *new_ie, size_t new_ie_len)
272  {
273  	const struct element *non_inherit_elem, *parent, *sub;
274  	u8 *pos = new_ie;
275  	u8 id, ext_id;
276  	unsigned int match_len;
277  
278  	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279  						  subie, subie_len);
280  
281  	/* We copy the elements one by one from the parent to the generated
282  	 * elements.
283  	 * If they are not inherited (included in subie or in the non
284  	 * inheritance element), then we copy all occurrences the first time
285  	 * we see this element type.
286  	 */
287  	for_each_element(parent, ie, ielen) {
288  		if (parent->id == WLAN_EID_FRAGMENT)
289  			continue;
290  
291  		if (parent->id == WLAN_EID_EXTENSION) {
292  			if (parent->datalen < 1)
293  				continue;
294  
295  			id = WLAN_EID_EXTENSION;
296  			ext_id = parent->data[0];
297  			match_len = 1;
298  		} else {
299  			id = parent->id;
300  			match_len = 0;
301  		}
302  
303  		/* Find first occurrence in subie */
304  		sub = cfg80211_find_elem_match(id, subie, subie_len,
305  					       &ext_id, match_len, 0);
306  
307  		/* Copy from parent if not in subie and inherited */
308  		if (!sub &&
309  		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310  			if (!cfg80211_copy_elem_with_frags(parent,
311  							   ie, ielen,
312  							   &pos, new_ie,
313  							   new_ie_len))
314  				return 0;
315  
316  			continue;
317  		}
318  
319  		/* Already copied if an earlier element had the same type */
320  		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321  					     &ext_id, match_len, 0))
322  			continue;
323  
324  		/* Not inheriting, copy all similar elements from subie */
325  		while (sub) {
326  			if (!cfg80211_copy_elem_with_frags(sub,
327  							   subie, subie_len,
328  							   &pos, new_ie,
329  							   new_ie_len))
330  				return 0;
331  
332  			sub = cfg80211_find_elem_match(id,
333  						       sub->data + sub->datalen,
334  						       subie_len + subie -
335  						       (sub->data +
336  							sub->datalen),
337  						       &ext_id, match_len, 0);
338  		}
339  	}
340  
341  	/* The above misses elements that are included in subie but not in the
342  	 * parent, so do a pass over subie and append those.
343  	 * Skip the non-tx BSSID caps and non-inheritance element.
344  	 */
345  	for_each_element(sub, subie, subie_len) {
346  		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347  			continue;
348  
349  		if (sub->id == WLAN_EID_FRAGMENT)
350  			continue;
351  
352  		if (sub->id == WLAN_EID_EXTENSION) {
353  			if (sub->datalen < 1)
354  				continue;
355  
356  			id = WLAN_EID_EXTENSION;
357  			ext_id = sub->data[0];
358  			match_len = 1;
359  
360  			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361  				continue;
362  		} else {
363  			id = sub->id;
364  			match_len = 0;
365  		}
366  
367  		/* Processed if one was included in the parent */
368  		if (cfg80211_find_elem_match(id, ie, ielen,
369  					     &ext_id, match_len, 0))
370  			continue;
371  
372  		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373  						   &pos, new_ie, new_ie_len))
374  			return 0;
375  	}
376  
377  	return pos - new_ie;
378  }
379  EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380  
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)381  static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382  		   const u8 *ssid, size_t ssid_len)
383  {
384  	const struct cfg80211_bss_ies *ies;
385  	const struct element *ssid_elem;
386  
387  	if (bssid && !ether_addr_equal(a->bssid, bssid))
388  		return false;
389  
390  	if (!ssid)
391  		return true;
392  
393  	ies = rcu_access_pointer(a->ies);
394  	if (!ies)
395  		return false;
396  	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397  	if (!ssid_elem)
398  		return false;
399  	if (ssid_elem->datalen != ssid_len)
400  		return false;
401  	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402  }
403  
404  static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)405  cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406  			   struct cfg80211_bss *nontrans_bss)
407  {
408  	const struct element *ssid_elem;
409  	struct cfg80211_bss *bss = NULL;
410  
411  	rcu_read_lock();
412  	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413  	if (!ssid_elem) {
414  		rcu_read_unlock();
415  		return -EINVAL;
416  	}
417  
418  	/* check if nontrans_bss is in the list */
419  	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420  		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421  			   ssid_elem->datalen)) {
422  			rcu_read_unlock();
423  			return 0;
424  		}
425  	}
426  
427  	rcu_read_unlock();
428  
429  	/*
430  	 * This is a bit weird - it's not on the list, but already on another
431  	 * one! The only way that could happen is if there's some BSSID/SSID
432  	 * shared by multiple APs in their multi-BSSID profiles, potentially
433  	 * with hidden SSID mixed in ... ignore it.
434  	 */
435  	if (!list_empty(&nontrans_bss->nontrans_list))
436  		return -EINVAL;
437  
438  	/* add to the list */
439  	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440  	return 0;
441  }
442  
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)443  static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444  				  unsigned long expire_time)
445  {
446  	struct cfg80211_internal_bss *bss, *tmp;
447  	bool expired = false;
448  
449  	lockdep_assert_held(&rdev->bss_lock);
450  
451  	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452  		if (atomic_read(&bss->hold))
453  			continue;
454  		if (!time_after(expire_time, bss->ts))
455  			continue;
456  
457  		if (__cfg80211_unlink_bss(rdev, bss))
458  			expired = true;
459  	}
460  
461  	if (expired)
462  		rdev->bss_generation++;
463  }
464  
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)465  static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466  {
467  	struct cfg80211_internal_bss *bss, *oldest = NULL;
468  	bool ret;
469  
470  	lockdep_assert_held(&rdev->bss_lock);
471  
472  	list_for_each_entry(bss, &rdev->bss_list, list) {
473  		if (atomic_read(&bss->hold))
474  			continue;
475  
476  		if (!list_empty(&bss->hidden_list) &&
477  		    !bss->pub.hidden_beacon_bss)
478  			continue;
479  
480  		if (oldest && time_before(oldest->ts, bss->ts))
481  			continue;
482  		oldest = bss;
483  	}
484  
485  	if (WARN_ON(!oldest))
486  		return false;
487  
488  	/*
489  	 * The callers make sure to increase rdev->bss_generation if anything
490  	 * gets removed (and a new entry added), so there's no need to also do
491  	 * it here.
492  	 */
493  
494  	ret = __cfg80211_unlink_bss(rdev, oldest);
495  	WARN_ON(!ret);
496  	return ret;
497  }
498  
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)499  static u8 cfg80211_parse_bss_param(u8 data,
500  				   struct cfg80211_colocated_ap *coloc_ap)
501  {
502  	coloc_ap->oct_recommended =
503  		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504  	coloc_ap->same_ssid =
505  		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506  	coloc_ap->multi_bss =
507  		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508  	coloc_ap->transmitted_bssid =
509  		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510  	coloc_ap->unsolicited_probe =
511  		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512  	coloc_ap->colocated_ess =
513  		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514  
515  	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516  }
517  
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)518  static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519  				    const struct element **elem, u32 *s_ssid)
520  {
521  
522  	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523  	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524  		return -EINVAL;
525  
526  	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527  	return 0;
528  }
529  
530  VISIBLE_IF_CFG80211_KUNIT void
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)531  cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532  {
533  	struct cfg80211_colocated_ap *ap, *tmp_ap;
534  
535  	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536  		list_del(&ap->list);
537  		kfree(ap);
538  	}
539  }
540  EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541  
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,u32 s_ssid_tmp)542  static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543  				  const u8 *pos, u8 length,
544  				  const struct element *ssid_elem,
545  				  u32 s_ssid_tmp)
546  {
547  	u8 bss_params;
548  
549  	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550  
551  	/* The length is already verified by the caller to contain bss_params */
552  	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553  		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554  
555  		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556  		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557  		entry->short_ssid_valid = true;
558  
559  		bss_params = tbtt_info->bss_params;
560  
561  		/* Ignore disabled links */
562  		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563  			if (le16_get_bits(tbtt_info->mld_params.params,
564  					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565  				return -EINVAL;
566  		}
567  
568  		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569  					  psd_20))
570  			entry->psd_20 = tbtt_info->psd_20;
571  	} else {
572  		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573  
574  		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575  
576  		bss_params = tbtt_info->bss_params;
577  
578  		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579  					  psd_20))
580  			entry->psd_20 = tbtt_info->psd_20;
581  	}
582  
583  	/* ignore entries with invalid BSSID */
584  	if (!is_valid_ether_addr(entry->bssid))
585  		return -EINVAL;
586  
587  	/* skip non colocated APs */
588  	if (!cfg80211_parse_bss_param(bss_params, entry))
589  		return -EINVAL;
590  
591  	/* no information about the short ssid. Consider the entry valid
592  	 * for now. It would later be dropped in case there are explicit
593  	 * SSIDs that need to be matched
594  	 */
595  	if (!entry->same_ssid && !entry->short_ssid_valid)
596  		return 0;
597  
598  	if (entry->same_ssid) {
599  		entry->short_ssid = s_ssid_tmp;
600  		entry->short_ssid_valid = true;
601  
602  		/*
603  		 * This is safe because we validate datalen in
604  		 * cfg80211_parse_colocated_ap(), before calling this
605  		 * function.
606  		 */
607  		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608  		entry->ssid_len = ssid_elem->datalen;
609  	}
610  
611  	return 0;
612  }
613  
cfg80211_iter_rnr(const u8 * elems,size_t elems_len,enum cfg80211_rnr_iter_ret (* iter)(void * data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len),void * iter_data)614  bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615  		       enum cfg80211_rnr_iter_ret
616  		       (*iter)(void *data, u8 type,
617  			       const struct ieee80211_neighbor_ap_info *info,
618  			       const u8 *tbtt_info, u8 tbtt_info_len),
619  		       void *iter_data)
620  {
621  	const struct element *rnr;
622  	const u8 *pos, *end;
623  
624  	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625  			    elems, elems_len) {
626  		const struct ieee80211_neighbor_ap_info *info;
627  
628  		pos = rnr->data;
629  		end = rnr->data + rnr->datalen;
630  
631  		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632  		while (sizeof(*info) <= end - pos) {
633  			u8 length, i, count;
634  			u8 type;
635  
636  			info = (void *)pos;
637  			count = u8_get_bits(info->tbtt_info_hdr,
638  					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639  				1;
640  			length = info->tbtt_info_len;
641  
642  			pos += sizeof(*info);
643  
644  			if (count * length > end - pos)
645  				return false;
646  
647  			type = u8_get_bits(info->tbtt_info_hdr,
648  					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649  
650  			for (i = 0; i < count; i++) {
651  				switch (iter(iter_data, type, info,
652  					     pos, length)) {
653  				case RNR_ITER_CONTINUE:
654  					break;
655  				case RNR_ITER_BREAK:
656  					return true;
657  				case RNR_ITER_ERROR:
658  					return false;
659  				}
660  
661  				pos += length;
662  			}
663  		}
664  
665  		if (pos != end)
666  			return false;
667  	}
668  
669  	return true;
670  }
671  EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672  
673  struct colocated_ap_data {
674  	const struct element *ssid_elem;
675  	struct list_head ap_list;
676  	u32 s_ssid_tmp;
677  	int n_coloc;
678  };
679  
680  static enum cfg80211_rnr_iter_ret
cfg80211_parse_colocated_ap_iter(void * _data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len)681  cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682  				 const struct ieee80211_neighbor_ap_info *info,
683  				 const u8 *tbtt_info, u8 tbtt_info_len)
684  {
685  	struct colocated_ap_data *data = _data;
686  	struct cfg80211_colocated_ap *entry;
687  	enum nl80211_band band;
688  
689  	if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690  		return RNR_ITER_CONTINUE;
691  
692  	if (!ieee80211_operating_class_to_band(info->op_class, &band))
693  		return RNR_ITER_CONTINUE;
694  
695  	/* TBTT info must include bss param + BSSID + (short SSID or
696  	 * same_ssid bit to be set). Ignore other options, and move to
697  	 * the next AP info
698  	 */
699  	if (band != NL80211_BAND_6GHZ ||
700  	    !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701  					   bss_params) ||
702  	      tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703  	      tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704  					   bss_params)))
705  		return RNR_ITER_CONTINUE;
706  
707  	entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708  	if (!entry)
709  		return RNR_ITER_ERROR;
710  
711  	entry->center_freq =
712  		ieee80211_channel_to_frequency(info->channel, band);
713  
714  	if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715  				    data->ssid_elem, data->s_ssid_tmp)) {
716  		data->n_coloc++;
717  		list_add_tail(&entry->list, &data->ap_list);
718  	} else {
719  		kfree(entry);
720  	}
721  
722  	return RNR_ITER_CONTINUE;
723  }
724  
725  VISIBLE_IF_CFG80211_KUNIT int
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)726  cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727  			    struct list_head *list)
728  {
729  	struct colocated_ap_data data = {};
730  	int ret;
731  
732  	INIT_LIST_HEAD(&data.ap_list);
733  
734  	ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735  	if (ret)
736  		return 0;
737  
738  	if (!cfg80211_iter_rnr(ies->data, ies->len,
739  			       cfg80211_parse_colocated_ap_iter, &data)) {
740  		cfg80211_free_coloc_ap_list(&data.ap_list);
741  		return 0;
742  	}
743  
744  	list_splice_tail(&data.ap_list, list);
745  	return data.n_coloc;
746  }
747  EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748  
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)749  static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750  					struct ieee80211_channel *chan,
751  					bool add_to_6ghz)
752  {
753  	int i;
754  	u32 n_channels = request->n_channels;
755  	struct cfg80211_scan_6ghz_params *params =
756  		&request->scan_6ghz_params[request->n_6ghz_params];
757  
758  	for (i = 0; i < n_channels; i++) {
759  		if (request->channels[i] == chan) {
760  			if (add_to_6ghz)
761  				params->channel_idx = i;
762  			return;
763  		}
764  	}
765  
766  	request->channels[n_channels] = chan;
767  	if (add_to_6ghz)
768  		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769  			n_channels;
770  
771  	request->n_channels++;
772  }
773  
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)774  static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
775  				     struct cfg80211_scan_request *request)
776  {
777  	int i;
778  	u32 s_ssid;
779  
780  	for (i = 0; i < request->n_ssids; i++) {
781  		/* wildcard ssid in the scan request */
782  		if (!request->ssids[i].ssid_len) {
783  			if (ap->multi_bss && !ap->transmitted_bssid)
784  				continue;
785  
786  			return true;
787  		}
788  
789  		if (ap->ssid_len &&
790  		    ap->ssid_len == request->ssids[i].ssid_len) {
791  			if (!memcmp(request->ssids[i].ssid, ap->ssid,
792  				    ap->ssid_len))
793  				return true;
794  		} else if (ap->short_ssid_valid) {
795  			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
796  					   request->ssids[i].ssid_len);
797  
798  			if (ap->short_ssid == s_ssid)
799  				return true;
800  		}
801  	}
802  
803  	return false;
804  }
805  
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)806  static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807  {
808  	u8 i;
809  	struct cfg80211_colocated_ap *ap;
810  	int n_channels, count = 0, err;
811  	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
812  	LIST_HEAD(coloc_ap_list);
813  	bool need_scan_psc = true;
814  	const struct ieee80211_sband_iftype_data *iftd;
815  	size_t size, offs_ssids, offs_6ghz_params, offs_ies;
816  
817  	rdev_req->scan_6ghz = true;
818  
819  	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820  		return -EOPNOTSUPP;
821  
822  	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823  					       rdev_req->wdev->iftype);
824  	if (!iftd || !iftd->he_cap.has_he)
825  		return -EOPNOTSUPP;
826  
827  	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828  
829  	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830  		struct cfg80211_internal_bss *intbss;
831  
832  		spin_lock_bh(&rdev->bss_lock);
833  		list_for_each_entry(intbss, &rdev->bss_list, list) {
834  			struct cfg80211_bss *res = &intbss->pub;
835  			const struct cfg80211_bss_ies *ies;
836  			const struct element *ssid_elem;
837  			struct cfg80211_colocated_ap *entry;
838  			u32 s_ssid_tmp;
839  			int ret;
840  
841  			ies = rcu_access_pointer(res->ies);
842  			count += cfg80211_parse_colocated_ap(ies,
843  							     &coloc_ap_list);
844  
845  			/* In case the scan request specified a specific BSSID
846  			 * and the BSS is found and operating on 6GHz band then
847  			 * add this AP to the collocated APs list.
848  			 * This is relevant for ML probe requests when the lower
849  			 * band APs have not been discovered.
850  			 */
851  			if (is_broadcast_ether_addr(rdev_req->bssid) ||
852  			    !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853  			    res->channel->band != NL80211_BAND_6GHZ)
854  				continue;
855  
856  			ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857  						       &s_ssid_tmp);
858  			if (ret)
859  				continue;
860  
861  			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862  					GFP_ATOMIC);
863  
864  			if (!entry)
865  				continue;
866  
867  			memcpy(entry->bssid, res->bssid, ETH_ALEN);
868  			entry->short_ssid = s_ssid_tmp;
869  			memcpy(entry->ssid, ssid_elem->data,
870  			       ssid_elem->datalen);
871  			entry->ssid_len = ssid_elem->datalen;
872  			entry->short_ssid_valid = true;
873  			entry->center_freq = res->channel->center_freq;
874  
875  			list_add_tail(&entry->list, &coloc_ap_list);
876  			count++;
877  		}
878  		spin_unlock_bh(&rdev->bss_lock);
879  	}
880  
881  	size = struct_size(request, channels, n_channels);
882  	offs_ssids = size;
883  	size += sizeof(*request->ssids) * rdev_req->n_ssids;
884  	offs_6ghz_params = size;
885  	size += sizeof(*request->scan_6ghz_params) * count;
886  	offs_ies = size;
887  	size += rdev_req->ie_len;
888  
889  	request = kzalloc(size, GFP_KERNEL);
890  	if (!request) {
891  		cfg80211_free_coloc_ap_list(&coloc_ap_list);
892  		return -ENOMEM;
893  	}
894  
895  	*request = *rdev_req;
896  	request->n_channels = 0;
897  	request->n_6ghz_params = 0;
898  	if (rdev_req->n_ssids) {
899  		/*
900  		 * Add the ssids from the parent scan request to the new
901  		 * scan request, so the driver would be able to use them
902  		 * in its probe requests to discover hidden APs on PSC
903  		 * channels.
904  		 */
905  		request->ssids = (void *)request + offs_ssids;
906  		memcpy(request->ssids, rdev_req->ssids,
907  		       sizeof(*request->ssids) * request->n_ssids);
908  	}
909  	request->scan_6ghz_params = (void *)request + offs_6ghz_params;
910  
911  	if (rdev_req->ie_len) {
912  		void *ie = (void *)request + offs_ies;
913  
914  		memcpy(ie, rdev_req->ie, rdev_req->ie_len);
915  		request->ie = ie;
916  	}
917  
918  	/*
919  	 * PSC channels should not be scanned in case of direct scan with 1 SSID
920  	 * and at least one of the reported co-located APs with same SSID
921  	 * indicating that all APs in the same ESS are co-located
922  	 */
923  	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
924  		list_for_each_entry(ap, &coloc_ap_list, list) {
925  			if (ap->colocated_ess &&
926  			    cfg80211_find_ssid_match(ap, request)) {
927  				need_scan_psc = false;
928  				break;
929  			}
930  		}
931  	}
932  
933  	/*
934  	 * add to the scan request the channels that need to be scanned
935  	 * regardless of the collocated APs (PSC channels or all channels
936  	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
937  	 */
938  	for (i = 0; i < rdev_req->n_channels; i++) {
939  		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
940  		    ((need_scan_psc &&
941  		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
942  		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
943  			cfg80211_scan_req_add_chan(request,
944  						   rdev_req->channels[i],
945  						   false);
946  		}
947  	}
948  
949  	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
950  		goto skip;
951  
952  	list_for_each_entry(ap, &coloc_ap_list, list) {
953  		bool found = false;
954  		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
955  			&request->scan_6ghz_params[request->n_6ghz_params];
956  		struct ieee80211_channel *chan =
957  			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
958  
959  		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
960  			continue;
961  
962  		for (i = 0; i < rdev_req->n_channels; i++) {
963  			if (rdev_req->channels[i] == chan)
964  				found = true;
965  		}
966  
967  		if (!found)
968  			continue;
969  
970  		if (request->n_ssids > 0 &&
971  		    !cfg80211_find_ssid_match(ap, request))
972  			continue;
973  
974  		if (!is_broadcast_ether_addr(request->bssid) &&
975  		    !ether_addr_equal(request->bssid, ap->bssid))
976  			continue;
977  
978  		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
979  			continue;
980  
981  		cfg80211_scan_req_add_chan(request, chan, true);
982  		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
983  		scan_6ghz_params->short_ssid = ap->short_ssid;
984  		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
985  		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
986  		scan_6ghz_params->psd_20 = ap->psd_20;
987  
988  		/*
989  		 * If a PSC channel is added to the scan and 'need_scan_psc' is
990  		 * set to false, then all the APs that the scan logic is
991  		 * interested with on the channel are collocated and thus there
992  		 * is no need to perform the initial PSC channel listen.
993  		 */
994  		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
995  			scan_6ghz_params->psc_no_listen = true;
996  
997  		request->n_6ghz_params++;
998  	}
999  
1000  skip:
1001  	cfg80211_free_coloc_ap_list(&coloc_ap_list);
1002  
1003  	if (request->n_channels) {
1004  		struct cfg80211_scan_request *old = rdev->int_scan_req;
1005  
1006  		rdev->int_scan_req = request;
1007  
1008  		/*
1009  		 * If this scan follows a previous scan, save the scan start
1010  		 * info from the first part of the scan
1011  		 */
1012  		if (old)
1013  			rdev->int_scan_req->info = old->info;
1014  
1015  		err = rdev_scan(rdev, request);
1016  		if (err) {
1017  			rdev->int_scan_req = old;
1018  			kfree(request);
1019  		} else {
1020  			kfree(old);
1021  		}
1022  
1023  		return err;
1024  	}
1025  
1026  	kfree(request);
1027  	return -EINVAL;
1028  }
1029  
cfg80211_scan(struct cfg80211_registered_device * rdev)1030  int cfg80211_scan(struct cfg80211_registered_device *rdev)
1031  {
1032  	struct cfg80211_scan_request *request;
1033  	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1034  	u32 n_channels = 0, idx, i;
1035  
1036  	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1037  		return rdev_scan(rdev, rdev_req);
1038  
1039  	for (i = 0; i < rdev_req->n_channels; i++) {
1040  		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1041  			n_channels++;
1042  	}
1043  
1044  	if (!n_channels)
1045  		return cfg80211_scan_6ghz(rdev);
1046  
1047  	request = kzalloc(struct_size(request, channels, n_channels),
1048  			  GFP_KERNEL);
1049  	if (!request)
1050  		return -ENOMEM;
1051  
1052  	*request = *rdev_req;
1053  	request->n_channels = n_channels;
1054  
1055  	for (i = idx = 0; i < rdev_req->n_channels; i++) {
1056  		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1057  			request->channels[idx++] = rdev_req->channels[i];
1058  	}
1059  
1060  	rdev_req->scan_6ghz = false;
1061  	rdev->int_scan_req = request;
1062  	return rdev_scan(rdev, request);
1063  }
1064  
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)1065  void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1066  			   bool send_message)
1067  {
1068  	struct cfg80211_scan_request *request, *rdev_req;
1069  	struct wireless_dev *wdev;
1070  	struct sk_buff *msg;
1071  #ifdef CONFIG_CFG80211_WEXT
1072  	union iwreq_data wrqu;
1073  #endif
1074  
1075  	lockdep_assert_held(&rdev->wiphy.mtx);
1076  
1077  	if (rdev->scan_msg) {
1078  		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1079  		rdev->scan_msg = NULL;
1080  		return;
1081  	}
1082  
1083  	rdev_req = rdev->scan_req;
1084  	if (!rdev_req)
1085  		return;
1086  
1087  	wdev = rdev_req->wdev;
1088  	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1089  
1090  	if (wdev_running(wdev) &&
1091  	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1092  	    !rdev_req->scan_6ghz && !request->info.aborted &&
1093  	    !cfg80211_scan_6ghz(rdev))
1094  		return;
1095  
1096  	/*
1097  	 * This must be before sending the other events!
1098  	 * Otherwise, wpa_supplicant gets completely confused with
1099  	 * wext events.
1100  	 */
1101  	if (wdev->netdev)
1102  		cfg80211_sme_scan_done(wdev->netdev);
1103  
1104  	if (!request->info.aborted &&
1105  	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1106  		/* flush entries from previous scans */
1107  		spin_lock_bh(&rdev->bss_lock);
1108  		__cfg80211_bss_expire(rdev, request->scan_start);
1109  		spin_unlock_bh(&rdev->bss_lock);
1110  	}
1111  
1112  	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1113  
1114  #ifdef CONFIG_CFG80211_WEXT
1115  	if (wdev->netdev && !request->info.aborted) {
1116  		memset(&wrqu, 0, sizeof(wrqu));
1117  
1118  		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1119  	}
1120  #endif
1121  
1122  	dev_put(wdev->netdev);
1123  
1124  	kfree(rdev->int_scan_req);
1125  	rdev->int_scan_req = NULL;
1126  
1127  	kfree(rdev->scan_req);
1128  	rdev->scan_req = NULL;
1129  
1130  	if (!send_message)
1131  		rdev->scan_msg = msg;
1132  	else
1133  		nl80211_send_scan_msg(rdev, msg);
1134  }
1135  
__cfg80211_scan_done(struct wiphy * wiphy,struct wiphy_work * wk)1136  void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1137  {
1138  	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1139  }
1140  
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1141  void cfg80211_scan_done(struct cfg80211_scan_request *request,
1142  			struct cfg80211_scan_info *info)
1143  {
1144  	struct cfg80211_scan_info old_info = request->info;
1145  
1146  	trace_cfg80211_scan_done(request, info);
1147  	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1148  		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1149  
1150  	request->info = *info;
1151  
1152  	/*
1153  	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1154  	 * be of the first part. In such a case old_info.scan_start_tsf should
1155  	 * be non zero.
1156  	 */
1157  	if (request->scan_6ghz && old_info.scan_start_tsf) {
1158  		request->info.scan_start_tsf = old_info.scan_start_tsf;
1159  		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1160  		       sizeof(request->info.tsf_bssid));
1161  	}
1162  
1163  	request->notified = true;
1164  	wiphy_work_queue(request->wiphy,
1165  			 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1166  }
1167  EXPORT_SYMBOL(cfg80211_scan_done);
1168  
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1169  void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1170  				 struct cfg80211_sched_scan_request *req)
1171  {
1172  	lockdep_assert_held(&rdev->wiphy.mtx);
1173  
1174  	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1175  }
1176  
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1177  static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1178  					struct cfg80211_sched_scan_request *req)
1179  {
1180  	lockdep_assert_held(&rdev->wiphy.mtx);
1181  
1182  	list_del_rcu(&req->list);
1183  	kfree_rcu(req, rcu_head);
1184  }
1185  
1186  static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1187  cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1188  {
1189  	struct cfg80211_sched_scan_request *pos;
1190  
1191  	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1192  				lockdep_is_held(&rdev->wiphy.mtx)) {
1193  		if (pos->reqid == reqid)
1194  			return pos;
1195  	}
1196  	return NULL;
1197  }
1198  
1199  /*
1200   * Determines if a scheduled scan request can be handled. When a legacy
1201   * scheduled scan is running no other scheduled scan is allowed regardless
1202   * whether the request is for legacy or multi-support scan. When a multi-support
1203   * scheduled scan is running a request for legacy scan is not allowed. In this
1204   * case a request for multi-support scan can be handled if resources are
1205   * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1206   */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1207  int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1208  				     bool want_multi)
1209  {
1210  	struct cfg80211_sched_scan_request *pos;
1211  	int i = 0;
1212  
1213  	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1214  		/* request id zero means legacy in progress */
1215  		if (!i && !pos->reqid)
1216  			return -EINPROGRESS;
1217  		i++;
1218  	}
1219  
1220  	if (i) {
1221  		/* no legacy allowed when multi request(s) are active */
1222  		if (!want_multi)
1223  			return -EINPROGRESS;
1224  
1225  		/* resource limit reached */
1226  		if (i == rdev->wiphy.max_sched_scan_reqs)
1227  			return -ENOSPC;
1228  	}
1229  	return 0;
1230  }
1231  
cfg80211_sched_scan_results_wk(struct work_struct * work)1232  void cfg80211_sched_scan_results_wk(struct work_struct *work)
1233  {
1234  	struct cfg80211_registered_device *rdev;
1235  	struct cfg80211_sched_scan_request *req, *tmp;
1236  
1237  	rdev = container_of(work, struct cfg80211_registered_device,
1238  			   sched_scan_res_wk);
1239  
1240  	wiphy_lock(&rdev->wiphy);
1241  	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1242  		if (req->report_results) {
1243  			req->report_results = false;
1244  			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1245  				/* flush entries from previous scans */
1246  				spin_lock_bh(&rdev->bss_lock);
1247  				__cfg80211_bss_expire(rdev, req->scan_start);
1248  				spin_unlock_bh(&rdev->bss_lock);
1249  				req->scan_start = jiffies;
1250  			}
1251  			nl80211_send_sched_scan(req,
1252  						NL80211_CMD_SCHED_SCAN_RESULTS);
1253  		}
1254  	}
1255  	wiphy_unlock(&rdev->wiphy);
1256  }
1257  
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1258  void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1259  {
1260  	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1261  	struct cfg80211_sched_scan_request *request;
1262  
1263  	trace_cfg80211_sched_scan_results(wiphy, reqid);
1264  	/* ignore if we're not scanning */
1265  
1266  	rcu_read_lock();
1267  	request = cfg80211_find_sched_scan_req(rdev, reqid);
1268  	if (request) {
1269  		request->report_results = true;
1270  		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1271  	}
1272  	rcu_read_unlock();
1273  }
1274  EXPORT_SYMBOL(cfg80211_sched_scan_results);
1275  
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1276  void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1277  {
1278  	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1279  
1280  	lockdep_assert_held(&wiphy->mtx);
1281  
1282  	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1283  
1284  	__cfg80211_stop_sched_scan(rdev, reqid, true);
1285  }
1286  EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1287  
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1288  void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1289  {
1290  	wiphy_lock(wiphy);
1291  	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1292  	wiphy_unlock(wiphy);
1293  }
1294  EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1295  
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1296  int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1297  				 struct cfg80211_sched_scan_request *req,
1298  				 bool driver_initiated)
1299  {
1300  	lockdep_assert_held(&rdev->wiphy.mtx);
1301  
1302  	if (!driver_initiated) {
1303  		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1304  		if (err)
1305  			return err;
1306  	}
1307  
1308  	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1309  
1310  	cfg80211_del_sched_scan_req(rdev, req);
1311  
1312  	return 0;
1313  }
1314  
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1315  int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1316  			       u64 reqid, bool driver_initiated)
1317  {
1318  	struct cfg80211_sched_scan_request *sched_scan_req;
1319  
1320  	lockdep_assert_held(&rdev->wiphy.mtx);
1321  
1322  	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1323  	if (!sched_scan_req)
1324  		return -ENOENT;
1325  
1326  	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1327  					    driver_initiated);
1328  }
1329  
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1330  void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1331                        unsigned long age_secs)
1332  {
1333  	struct cfg80211_internal_bss *bss;
1334  	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1335  
1336  	spin_lock_bh(&rdev->bss_lock);
1337  	list_for_each_entry(bss, &rdev->bss_list, list)
1338  		bss->ts -= age_jiffies;
1339  	spin_unlock_bh(&rdev->bss_lock);
1340  }
1341  
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1342  void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1343  {
1344  	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1345  }
1346  
cfg80211_bss_flush(struct wiphy * wiphy)1347  void cfg80211_bss_flush(struct wiphy *wiphy)
1348  {
1349  	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1350  
1351  	spin_lock_bh(&rdev->bss_lock);
1352  	__cfg80211_bss_expire(rdev, jiffies);
1353  	spin_unlock_bh(&rdev->bss_lock);
1354  }
1355  EXPORT_SYMBOL(cfg80211_bss_flush);
1356  
1357  const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1358  cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1359  			 const u8 *match, unsigned int match_len,
1360  			 unsigned int match_offset)
1361  {
1362  	const struct element *elem;
1363  
1364  	for_each_element_id(elem, eid, ies, len) {
1365  		if (elem->datalen >= match_offset + match_len &&
1366  		    !memcmp(elem->data + match_offset, match, match_len))
1367  			return elem;
1368  	}
1369  
1370  	return NULL;
1371  }
1372  EXPORT_SYMBOL(cfg80211_find_elem_match);
1373  
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1374  const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1375  						const u8 *ies,
1376  						unsigned int len)
1377  {
1378  	const struct element *elem;
1379  	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1380  	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1381  
1382  	if (WARN_ON(oui_type > 0xff))
1383  		return NULL;
1384  
1385  	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1386  					match, match_len, 0);
1387  
1388  	if (!elem || elem->datalen < 4)
1389  		return NULL;
1390  
1391  	return elem;
1392  }
1393  EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1394  
1395  /**
1396   * enum bss_compare_mode - BSS compare mode
1397   * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1398   * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1399   * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1400   */
1401  enum bss_compare_mode {
1402  	BSS_CMP_REGULAR,
1403  	BSS_CMP_HIDE_ZLEN,
1404  	BSS_CMP_HIDE_NUL,
1405  };
1406  
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1407  static int cmp_bss(struct cfg80211_bss *a,
1408  		   struct cfg80211_bss *b,
1409  		   enum bss_compare_mode mode)
1410  {
1411  	const struct cfg80211_bss_ies *a_ies, *b_ies;
1412  	const u8 *ie1 = NULL;
1413  	const u8 *ie2 = NULL;
1414  	int i, r;
1415  
1416  	if (a->channel != b->channel)
1417  		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1418  		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1419  
1420  	a_ies = rcu_access_pointer(a->ies);
1421  	if (!a_ies)
1422  		return -1;
1423  	b_ies = rcu_access_pointer(b->ies);
1424  	if (!b_ies)
1425  		return 1;
1426  
1427  	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1428  		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1429  				       a_ies->data, a_ies->len);
1430  	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1431  		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1432  				       b_ies->data, b_ies->len);
1433  	if (ie1 && ie2) {
1434  		int mesh_id_cmp;
1435  
1436  		if (ie1[1] == ie2[1])
1437  			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1438  		else
1439  			mesh_id_cmp = ie2[1] - ie1[1];
1440  
1441  		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1442  				       a_ies->data, a_ies->len);
1443  		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1444  				       b_ies->data, b_ies->len);
1445  		if (ie1 && ie2) {
1446  			if (mesh_id_cmp)
1447  				return mesh_id_cmp;
1448  			if (ie1[1] != ie2[1])
1449  				return ie2[1] - ie1[1];
1450  			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1451  		}
1452  	}
1453  
1454  	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1455  	if (r)
1456  		return r;
1457  
1458  	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1459  	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1460  
1461  	if (!ie1 && !ie2)
1462  		return 0;
1463  
1464  	/*
1465  	 * Note that with "hide_ssid", the function returns a match if
1466  	 * the already-present BSS ("b") is a hidden SSID beacon for
1467  	 * the new BSS ("a").
1468  	 */
1469  
1470  	/* sort missing IE before (left of) present IE */
1471  	if (!ie1)
1472  		return -1;
1473  	if (!ie2)
1474  		return 1;
1475  
1476  	switch (mode) {
1477  	case BSS_CMP_HIDE_ZLEN:
1478  		/*
1479  		 * In ZLEN mode we assume the BSS entry we're
1480  		 * looking for has a zero-length SSID. So if
1481  		 * the one we're looking at right now has that,
1482  		 * return 0. Otherwise, return the difference
1483  		 * in length, but since we're looking for the
1484  		 * 0-length it's really equivalent to returning
1485  		 * the length of the one we're looking at.
1486  		 *
1487  		 * No content comparison is needed as we assume
1488  		 * the content length is zero.
1489  		 */
1490  		return ie2[1];
1491  	case BSS_CMP_REGULAR:
1492  	default:
1493  		/* sort by length first, then by contents */
1494  		if (ie1[1] != ie2[1])
1495  			return ie2[1] - ie1[1];
1496  		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1497  	case BSS_CMP_HIDE_NUL:
1498  		if (ie1[1] != ie2[1])
1499  			return ie2[1] - ie1[1];
1500  		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1501  		for (i = 0; i < ie2[1]; i++)
1502  			if (ie2[i + 2])
1503  				return -1;
1504  		return 0;
1505  	}
1506  }
1507  
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1508  static bool cfg80211_bss_type_match(u16 capability,
1509  				    enum nl80211_band band,
1510  				    enum ieee80211_bss_type bss_type)
1511  {
1512  	bool ret = true;
1513  	u16 mask, val;
1514  
1515  	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1516  		return ret;
1517  
1518  	if (band == NL80211_BAND_60GHZ) {
1519  		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1520  		switch (bss_type) {
1521  		case IEEE80211_BSS_TYPE_ESS:
1522  			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1523  			break;
1524  		case IEEE80211_BSS_TYPE_PBSS:
1525  			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1526  			break;
1527  		case IEEE80211_BSS_TYPE_IBSS:
1528  			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1529  			break;
1530  		default:
1531  			return false;
1532  		}
1533  	} else {
1534  		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1535  		switch (bss_type) {
1536  		case IEEE80211_BSS_TYPE_ESS:
1537  			val = WLAN_CAPABILITY_ESS;
1538  			break;
1539  		case IEEE80211_BSS_TYPE_IBSS:
1540  			val = WLAN_CAPABILITY_IBSS;
1541  			break;
1542  		case IEEE80211_BSS_TYPE_MBSS:
1543  			val = 0;
1544  			break;
1545  		default:
1546  			return false;
1547  		}
1548  	}
1549  
1550  	ret = ((capability & mask) == val);
1551  	return ret;
1552  }
1553  
1554  /* Returned bss is reference counted and must be cleaned up appropriately. */
__cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy,u32 use_for)1555  struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1556  					struct ieee80211_channel *channel,
1557  					const u8 *bssid,
1558  					const u8 *ssid, size_t ssid_len,
1559  					enum ieee80211_bss_type bss_type,
1560  					enum ieee80211_privacy privacy,
1561  					u32 use_for)
1562  {
1563  	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1564  	struct cfg80211_internal_bss *bss, *res = NULL;
1565  	unsigned long now = jiffies;
1566  	int bss_privacy;
1567  
1568  	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1569  			       privacy);
1570  
1571  	spin_lock_bh(&rdev->bss_lock);
1572  
1573  	list_for_each_entry(bss, &rdev->bss_list, list) {
1574  		if (!cfg80211_bss_type_match(bss->pub.capability,
1575  					     bss->pub.channel->band, bss_type))
1576  			continue;
1577  
1578  		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1579  		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1580  		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1581  			continue;
1582  		if (channel && bss->pub.channel != channel)
1583  			continue;
1584  		if (!is_valid_ether_addr(bss->pub.bssid))
1585  			continue;
1586  		if ((bss->pub.use_for & use_for) != use_for)
1587  			continue;
1588  		/* Don't get expired BSS structs */
1589  		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1590  		    !atomic_read(&bss->hold))
1591  			continue;
1592  		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1593  			res = bss;
1594  			bss_ref_get(rdev, res);
1595  			break;
1596  		}
1597  	}
1598  
1599  	spin_unlock_bh(&rdev->bss_lock);
1600  	if (!res)
1601  		return NULL;
1602  	trace_cfg80211_return_bss(&res->pub);
1603  	return &res->pub;
1604  }
1605  EXPORT_SYMBOL(__cfg80211_get_bss);
1606  
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1607  static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1608  			  struct cfg80211_internal_bss *bss)
1609  {
1610  	struct rb_node **p = &rdev->bss_tree.rb_node;
1611  	struct rb_node *parent = NULL;
1612  	struct cfg80211_internal_bss *tbss;
1613  	int cmp;
1614  
1615  	while (*p) {
1616  		parent = *p;
1617  		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1618  
1619  		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1620  
1621  		if (WARN_ON(!cmp)) {
1622  			/* will sort of leak this BSS */
1623  			return false;
1624  		}
1625  
1626  		if (cmp < 0)
1627  			p = &(*p)->rb_left;
1628  		else
1629  			p = &(*p)->rb_right;
1630  	}
1631  
1632  	rb_link_node(&bss->rbn, parent, p);
1633  	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1634  	return true;
1635  }
1636  
1637  static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1638  rb_find_bss(struct cfg80211_registered_device *rdev,
1639  	    struct cfg80211_internal_bss *res,
1640  	    enum bss_compare_mode mode)
1641  {
1642  	struct rb_node *n = rdev->bss_tree.rb_node;
1643  	struct cfg80211_internal_bss *bss;
1644  	int r;
1645  
1646  	while (n) {
1647  		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1648  		r = cmp_bss(&res->pub, &bss->pub, mode);
1649  
1650  		if (r == 0)
1651  			return bss;
1652  		else if (r < 0)
1653  			n = n->rb_left;
1654  		else
1655  			n = n->rb_right;
1656  	}
1657  
1658  	return NULL;
1659  }
1660  
cfg80211_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1661  static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1662  				struct cfg80211_internal_bss *bss)
1663  {
1664  	lockdep_assert_held(&rdev->bss_lock);
1665  
1666  	if (!rb_insert_bss(rdev, bss))
1667  		return;
1668  	list_add_tail(&bss->list, &rdev->bss_list);
1669  	rdev->bss_entries++;
1670  }
1671  
cfg80211_rehash_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1672  static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1673                                  struct cfg80211_internal_bss *bss)
1674  {
1675  	lockdep_assert_held(&rdev->bss_lock);
1676  
1677  	rb_erase(&bss->rbn, &rdev->bss_tree);
1678  	if (!rb_insert_bss(rdev, bss)) {
1679  		list_del(&bss->list);
1680  		if (!list_empty(&bss->hidden_list))
1681  			list_del_init(&bss->hidden_list);
1682  		if (!list_empty(&bss->pub.nontrans_list))
1683  			list_del_init(&bss->pub.nontrans_list);
1684  		rdev->bss_entries--;
1685  	}
1686  	rdev->bss_generation++;
1687  }
1688  
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1689  static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1690  				   struct cfg80211_internal_bss *new)
1691  {
1692  	const struct cfg80211_bss_ies *ies;
1693  	struct cfg80211_internal_bss *bss;
1694  	const u8 *ie;
1695  	int i, ssidlen;
1696  	u8 fold = 0;
1697  	u32 n_entries = 0;
1698  
1699  	ies = rcu_access_pointer(new->pub.beacon_ies);
1700  	if (WARN_ON(!ies))
1701  		return false;
1702  
1703  	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1704  	if (!ie) {
1705  		/* nothing to do */
1706  		return true;
1707  	}
1708  
1709  	ssidlen = ie[1];
1710  	for (i = 0; i < ssidlen; i++)
1711  		fold |= ie[2 + i];
1712  
1713  	if (fold) {
1714  		/* not a hidden SSID */
1715  		return true;
1716  	}
1717  
1718  	/* This is the bad part ... */
1719  
1720  	list_for_each_entry(bss, &rdev->bss_list, list) {
1721  		/*
1722  		 * we're iterating all the entries anyway, so take the
1723  		 * opportunity to validate the list length accounting
1724  		 */
1725  		n_entries++;
1726  
1727  		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1728  			continue;
1729  		if (bss->pub.channel != new->pub.channel)
1730  			continue;
1731  		if (rcu_access_pointer(bss->pub.beacon_ies))
1732  			continue;
1733  		ies = rcu_access_pointer(bss->pub.ies);
1734  		if (!ies)
1735  			continue;
1736  		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1737  		if (!ie)
1738  			continue;
1739  		if (ssidlen && ie[1] != ssidlen)
1740  			continue;
1741  		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1742  			continue;
1743  		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1744  			list_del(&bss->hidden_list);
1745  		/* combine them */
1746  		list_add(&bss->hidden_list, &new->hidden_list);
1747  		bss->pub.hidden_beacon_bss = &new->pub;
1748  		new->refcount += bss->refcount;
1749  		rcu_assign_pointer(bss->pub.beacon_ies,
1750  				   new->pub.beacon_ies);
1751  	}
1752  
1753  	WARN_ONCE(n_entries != rdev->bss_entries,
1754  		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1755  		  rdev->bss_entries, n_entries);
1756  
1757  	return true;
1758  }
1759  
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1760  static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1761  					 const struct cfg80211_bss_ies *new_ies,
1762  					 const struct cfg80211_bss_ies *old_ies)
1763  {
1764  	struct cfg80211_internal_bss *bss;
1765  
1766  	/* Assign beacon IEs to all sub entries */
1767  	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1768  		const struct cfg80211_bss_ies *ies;
1769  
1770  		ies = rcu_access_pointer(bss->pub.beacon_ies);
1771  		WARN_ON(ies != old_ies);
1772  
1773  		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1774  	}
1775  }
1776  
cfg80211_check_stuck_ecsa(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * old)1777  static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1778  				      struct cfg80211_internal_bss *known,
1779  				      const struct cfg80211_bss_ies *old)
1780  {
1781  	const struct ieee80211_ext_chansw_ie *ecsa;
1782  	const struct element *elem_new, *elem_old;
1783  	const struct cfg80211_bss_ies *new, *bcn;
1784  
1785  	if (known->pub.proberesp_ecsa_stuck)
1786  		return;
1787  
1788  	new = rcu_dereference_protected(known->pub.proberesp_ies,
1789  					lockdep_is_held(&rdev->bss_lock));
1790  	if (WARN_ON(!new))
1791  		return;
1792  
1793  	if (new->tsf - old->tsf < USEC_PER_SEC)
1794  		return;
1795  
1796  	elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1797  				      old->data, old->len);
1798  	if (!elem_old)
1799  		return;
1800  
1801  	elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1802  				      new->data, new->len);
1803  	if (!elem_new)
1804  		return;
1805  
1806  	bcn = rcu_dereference_protected(known->pub.beacon_ies,
1807  					lockdep_is_held(&rdev->bss_lock));
1808  	if (bcn &&
1809  	    cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1810  			       bcn->data, bcn->len))
1811  		return;
1812  
1813  	if (elem_new->datalen != elem_old->datalen)
1814  		return;
1815  	if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1816  		return;
1817  	if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1818  		return;
1819  
1820  	ecsa = (void *)elem_new->data;
1821  
1822  	if (!ecsa->mode)
1823  		return;
1824  
1825  	if (ecsa->new_ch_num !=
1826  	    ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1827  		return;
1828  
1829  	known->pub.proberesp_ecsa_stuck = 1;
1830  }
1831  
1832  static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1833  cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1834  			  struct cfg80211_internal_bss *known,
1835  			  struct cfg80211_internal_bss *new,
1836  			  bool signal_valid)
1837  {
1838  	lockdep_assert_held(&rdev->bss_lock);
1839  
1840  	/* Update IEs */
1841  	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1842  		const struct cfg80211_bss_ies *old;
1843  
1844  		old = rcu_access_pointer(known->pub.proberesp_ies);
1845  
1846  		rcu_assign_pointer(known->pub.proberesp_ies,
1847  				   new->pub.proberesp_ies);
1848  		/* Override possible earlier Beacon frame IEs */
1849  		rcu_assign_pointer(known->pub.ies,
1850  				   new->pub.proberesp_ies);
1851  		if (old) {
1852  			cfg80211_check_stuck_ecsa(rdev, known, old);
1853  			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1854  		}
1855  	}
1856  
1857  	if (rcu_access_pointer(new->pub.beacon_ies)) {
1858  		const struct cfg80211_bss_ies *old;
1859  
1860  		if (known->pub.hidden_beacon_bss &&
1861  		    !list_empty(&known->hidden_list)) {
1862  			const struct cfg80211_bss_ies *f;
1863  
1864  			/* The known BSS struct is one of the probe
1865  			 * response members of a group, but we're
1866  			 * receiving a beacon (beacon_ies in the new
1867  			 * bss is used). This can only mean that the
1868  			 * AP changed its beacon from not having an
1869  			 * SSID to showing it, which is confusing so
1870  			 * drop this information.
1871  			 */
1872  
1873  			f = rcu_access_pointer(new->pub.beacon_ies);
1874  			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1875  			return false;
1876  		}
1877  
1878  		old = rcu_access_pointer(known->pub.beacon_ies);
1879  
1880  		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1881  
1882  		/* Override IEs if they were from a beacon before */
1883  		if (old == rcu_access_pointer(known->pub.ies))
1884  			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1885  
1886  		cfg80211_update_hidden_bsses(known,
1887  					     rcu_access_pointer(new->pub.beacon_ies),
1888  					     old);
1889  
1890  		if (old)
1891  			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1892  	}
1893  
1894  	known->pub.beacon_interval = new->pub.beacon_interval;
1895  
1896  	/* don't update the signal if beacon was heard on
1897  	 * adjacent channel.
1898  	 */
1899  	if (signal_valid)
1900  		known->pub.signal = new->pub.signal;
1901  	known->pub.capability = new->pub.capability;
1902  	known->ts = new->ts;
1903  	known->ts_boottime = new->ts_boottime;
1904  	known->parent_tsf = new->parent_tsf;
1905  	known->pub.chains = new->pub.chains;
1906  	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1907  	       IEEE80211_MAX_CHAINS);
1908  	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1909  	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1910  	known->pub.bssid_index = new->pub.bssid_index;
1911  	known->pub.use_for &= new->pub.use_for;
1912  	known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1913  	known->bss_source = new->bss_source;
1914  
1915  	return true;
1916  }
1917  
1918  /* Returned bss is reference counted and must be cleaned up appropriately. */
1919  static struct cfg80211_internal_bss *
__cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1920  __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1921  		      struct cfg80211_internal_bss *tmp,
1922  		      bool signal_valid, unsigned long ts)
1923  {
1924  	struct cfg80211_internal_bss *found = NULL;
1925  	struct cfg80211_bss_ies *ies;
1926  
1927  	if (WARN_ON(!tmp->pub.channel))
1928  		goto free_ies;
1929  
1930  	tmp->ts = ts;
1931  
1932  	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1933  		goto free_ies;
1934  
1935  	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1936  
1937  	if (found) {
1938  		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1939  			return NULL;
1940  	} else {
1941  		struct cfg80211_internal_bss *new;
1942  		struct cfg80211_internal_bss *hidden;
1943  
1944  		/*
1945  		 * create a copy -- the "res" variable that is passed in
1946  		 * is allocated on the stack since it's not needed in the
1947  		 * more common case of an update
1948  		 */
1949  		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1950  			      GFP_ATOMIC);
1951  		if (!new)
1952  			goto free_ies;
1953  		memcpy(new, tmp, sizeof(*new));
1954  		new->refcount = 1;
1955  		INIT_LIST_HEAD(&new->hidden_list);
1956  		INIT_LIST_HEAD(&new->pub.nontrans_list);
1957  		/* we'll set this later if it was non-NULL */
1958  		new->pub.transmitted_bss = NULL;
1959  
1960  		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1961  			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1962  			if (!hidden)
1963  				hidden = rb_find_bss(rdev, tmp,
1964  						     BSS_CMP_HIDE_NUL);
1965  			if (hidden) {
1966  				new->pub.hidden_beacon_bss = &hidden->pub;
1967  				list_add(&new->hidden_list,
1968  					 &hidden->hidden_list);
1969  				hidden->refcount++;
1970  
1971  				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1972  				rcu_assign_pointer(new->pub.beacon_ies,
1973  						   hidden->pub.beacon_ies);
1974  				if (ies)
1975  					kfree_rcu(ies, rcu_head);
1976  			}
1977  		} else {
1978  			/*
1979  			 * Ok so we found a beacon, and don't have an entry. If
1980  			 * it's a beacon with hidden SSID, we might be in for an
1981  			 * expensive search for any probe responses that should
1982  			 * be grouped with this beacon for updates ...
1983  			 */
1984  			if (!cfg80211_combine_bsses(rdev, new)) {
1985  				bss_ref_put(rdev, new);
1986  				return NULL;
1987  			}
1988  		}
1989  
1990  		if (rdev->bss_entries >= bss_entries_limit &&
1991  		    !cfg80211_bss_expire_oldest(rdev)) {
1992  			bss_ref_put(rdev, new);
1993  			return NULL;
1994  		}
1995  
1996  		/* This must be before the call to bss_ref_get */
1997  		if (tmp->pub.transmitted_bss) {
1998  			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1999  			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
2000  		}
2001  
2002  		cfg80211_insert_bss(rdev, new);
2003  		found = new;
2004  	}
2005  
2006  	rdev->bss_generation++;
2007  	bss_ref_get(rdev, found);
2008  
2009  	return found;
2010  
2011  free_ies:
2012  	ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2013  	if (ies)
2014  		kfree_rcu(ies, rcu_head);
2015  	ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2016  	if (ies)
2017  		kfree_rcu(ies, rcu_head);
2018  
2019  	return NULL;
2020  }
2021  
2022  struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)2023  cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2024  		    struct cfg80211_internal_bss *tmp,
2025  		    bool signal_valid, unsigned long ts)
2026  {
2027  	struct cfg80211_internal_bss *res;
2028  
2029  	spin_lock_bh(&rdev->bss_lock);
2030  	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2031  	spin_unlock_bh(&rdev->bss_lock);
2032  
2033  	return res;
2034  }
2035  
cfg80211_get_ies_channel_number(const u8 * ie,size_t ielen,enum nl80211_band band)2036  int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2037  				    enum nl80211_band band)
2038  {
2039  	const struct element *tmp;
2040  
2041  	if (band == NL80211_BAND_6GHZ) {
2042  		struct ieee80211_he_operation *he_oper;
2043  
2044  		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2045  					     ielen);
2046  		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2047  		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2048  			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2049  
2050  			he_oper = (void *)&tmp->data[1];
2051  
2052  			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2053  			if (!he_6ghz_oper)
2054  				return -1;
2055  
2056  			return he_6ghz_oper->primary;
2057  		}
2058  	} else if (band == NL80211_BAND_S1GHZ) {
2059  		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2060  		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2061  			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2062  
2063  			return s1gop->oper_ch;
2064  		}
2065  	} else {
2066  		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2067  		if (tmp && tmp->datalen == 1)
2068  			return tmp->data[0];
2069  
2070  		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2071  		if (tmp &&
2072  		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2073  			struct ieee80211_ht_operation *htop = (void *)tmp->data;
2074  
2075  			return htop->primary_chan;
2076  		}
2077  	}
2078  
2079  	return -1;
2080  }
2081  EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2082  
2083  /*
2084   * Update RX channel information based on the available frame payload
2085   * information. This is mainly for the 2.4 GHz band where frames can be received
2086   * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2087   * element to indicate the current (transmitting) channel, but this might also
2088   * be needed on other bands if RX frequency does not match with the actual
2089   * operating channel of a BSS, or if the AP reports a different primary channel.
2090   */
2091  static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel)2092  cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2093  			 struct ieee80211_channel *channel)
2094  {
2095  	u32 freq;
2096  	int channel_number;
2097  	struct ieee80211_channel *alt_channel;
2098  
2099  	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2100  							 channel->band);
2101  
2102  	if (channel_number < 0) {
2103  		/* No channel information in frame payload */
2104  		return channel;
2105  	}
2106  
2107  	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2108  
2109  	/*
2110  	 * Frame info (beacon/prob res) is the same as received channel,
2111  	 * no need for further processing.
2112  	 */
2113  	if (freq == ieee80211_channel_to_khz(channel))
2114  		return channel;
2115  
2116  	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2117  	if (!alt_channel) {
2118  		if (channel->band == NL80211_BAND_2GHZ ||
2119  		    channel->band == NL80211_BAND_6GHZ) {
2120  			/*
2121  			 * Better not allow unexpected channels when that could
2122  			 * be going beyond the 1-11 range (e.g., discovering
2123  			 * BSS on channel 12 when radio is configured for
2124  			 * channel 11) or beyond the 6 GHz channel range.
2125  			 */
2126  			return NULL;
2127  		}
2128  
2129  		/* No match for the payload channel number - ignore it */
2130  		return channel;
2131  	}
2132  
2133  	/*
2134  	 * Use the channel determined through the payload channel number
2135  	 * instead of the RX channel reported by the driver.
2136  	 */
2137  	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2138  		return NULL;
2139  	return alt_channel;
2140  }
2141  
2142  struct cfg80211_inform_single_bss_data {
2143  	struct cfg80211_inform_bss *drv_data;
2144  	enum cfg80211_bss_frame_type ftype;
2145  	struct ieee80211_channel *channel;
2146  	u8 bssid[ETH_ALEN];
2147  	u64 tsf;
2148  	u16 capability;
2149  	u16 beacon_interval;
2150  	const u8 *ie;
2151  	size_t ielen;
2152  
2153  	enum bss_source_type bss_source;
2154  	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2155  	struct cfg80211_bss *source_bss;
2156  	u8 max_bssid_indicator;
2157  	u8 bssid_index;
2158  
2159  	u8 use_for;
2160  	u64 cannot_use_reasons;
2161  };
2162  
2163  enum ieee80211_ap_reg_power
cfg80211_get_6ghz_power_type(const u8 * elems,size_t elems_len)2164  cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2165  {
2166  	const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2167  	struct ieee80211_he_operation *he_oper;
2168  	const struct element *tmp;
2169  
2170  	tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2171  				     elems, elems_len);
2172  	if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2173  	    tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2174  		return IEEE80211_REG_UNSET_AP;
2175  
2176  	he_oper = (void *)&tmp->data[1];
2177  	he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2178  
2179  	if (!he_6ghz_oper)
2180  		return IEEE80211_REG_UNSET_AP;
2181  
2182  	switch (u8_get_bits(he_6ghz_oper->control,
2183  			    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2184  	case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2185  	case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2186  		return IEEE80211_REG_LPI_AP;
2187  	case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2188  	case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2189  		return IEEE80211_REG_SP_AP;
2190  	case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2191  		return IEEE80211_REG_VLP_AP;
2192  	default:
2193  		return IEEE80211_REG_UNSET_AP;
2194  	}
2195  }
2196  
cfg80211_6ghz_power_type_valid(const u8 * elems,size_t elems_len,const u32 flags)2197  static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2198  					   const u32 flags)
2199  {
2200  	switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2201  	case IEEE80211_REG_LPI_AP:
2202  		return true;
2203  	case IEEE80211_REG_SP_AP:
2204  		return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2205  	case IEEE80211_REG_VLP_AP:
2206  		return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2207  	default:
2208  		return false;
2209  	}
2210  }
2211  
2212  /* Returned bss is reference counted and must be cleaned up appropriately. */
2213  static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * data,gfp_t gfp)2214  cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2215  				struct cfg80211_inform_single_bss_data *data,
2216  				gfp_t gfp)
2217  {
2218  	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2219  	struct cfg80211_inform_bss *drv_data = data->drv_data;
2220  	struct cfg80211_bss_ies *ies;
2221  	struct ieee80211_channel *channel;
2222  	struct cfg80211_internal_bss tmp = {}, *res;
2223  	int bss_type;
2224  	bool signal_valid;
2225  	unsigned long ts;
2226  
2227  	if (WARN_ON(!wiphy))
2228  		return NULL;
2229  
2230  	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2231  		    (drv_data->signal < 0 || drv_data->signal > 100)))
2232  		return NULL;
2233  
2234  	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2235  		return NULL;
2236  
2237  	channel = data->channel;
2238  	if (!channel)
2239  		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2240  						   drv_data->chan);
2241  	if (!channel)
2242  		return NULL;
2243  
2244  	if (channel->band == NL80211_BAND_6GHZ &&
2245  	    !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2246  					    channel->flags)) {
2247  		data->use_for = 0;
2248  		data->cannot_use_reasons =
2249  			NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2250  	}
2251  
2252  	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2253  	tmp.pub.channel = channel;
2254  	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2255  		tmp.pub.signal = drv_data->signal;
2256  	else
2257  		tmp.pub.signal = 0;
2258  	tmp.pub.beacon_interval = data->beacon_interval;
2259  	tmp.pub.capability = data->capability;
2260  	tmp.ts_boottime = drv_data->boottime_ns;
2261  	tmp.parent_tsf = drv_data->parent_tsf;
2262  	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2263  	tmp.pub.chains = drv_data->chains;
2264  	memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2265  	       IEEE80211_MAX_CHAINS);
2266  	tmp.pub.use_for = data->use_for;
2267  	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2268  	tmp.bss_source = data->bss_source;
2269  
2270  	switch (data->bss_source) {
2271  	case BSS_SOURCE_MBSSID:
2272  		tmp.pub.transmitted_bss = data->source_bss;
2273  		fallthrough;
2274  	case BSS_SOURCE_STA_PROFILE:
2275  		ts = bss_from_pub(data->source_bss)->ts;
2276  		tmp.pub.bssid_index = data->bssid_index;
2277  		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2278  		break;
2279  	case BSS_SOURCE_DIRECT:
2280  		ts = jiffies;
2281  
2282  		if (channel->band == NL80211_BAND_60GHZ) {
2283  			bss_type = data->capability &
2284  				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2285  			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2286  			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2287  				regulatory_hint_found_beacon(wiphy, channel,
2288  							     gfp);
2289  		} else {
2290  			if (data->capability & WLAN_CAPABILITY_ESS)
2291  				regulatory_hint_found_beacon(wiphy, channel,
2292  							     gfp);
2293  		}
2294  		break;
2295  	}
2296  
2297  	/*
2298  	 * If we do not know here whether the IEs are from a Beacon or Probe
2299  	 * Response frame, we need to pick one of the options and only use it
2300  	 * with the driver that does not provide the full Beacon/Probe Response
2301  	 * frame. Use Beacon frame pointer to avoid indicating that this should
2302  	 * override the IEs pointer should we have received an earlier
2303  	 * indication of Probe Response data.
2304  	 */
2305  	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2306  	if (!ies)
2307  		return NULL;
2308  	ies->len = data->ielen;
2309  	ies->tsf = data->tsf;
2310  	ies->from_beacon = false;
2311  	memcpy(ies->data, data->ie, data->ielen);
2312  
2313  	switch (data->ftype) {
2314  	case CFG80211_BSS_FTYPE_BEACON:
2315  	case CFG80211_BSS_FTYPE_S1G_BEACON:
2316  		ies->from_beacon = true;
2317  		fallthrough;
2318  	case CFG80211_BSS_FTYPE_UNKNOWN:
2319  		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2320  		break;
2321  	case CFG80211_BSS_FTYPE_PRESP:
2322  		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2323  		break;
2324  	}
2325  	rcu_assign_pointer(tmp.pub.ies, ies);
2326  
2327  	signal_valid = drv_data->chan == channel;
2328  	spin_lock_bh(&rdev->bss_lock);
2329  	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2330  	if (!res)
2331  		goto drop;
2332  
2333  	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2334  
2335  	if (data->bss_source == BSS_SOURCE_MBSSID) {
2336  		/* this is a nontransmitting bss, we need to add it to
2337  		 * transmitting bss' list if it is not there
2338  		 */
2339  		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2340  			if (__cfg80211_unlink_bss(rdev, res)) {
2341  				rdev->bss_generation++;
2342  				res = NULL;
2343  			}
2344  		}
2345  
2346  		if (!res)
2347  			goto drop;
2348  	}
2349  	spin_unlock_bh(&rdev->bss_lock);
2350  
2351  	trace_cfg80211_return_bss(&res->pub);
2352  	/* __cfg80211_bss_update gives us a referenced result */
2353  	return &res->pub;
2354  
2355  drop:
2356  	spin_unlock_bh(&rdev->bss_lock);
2357  	return NULL;
2358  }
2359  
2360  static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2361  *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2362  				   const struct element *mbssid_elem,
2363  				   const struct element *sub_elem)
2364  {
2365  	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2366  	const struct element *next_mbssid;
2367  	const struct element *next_sub;
2368  
2369  	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2370  					 mbssid_end,
2371  					 ielen - (mbssid_end - ie));
2372  
2373  	/*
2374  	 * If it is not the last subelement in current MBSSID IE or there isn't
2375  	 * a next MBSSID IE - profile is complete.
2376  	*/
2377  	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2378  	    !next_mbssid)
2379  		return NULL;
2380  
2381  	/* For any length error, just return NULL */
2382  
2383  	if (next_mbssid->datalen < 4)
2384  		return NULL;
2385  
2386  	next_sub = (void *)&next_mbssid->data[1];
2387  
2388  	if (next_mbssid->data + next_mbssid->datalen <
2389  	    next_sub->data + next_sub->datalen)
2390  		return NULL;
2391  
2392  	if (next_sub->id != 0 || next_sub->datalen < 2)
2393  		return NULL;
2394  
2395  	/*
2396  	 * Check if the first element in the next sub element is a start
2397  	 * of a new profile
2398  	 */
2399  	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2400  	       NULL : next_mbssid;
2401  }
2402  
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2403  size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2404  			      const struct element *mbssid_elem,
2405  			      const struct element *sub_elem,
2406  			      u8 *merged_ie, size_t max_copy_len)
2407  {
2408  	size_t copied_len = sub_elem->datalen;
2409  	const struct element *next_mbssid;
2410  
2411  	if (sub_elem->datalen > max_copy_len)
2412  		return 0;
2413  
2414  	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2415  
2416  	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2417  								mbssid_elem,
2418  								sub_elem))) {
2419  		const struct element *next_sub = (void *)&next_mbssid->data[1];
2420  
2421  		if (copied_len + next_sub->datalen > max_copy_len)
2422  			break;
2423  		memcpy(merged_ie + copied_len, next_sub->data,
2424  		       next_sub->datalen);
2425  		copied_len += next_sub->datalen;
2426  	}
2427  
2428  	return copied_len;
2429  }
2430  EXPORT_SYMBOL(cfg80211_merge_profile);
2431  
2432  static void
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)2433  cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2434  			   struct cfg80211_inform_single_bss_data *tx_data,
2435  			   struct cfg80211_bss *source_bss,
2436  			   gfp_t gfp)
2437  {
2438  	struct cfg80211_inform_single_bss_data data = {
2439  		.drv_data = tx_data->drv_data,
2440  		.ftype = tx_data->ftype,
2441  		.tsf = tx_data->tsf,
2442  		.beacon_interval = tx_data->beacon_interval,
2443  		.source_bss = source_bss,
2444  		.bss_source = BSS_SOURCE_MBSSID,
2445  		.use_for = tx_data->use_for,
2446  		.cannot_use_reasons = tx_data->cannot_use_reasons,
2447  	};
2448  	const u8 *mbssid_index_ie;
2449  	const struct element *elem, *sub;
2450  	u8 *new_ie, *profile;
2451  	u64 seen_indices = 0;
2452  	struct cfg80211_bss *bss;
2453  
2454  	if (!source_bss)
2455  		return;
2456  	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2457  				tx_data->ie, tx_data->ielen))
2458  		return;
2459  	if (!wiphy->support_mbssid)
2460  		return;
2461  	if (wiphy->support_only_he_mbssid &&
2462  	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2463  				    tx_data->ie, tx_data->ielen))
2464  		return;
2465  
2466  	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2467  	if (!new_ie)
2468  		return;
2469  
2470  	profile = kmalloc(tx_data->ielen, gfp);
2471  	if (!profile)
2472  		goto out;
2473  
2474  	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2475  			    tx_data->ie, tx_data->ielen) {
2476  		if (elem->datalen < 4)
2477  			continue;
2478  		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2479  			continue;
2480  		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2481  			u8 profile_len;
2482  
2483  			if (sub->id != 0 || sub->datalen < 4) {
2484  				/* not a valid BSS profile */
2485  				continue;
2486  			}
2487  
2488  			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2489  			    sub->data[1] != 2) {
2490  				/* The first element within the Nontransmitted
2491  				 * BSSID Profile is not the Nontransmitted
2492  				 * BSSID Capability element.
2493  				 */
2494  				continue;
2495  			}
2496  
2497  			memset(profile, 0, tx_data->ielen);
2498  			profile_len = cfg80211_merge_profile(tx_data->ie,
2499  							     tx_data->ielen,
2500  							     elem,
2501  							     sub,
2502  							     profile,
2503  							     tx_data->ielen);
2504  
2505  			/* found a Nontransmitted BSSID Profile */
2506  			mbssid_index_ie = cfg80211_find_ie
2507  				(WLAN_EID_MULTI_BSSID_IDX,
2508  				 profile, profile_len);
2509  			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2510  			    mbssid_index_ie[2] == 0 ||
2511  			    mbssid_index_ie[2] > 46 ||
2512  			    mbssid_index_ie[2] >= (1 << elem->data[0])) {
2513  				/* No valid Multiple BSSID-Index element */
2514  				continue;
2515  			}
2516  
2517  			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2518  				/* We don't support legacy split of a profile */
2519  				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2520  						    mbssid_index_ie[2]);
2521  
2522  			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2523  
2524  			data.bssid_index = mbssid_index_ie[2];
2525  			data.max_bssid_indicator = elem->data[0];
2526  
2527  			cfg80211_gen_new_bssid(tx_data->bssid,
2528  					       data.max_bssid_indicator,
2529  					       data.bssid_index,
2530  					       data.bssid);
2531  
2532  			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2533  			data.ie = new_ie;
2534  			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2535  							 tx_data->ielen,
2536  							 profile,
2537  							 profile_len,
2538  							 new_ie,
2539  							 IEEE80211_MAX_DATA_LEN);
2540  			if (!data.ielen)
2541  				continue;
2542  
2543  			data.capability = get_unaligned_le16(profile + 2);
2544  			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2545  			if (!bss)
2546  				break;
2547  			cfg80211_put_bss(wiphy, bss);
2548  		}
2549  	}
2550  
2551  out:
2552  	kfree(new_ie);
2553  	kfree(profile);
2554  }
2555  
cfg80211_defragment_element(const struct element * elem,const u8 * ies,size_t ieslen,u8 * data,size_t data_len,u8 frag_id)2556  ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2557  				    size_t ieslen, u8 *data, size_t data_len,
2558  				    u8 frag_id)
2559  {
2560  	const struct element *next;
2561  	ssize_t copied;
2562  	u8 elem_datalen;
2563  
2564  	if (!elem)
2565  		return -EINVAL;
2566  
2567  	/* elem might be invalid after the memmove */
2568  	next = (void *)(elem->data + elem->datalen);
2569  	elem_datalen = elem->datalen;
2570  
2571  	if (elem->id == WLAN_EID_EXTENSION) {
2572  		copied = elem->datalen - 1;
2573  
2574  		if (data) {
2575  			if (copied > data_len)
2576  				return -ENOSPC;
2577  
2578  			memmove(data, elem->data + 1, copied);
2579  		}
2580  	} else {
2581  		copied = elem->datalen;
2582  
2583  		if (data) {
2584  			if (copied > data_len)
2585  				return -ENOSPC;
2586  
2587  			memmove(data, elem->data, copied);
2588  		}
2589  	}
2590  
2591  	/* Fragmented elements must have 255 bytes */
2592  	if (elem_datalen < 255)
2593  		return copied;
2594  
2595  	for (elem = next;
2596  	     elem->data < ies + ieslen &&
2597  		elem->data + elem->datalen <= ies + ieslen;
2598  	     elem = next) {
2599  		/* elem might be invalid after the memmove */
2600  		next = (void *)(elem->data + elem->datalen);
2601  
2602  		if (elem->id != frag_id)
2603  			break;
2604  
2605  		elem_datalen = elem->datalen;
2606  
2607  		if (data) {
2608  			if (copied + elem_datalen > data_len)
2609  				return -ENOSPC;
2610  
2611  			memmove(data + copied, elem->data, elem_datalen);
2612  		}
2613  
2614  		copied += elem_datalen;
2615  
2616  		/* Only the last fragment may be short */
2617  		if (elem_datalen != 255)
2618  			break;
2619  	}
2620  
2621  	return copied;
2622  }
2623  EXPORT_SYMBOL(cfg80211_defragment_element);
2624  
2625  struct cfg80211_mle {
2626  	struct ieee80211_multi_link_elem *mle;
2627  	struct ieee80211_mle_per_sta_profile
2628  		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2629  	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2630  
2631  	u8 data[];
2632  };
2633  
2634  static struct cfg80211_mle *
cfg80211_defrag_mle(const struct element * mle,const u8 * ie,size_t ielen,gfp_t gfp)2635  cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2636  		    gfp_t gfp)
2637  {
2638  	const struct element *elem;
2639  	struct cfg80211_mle *res;
2640  	size_t buf_len;
2641  	ssize_t mle_len;
2642  	u8 common_size, idx;
2643  
2644  	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2645  		return NULL;
2646  
2647  	/* Required length for first defragmentation */
2648  	buf_len = mle->datalen - 1;
2649  	for_each_element(elem, mle->data + mle->datalen,
2650  			 ielen - sizeof(*mle) + mle->datalen) {
2651  		if (elem->id != WLAN_EID_FRAGMENT)
2652  			break;
2653  
2654  		buf_len += elem->datalen;
2655  	}
2656  
2657  	res = kzalloc(struct_size(res, data, buf_len), gfp);
2658  	if (!res)
2659  		return NULL;
2660  
2661  	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2662  					      res->data, buf_len,
2663  					      WLAN_EID_FRAGMENT);
2664  	if (mle_len < 0)
2665  		goto error;
2666  
2667  	res->mle = (void *)res->data;
2668  
2669  	/* Find the sub-element area in the buffer */
2670  	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2671  	ie = res->data + common_size;
2672  	ielen = mle_len - common_size;
2673  
2674  	idx = 0;
2675  	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2676  			    ie, ielen) {
2677  		res->sta_prof[idx] = (void *)elem->data;
2678  		res->sta_prof_len[idx] = elem->datalen;
2679  
2680  		idx++;
2681  		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2682  			break;
2683  	}
2684  	if (!for_each_element_completed(elem, ie, ielen))
2685  		goto error;
2686  
2687  	/* Defragment sta_info in-place */
2688  	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2689  	     idx++) {
2690  		if (res->sta_prof_len[idx] < 255)
2691  			continue;
2692  
2693  		elem = (void *)res->sta_prof[idx] - 2;
2694  
2695  		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2696  		    res->sta_prof[idx + 1])
2697  			buf_len = (u8 *)res->sta_prof[idx + 1] -
2698  				  (u8 *)res->sta_prof[idx];
2699  		else
2700  			buf_len = ielen + ie - (u8 *)elem;
2701  
2702  		res->sta_prof_len[idx] =
2703  			cfg80211_defragment_element(elem,
2704  						    (u8 *)elem, buf_len,
2705  						    (u8 *)res->sta_prof[idx],
2706  						    buf_len,
2707  						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2708  		if (res->sta_prof_len[idx] < 0)
2709  			goto error;
2710  	}
2711  
2712  	return res;
2713  
2714  error:
2715  	kfree(res);
2716  	return NULL;
2717  }
2718  
2719  struct tbtt_info_iter_data {
2720  	const struct ieee80211_neighbor_ap_info *ap_info;
2721  	u8 param_ch_count;
2722  	u32 use_for;
2723  	u8 mld_id, link_id;
2724  	bool non_tx;
2725  };
2726  
2727  static enum cfg80211_rnr_iter_ret
cfg802121_mld_ap_rnr_iter(void * _data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len)2728  cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2729  			  const struct ieee80211_neighbor_ap_info *info,
2730  			  const u8 *tbtt_info, u8 tbtt_info_len)
2731  {
2732  	const struct ieee80211_rnr_mld_params *mld_params;
2733  	struct tbtt_info_iter_data *data = _data;
2734  	u8 link_id;
2735  	bool non_tx = false;
2736  
2737  	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2738  	    tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2739  					 mld_params)) {
2740  		const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2741  			(void *)tbtt_info;
2742  
2743  		non_tx = (tbtt_info_ge_11->bss_params &
2744  			  (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2745  			   IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2746  			 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2747  		mld_params = &tbtt_info_ge_11->mld_params;
2748  	} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2749  		 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2750  		mld_params = (void *)tbtt_info;
2751  	else
2752  		return RNR_ITER_CONTINUE;
2753  
2754  	link_id = le16_get_bits(mld_params->params,
2755  				IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2756  
2757  	if (data->mld_id != mld_params->mld_id)
2758  		return RNR_ITER_CONTINUE;
2759  
2760  	if (data->link_id != link_id)
2761  		return RNR_ITER_CONTINUE;
2762  
2763  	data->ap_info = info;
2764  	data->param_ch_count =
2765  		le16_get_bits(mld_params->params,
2766  			      IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2767  	data->non_tx = non_tx;
2768  
2769  	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2770  		data->use_for = NL80211_BSS_USE_FOR_ALL;
2771  	else
2772  		data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2773  	return RNR_ITER_BREAK;
2774  }
2775  
2776  static u8
cfg80211_rnr_info_for_mld_ap(const u8 * ie,size_t ielen,u8 mld_id,u8 link_id,const struct ieee80211_neighbor_ap_info ** ap_info,u8 * param_ch_count,bool * non_tx)2777  cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2778  			     const struct ieee80211_neighbor_ap_info **ap_info,
2779  			     u8 *param_ch_count, bool *non_tx)
2780  {
2781  	struct tbtt_info_iter_data data = {
2782  		.mld_id = mld_id,
2783  		.link_id = link_id,
2784  	};
2785  
2786  	cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2787  
2788  	*ap_info = data.ap_info;
2789  	*param_ch_count = data.param_ch_count;
2790  	*non_tx = data.non_tx;
2791  
2792  	return data.use_for;
2793  }
2794  
2795  static struct element *
cfg80211_gen_reporter_rnr(struct cfg80211_bss * source_bss,bool is_mbssid,bool same_mld,u8 link_id,u8 bss_change_count,gfp_t gfp)2796  cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2797  			  bool same_mld, u8 link_id, u8 bss_change_count,
2798  			  gfp_t gfp)
2799  {
2800  	const struct cfg80211_bss_ies *ies;
2801  	struct ieee80211_neighbor_ap_info ap_info;
2802  	struct ieee80211_tbtt_info_ge_11 tbtt_info;
2803  	u32 short_ssid;
2804  	const struct element *elem;
2805  	struct element *res;
2806  
2807  	/*
2808  	 * We only generate the RNR to permit ML lookups. For that we do not
2809  	 * need an entry for the corresponding transmitting BSS, lets just skip
2810  	 * it even though it would be easy to add.
2811  	 */
2812  	if (!same_mld)
2813  		return NULL;
2814  
2815  	/* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2816  	rcu_read_lock();
2817  	ies = rcu_dereference(source_bss->ies);
2818  
2819  	ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2820  	ap_info.tbtt_info_hdr =
2821  			u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2822  				       IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2823  			u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2824  
2825  	ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2826  
2827  	/* operating class */
2828  	elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2829  				  ies->data, ies->len);
2830  	if (elem && elem->datalen >= 1) {
2831  		ap_info.op_class = elem->data[0];
2832  	} else {
2833  		struct cfg80211_chan_def chandef;
2834  
2835  		/* The AP is not providing us with anything to work with. So
2836  		 * make up a somewhat reasonable operating class, but don't
2837  		 * bother with it too much as no one will ever use the
2838  		 * information.
2839  		 */
2840  		cfg80211_chandef_create(&chandef, source_bss->channel,
2841  					NL80211_CHAN_NO_HT);
2842  
2843  		if (!ieee80211_chandef_to_operating_class(&chandef,
2844  							  &ap_info.op_class))
2845  			goto out_unlock;
2846  	}
2847  
2848  	/* Just set TBTT offset and PSD 20 to invalid/unknown */
2849  	tbtt_info.tbtt_offset = 255;
2850  	tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2851  
2852  	memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2853  	if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2854  		goto out_unlock;
2855  
2856  	rcu_read_unlock();
2857  
2858  	tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2859  
2860  	tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2861  
2862  	if (is_mbssid) {
2863  		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2864  		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2865  	}
2866  
2867  	tbtt_info.mld_params.mld_id = 0;
2868  	tbtt_info.mld_params.params =
2869  		le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2870  		le16_encode_bits(bss_change_count,
2871  				 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2872  
2873  	res = kzalloc(struct_size(res, data,
2874  				  sizeof(ap_info) + ap_info.tbtt_info_len),
2875  		      gfp);
2876  	if (!res)
2877  		return NULL;
2878  
2879  	/* Copy the data */
2880  	res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2881  	res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2882  	memcpy(res->data, &ap_info, sizeof(ap_info));
2883  	memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2884  
2885  	return res;
2886  
2887  out_unlock:
2888  	rcu_read_unlock();
2889  	return NULL;
2890  }
2891  
2892  static void
cfg80211_parse_ml_elem_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,const struct element * elem,gfp_t gfp)2893  cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2894  				struct cfg80211_inform_single_bss_data *tx_data,
2895  				struct cfg80211_bss *source_bss,
2896  				const struct element *elem,
2897  				gfp_t gfp)
2898  {
2899  	struct cfg80211_inform_single_bss_data data = {
2900  		.drv_data = tx_data->drv_data,
2901  		.ftype = tx_data->ftype,
2902  		.source_bss = source_bss,
2903  		.bss_source = BSS_SOURCE_STA_PROFILE,
2904  	};
2905  	struct element *reporter_rnr = NULL;
2906  	struct ieee80211_multi_link_elem *ml_elem;
2907  	struct cfg80211_mle *mle;
2908  	const struct element *ssid_elem;
2909  	const u8 *ssid = NULL;
2910  	size_t ssid_len = 0;
2911  	u16 control;
2912  	u8 ml_common_len;
2913  	u8 *new_ie = NULL;
2914  	struct cfg80211_bss *bss;
2915  	u8 mld_id, reporter_link_id, bss_change_count;
2916  	u16 seen_links = 0;
2917  	u8 i;
2918  
2919  	if (!ieee80211_mle_type_ok(elem->data + 1,
2920  				   IEEE80211_ML_CONTROL_TYPE_BASIC,
2921  				   elem->datalen - 1))
2922  		return;
2923  
2924  	ml_elem = (void *)(elem->data + 1);
2925  	control = le16_to_cpu(ml_elem->control);
2926  	ml_common_len = ml_elem->variable[0];
2927  
2928  	/* Must be present when transmitted by an AP (in a probe response) */
2929  	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2930  	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2931  	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2932  		return;
2933  
2934  	reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2935  	bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2936  
2937  	/*
2938  	 * The MLD ID of the reporting AP is always zero. It is set if the AP
2939  	 * is part of an MBSSID set and will be non-zero for ML Elements
2940  	 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2941  	 * Draft P802.11be_D3.2, 35.3.4.2)
2942  	 */
2943  	mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2944  
2945  	/* Fully defrag the ML element for sta information/profile iteration */
2946  	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2947  	if (!mle)
2948  		return;
2949  
2950  	/* No point in doing anything if there is no per-STA profile */
2951  	if (!mle->sta_prof[0])
2952  		goto out;
2953  
2954  	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2955  	if (!new_ie)
2956  		goto out;
2957  
2958  	reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2959  						 u16_get_bits(control,
2960  							      IEEE80211_MLC_BASIC_PRES_MLD_ID),
2961  						 mld_id == 0, reporter_link_id,
2962  						 bss_change_count,
2963  						 gfp);
2964  
2965  	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
2966  				       tx_data->ielen);
2967  	if (ssid_elem) {
2968  		ssid = ssid_elem->data;
2969  		ssid_len = ssid_elem->datalen;
2970  	}
2971  
2972  	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2973  		const struct ieee80211_neighbor_ap_info *ap_info;
2974  		enum nl80211_band band;
2975  		u32 freq;
2976  		const u8 *profile;
2977  		ssize_t profile_len;
2978  		u8 param_ch_count;
2979  		u8 link_id, use_for;
2980  		bool non_tx;
2981  
2982  		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2983  							  mle->sta_prof_len[i]))
2984  			continue;
2985  
2986  		control = le16_to_cpu(mle->sta_prof[i]->control);
2987  
2988  		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2989  			continue;
2990  
2991  		link_id = u16_get_bits(control,
2992  				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
2993  		if (seen_links & BIT(link_id))
2994  			break;
2995  		seen_links |= BIT(link_id);
2996  
2997  		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2998  		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2999  		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
3000  			continue;
3001  
3002  		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3003  		data.beacon_interval =
3004  			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3005  		data.tsf = tx_data->tsf +
3006  			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3007  
3008  		/* sta_info_len counts itself */
3009  		profile = mle->sta_prof[i]->variable +
3010  			  mle->sta_prof[i]->sta_info_len - 1;
3011  		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3012  			      profile;
3013  
3014  		if (profile_len < 2)
3015  			continue;
3016  
3017  		data.capability = get_unaligned_le16(profile);
3018  		profile += 2;
3019  		profile_len -= 2;
3020  
3021  		/* Find in RNR to look up channel information */
3022  		use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3023  						       tx_data->ielen,
3024  						       mld_id, link_id,
3025  						       &ap_info,
3026  						       &param_ch_count,
3027  						       &non_tx);
3028  		if (!use_for)
3029  			continue;
3030  
3031  		/*
3032  		 * As of 802.11be_D5.0, the specification does not give us any
3033  		 * way of discovering both the MaxBSSID and the Multiple-BSSID
3034  		 * Index. It does seem like the Multiple-BSSID Index element
3035  		 * may be provided, but section 9.4.2.45 explicitly forbids
3036  		 * including a Multiple-BSSID Element (in this case without any
3037  		 * subelements).
3038  		 * Without both pieces of information we cannot calculate the
3039  		 * reference BSSID, so simply ignore the BSS.
3040  		 */
3041  		if (non_tx)
3042  			continue;
3043  
3044  		/* We could sanity check the BSSID is included */
3045  
3046  		if (!ieee80211_operating_class_to_band(ap_info->op_class,
3047  						       &band))
3048  			continue;
3049  
3050  		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3051  		data.channel = ieee80211_get_channel_khz(wiphy, freq);
3052  
3053  		/* Skip if RNR element specifies an unsupported channel */
3054  		if (!data.channel)
3055  			continue;
3056  
3057  		/* Skip if BSS entry generated from MBSSID or DIRECT source
3058  		 * frame data available already.
3059  		 */
3060  		bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3061  				       ssid_len, IEEE80211_BSS_TYPE_ANY,
3062  				       IEEE80211_PRIVACY_ANY);
3063  		if (bss) {
3064  			struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3065  
3066  			if (data.capability == bss->capability &&
3067  			    ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3068  				cfg80211_put_bss(wiphy, bss);
3069  				continue;
3070  			}
3071  			cfg80211_put_bss(wiphy, bss);
3072  		}
3073  
3074  		if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3075  		    !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3076  			use_for = 0;
3077  			data.cannot_use_reasons =
3078  				NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3079  		}
3080  		data.use_for = use_for;
3081  
3082  		/* Generate new elements */
3083  		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3084  		data.ie = new_ie;
3085  		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3086  						 profile, profile_len,
3087  						 new_ie,
3088  						 IEEE80211_MAX_DATA_LEN);
3089  		if (!data.ielen)
3090  			continue;
3091  
3092  		/* The generated elements do not contain:
3093  		 *  - Basic ML element
3094  		 *  - A TBTT entry in the RNR for the transmitting AP
3095  		 *
3096  		 * This information is needed both internally and in userspace
3097  		 * as such, we should append it here.
3098  		 */
3099  		if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3100  		    IEEE80211_MAX_DATA_LEN)
3101  			continue;
3102  
3103  		/* Copy the Basic Multi-Link element including the common
3104  		 * information, and then fix up the link ID and BSS param
3105  		 * change count.
3106  		 * Note that the ML element length has been verified and we
3107  		 * also checked that it contains the link ID.
3108  		 */
3109  		new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3110  		new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3111  		new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3112  		memcpy(new_ie + data.ielen, ml_elem,
3113  		       sizeof(*ml_elem) + ml_common_len);
3114  
3115  		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3116  		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3117  			param_ch_count;
3118  
3119  		data.ielen += sizeof(*ml_elem) + ml_common_len;
3120  
3121  		if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3122  			if (data.ielen + sizeof(struct element) +
3123  			    reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3124  				continue;
3125  
3126  			memcpy(new_ie + data.ielen, reporter_rnr,
3127  			       sizeof(struct element) + reporter_rnr->datalen);
3128  			data.ielen += sizeof(struct element) +
3129  				      reporter_rnr->datalen;
3130  		}
3131  
3132  		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3133  		if (!bss)
3134  			break;
3135  		cfg80211_put_bss(wiphy, bss);
3136  	}
3137  
3138  out:
3139  	kfree(reporter_rnr);
3140  	kfree(new_ie);
3141  	kfree(mle);
3142  }
3143  
cfg80211_parse_ml_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)3144  static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3145  				       struct cfg80211_inform_single_bss_data *tx_data,
3146  				       struct cfg80211_bss *source_bss,
3147  				       gfp_t gfp)
3148  {
3149  	const struct element *elem;
3150  
3151  	if (!source_bss)
3152  		return;
3153  
3154  	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3155  		return;
3156  
3157  	for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3158  			       tx_data->ie, tx_data->ielen)
3159  		cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3160  						elem, gfp);
3161  }
3162  
3163  struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)3164  cfg80211_inform_bss_data(struct wiphy *wiphy,
3165  			 struct cfg80211_inform_bss *data,
3166  			 enum cfg80211_bss_frame_type ftype,
3167  			 const u8 *bssid, u64 tsf, u16 capability,
3168  			 u16 beacon_interval, const u8 *ie, size_t ielen,
3169  			 gfp_t gfp)
3170  {
3171  	struct cfg80211_inform_single_bss_data inform_data = {
3172  		.drv_data = data,
3173  		.ftype = ftype,
3174  		.tsf = tsf,
3175  		.capability = capability,
3176  		.beacon_interval = beacon_interval,
3177  		.ie = ie,
3178  		.ielen = ielen,
3179  		.use_for = data->restrict_use ?
3180  				data->use_for :
3181  				NL80211_BSS_USE_FOR_ALL,
3182  		.cannot_use_reasons = data->cannot_use_reasons,
3183  	};
3184  	struct cfg80211_bss *res;
3185  
3186  	memcpy(inform_data.bssid, bssid, ETH_ALEN);
3187  
3188  	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3189  	if (!res)
3190  		return NULL;
3191  
3192  	/* don't do any further MBSSID/ML handling for S1G */
3193  	if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3194  		return res;
3195  
3196  	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3197  
3198  	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3199  
3200  	return res;
3201  }
3202  EXPORT_SYMBOL(cfg80211_inform_bss_data);
3203  
3204  struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)3205  cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3206  			       struct cfg80211_inform_bss *data,
3207  			       struct ieee80211_mgmt *mgmt, size_t len,
3208  			       gfp_t gfp)
3209  {
3210  	size_t min_hdr_len;
3211  	struct ieee80211_ext *ext = NULL;
3212  	enum cfg80211_bss_frame_type ftype;
3213  	u16 beacon_interval;
3214  	const u8 *bssid;
3215  	u16 capability;
3216  	const u8 *ie;
3217  	size_t ielen;
3218  	u64 tsf;
3219  
3220  	if (WARN_ON(!mgmt))
3221  		return NULL;
3222  
3223  	if (WARN_ON(!wiphy))
3224  		return NULL;
3225  
3226  	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3227  		     offsetof(struct ieee80211_mgmt, u.beacon.variable));
3228  
3229  	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3230  
3231  	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3232  		ext = (void *) mgmt;
3233  		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3234  			min_hdr_len = offsetof(struct ieee80211_ext,
3235  					       u.s1g_short_beacon.variable);
3236  		else
3237  			min_hdr_len = offsetof(struct ieee80211_ext,
3238  					       u.s1g_beacon.variable);
3239  	} else {
3240  		/* same for beacons */
3241  		min_hdr_len = offsetof(struct ieee80211_mgmt,
3242  				       u.probe_resp.variable);
3243  	}
3244  
3245  	if (WARN_ON(len < min_hdr_len))
3246  		return NULL;
3247  
3248  	ielen = len - min_hdr_len;
3249  	ie = mgmt->u.probe_resp.variable;
3250  	if (ext) {
3251  		const struct ieee80211_s1g_bcn_compat_ie *compat;
3252  		const struct element *elem;
3253  
3254  		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3255  			ie = ext->u.s1g_short_beacon.variable;
3256  		else
3257  			ie = ext->u.s1g_beacon.variable;
3258  
3259  		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3260  		if (!elem)
3261  			return NULL;
3262  		if (elem->datalen < sizeof(*compat))
3263  			return NULL;
3264  		compat = (void *)elem->data;
3265  		bssid = ext->u.s1g_beacon.sa;
3266  		capability = le16_to_cpu(compat->compat_info);
3267  		beacon_interval = le16_to_cpu(compat->beacon_int);
3268  	} else {
3269  		bssid = mgmt->bssid;
3270  		beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3271  		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3272  	}
3273  
3274  	tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3275  
3276  	if (ieee80211_is_probe_resp(mgmt->frame_control))
3277  		ftype = CFG80211_BSS_FTYPE_PRESP;
3278  	else if (ext)
3279  		ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3280  	else
3281  		ftype = CFG80211_BSS_FTYPE_BEACON;
3282  
3283  	return cfg80211_inform_bss_data(wiphy, data, ftype,
3284  					bssid, tsf, capability,
3285  					beacon_interval, ie, ielen,
3286  					gfp);
3287  }
3288  EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3289  
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3290  void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3291  {
3292  	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3293  
3294  	if (!pub)
3295  		return;
3296  
3297  	spin_lock_bh(&rdev->bss_lock);
3298  	bss_ref_get(rdev, bss_from_pub(pub));
3299  	spin_unlock_bh(&rdev->bss_lock);
3300  }
3301  EXPORT_SYMBOL(cfg80211_ref_bss);
3302  
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3303  void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3304  {
3305  	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3306  
3307  	if (!pub)
3308  		return;
3309  
3310  	spin_lock_bh(&rdev->bss_lock);
3311  	bss_ref_put(rdev, bss_from_pub(pub));
3312  	spin_unlock_bh(&rdev->bss_lock);
3313  }
3314  EXPORT_SYMBOL(cfg80211_put_bss);
3315  
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3316  void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3317  {
3318  	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3319  	struct cfg80211_internal_bss *bss, *tmp1;
3320  	struct cfg80211_bss *nontrans_bss, *tmp;
3321  
3322  	if (WARN_ON(!pub))
3323  		return;
3324  
3325  	bss = bss_from_pub(pub);
3326  
3327  	spin_lock_bh(&rdev->bss_lock);
3328  	if (list_empty(&bss->list))
3329  		goto out;
3330  
3331  	list_for_each_entry_safe(nontrans_bss, tmp,
3332  				 &pub->nontrans_list,
3333  				 nontrans_list) {
3334  		tmp1 = bss_from_pub(nontrans_bss);
3335  		if (__cfg80211_unlink_bss(rdev, tmp1))
3336  			rdev->bss_generation++;
3337  	}
3338  
3339  	if (__cfg80211_unlink_bss(rdev, bss))
3340  		rdev->bss_generation++;
3341  out:
3342  	spin_unlock_bh(&rdev->bss_lock);
3343  }
3344  EXPORT_SYMBOL(cfg80211_unlink_bss);
3345  
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)3346  void cfg80211_bss_iter(struct wiphy *wiphy,
3347  		       struct cfg80211_chan_def *chandef,
3348  		       void (*iter)(struct wiphy *wiphy,
3349  				    struct cfg80211_bss *bss,
3350  				    void *data),
3351  		       void *iter_data)
3352  {
3353  	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3354  	struct cfg80211_internal_bss *bss;
3355  
3356  	spin_lock_bh(&rdev->bss_lock);
3357  
3358  	list_for_each_entry(bss, &rdev->bss_list, list) {
3359  		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3360  						     false))
3361  			iter(wiphy, &bss->pub, iter_data);
3362  	}
3363  
3364  	spin_unlock_bh(&rdev->bss_lock);
3365  }
3366  EXPORT_SYMBOL(cfg80211_bss_iter);
3367  
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,unsigned int link_id,struct ieee80211_channel * chan)3368  void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3369  				     unsigned int link_id,
3370  				     struct ieee80211_channel *chan)
3371  {
3372  	struct wiphy *wiphy = wdev->wiphy;
3373  	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3374  	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3375  	struct cfg80211_internal_bss *new = NULL;
3376  	struct cfg80211_internal_bss *bss;
3377  	struct cfg80211_bss *nontrans_bss;
3378  	struct cfg80211_bss *tmp;
3379  
3380  	spin_lock_bh(&rdev->bss_lock);
3381  
3382  	/*
3383  	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3384  	 * changing the control channel, so no need to update in such a case.
3385  	 */
3386  	if (cbss->pub.channel == chan)
3387  		goto done;
3388  
3389  	/* use transmitting bss */
3390  	if (cbss->pub.transmitted_bss)
3391  		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3392  
3393  	cbss->pub.channel = chan;
3394  
3395  	list_for_each_entry(bss, &rdev->bss_list, list) {
3396  		if (!cfg80211_bss_type_match(bss->pub.capability,
3397  					     bss->pub.channel->band,
3398  					     wdev->conn_bss_type))
3399  			continue;
3400  
3401  		if (bss == cbss)
3402  			continue;
3403  
3404  		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3405  			new = bss;
3406  			break;
3407  		}
3408  	}
3409  
3410  	if (new) {
3411  		/* to save time, update IEs for transmitting bss only */
3412  		cfg80211_update_known_bss(rdev, cbss, new, false);
3413  		new->pub.proberesp_ies = NULL;
3414  		new->pub.beacon_ies = NULL;
3415  
3416  		list_for_each_entry_safe(nontrans_bss, tmp,
3417  					 &new->pub.nontrans_list,
3418  					 nontrans_list) {
3419  			bss = bss_from_pub(nontrans_bss);
3420  			if (__cfg80211_unlink_bss(rdev, bss))
3421  				rdev->bss_generation++;
3422  		}
3423  
3424  		WARN_ON(atomic_read(&new->hold));
3425  		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3426  			rdev->bss_generation++;
3427  	}
3428  	cfg80211_rehash_bss(rdev, cbss);
3429  
3430  	list_for_each_entry_safe(nontrans_bss, tmp,
3431  				 &cbss->pub.nontrans_list,
3432  				 nontrans_list) {
3433  		bss = bss_from_pub(nontrans_bss);
3434  		bss->pub.channel = chan;
3435  		cfg80211_rehash_bss(rdev, bss);
3436  	}
3437  
3438  done:
3439  	spin_unlock_bh(&rdev->bss_lock);
3440  }
3441  
3442  #ifdef CONFIG_CFG80211_WEXT
3443  static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)3444  cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3445  {
3446  	struct cfg80211_registered_device *rdev;
3447  	struct net_device *dev;
3448  
3449  	ASSERT_RTNL();
3450  
3451  	dev = dev_get_by_index(net, ifindex);
3452  	if (!dev)
3453  		return ERR_PTR(-ENODEV);
3454  	if (dev->ieee80211_ptr)
3455  		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3456  	else
3457  		rdev = ERR_PTR(-ENODEV);
3458  	dev_put(dev);
3459  	return rdev;
3460  }
3461  
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3462  int cfg80211_wext_siwscan(struct net_device *dev,
3463  			  struct iw_request_info *info,
3464  			  union iwreq_data *wrqu, char *extra)
3465  {
3466  	struct cfg80211_registered_device *rdev;
3467  	struct wiphy *wiphy;
3468  	struct iw_scan_req *wreq = NULL;
3469  	struct cfg80211_scan_request *creq;
3470  	int i, err, n_channels = 0;
3471  	enum nl80211_band band;
3472  
3473  	if (!netif_running(dev))
3474  		return -ENETDOWN;
3475  
3476  	if (wrqu->data.length == sizeof(struct iw_scan_req))
3477  		wreq = (struct iw_scan_req *)extra;
3478  
3479  	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3480  
3481  	if (IS_ERR(rdev))
3482  		return PTR_ERR(rdev);
3483  
3484  	if (rdev->scan_req || rdev->scan_msg)
3485  		return -EBUSY;
3486  
3487  	wiphy = &rdev->wiphy;
3488  
3489  	/* Determine number of channels, needed to allocate creq */
3490  	if (wreq && wreq->num_channels) {
3491  		/* Passed from userspace so should be checked */
3492  		if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3493  			return -EINVAL;
3494  		n_channels = wreq->num_channels;
3495  	} else {
3496  		n_channels = ieee80211_get_num_supported_channels(wiphy);
3497  	}
3498  
3499  	creq = kzalloc(struct_size(creq, channels, n_channels) +
3500  		       sizeof(struct cfg80211_ssid),
3501  		       GFP_ATOMIC);
3502  	if (!creq)
3503  		return -ENOMEM;
3504  
3505  	creq->wiphy = wiphy;
3506  	creq->wdev = dev->ieee80211_ptr;
3507  	/* SSIDs come after channels */
3508  	creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
3509  	creq->n_channels = n_channels;
3510  	creq->n_ssids = 1;
3511  	creq->scan_start = jiffies;
3512  
3513  	/* translate "Scan on frequencies" request */
3514  	i = 0;
3515  	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3516  		int j;
3517  
3518  		if (!wiphy->bands[band])
3519  			continue;
3520  
3521  		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3522  			/* ignore disabled channels */
3523  			if (wiphy->bands[band]->channels[j].flags &
3524  						IEEE80211_CHAN_DISABLED)
3525  				continue;
3526  
3527  			/* If we have a wireless request structure and the
3528  			 * wireless request specifies frequencies, then search
3529  			 * for the matching hardware channel.
3530  			 */
3531  			if (wreq && wreq->num_channels) {
3532  				int k;
3533  				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3534  				for (k = 0; k < wreq->num_channels; k++) {
3535  					struct iw_freq *freq =
3536  						&wreq->channel_list[k];
3537  					int wext_freq =
3538  						cfg80211_wext_freq(freq);
3539  
3540  					if (wext_freq == wiphy_freq)
3541  						goto wext_freq_found;
3542  				}
3543  				goto wext_freq_not_found;
3544  			}
3545  
3546  		wext_freq_found:
3547  			creq->channels[i] = &wiphy->bands[band]->channels[j];
3548  			i++;
3549  		wext_freq_not_found: ;
3550  		}
3551  	}
3552  	/* No channels found? */
3553  	if (!i) {
3554  		err = -EINVAL;
3555  		goto out;
3556  	}
3557  
3558  	/* Set real number of channels specified in creq->channels[] */
3559  	creq->n_channels = i;
3560  
3561  	/* translate "Scan for SSID" request */
3562  	if (wreq) {
3563  		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3564  			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3565  				err = -EINVAL;
3566  				goto out;
3567  			}
3568  			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3569  			creq->ssids[0].ssid_len = wreq->essid_len;
3570  		}
3571  		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3572  			creq->ssids = NULL;
3573  			creq->n_ssids = 0;
3574  		}
3575  	}
3576  
3577  	for (i = 0; i < NUM_NL80211_BANDS; i++)
3578  		if (wiphy->bands[i])
3579  			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3580  
3581  	eth_broadcast_addr(creq->bssid);
3582  
3583  	wiphy_lock(&rdev->wiphy);
3584  
3585  	rdev->scan_req = creq;
3586  	err = rdev_scan(rdev, creq);
3587  	if (err) {
3588  		rdev->scan_req = NULL;
3589  		/* creq will be freed below */
3590  	} else {
3591  		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3592  		/* creq now owned by driver */
3593  		creq = NULL;
3594  		dev_hold(dev);
3595  	}
3596  	wiphy_unlock(&rdev->wiphy);
3597   out:
3598  	kfree(creq);
3599  	return err;
3600  }
3601  EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3602  
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)3603  static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3604  				    const struct cfg80211_bss_ies *ies,
3605  				    char *current_ev, char *end_buf)
3606  {
3607  	const u8 *pos, *end, *next;
3608  	struct iw_event iwe;
3609  
3610  	if (!ies)
3611  		return current_ev;
3612  
3613  	/*
3614  	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3615  	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3616  	 */
3617  	pos = ies->data;
3618  	end = pos + ies->len;
3619  
3620  	while (end - pos > IW_GENERIC_IE_MAX) {
3621  		next = pos + 2 + pos[1];
3622  		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3623  			next = next + 2 + next[1];
3624  
3625  		memset(&iwe, 0, sizeof(iwe));
3626  		iwe.cmd = IWEVGENIE;
3627  		iwe.u.data.length = next - pos;
3628  		current_ev = iwe_stream_add_point_check(info, current_ev,
3629  							end_buf, &iwe,
3630  							(void *)pos);
3631  		if (IS_ERR(current_ev))
3632  			return current_ev;
3633  		pos = next;
3634  	}
3635  
3636  	if (end > pos) {
3637  		memset(&iwe, 0, sizeof(iwe));
3638  		iwe.cmd = IWEVGENIE;
3639  		iwe.u.data.length = end - pos;
3640  		current_ev = iwe_stream_add_point_check(info, current_ev,
3641  							end_buf, &iwe,
3642  							(void *)pos);
3643  		if (IS_ERR(current_ev))
3644  			return current_ev;
3645  	}
3646  
3647  	return current_ev;
3648  }
3649  
3650  static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)3651  ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3652  	      struct cfg80211_internal_bss *bss, char *current_ev,
3653  	      char *end_buf)
3654  {
3655  	const struct cfg80211_bss_ies *ies;
3656  	struct iw_event iwe;
3657  	const u8 *ie;
3658  	u8 buf[50];
3659  	u8 *cfg, *p, *tmp;
3660  	int rem, i, sig;
3661  	bool ismesh = false;
3662  
3663  	memset(&iwe, 0, sizeof(iwe));
3664  	iwe.cmd = SIOCGIWAP;
3665  	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3666  	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3667  	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3668  						IW_EV_ADDR_LEN);
3669  	if (IS_ERR(current_ev))
3670  		return current_ev;
3671  
3672  	memset(&iwe, 0, sizeof(iwe));
3673  	iwe.cmd = SIOCGIWFREQ;
3674  	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3675  	iwe.u.freq.e = 0;
3676  	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3677  						IW_EV_FREQ_LEN);
3678  	if (IS_ERR(current_ev))
3679  		return current_ev;
3680  
3681  	memset(&iwe, 0, sizeof(iwe));
3682  	iwe.cmd = SIOCGIWFREQ;
3683  	iwe.u.freq.m = bss->pub.channel->center_freq;
3684  	iwe.u.freq.e = 6;
3685  	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3686  						IW_EV_FREQ_LEN);
3687  	if (IS_ERR(current_ev))
3688  		return current_ev;
3689  
3690  	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3691  		memset(&iwe, 0, sizeof(iwe));
3692  		iwe.cmd = IWEVQUAL;
3693  		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3694  				     IW_QUAL_NOISE_INVALID |
3695  				     IW_QUAL_QUAL_UPDATED;
3696  		switch (wiphy->signal_type) {
3697  		case CFG80211_SIGNAL_TYPE_MBM:
3698  			sig = bss->pub.signal / 100;
3699  			iwe.u.qual.level = sig;
3700  			iwe.u.qual.updated |= IW_QUAL_DBM;
3701  			if (sig < -110)		/* rather bad */
3702  				sig = -110;
3703  			else if (sig > -40)	/* perfect */
3704  				sig = -40;
3705  			/* will give a range of 0 .. 70 */
3706  			iwe.u.qual.qual = sig + 110;
3707  			break;
3708  		case CFG80211_SIGNAL_TYPE_UNSPEC:
3709  			iwe.u.qual.level = bss->pub.signal;
3710  			/* will give range 0 .. 100 */
3711  			iwe.u.qual.qual = bss->pub.signal;
3712  			break;
3713  		default:
3714  			/* not reached */
3715  			break;
3716  		}
3717  		current_ev = iwe_stream_add_event_check(info, current_ev,
3718  							end_buf, &iwe,
3719  							IW_EV_QUAL_LEN);
3720  		if (IS_ERR(current_ev))
3721  			return current_ev;
3722  	}
3723  
3724  	memset(&iwe, 0, sizeof(iwe));
3725  	iwe.cmd = SIOCGIWENCODE;
3726  	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3727  		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3728  	else
3729  		iwe.u.data.flags = IW_ENCODE_DISABLED;
3730  	iwe.u.data.length = 0;
3731  	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3732  						&iwe, "");
3733  	if (IS_ERR(current_ev))
3734  		return current_ev;
3735  
3736  	rcu_read_lock();
3737  	ies = rcu_dereference(bss->pub.ies);
3738  	rem = ies->len;
3739  	ie = ies->data;
3740  
3741  	while (rem >= 2) {
3742  		/* invalid data */
3743  		if (ie[1] > rem - 2)
3744  			break;
3745  
3746  		switch (ie[0]) {
3747  		case WLAN_EID_SSID:
3748  			memset(&iwe, 0, sizeof(iwe));
3749  			iwe.cmd = SIOCGIWESSID;
3750  			iwe.u.data.length = ie[1];
3751  			iwe.u.data.flags = 1;
3752  			current_ev = iwe_stream_add_point_check(info,
3753  								current_ev,
3754  								end_buf, &iwe,
3755  								(u8 *)ie + 2);
3756  			if (IS_ERR(current_ev))
3757  				goto unlock;
3758  			break;
3759  		case WLAN_EID_MESH_ID:
3760  			memset(&iwe, 0, sizeof(iwe));
3761  			iwe.cmd = SIOCGIWESSID;
3762  			iwe.u.data.length = ie[1];
3763  			iwe.u.data.flags = 1;
3764  			current_ev = iwe_stream_add_point_check(info,
3765  								current_ev,
3766  								end_buf, &iwe,
3767  								(u8 *)ie + 2);
3768  			if (IS_ERR(current_ev))
3769  				goto unlock;
3770  			break;
3771  		case WLAN_EID_MESH_CONFIG:
3772  			ismesh = true;
3773  			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3774  				break;
3775  			cfg = (u8 *)ie + 2;
3776  			memset(&iwe, 0, sizeof(iwe));
3777  			iwe.cmd = IWEVCUSTOM;
3778  			iwe.u.data.length = sprintf(buf,
3779  						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3780  						    cfg[0]);
3781  			current_ev = iwe_stream_add_point_check(info,
3782  								current_ev,
3783  								end_buf,
3784  								&iwe, buf);
3785  			if (IS_ERR(current_ev))
3786  				goto unlock;
3787  			iwe.u.data.length = sprintf(buf,
3788  						    "Path Selection Metric ID: 0x%02X",
3789  						    cfg[1]);
3790  			current_ev = iwe_stream_add_point_check(info,
3791  								current_ev,
3792  								end_buf,
3793  								&iwe, buf);
3794  			if (IS_ERR(current_ev))
3795  				goto unlock;
3796  			iwe.u.data.length = sprintf(buf,
3797  						    "Congestion Control Mode ID: 0x%02X",
3798  						    cfg[2]);
3799  			current_ev = iwe_stream_add_point_check(info,
3800  								current_ev,
3801  								end_buf,
3802  								&iwe, buf);
3803  			if (IS_ERR(current_ev))
3804  				goto unlock;
3805  			iwe.u.data.length = sprintf(buf,
3806  						    "Synchronization ID: 0x%02X",
3807  						    cfg[3]);
3808  			current_ev = iwe_stream_add_point_check(info,
3809  								current_ev,
3810  								end_buf,
3811  								&iwe, buf);
3812  			if (IS_ERR(current_ev))
3813  				goto unlock;
3814  			iwe.u.data.length = sprintf(buf,
3815  						    "Authentication ID: 0x%02X",
3816  						    cfg[4]);
3817  			current_ev = iwe_stream_add_point_check(info,
3818  								current_ev,
3819  								end_buf,
3820  								&iwe, buf);
3821  			if (IS_ERR(current_ev))
3822  				goto unlock;
3823  			iwe.u.data.length = sprintf(buf,
3824  						    "Formation Info: 0x%02X",
3825  						    cfg[5]);
3826  			current_ev = iwe_stream_add_point_check(info,
3827  								current_ev,
3828  								end_buf,
3829  								&iwe, buf);
3830  			if (IS_ERR(current_ev))
3831  				goto unlock;
3832  			iwe.u.data.length = sprintf(buf,
3833  						    "Capabilities: 0x%02X",
3834  						    cfg[6]);
3835  			current_ev = iwe_stream_add_point_check(info,
3836  								current_ev,
3837  								end_buf,
3838  								&iwe, buf);
3839  			if (IS_ERR(current_ev))
3840  				goto unlock;
3841  			break;
3842  		case WLAN_EID_SUPP_RATES:
3843  		case WLAN_EID_EXT_SUPP_RATES:
3844  			/* display all supported rates in readable format */
3845  			p = current_ev + iwe_stream_lcp_len(info);
3846  
3847  			memset(&iwe, 0, sizeof(iwe));
3848  			iwe.cmd = SIOCGIWRATE;
3849  			/* Those two flags are ignored... */
3850  			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3851  
3852  			for (i = 0; i < ie[1]; i++) {
3853  				iwe.u.bitrate.value =
3854  					((ie[i + 2] & 0x7f) * 500000);
3855  				tmp = p;
3856  				p = iwe_stream_add_value(info, current_ev, p,
3857  							 end_buf, &iwe,
3858  							 IW_EV_PARAM_LEN);
3859  				if (p == tmp) {
3860  					current_ev = ERR_PTR(-E2BIG);
3861  					goto unlock;
3862  				}
3863  			}
3864  			current_ev = p;
3865  			break;
3866  		}
3867  		rem -= ie[1] + 2;
3868  		ie += ie[1] + 2;
3869  	}
3870  
3871  	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3872  	    ismesh) {
3873  		memset(&iwe, 0, sizeof(iwe));
3874  		iwe.cmd = SIOCGIWMODE;
3875  		if (ismesh)
3876  			iwe.u.mode = IW_MODE_MESH;
3877  		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3878  			iwe.u.mode = IW_MODE_MASTER;
3879  		else
3880  			iwe.u.mode = IW_MODE_ADHOC;
3881  		current_ev = iwe_stream_add_event_check(info, current_ev,
3882  							end_buf, &iwe,
3883  							IW_EV_UINT_LEN);
3884  		if (IS_ERR(current_ev))
3885  			goto unlock;
3886  	}
3887  
3888  	memset(&iwe, 0, sizeof(iwe));
3889  	iwe.cmd = IWEVCUSTOM;
3890  	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3891  				    (unsigned long long)(ies->tsf));
3892  	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3893  						&iwe, buf);
3894  	if (IS_ERR(current_ev))
3895  		goto unlock;
3896  	memset(&iwe, 0, sizeof(iwe));
3897  	iwe.cmd = IWEVCUSTOM;
3898  	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3899  				    elapsed_jiffies_msecs(bss->ts));
3900  	current_ev = iwe_stream_add_point_check(info, current_ev,
3901  						end_buf, &iwe, buf);
3902  	if (IS_ERR(current_ev))
3903  		goto unlock;
3904  
3905  	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3906  
3907   unlock:
3908  	rcu_read_unlock();
3909  	return current_ev;
3910  }
3911  
3912  
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3913  static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3914  				  struct iw_request_info *info,
3915  				  char *buf, size_t len)
3916  {
3917  	char *current_ev = buf;
3918  	char *end_buf = buf + len;
3919  	struct cfg80211_internal_bss *bss;
3920  	int err = 0;
3921  
3922  	spin_lock_bh(&rdev->bss_lock);
3923  	cfg80211_bss_expire(rdev);
3924  
3925  	list_for_each_entry(bss, &rdev->bss_list, list) {
3926  		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3927  			err = -E2BIG;
3928  			break;
3929  		}
3930  		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3931  					   current_ev, end_buf);
3932  		if (IS_ERR(current_ev)) {
3933  			err = PTR_ERR(current_ev);
3934  			break;
3935  		}
3936  	}
3937  	spin_unlock_bh(&rdev->bss_lock);
3938  
3939  	if (err)
3940  		return err;
3941  	return current_ev - buf;
3942  }
3943  
3944  
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3945  int cfg80211_wext_giwscan(struct net_device *dev,
3946  			  struct iw_request_info *info,
3947  			  union iwreq_data *wrqu, char *extra)
3948  {
3949  	struct iw_point *data = &wrqu->data;
3950  	struct cfg80211_registered_device *rdev;
3951  	int res;
3952  
3953  	if (!netif_running(dev))
3954  		return -ENETDOWN;
3955  
3956  	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3957  
3958  	if (IS_ERR(rdev))
3959  		return PTR_ERR(rdev);
3960  
3961  	if (rdev->scan_req || rdev->scan_msg)
3962  		return -EAGAIN;
3963  
3964  	res = ieee80211_scan_results(rdev, info, extra, data->length);
3965  	data->length = 0;
3966  	if (res >= 0) {
3967  		data->length = res;
3968  		res = 0;
3969  	}
3970  
3971  	return res;
3972  }
3973  EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3974  #endif
3975