1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4 *
5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 */
7
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23
24 #include "cec-priv.h"
25
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 struct cec_msg *msg,
28 unsigned int la_idx);
29
cec_log_addr2idx(const struct cec_adapter * adap,u8 log_addr)30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
31 {
32 int i;
33
34 for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
35 if (adap->log_addrs.log_addr[i] == log_addr)
36 return i;
37 return -1;
38 }
39
cec_log_addr2dev(const struct cec_adapter * adap,u8 log_addr)40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
41 {
42 int i = cec_log_addr2idx(adap, log_addr);
43
44 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
45 }
46
cec_get_edid_phys_addr(const u8 * edid,unsigned int size,unsigned int * offset)47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
48 unsigned int *offset)
49 {
50 unsigned int loc = cec_get_edid_spa_location(edid, size);
51
52 if (offset)
53 *offset = loc;
54 if (loc == 0)
55 return CEC_PHYS_ADDR_INVALID;
56 return (edid[loc] << 8) | edid[loc + 1];
57 }
58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
59
cec_fill_conn_info_from_drm(struct cec_connector_info * conn_info,const struct drm_connector * connector)60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
61 const struct drm_connector *connector)
62 {
63 memset(conn_info, 0, sizeof(*conn_info));
64 conn_info->type = CEC_CONNECTOR_TYPE_DRM;
65 conn_info->drm.card_no = connector->dev->primary->index;
66 conn_info->drm.connector_id = connector->base.id;
67 }
68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
69
70 /*
71 * Queue a new event for this filehandle. If ts == 0, then set it
72 * to the current time.
73 *
74 * We keep a queue of at most max_event events where max_event differs
75 * per event. If the queue becomes full, then drop the oldest event and
76 * keep track of how many events we've dropped.
77 */
cec_queue_event_fh(struct cec_fh * fh,const struct cec_event * new_ev,u64 ts)78 void cec_queue_event_fh(struct cec_fh *fh,
79 const struct cec_event *new_ev, u64 ts)
80 {
81 static const u16 max_events[CEC_NUM_EVENTS] = {
82 1, 1, 800, 800, 8, 8, 8, 8
83 };
84 struct cec_event_entry *entry;
85 unsigned int ev_idx = new_ev->event - 1;
86
87 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
88 return;
89
90 if (ts == 0)
91 ts = ktime_get_ns();
92
93 mutex_lock(&fh->lock);
94 if (ev_idx < CEC_NUM_CORE_EVENTS)
95 entry = &fh->core_events[ev_idx];
96 else
97 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
98 if (entry) {
99 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
100 fh->queued_events[ev_idx]) {
101 entry->ev.lost_msgs.lost_msgs +=
102 new_ev->lost_msgs.lost_msgs;
103 goto unlock;
104 }
105 entry->ev = *new_ev;
106 entry->ev.ts = ts;
107
108 if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
109 /* Add new msg at the end of the queue */
110 list_add_tail(&entry->list, &fh->events[ev_idx]);
111 fh->queued_events[ev_idx]++;
112 fh->total_queued_events++;
113 goto unlock;
114 }
115
116 if (ev_idx >= CEC_NUM_CORE_EVENTS) {
117 list_add_tail(&entry->list, &fh->events[ev_idx]);
118 /* drop the oldest event */
119 entry = list_first_entry(&fh->events[ev_idx],
120 struct cec_event_entry, list);
121 list_del(&entry->list);
122 kfree(entry);
123 }
124 }
125 /* Mark that events were lost */
126 entry = list_first_entry_or_null(&fh->events[ev_idx],
127 struct cec_event_entry, list);
128 if (entry)
129 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
130
131 unlock:
132 mutex_unlock(&fh->lock);
133 wake_up_interruptible(&fh->wait);
134 }
135
136 /* Queue a new event for all open filehandles. */
cec_queue_event(struct cec_adapter * adap,const struct cec_event * ev)137 static void cec_queue_event(struct cec_adapter *adap,
138 const struct cec_event *ev)
139 {
140 u64 ts = ktime_get_ns();
141 struct cec_fh *fh;
142
143 mutex_lock(&adap->devnode.lock_fhs);
144 list_for_each_entry(fh, &adap->devnode.fhs, list)
145 cec_queue_event_fh(fh, ev, ts);
146 mutex_unlock(&adap->devnode.lock_fhs);
147 }
148
149 /* Notify userspace that the CEC pin changed state at the given time. */
cec_queue_pin_cec_event(struct cec_adapter * adap,bool is_high,bool dropped_events,ktime_t ts)150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
151 bool dropped_events, ktime_t ts)
152 {
153 struct cec_event ev = {
154 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
155 CEC_EVENT_PIN_CEC_LOW,
156 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
157 };
158 struct cec_fh *fh;
159
160 mutex_lock(&adap->devnode.lock_fhs);
161 list_for_each_entry(fh, &adap->devnode.fhs, list) {
162 if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
163 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
164 }
165 mutex_unlock(&adap->devnode.lock_fhs);
166 }
167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
168
169 /* Notify userspace that the HPD pin changed state at the given time. */
cec_queue_pin_hpd_event(struct cec_adapter * adap,bool is_high,ktime_t ts)170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
171 {
172 struct cec_event ev = {
173 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
174 CEC_EVENT_PIN_HPD_LOW,
175 };
176 struct cec_fh *fh;
177
178 mutex_lock(&adap->devnode.lock_fhs);
179 list_for_each_entry(fh, &adap->devnode.fhs, list)
180 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
181 mutex_unlock(&adap->devnode.lock_fhs);
182 }
183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
184
185 /* Notify userspace that the 5V pin changed state at the given time. */
cec_queue_pin_5v_event(struct cec_adapter * adap,bool is_high,ktime_t ts)186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
187 {
188 struct cec_event ev = {
189 .event = is_high ? CEC_EVENT_PIN_5V_HIGH :
190 CEC_EVENT_PIN_5V_LOW,
191 };
192 struct cec_fh *fh;
193
194 mutex_lock(&adap->devnode.lock_fhs);
195 list_for_each_entry(fh, &adap->devnode.fhs, list)
196 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
197 mutex_unlock(&adap->devnode.lock_fhs);
198 }
199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
200
201 /*
202 * Queue a new message for this filehandle.
203 *
204 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
205 * queue becomes full, then drop the oldest message and keep track
206 * of how many messages we've dropped.
207 */
cec_queue_msg_fh(struct cec_fh * fh,const struct cec_msg * msg)208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
209 {
210 static const struct cec_event ev_lost_msgs = {
211 .event = CEC_EVENT_LOST_MSGS,
212 .flags = 0,
213 {
214 .lost_msgs = { 1 },
215 },
216 };
217 struct cec_msg_entry *entry;
218
219 mutex_lock(&fh->lock);
220 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
221 if (entry) {
222 entry->msg = *msg;
223 /* Add new msg at the end of the queue */
224 list_add_tail(&entry->list, &fh->msgs);
225
226 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
227 /* All is fine if there is enough room */
228 fh->queued_msgs++;
229 mutex_unlock(&fh->lock);
230 wake_up_interruptible(&fh->wait);
231 return;
232 }
233
234 /*
235 * if the message queue is full, then drop the oldest one and
236 * send a lost message event.
237 */
238 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
239 list_del(&entry->list);
240 kfree(entry);
241 }
242 mutex_unlock(&fh->lock);
243
244 /*
245 * We lost a message, either because kmalloc failed or the queue
246 * was full.
247 */
248 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
249 }
250
251 /*
252 * Queue the message for those filehandles that are in monitor mode.
253 * If valid_la is true (this message is for us or was sent by us),
254 * then pass it on to any monitoring filehandle. If this message
255 * isn't for us or from us, then only give it to filehandles that
256 * are in MONITOR_ALL mode.
257 *
258 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
259 * set and the CEC adapter was placed in 'monitor all' mode.
260 */
cec_queue_msg_monitor(struct cec_adapter * adap,const struct cec_msg * msg,bool valid_la)261 static void cec_queue_msg_monitor(struct cec_adapter *adap,
262 const struct cec_msg *msg,
263 bool valid_la)
264 {
265 struct cec_fh *fh;
266 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
267 CEC_MODE_MONITOR_ALL;
268
269 mutex_lock(&adap->devnode.lock_fhs);
270 list_for_each_entry(fh, &adap->devnode.fhs, list) {
271 if (fh->mode_follower >= monitor_mode)
272 cec_queue_msg_fh(fh, msg);
273 }
274 mutex_unlock(&adap->devnode.lock_fhs);
275 }
276
277 /*
278 * Queue the message for follower filehandles.
279 */
cec_queue_msg_followers(struct cec_adapter * adap,const struct cec_msg * msg)280 static void cec_queue_msg_followers(struct cec_adapter *adap,
281 const struct cec_msg *msg)
282 {
283 struct cec_fh *fh;
284
285 mutex_lock(&adap->devnode.lock_fhs);
286 list_for_each_entry(fh, &adap->devnode.fhs, list) {
287 if (fh->mode_follower == CEC_MODE_FOLLOWER)
288 cec_queue_msg_fh(fh, msg);
289 }
290 mutex_unlock(&adap->devnode.lock_fhs);
291 }
292
293 /* Notify userspace of an adapter state change. */
cec_post_state_event(struct cec_adapter * adap)294 static void cec_post_state_event(struct cec_adapter *adap)
295 {
296 struct cec_event ev = {
297 .event = CEC_EVENT_STATE_CHANGE,
298 };
299
300 ev.state_change.phys_addr = adap->phys_addr;
301 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
302 ev.state_change.have_conn_info =
303 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
304 cec_queue_event(adap, &ev);
305 }
306
307 /*
308 * A CEC transmit (and a possible wait for reply) completed.
309 * If this was in blocking mode, then complete it, otherwise
310 * queue the message for userspace to dequeue later.
311 *
312 * This function is called with adap->lock held.
313 */
cec_data_completed(struct cec_data * data)314 static void cec_data_completed(struct cec_data *data)
315 {
316 /*
317 * Delete this transmit from the filehandle's xfer_list since
318 * we're done with it.
319 *
320 * Note that if the filehandle is closed before this transmit
321 * finished, then the release() function will set data->fh to NULL.
322 * Without that we would be referring to a closed filehandle.
323 */
324 if (data->fh)
325 list_del_init(&data->xfer_list);
326
327 if (data->blocking) {
328 /*
329 * Someone is blocking so mark the message as completed
330 * and call complete.
331 */
332 data->completed = true;
333 complete(&data->c);
334 } else {
335 /*
336 * No blocking, so just queue the message if needed and
337 * free the memory.
338 */
339 if (data->fh)
340 cec_queue_msg_fh(data->fh, &data->msg);
341 kfree(data);
342 }
343 }
344
345 /*
346 * A pending CEC transmit needs to be cancelled, either because the CEC
347 * adapter is disabled or the transmit takes an impossibly long time to
348 * finish, or the reply timed out.
349 *
350 * This function is called with adap->lock held.
351 */
cec_data_cancel(struct cec_data * data,u8 tx_status,u8 rx_status)352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status)
353 {
354 struct cec_adapter *adap = data->adap;
355
356 /*
357 * It's either the current transmit, or it is a pending
358 * transmit. Take the appropriate action to clear it.
359 */
360 if (adap->transmitting == data) {
361 adap->transmitting = NULL;
362 } else {
363 list_del_init(&data->list);
364 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
365 if (!WARN_ON(!adap->transmit_queue_sz))
366 adap->transmit_queue_sz--;
367 }
368
369 if (data->msg.tx_status & CEC_TX_STATUS_OK) {
370 data->msg.rx_ts = ktime_get_ns();
371 data->msg.rx_status = rx_status;
372 if (!data->blocking)
373 data->msg.tx_status = 0;
374 } else {
375 data->msg.tx_ts = ktime_get_ns();
376 data->msg.tx_status |= tx_status |
377 CEC_TX_STATUS_MAX_RETRIES;
378 data->msg.tx_error_cnt++;
379 data->attempts = 0;
380 if (!data->blocking)
381 data->msg.rx_status = 0;
382 }
383
384 /* Queue transmitted message for monitoring purposes */
385 cec_queue_msg_monitor(adap, &data->msg, 1);
386
387 if (!data->blocking && data->msg.sequence)
388 /* Allow drivers to react to a canceled transmit */
389 call_void_op(adap, adap_nb_transmit_canceled, &data->msg);
390
391 cec_data_completed(data);
392 }
393
394 /*
395 * Flush all pending transmits and cancel any pending timeout work.
396 *
397 * This function is called with adap->lock held.
398 */
cec_flush(struct cec_adapter * adap)399 static void cec_flush(struct cec_adapter *adap)
400 {
401 struct cec_data *data, *n;
402
403 /*
404 * If the adapter is disabled, or we're asked to stop,
405 * then cancel any pending transmits.
406 */
407 while (!list_empty(&adap->transmit_queue)) {
408 data = list_first_entry(&adap->transmit_queue,
409 struct cec_data, list);
410 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
411 }
412 if (adap->transmitting)
413 adap->transmit_in_progress_aborted = true;
414
415 /* Cancel the pending timeout work. */
416 list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
417 if (cancel_delayed_work(&data->work))
418 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
419 /*
420 * If cancel_delayed_work returned false, then
421 * the cec_wait_timeout function is running,
422 * which will call cec_data_completed. So no
423 * need to do anything special in that case.
424 */
425 }
426 /*
427 * If something went wrong and this counter isn't what it should
428 * be, then this will reset it back to 0. Warn if it is not 0,
429 * since it indicates a bug, either in this framework or in a
430 * CEC driver.
431 */
432 if (WARN_ON(adap->transmit_queue_sz))
433 adap->transmit_queue_sz = 0;
434 }
435
436 /*
437 * Main CEC state machine
438 *
439 * Wait until the thread should be stopped, or we are not transmitting and
440 * a new transmit message is queued up, in which case we start transmitting
441 * that message. When the adapter finished transmitting the message it will
442 * call cec_transmit_done().
443 *
444 * If the adapter is disabled, then remove all queued messages instead.
445 *
446 * If the current transmit times out, then cancel that transmit.
447 */
cec_thread_func(void * _adap)448 int cec_thread_func(void *_adap)
449 {
450 struct cec_adapter *adap = _adap;
451
452 for (;;) {
453 unsigned int signal_free_time;
454 struct cec_data *data;
455 bool timeout = false;
456 u8 attempts;
457
458 if (adap->transmit_in_progress) {
459 int err;
460
461 /*
462 * We are transmitting a message, so add a timeout
463 * to prevent the state machine to get stuck waiting
464 * for this message to finalize and add a check to
465 * see if the adapter is disabled in which case the
466 * transmit should be canceled.
467 */
468 err = wait_event_interruptible_timeout(adap->kthread_waitq,
469 (adap->needs_hpd &&
470 (!adap->is_configured && !adap->is_configuring)) ||
471 kthread_should_stop() ||
472 (!adap->transmit_in_progress &&
473 !list_empty(&adap->transmit_queue)),
474 msecs_to_jiffies(adap->xfer_timeout_ms));
475 timeout = err == 0;
476 } else {
477 /* Otherwise we just wait for something to happen. */
478 wait_event_interruptible(adap->kthread_waitq,
479 kthread_should_stop() ||
480 (!adap->transmit_in_progress &&
481 !list_empty(&adap->transmit_queue)));
482 }
483
484 mutex_lock(&adap->lock);
485
486 if ((adap->needs_hpd &&
487 (!adap->is_configured && !adap->is_configuring)) ||
488 kthread_should_stop()) {
489 cec_flush(adap);
490 goto unlock;
491 }
492
493 if (adap->transmit_in_progress &&
494 adap->transmit_in_progress_aborted) {
495 if (adap->transmitting)
496 cec_data_cancel(adap->transmitting,
497 CEC_TX_STATUS_ABORTED, 0);
498 adap->transmit_in_progress = false;
499 adap->transmit_in_progress_aborted = false;
500 goto unlock;
501 }
502 if (adap->transmit_in_progress && timeout) {
503 /*
504 * If we timeout, then log that. Normally this does
505 * not happen and it is an indication of a faulty CEC
506 * adapter driver, or the CEC bus is in some weird
507 * state. On rare occasions it can happen if there is
508 * so much traffic on the bus that the adapter was
509 * unable to transmit for xfer_timeout_ms (2.1s by
510 * default).
511 */
512 if (adap->transmitting) {
513 pr_warn("cec-%s: message %*ph timed out\n", adap->name,
514 adap->transmitting->msg.len,
515 adap->transmitting->msg.msg);
516 /* Just give up on this. */
517 cec_data_cancel(adap->transmitting,
518 CEC_TX_STATUS_TIMEOUT, 0);
519 } else {
520 pr_warn("cec-%s: transmit timed out\n", adap->name);
521 }
522 adap->transmit_in_progress = false;
523 adap->tx_timeout_cnt++;
524 goto unlock;
525 }
526
527 /*
528 * If we are still transmitting, or there is nothing new to
529 * transmit, then just continue waiting.
530 */
531 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
532 goto unlock;
533
534 /* Get a new message to transmit */
535 data = list_first_entry(&adap->transmit_queue,
536 struct cec_data, list);
537 list_del_init(&data->list);
538 if (!WARN_ON(!data->adap->transmit_queue_sz))
539 adap->transmit_queue_sz--;
540
541 /* Make this the current transmitting message */
542 adap->transmitting = data;
543
544 /*
545 * Suggested number of attempts as per the CEC 2.0 spec:
546 * 4 attempts is the default, except for 'secondary poll
547 * messages', i.e. poll messages not sent during the adapter
548 * configuration phase when it allocates logical addresses.
549 */
550 if (data->msg.len == 1 && adap->is_configured)
551 attempts = 2;
552 else
553 attempts = 4;
554
555 /* Set the suggested signal free time */
556 if (data->attempts) {
557 /* should be >= 3 data bit periods for a retry */
558 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
559 } else if (adap->last_initiator !=
560 cec_msg_initiator(&data->msg)) {
561 /* should be >= 5 data bit periods for new initiator */
562 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
563 adap->last_initiator = cec_msg_initiator(&data->msg);
564 } else {
565 /*
566 * should be >= 7 data bit periods for sending another
567 * frame immediately after another.
568 */
569 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
570 }
571 if (data->attempts == 0)
572 data->attempts = attempts;
573
574 adap->transmit_in_progress_aborted = false;
575 /* Tell the adapter to transmit, cancel on error */
576 if (call_op(adap, adap_transmit, data->attempts,
577 signal_free_time, &data->msg))
578 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
579 else
580 adap->transmit_in_progress = true;
581
582 unlock:
583 mutex_unlock(&adap->lock);
584
585 if (kthread_should_stop())
586 break;
587 }
588 return 0;
589 }
590
591 /*
592 * Called by the CEC adapter if a transmit finished.
593 */
cec_transmit_done_ts(struct cec_adapter * adap,u8 status,u8 arb_lost_cnt,u8 nack_cnt,u8 low_drive_cnt,u8 error_cnt,ktime_t ts)594 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
595 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
596 u8 error_cnt, ktime_t ts)
597 {
598 struct cec_data *data;
599 struct cec_msg *msg;
600 unsigned int attempts_made = arb_lost_cnt + nack_cnt +
601 low_drive_cnt + error_cnt;
602 bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK);
603 bool aborted = adap->transmit_in_progress_aborted;
604
605 dprintk(2, "%s: status 0x%02x\n", __func__, status);
606 if (attempts_made < 1)
607 attempts_made = 1;
608
609 mutex_lock(&adap->lock);
610 data = adap->transmitting;
611 if (!data) {
612 /*
613 * This might happen if a transmit was issued and the cable is
614 * unplugged while the transmit is ongoing. Ignore this
615 * transmit in that case.
616 */
617 if (!adap->transmit_in_progress)
618 dprintk(1, "%s was called without an ongoing transmit!\n",
619 __func__);
620 adap->transmit_in_progress = false;
621 goto wake_thread;
622 }
623 adap->transmit_in_progress = false;
624 adap->transmit_in_progress_aborted = false;
625
626 msg = &data->msg;
627
628 /* Drivers must fill in the status! */
629 WARN_ON(status == 0);
630 msg->tx_ts = ktime_to_ns(ts);
631 msg->tx_status |= status;
632 msg->tx_arb_lost_cnt += arb_lost_cnt;
633 msg->tx_nack_cnt += nack_cnt;
634 msg->tx_low_drive_cnt += low_drive_cnt;
635 msg->tx_error_cnt += error_cnt;
636
637 adap->tx_arb_lost_cnt += arb_lost_cnt;
638 adap->tx_low_drive_cnt += low_drive_cnt;
639 adap->tx_error_cnt += error_cnt;
640
641 /*
642 * Low Drive transmission errors should really not happen for
643 * well-behaved CEC devices and proper HDMI cables.
644 *
645 * Ditto for the 'Error' status.
646 *
647 * For the first few times that this happens, log this.
648 * Stop logging after that, since that will not add any more
649 * useful information and instead it will just flood the kernel log.
650 */
651 if (done && adap->tx_low_drive_log_cnt < 8 && msg->tx_low_drive_cnt) {
652 adap->tx_low_drive_log_cnt++;
653 dprintk(0, "low drive counter: %u (seq %u: %*ph)\n",
654 msg->tx_low_drive_cnt, msg->sequence,
655 msg->len, msg->msg);
656 }
657 if (done && adap->tx_error_log_cnt < 8 && msg->tx_error_cnt) {
658 adap->tx_error_log_cnt++;
659 dprintk(0, "error counter: %u (seq %u: %*ph)\n",
660 msg->tx_error_cnt, msg->sequence,
661 msg->len, msg->msg);
662 }
663
664 /* Mark that we're done with this transmit */
665 adap->transmitting = NULL;
666
667 /*
668 * If there are still retry attempts left and there was an error and
669 * the hardware didn't signal that it retried itself (by setting
670 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
671 */
672 if (!aborted && data->attempts > attempts_made && !done) {
673 /* Retry this message */
674 data->attempts -= attempts_made;
675 if (msg->timeout)
676 dprintk(2, "retransmit: %*ph (attempts: %d, wait for %*ph)\n",
677 msg->len, msg->msg, data->attempts,
678 data->match_len, data->match_reply);
679 else
680 dprintk(2, "retransmit: %*ph (attempts: %d)\n",
681 msg->len, msg->msg, data->attempts);
682 /* Add the message in front of the transmit queue */
683 list_add(&data->list, &adap->transmit_queue);
684 adap->transmit_queue_sz++;
685 goto wake_thread;
686 }
687
688 if (aborted && !done)
689 status |= CEC_TX_STATUS_ABORTED;
690 data->attempts = 0;
691
692 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
693 if (!(status & CEC_TX_STATUS_OK))
694 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
695
696 /* Queue transmitted message for monitoring purposes */
697 cec_queue_msg_monitor(adap, msg, 1);
698
699 if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
700 msg->timeout) {
701 /*
702 * Queue the message into the wait queue if we want to wait
703 * for a reply.
704 */
705 list_add_tail(&data->list, &adap->wait_queue);
706 schedule_delayed_work(&data->work,
707 msecs_to_jiffies(msg->timeout));
708 } else {
709 /* Otherwise we're done */
710 cec_data_completed(data);
711 }
712
713 wake_thread:
714 /*
715 * Wake up the main thread to see if another message is ready
716 * for transmitting or to retry the current message.
717 */
718 wake_up_interruptible(&adap->kthread_waitq);
719 mutex_unlock(&adap->lock);
720 }
721 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
722
cec_transmit_attempt_done_ts(struct cec_adapter * adap,u8 status,ktime_t ts)723 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
724 u8 status, ktime_t ts)
725 {
726 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
727 case CEC_TX_STATUS_OK:
728 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
729 return;
730 case CEC_TX_STATUS_ARB_LOST:
731 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
732 return;
733 case CEC_TX_STATUS_NACK:
734 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
735 return;
736 case CEC_TX_STATUS_LOW_DRIVE:
737 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
738 return;
739 case CEC_TX_STATUS_ERROR:
740 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
741 return;
742 default:
743 /* Should never happen */
744 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
745 return;
746 }
747 }
748 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
749
750 /*
751 * Called when waiting for a reply times out.
752 */
cec_wait_timeout(struct work_struct * work)753 static void cec_wait_timeout(struct work_struct *work)
754 {
755 struct cec_data *data = container_of(work, struct cec_data, work.work);
756 struct cec_adapter *adap = data->adap;
757
758 mutex_lock(&adap->lock);
759 /*
760 * Sanity check in case the timeout and the arrival of the message
761 * happened at the same time.
762 */
763 if (list_empty(&data->list))
764 goto unlock;
765
766 /* Mark the message as timed out */
767 list_del_init(&data->list);
768 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT);
769 unlock:
770 mutex_unlock(&adap->lock);
771 }
772
773 /*
774 * Transmit a message. The fh argument may be NULL if the transmit is not
775 * associated with a specific filehandle.
776 *
777 * This function is called with adap->lock held.
778 */
cec_transmit_msg_fh(struct cec_adapter * adap,struct cec_msg * msg,struct cec_fh * fh,bool block)779 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
780 struct cec_fh *fh, bool block)
781 {
782 struct cec_data *data;
783 bool is_raw = msg_is_raw(msg);
784 bool reply_vendor_id = (msg->flags & CEC_MSG_FL_REPLY_VENDOR_ID) &&
785 msg->len > 1 && msg->msg[1] == CEC_MSG_VENDOR_COMMAND_WITH_ID;
786 int err;
787
788 if (adap->devnode.unregistered)
789 return -ENODEV;
790
791 msg->rx_ts = 0;
792 msg->tx_ts = 0;
793 msg->rx_status = 0;
794 msg->tx_status = 0;
795 msg->tx_arb_lost_cnt = 0;
796 msg->tx_nack_cnt = 0;
797 msg->tx_low_drive_cnt = 0;
798 msg->tx_error_cnt = 0;
799 msg->sequence = 0;
800 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW |
801 (reply_vendor_id ? CEC_MSG_FL_REPLY_VENDOR_ID : 0);
802
803 if ((reply_vendor_id || msg->reply) && msg->timeout == 0) {
804 /* Make sure the timeout isn't 0. */
805 msg->timeout = 1000;
806 }
807
808 if (!msg->timeout)
809 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
810
811 /* Sanity checks */
812 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
813 dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
814 return -EINVAL;
815 }
816 if (reply_vendor_id && msg->len < 6) {
817 dprintk(1, "%s: <Vendor Command With ID> message too short\n",
818 __func__);
819 return -EINVAL;
820 }
821
822 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
823
824 if (msg->timeout)
825 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
826 __func__, msg->len, msg->msg, msg->reply,
827 !block ? ", nb" : "");
828 else
829 dprintk(2, "%s: %*ph%s\n",
830 __func__, msg->len, msg->msg, !block ? " (nb)" : "");
831
832 if (msg->timeout && msg->len == 1) {
833 dprintk(1, "%s: can't reply to poll msg\n", __func__);
834 return -EINVAL;
835 }
836
837 if (is_raw) {
838 if (!capable(CAP_SYS_RAWIO))
839 return -EPERM;
840 } else {
841 /* A CDC-Only device can only send CDC messages */
842 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
843 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
844 dprintk(1, "%s: not a CDC message\n", __func__);
845 return -EINVAL;
846 }
847
848 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
849 msg->msg[2] = adap->phys_addr >> 8;
850 msg->msg[3] = adap->phys_addr & 0xff;
851 }
852
853 if (msg->len == 1) {
854 if (cec_msg_destination(msg) == 0xf) {
855 dprintk(1, "%s: invalid poll message\n",
856 __func__);
857 return -EINVAL;
858 }
859 if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
860 /*
861 * If the destination is a logical address our
862 * adapter has already claimed, then just NACK
863 * this. It depends on the hardware what it will
864 * do with a POLL to itself (some OK this), so
865 * it is just as easy to handle it here so the
866 * behavior will be consistent.
867 */
868 msg->tx_ts = ktime_get_ns();
869 msg->tx_status = CEC_TX_STATUS_NACK |
870 CEC_TX_STATUS_MAX_RETRIES;
871 msg->tx_nack_cnt = 1;
872 msg->sequence = ++adap->sequence;
873 if (!msg->sequence)
874 msg->sequence = ++adap->sequence;
875 return 0;
876 }
877 }
878 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
879 cec_has_log_addr(adap, cec_msg_destination(msg))) {
880 dprintk(1, "%s: destination is the adapter itself\n",
881 __func__);
882 return -EINVAL;
883 }
884 if (msg->len > 1 && adap->is_configured &&
885 !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
886 dprintk(1, "%s: initiator has unknown logical address %d\n",
887 __func__, cec_msg_initiator(msg));
888 return -EINVAL;
889 }
890 /*
891 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
892 * transmitted to a TV, even if the adapter is unconfigured.
893 * This makes it possible to detect or wake up displays that
894 * pull down the HPD when in standby.
895 */
896 if (!adap->is_configured && !adap->is_configuring &&
897 (msg->len > 2 ||
898 cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
899 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
900 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
901 dprintk(1, "%s: adapter is unconfigured\n", __func__);
902 return -ENONET;
903 }
904 }
905
906 if (!adap->is_configured && !adap->is_configuring) {
907 if (adap->needs_hpd) {
908 dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
909 __func__);
910 return -ENONET;
911 }
912 if (reply_vendor_id || msg->reply) {
913 dprintk(1, "%s: adapter is unconfigured so reply is not supported\n",
914 __func__);
915 return -EINVAL;
916 }
917 }
918
919 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
920 dprintk(2, "%s: transmit queue full\n", __func__);
921 return -EBUSY;
922 }
923
924 data = kzalloc(sizeof(*data), GFP_KERNEL);
925 if (!data)
926 return -ENOMEM;
927
928 msg->sequence = ++adap->sequence;
929 if (!msg->sequence)
930 msg->sequence = ++adap->sequence;
931
932 data->msg = *msg;
933 data->fh = fh;
934 data->adap = adap;
935 data->blocking = block;
936 if (reply_vendor_id) {
937 memcpy(data->match_reply, msg->msg + 1, 4);
938 data->match_reply[4] = msg->reply;
939 data->match_len = 5;
940 } else if (msg->timeout) {
941 data->match_reply[0] = msg->reply;
942 data->match_len = 1;
943 }
944
945 init_completion(&data->c);
946 INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
947
948 if (fh)
949 list_add_tail(&data->xfer_list, &fh->xfer_list);
950 else
951 INIT_LIST_HEAD(&data->xfer_list);
952
953 list_add_tail(&data->list, &adap->transmit_queue);
954 adap->transmit_queue_sz++;
955 if (!adap->transmitting)
956 wake_up_interruptible(&adap->kthread_waitq);
957
958 /* All done if we don't need to block waiting for completion */
959 if (!block)
960 return 0;
961
962 /*
963 * Release the lock and wait, retake the lock afterwards.
964 */
965 mutex_unlock(&adap->lock);
966 err = wait_for_completion_killable(&data->c);
967 cancel_delayed_work_sync(&data->work);
968 mutex_lock(&adap->lock);
969
970 if (err)
971 adap->transmit_in_progress_aborted = true;
972
973 /* Cancel the transmit if it was interrupted */
974 if (!data->completed) {
975 if (data->msg.tx_status & CEC_TX_STATUS_OK)
976 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
977 else
978 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
979 }
980
981 /* The transmit completed (possibly with an error) */
982 *msg = data->msg;
983 if (WARN_ON(!list_empty(&data->list)))
984 list_del(&data->list);
985 if (WARN_ON(!list_empty(&data->xfer_list)))
986 list_del(&data->xfer_list);
987 kfree(data);
988 return 0;
989 }
990
991 /* Helper function to be used by drivers and this framework. */
cec_transmit_msg(struct cec_adapter * adap,struct cec_msg * msg,bool block)992 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
993 bool block)
994 {
995 int ret;
996
997 mutex_lock(&adap->lock);
998 ret = cec_transmit_msg_fh(adap, msg, NULL, block);
999 mutex_unlock(&adap->lock);
1000 return ret;
1001 }
1002 EXPORT_SYMBOL_GPL(cec_transmit_msg);
1003
1004 /*
1005 * I don't like forward references but without this the low-level
1006 * cec_received_msg() function would come after a bunch of high-level
1007 * CEC protocol handling functions. That was very confusing.
1008 */
1009 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1010 bool is_reply);
1011
1012 #define DIRECTED 0x80
1013 #define BCAST1_4 0x40
1014 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
1015 #define BCAST (BCAST1_4 | BCAST2_0)
1016 #define BOTH (BCAST | DIRECTED)
1017
1018 /*
1019 * Specify minimum length and whether the message is directed, broadcast
1020 * or both. Messages that do not match the criteria are ignored as per
1021 * the CEC specification.
1022 */
1023 static const u8 cec_msg_size[256] = {
1024 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
1025 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
1026 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
1027 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
1028 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
1029 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
1030 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
1031 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
1032 [CEC_MSG_STANDBY] = 2 | BOTH,
1033 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
1034 [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
1035 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
1036 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
1037 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
1038 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
1039 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
1040 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
1041 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
1042 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
1043 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
1044 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
1045 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
1046 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
1047 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
1048 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
1049 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
1050 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
1051 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
1052 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
1053 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
1054 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
1055 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
1056 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
1057 [CEC_MSG_PLAY] = 3 | DIRECTED,
1058 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
1059 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
1060 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1061 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1062 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1063 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1064 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1065 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1066 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1067 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1068 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1069 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1070 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1071 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1072 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1073 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1074 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1075 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1076 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1077 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1078 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1079 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1080 [CEC_MSG_ABORT] = 2 | DIRECTED,
1081 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1082 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1083 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1084 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1085 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1086 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1087 [CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED,
1088 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1089 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1090 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1091 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1092 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1093 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1094 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1095 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1096 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1097 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1098 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1099 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1100 };
1101
1102 /* Called by the CEC adapter if a message is received */
cec_received_msg_ts(struct cec_adapter * adap,struct cec_msg * msg,ktime_t ts)1103 void cec_received_msg_ts(struct cec_adapter *adap,
1104 struct cec_msg *msg, ktime_t ts)
1105 {
1106 struct cec_data *data;
1107 u8 msg_init = cec_msg_initiator(msg);
1108 u8 msg_dest = cec_msg_destination(msg);
1109 u8 cmd = msg->msg[1];
1110 bool is_reply = false;
1111 bool valid_la = true;
1112 bool monitor_valid_la = true;
1113 u8 min_len = 0;
1114
1115 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1116 return;
1117
1118 if (adap->devnode.unregistered)
1119 return;
1120
1121 /*
1122 * Some CEC adapters will receive the messages that they transmitted.
1123 * This test filters out those messages by checking if we are the
1124 * initiator, and just returning in that case.
1125 *
1126 * Note that this won't work if this is an Unregistered device.
1127 *
1128 * It is bad practice if the hardware receives the message that it
1129 * transmitted and luckily most CEC adapters behave correctly in this
1130 * respect.
1131 */
1132 if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1133 cec_has_log_addr(adap, msg_init))
1134 return;
1135
1136 msg->rx_ts = ktime_to_ns(ts);
1137 msg->rx_status = CEC_RX_STATUS_OK;
1138 msg->sequence = msg->reply = msg->timeout = 0;
1139 msg->tx_status = 0;
1140 msg->tx_ts = 0;
1141 msg->tx_arb_lost_cnt = 0;
1142 msg->tx_nack_cnt = 0;
1143 msg->tx_low_drive_cnt = 0;
1144 msg->tx_error_cnt = 0;
1145 msg->flags = 0;
1146 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1147
1148 mutex_lock(&adap->lock);
1149 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1150
1151 if (!adap->transmit_in_progress)
1152 adap->last_initiator = 0xff;
1153
1154 /* Check if this message was for us (directed or broadcast). */
1155 if (!cec_msg_is_broadcast(msg)) {
1156 valid_la = cec_has_log_addr(adap, msg_dest);
1157 monitor_valid_la = valid_la;
1158 }
1159
1160 /*
1161 * Check if the length is not too short or if the message is a
1162 * broadcast message where a directed message was expected or
1163 * vice versa. If so, then the message has to be ignored (according
1164 * to section CEC 7.3 and CEC 12.2).
1165 */
1166 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1167 u8 dir_fl = cec_msg_size[cmd] & BOTH;
1168
1169 min_len = cec_msg_size[cmd] & 0x1f;
1170 if (msg->len < min_len)
1171 valid_la = false;
1172 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1173 valid_la = false;
1174 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1175 valid_la = false;
1176 else if (cec_msg_is_broadcast(msg) &&
1177 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1178 !(dir_fl & BCAST1_4))
1179 valid_la = false;
1180 }
1181 if (valid_la && min_len) {
1182 /* These messages have special length requirements */
1183 switch (cmd) {
1184 case CEC_MSG_RECORD_ON:
1185 switch (msg->msg[2]) {
1186 case CEC_OP_RECORD_SRC_OWN:
1187 break;
1188 case CEC_OP_RECORD_SRC_DIGITAL:
1189 if (msg->len < 10)
1190 valid_la = false;
1191 break;
1192 case CEC_OP_RECORD_SRC_ANALOG:
1193 if (msg->len < 7)
1194 valid_la = false;
1195 break;
1196 case CEC_OP_RECORD_SRC_EXT_PLUG:
1197 if (msg->len < 4)
1198 valid_la = false;
1199 break;
1200 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1201 if (msg->len < 5)
1202 valid_la = false;
1203 break;
1204 }
1205 break;
1206 }
1207 }
1208
1209 /* It's a valid message and not a poll or CDC message */
1210 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1211 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1212
1213 /* The aborted command is in msg[2] */
1214 if (abort)
1215 cmd = msg->msg[2];
1216
1217 /*
1218 * Walk over all transmitted messages that are waiting for a
1219 * reply.
1220 */
1221 list_for_each_entry(data, &adap->wait_queue, list) {
1222 struct cec_msg *dst = &data->msg;
1223
1224 /*
1225 * The *only* CEC message that has two possible replies
1226 * is CEC_MSG_INITIATE_ARC.
1227 * In this case allow either of the two replies.
1228 */
1229 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1230 (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1231 cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1232 (data->match_reply[0] == CEC_MSG_REPORT_ARC_INITIATED ||
1233 data->match_reply[0] == CEC_MSG_REPORT_ARC_TERMINATED)) {
1234 dst->reply = cmd;
1235 data->match_reply[0] = cmd;
1236 }
1237
1238 /* Does the command match? */
1239 if ((abort && cmd != dst->msg[1]) ||
1240 (!abort && memcmp(data->match_reply, msg->msg + 1, data->match_len)))
1241 continue;
1242
1243 /* Does the addressing match? */
1244 if (msg_init != cec_msg_destination(dst) &&
1245 !cec_msg_is_broadcast(dst))
1246 continue;
1247
1248 /* We got a reply */
1249 memcpy(dst->msg, msg->msg, msg->len);
1250 dst->len = msg->len;
1251 dst->rx_ts = msg->rx_ts;
1252 dst->rx_status = msg->rx_status;
1253 if (abort)
1254 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1255 msg->flags = dst->flags;
1256 msg->sequence = dst->sequence;
1257 /* Remove it from the wait_queue */
1258 list_del_init(&data->list);
1259
1260 /* Cancel the pending timeout work */
1261 if (!cancel_delayed_work(&data->work)) {
1262 mutex_unlock(&adap->lock);
1263 cancel_delayed_work_sync(&data->work);
1264 mutex_lock(&adap->lock);
1265 }
1266 /*
1267 * Mark this as a reply, provided someone is still
1268 * waiting for the answer.
1269 */
1270 if (data->fh)
1271 is_reply = true;
1272 cec_data_completed(data);
1273 break;
1274 }
1275 }
1276 mutex_unlock(&adap->lock);
1277
1278 /* Pass the message on to any monitoring filehandles */
1279 cec_queue_msg_monitor(adap, msg, monitor_valid_la);
1280
1281 /* We're done if it is not for us or a poll message */
1282 if (!valid_la || msg->len <= 1)
1283 return;
1284
1285 if (adap->log_addrs.log_addr_mask == 0)
1286 return;
1287
1288 /*
1289 * Process the message on the protocol level. If is_reply is true,
1290 * then cec_receive_notify() won't pass on the reply to the listener(s)
1291 * since that was already done by cec_data_completed() above.
1292 */
1293 cec_receive_notify(adap, msg, is_reply);
1294 }
1295 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1296
1297 /* Logical Address Handling */
1298
1299 /*
1300 * Attempt to claim a specific logical address.
1301 *
1302 * This function is called with adap->lock held.
1303 */
cec_config_log_addr(struct cec_adapter * adap,unsigned int idx,unsigned int log_addr)1304 static int cec_config_log_addr(struct cec_adapter *adap,
1305 unsigned int idx,
1306 unsigned int log_addr)
1307 {
1308 struct cec_log_addrs *las = &adap->log_addrs;
1309 struct cec_msg msg = { };
1310 const unsigned int max_retries = 2;
1311 unsigned int i;
1312 int err;
1313
1314 if (cec_has_log_addr(adap, log_addr))
1315 return 0;
1316
1317 /* Send poll message */
1318 msg.len = 1;
1319 msg.msg[0] = (log_addr << 4) | log_addr;
1320
1321 for (i = 0; i < max_retries; i++) {
1322 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1323
1324 /*
1325 * While trying to poll the physical address was reset
1326 * and the adapter was unconfigured, so bail out.
1327 */
1328 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID)
1329 return -EINTR;
1330
1331 /* Also bail out if the PA changed while configuring. */
1332 if (adap->must_reconfigure)
1333 return -EINTR;
1334
1335 if (err)
1336 return err;
1337
1338 /*
1339 * The message was aborted or timed out due to a disconnect or
1340 * unconfigure, just bail out.
1341 */
1342 if (msg.tx_status &
1343 (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT))
1344 return -EINTR;
1345 if (msg.tx_status & CEC_TX_STATUS_OK)
1346 return 0;
1347 if (msg.tx_status & CEC_TX_STATUS_NACK)
1348 break;
1349 /*
1350 * Retry up to max_retries times if the message was neither
1351 * OKed or NACKed. This can happen due to e.g. a Lost
1352 * Arbitration condition.
1353 */
1354 }
1355
1356 /*
1357 * If we are unable to get an OK or a NACK after max_retries attempts
1358 * (and note that each attempt already consists of four polls), then
1359 * we assume that something is really weird and that it is not a
1360 * good idea to try and claim this logical address.
1361 */
1362 if (i == max_retries) {
1363 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n",
1364 log_addr, msg.tx_status);
1365 return 0;
1366 }
1367
1368 /*
1369 * Message not acknowledged, so this logical
1370 * address is free to use.
1371 */
1372 err = call_op(adap, adap_log_addr, log_addr);
1373 if (err)
1374 return err;
1375
1376 las->log_addr[idx] = log_addr;
1377 las->log_addr_mask |= 1 << log_addr;
1378 return 1;
1379 }
1380
1381 /*
1382 * Unconfigure the adapter: clear all logical addresses and send
1383 * the state changed event.
1384 *
1385 * This function is called with adap->lock held.
1386 */
cec_adap_unconfigure(struct cec_adapter * adap)1387 static void cec_adap_unconfigure(struct cec_adapter *adap)
1388 {
1389 if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1390 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID));
1391 adap->log_addrs.log_addr_mask = 0;
1392 adap->is_configured = false;
1393 cec_flush(adap);
1394 wake_up_interruptible(&adap->kthread_waitq);
1395 cec_post_state_event(adap);
1396 call_void_op(adap, adap_unconfigured);
1397 }
1398
1399 /*
1400 * Attempt to claim the required logical addresses.
1401 */
cec_config_thread_func(void * arg)1402 static int cec_config_thread_func(void *arg)
1403 {
1404 /* The various LAs for each type of device */
1405 static const u8 tv_log_addrs[] = {
1406 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1407 CEC_LOG_ADDR_INVALID
1408 };
1409 static const u8 record_log_addrs[] = {
1410 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1411 CEC_LOG_ADDR_RECORD_3,
1412 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1413 CEC_LOG_ADDR_INVALID
1414 };
1415 static const u8 tuner_log_addrs[] = {
1416 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1417 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1418 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1419 CEC_LOG_ADDR_INVALID
1420 };
1421 static const u8 playback_log_addrs[] = {
1422 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1423 CEC_LOG_ADDR_PLAYBACK_3,
1424 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1425 CEC_LOG_ADDR_INVALID
1426 };
1427 static const u8 audiosystem_log_addrs[] = {
1428 CEC_LOG_ADDR_AUDIOSYSTEM,
1429 CEC_LOG_ADDR_INVALID
1430 };
1431 static const u8 specific_use_log_addrs[] = {
1432 CEC_LOG_ADDR_SPECIFIC,
1433 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1434 CEC_LOG_ADDR_INVALID
1435 };
1436 static const u8 *type2addrs[6] = {
1437 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1438 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1439 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1440 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1441 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1442 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1443 };
1444 static const u16 type2mask[] = {
1445 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1446 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1447 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1448 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1449 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1450 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1451 };
1452 struct cec_adapter *adap = arg;
1453 struct cec_log_addrs *las = &adap->log_addrs;
1454 int err;
1455 int i, j;
1456
1457 mutex_lock(&adap->lock);
1458 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1459 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1460 las->log_addr_mask = 0;
1461
1462 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1463 goto configured;
1464
1465 reconfigure:
1466 for (i = 0; i < las->num_log_addrs; i++) {
1467 unsigned int type = las->log_addr_type[i];
1468 const u8 *la_list;
1469 u8 last_la;
1470
1471 /*
1472 * The TV functionality can only map to physical address 0.
1473 * For any other address, try the Specific functionality
1474 * instead as per the spec.
1475 */
1476 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1477 type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1478
1479 la_list = type2addrs[type];
1480 last_la = las->log_addr[i];
1481 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1482 if (last_la == CEC_LOG_ADDR_INVALID ||
1483 last_la == CEC_LOG_ADDR_UNREGISTERED ||
1484 !((1 << last_la) & type2mask[type]))
1485 last_la = la_list[0];
1486
1487 err = cec_config_log_addr(adap, i, last_la);
1488
1489 if (adap->must_reconfigure) {
1490 adap->must_reconfigure = false;
1491 las->log_addr_mask = 0;
1492 goto reconfigure;
1493 }
1494
1495 if (err > 0) /* Reused last LA */
1496 continue;
1497
1498 if (err < 0)
1499 goto unconfigure;
1500
1501 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1502 /* Tried this one already, skip it */
1503 if (la_list[j] == last_la)
1504 continue;
1505 /* The backup addresses are CEC 2.0 specific */
1506 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1507 la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1508 las->cec_version < CEC_OP_CEC_VERSION_2_0)
1509 continue;
1510
1511 err = cec_config_log_addr(adap, i, la_list[j]);
1512 if (err == 0) /* LA is in use */
1513 continue;
1514 if (err < 0)
1515 goto unconfigure;
1516 /* Done, claimed an LA */
1517 break;
1518 }
1519
1520 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1521 dprintk(1, "could not claim LA %d\n", i);
1522 }
1523
1524 if (adap->log_addrs.log_addr_mask == 0 &&
1525 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1526 goto unconfigure;
1527
1528 configured:
1529 if (adap->log_addrs.log_addr_mask == 0) {
1530 /* Fall back to unregistered */
1531 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1532 las->log_addr_mask = 1 << las->log_addr[0];
1533 for (i = 1; i < las->num_log_addrs; i++)
1534 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1535 }
1536 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1537 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1538 adap->is_configured = true;
1539 adap->is_configuring = false;
1540 adap->must_reconfigure = false;
1541 cec_post_state_event(adap);
1542
1543 /*
1544 * Now post the Report Features and Report Physical Address broadcast
1545 * messages. Note that these are non-blocking transmits, meaning that
1546 * they are just queued up and once adap->lock is unlocked the main
1547 * thread will kick in and start transmitting these.
1548 *
1549 * If after this function is done (but before one or more of these
1550 * messages are actually transmitted) the CEC adapter is unconfigured,
1551 * then any remaining messages will be dropped by the main thread.
1552 */
1553 for (i = 0; i < las->num_log_addrs; i++) {
1554 struct cec_msg msg = {};
1555
1556 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1557 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1558 continue;
1559
1560 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1561
1562 /* Report Features must come first according to CEC 2.0 */
1563 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1564 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1565 cec_fill_msg_report_features(adap, &msg, i);
1566 cec_transmit_msg_fh(adap, &msg, NULL, false);
1567 }
1568
1569 /* Report Physical Address */
1570 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1571 las->primary_device_type[i]);
1572 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1573 las->log_addr[i],
1574 cec_phys_addr_exp(adap->phys_addr));
1575 cec_transmit_msg_fh(adap, &msg, NULL, false);
1576
1577 /* Report Vendor ID */
1578 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1579 cec_msg_device_vendor_id(&msg,
1580 adap->log_addrs.vendor_id);
1581 cec_transmit_msg_fh(adap, &msg, NULL, false);
1582 }
1583 }
1584 adap->kthread_config = NULL;
1585 complete(&adap->config_completion);
1586 mutex_unlock(&adap->lock);
1587 call_void_op(adap, configured);
1588 return 0;
1589
1590 unconfigure:
1591 for (i = 0; i < las->num_log_addrs; i++)
1592 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1593 cec_adap_unconfigure(adap);
1594 adap->is_configuring = false;
1595 adap->must_reconfigure = false;
1596 adap->kthread_config = NULL;
1597 complete(&adap->config_completion);
1598 mutex_unlock(&adap->lock);
1599 return 0;
1600 }
1601
1602 /*
1603 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1604 * logical addresses.
1605 *
1606 * This function is called with adap->lock held.
1607 */
cec_claim_log_addrs(struct cec_adapter * adap,bool block)1608 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1609 {
1610 if (WARN_ON(adap->is_claiming_log_addrs ||
1611 adap->is_configuring || adap->is_configured))
1612 return;
1613
1614 adap->is_claiming_log_addrs = true;
1615
1616 init_completion(&adap->config_completion);
1617
1618 /* Ready to kick off the thread */
1619 adap->is_configuring = true;
1620 adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1621 "ceccfg-%s", adap->name);
1622 if (IS_ERR(adap->kthread_config)) {
1623 adap->kthread_config = NULL;
1624 adap->is_configuring = false;
1625 } else if (block) {
1626 mutex_unlock(&adap->lock);
1627 wait_for_completion(&adap->config_completion);
1628 mutex_lock(&adap->lock);
1629 }
1630 adap->is_claiming_log_addrs = false;
1631 }
1632
1633 /*
1634 * Helper function to enable/disable the CEC adapter.
1635 *
1636 * This function is called with adap->lock held.
1637 */
cec_adap_enable(struct cec_adapter * adap)1638 int cec_adap_enable(struct cec_adapter *adap)
1639 {
1640 bool enable;
1641 int ret = 0;
1642
1643 enable = adap->monitor_all_cnt || adap->monitor_pin_cnt ||
1644 adap->log_addrs.num_log_addrs;
1645 if (adap->needs_hpd)
1646 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID;
1647
1648 if (adap->devnode.unregistered)
1649 enable = false;
1650
1651 if (enable == adap->is_enabled)
1652 return 0;
1653
1654 /* serialize adap_enable */
1655 mutex_lock(&adap->devnode.lock);
1656 if (enable) {
1657 adap->last_initiator = 0xff;
1658 adap->transmit_in_progress = false;
1659 adap->tx_low_drive_log_cnt = 0;
1660 adap->tx_error_log_cnt = 0;
1661 ret = adap->ops->adap_enable(adap, true);
1662 if (!ret) {
1663 /*
1664 * Enable monitor-all/pin modes if needed. We warn, but
1665 * continue if this fails as this is not a critical error.
1666 */
1667 if (adap->monitor_all_cnt)
1668 WARN_ON(call_op(adap, adap_monitor_all_enable, true));
1669 if (adap->monitor_pin_cnt)
1670 WARN_ON(call_op(adap, adap_monitor_pin_enable, true));
1671 }
1672 } else {
1673 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */
1674 if (adap->monitor_all_cnt)
1675 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1676 if (adap->monitor_pin_cnt)
1677 WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
1678 WARN_ON(adap->ops->adap_enable(adap, false));
1679 adap->last_initiator = 0xff;
1680 adap->transmit_in_progress = false;
1681 adap->transmit_in_progress_aborted = false;
1682 if (adap->transmitting)
1683 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0);
1684 }
1685 if (!ret)
1686 adap->is_enabled = enable;
1687 wake_up_interruptible(&adap->kthread_waitq);
1688 mutex_unlock(&adap->devnode.lock);
1689 return ret;
1690 }
1691
1692 /* Set a new physical address and send an event notifying userspace of this.
1693 *
1694 * This function is called with adap->lock held.
1695 */
__cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1696 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1697 {
1698 bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID;
1699 bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID;
1700
1701 if (phys_addr == adap->phys_addr)
1702 return;
1703 if (!becomes_invalid && adap->devnode.unregistered)
1704 return;
1705
1706 dprintk(1, "new physical address %x.%x.%x.%x\n",
1707 cec_phys_addr_exp(phys_addr));
1708 if (becomes_invalid || !is_invalid) {
1709 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1710 cec_post_state_event(adap);
1711 cec_adap_unconfigure(adap);
1712 if (becomes_invalid) {
1713 cec_adap_enable(adap);
1714 return;
1715 }
1716 }
1717
1718 adap->phys_addr = phys_addr;
1719 if (is_invalid)
1720 cec_adap_enable(adap);
1721
1722 cec_post_state_event(adap);
1723 if (!adap->log_addrs.num_log_addrs)
1724 return;
1725 if (adap->is_configuring)
1726 adap->must_reconfigure = true;
1727 else
1728 cec_claim_log_addrs(adap, block);
1729 }
1730
cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1731 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1732 {
1733 if (IS_ERR_OR_NULL(adap))
1734 return;
1735
1736 mutex_lock(&adap->lock);
1737 __cec_s_phys_addr(adap, phys_addr, block);
1738 mutex_unlock(&adap->lock);
1739 }
1740 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1741
1742 /*
1743 * Note: In the drm subsystem, prefer calling (if possible):
1744 *
1745 * cec_s_phys_addr(adap, connector->display_info.source_physical_address, false);
1746 */
cec_s_phys_addr_from_edid(struct cec_adapter * adap,const struct edid * edid)1747 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1748 const struct edid *edid)
1749 {
1750 u16 pa = CEC_PHYS_ADDR_INVALID;
1751
1752 if (edid && edid->extensions)
1753 pa = cec_get_edid_phys_addr((const u8 *)edid,
1754 EDID_LENGTH * (edid->extensions + 1), NULL);
1755 cec_s_phys_addr(adap, pa, false);
1756 }
1757 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1758
cec_s_conn_info(struct cec_adapter * adap,const struct cec_connector_info * conn_info)1759 void cec_s_conn_info(struct cec_adapter *adap,
1760 const struct cec_connector_info *conn_info)
1761 {
1762 if (IS_ERR_OR_NULL(adap))
1763 return;
1764
1765 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1766 return;
1767
1768 mutex_lock(&adap->lock);
1769 if (conn_info)
1770 adap->conn_info = *conn_info;
1771 else
1772 memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1773 cec_post_state_event(adap);
1774 mutex_unlock(&adap->lock);
1775 }
1776 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1777
1778 /*
1779 * Called from either the ioctl or a driver to set the logical addresses.
1780 *
1781 * This function is called with adap->lock held.
1782 */
__cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1783 int __cec_s_log_addrs(struct cec_adapter *adap,
1784 struct cec_log_addrs *log_addrs, bool block)
1785 {
1786 u16 type_mask = 0;
1787 int err;
1788 int i;
1789
1790 if (adap->devnode.unregistered)
1791 return -ENODEV;
1792
1793 if (!log_addrs || log_addrs->num_log_addrs == 0) {
1794 if (!adap->log_addrs.num_log_addrs)
1795 return 0;
1796 if (adap->is_configuring || adap->is_configured)
1797 cec_adap_unconfigure(adap);
1798 adap->log_addrs.num_log_addrs = 0;
1799 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1800 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1801 adap->log_addrs.osd_name[0] = '\0';
1802 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1803 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1804 cec_adap_enable(adap);
1805 return 0;
1806 }
1807
1808 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1809 /*
1810 * Sanitize log_addrs fields if a CDC-Only device is
1811 * requested.
1812 */
1813 log_addrs->num_log_addrs = 1;
1814 log_addrs->osd_name[0] = '\0';
1815 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1816 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1817 /*
1818 * This is just an internal convention since a CDC-Only device
1819 * doesn't have to be a switch. But switches already use
1820 * unregistered, so it makes some kind of sense to pick this
1821 * as the primary device. Since a CDC-Only device never sends
1822 * any 'normal' CEC messages this primary device type is never
1823 * sent over the CEC bus.
1824 */
1825 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1826 log_addrs->all_device_types[0] = 0;
1827 log_addrs->features[0][0] = 0;
1828 log_addrs->features[0][1] = 0;
1829 }
1830
1831 /* Ensure the osd name is 0-terminated */
1832 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1833
1834 /* Sanity checks */
1835 if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1836 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1837 return -EINVAL;
1838 }
1839
1840 /*
1841 * Vendor ID is a 24 bit number, so check if the value is
1842 * within the correct range.
1843 */
1844 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1845 (log_addrs->vendor_id & 0xff000000) != 0) {
1846 dprintk(1, "invalid vendor ID\n");
1847 return -EINVAL;
1848 }
1849
1850 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1851 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1852 dprintk(1, "invalid CEC version\n");
1853 return -EINVAL;
1854 }
1855
1856 if (log_addrs->num_log_addrs > 1)
1857 for (i = 0; i < log_addrs->num_log_addrs; i++)
1858 if (log_addrs->log_addr_type[i] ==
1859 CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1860 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1861 return -EINVAL;
1862 }
1863
1864 for (i = 0; i < log_addrs->num_log_addrs; i++) {
1865 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1866 u8 *features = log_addrs->features[i];
1867 bool op_is_dev_features = false;
1868 unsigned int j;
1869
1870 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1871 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1872 dprintk(1, "unknown logical address type\n");
1873 return -EINVAL;
1874 }
1875 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1876 dprintk(1, "duplicate logical address type\n");
1877 return -EINVAL;
1878 }
1879 type_mask |= 1 << log_addrs->log_addr_type[i];
1880 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1881 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1882 /* Record already contains the playback functionality */
1883 dprintk(1, "invalid record + playback combination\n");
1884 return -EINVAL;
1885 }
1886 if (log_addrs->primary_device_type[i] >
1887 CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1888 dprintk(1, "unknown primary device type\n");
1889 return -EINVAL;
1890 }
1891 if (log_addrs->primary_device_type[i] == 2) {
1892 dprintk(1, "invalid primary device type\n");
1893 return -EINVAL;
1894 }
1895 for (j = 0; j < feature_sz; j++) {
1896 if ((features[j] & 0x80) == 0) {
1897 if (op_is_dev_features)
1898 break;
1899 op_is_dev_features = true;
1900 }
1901 }
1902 if (!op_is_dev_features || j == feature_sz) {
1903 dprintk(1, "malformed features\n");
1904 return -EINVAL;
1905 }
1906 /* Zero unused part of the feature array */
1907 memset(features + j + 1, 0, feature_sz - j - 1);
1908 }
1909
1910 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1911 if (log_addrs->num_log_addrs > 2) {
1912 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1913 return -EINVAL;
1914 }
1915 if (log_addrs->num_log_addrs == 2) {
1916 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1917 (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1918 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1919 return -EINVAL;
1920 }
1921 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1922 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1923 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1924 return -EINVAL;
1925 }
1926 }
1927 }
1928
1929 /* Zero unused LAs */
1930 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1931 log_addrs->primary_device_type[i] = 0;
1932 log_addrs->log_addr_type[i] = 0;
1933 log_addrs->all_device_types[i] = 0;
1934 memset(log_addrs->features[i], 0,
1935 sizeof(log_addrs->features[i]));
1936 }
1937
1938 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1939 adap->log_addrs = *log_addrs;
1940 err = cec_adap_enable(adap);
1941 if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1942 cec_claim_log_addrs(adap, block);
1943 return err;
1944 }
1945
cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1946 int cec_s_log_addrs(struct cec_adapter *adap,
1947 struct cec_log_addrs *log_addrs, bool block)
1948 {
1949 int err;
1950
1951 mutex_lock(&adap->lock);
1952 err = __cec_s_log_addrs(adap, log_addrs, block);
1953 mutex_unlock(&adap->lock);
1954 return err;
1955 }
1956 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1957
1958 /* High-level core CEC message handling */
1959
1960 /* Fill in the Report Features message */
cec_fill_msg_report_features(struct cec_adapter * adap,struct cec_msg * msg,unsigned int la_idx)1961 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1962 struct cec_msg *msg,
1963 unsigned int la_idx)
1964 {
1965 const struct cec_log_addrs *las = &adap->log_addrs;
1966 const u8 *features = las->features[la_idx];
1967 bool op_is_dev_features = false;
1968 unsigned int idx;
1969
1970 /* Report Features */
1971 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1972 msg->len = 4;
1973 msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1974 msg->msg[2] = adap->log_addrs.cec_version;
1975 msg->msg[3] = las->all_device_types[la_idx];
1976
1977 /* Write RC Profiles first, then Device Features */
1978 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1979 msg->msg[msg->len++] = features[idx];
1980 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1981 if (op_is_dev_features)
1982 break;
1983 op_is_dev_features = true;
1984 }
1985 }
1986 }
1987
1988 /* Transmit the Feature Abort message */
cec_feature_abort_reason(struct cec_adapter * adap,struct cec_msg * msg,u8 reason)1989 static int cec_feature_abort_reason(struct cec_adapter *adap,
1990 struct cec_msg *msg, u8 reason)
1991 {
1992 struct cec_msg tx_msg = { };
1993
1994 /*
1995 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1996 * message!
1997 */
1998 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1999 return 0;
2000 /* Don't Feature Abort messages from 'Unregistered' */
2001 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
2002 return 0;
2003 cec_msg_set_reply_to(&tx_msg, msg);
2004 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
2005 return cec_transmit_msg(adap, &tx_msg, false);
2006 }
2007
cec_feature_abort(struct cec_adapter * adap,struct cec_msg * msg)2008 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
2009 {
2010 return cec_feature_abort_reason(adap, msg,
2011 CEC_OP_ABORT_UNRECOGNIZED_OP);
2012 }
2013
cec_feature_refused(struct cec_adapter * adap,struct cec_msg * msg)2014 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
2015 {
2016 return cec_feature_abort_reason(adap, msg,
2017 CEC_OP_ABORT_REFUSED);
2018 }
2019
2020 /*
2021 * Called when a CEC message is received. This function will do any
2022 * necessary core processing. The is_reply bool is true if this message
2023 * is a reply to an earlier transmit.
2024 *
2025 * The message is either a broadcast message or a valid directed message.
2026 */
cec_receive_notify(struct cec_adapter * adap,struct cec_msg * msg,bool is_reply)2027 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
2028 bool is_reply)
2029 {
2030 bool is_broadcast = cec_msg_is_broadcast(msg);
2031 u8 dest_laddr = cec_msg_destination(msg);
2032 u8 init_laddr = cec_msg_initiator(msg);
2033 u8 devtype = cec_log_addr2dev(adap, dest_laddr);
2034 int la_idx = cec_log_addr2idx(adap, dest_laddr);
2035 bool from_unregistered = init_laddr == 0xf;
2036 struct cec_msg tx_cec_msg = { };
2037
2038 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
2039
2040 /* If this is a CDC-Only device, then ignore any non-CDC messages */
2041 if (cec_is_cdc_only(&adap->log_addrs) &&
2042 msg->msg[1] != CEC_MSG_CDC_MESSAGE)
2043 return 0;
2044
2045 /* Allow drivers to process the message first */
2046 if (adap->ops->received && !adap->devnode.unregistered &&
2047 adap->ops->received(adap, msg) != -ENOMSG)
2048 return 0;
2049
2050 /*
2051 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
2052 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
2053 * handled by the CEC core, even if the passthrough mode is on.
2054 * The others are just ignored if passthrough mode is on.
2055 */
2056 switch (msg->msg[1]) {
2057 case CEC_MSG_GET_CEC_VERSION:
2058 case CEC_MSG_ABORT:
2059 case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
2060 case CEC_MSG_GIVE_OSD_NAME:
2061 /*
2062 * These messages reply with a directed message, so ignore if
2063 * the initiator is Unregistered.
2064 */
2065 if (!adap->passthrough && from_unregistered)
2066 return 0;
2067 fallthrough;
2068 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2069 case CEC_MSG_GIVE_FEATURES:
2070 case CEC_MSG_GIVE_PHYSICAL_ADDR:
2071 /*
2072 * Skip processing these messages if the passthrough mode
2073 * is on.
2074 */
2075 if (adap->passthrough)
2076 goto skip_processing;
2077 /* Ignore if addressing is wrong */
2078 if (is_broadcast)
2079 return 0;
2080 break;
2081
2082 case CEC_MSG_USER_CONTROL_PRESSED:
2083 case CEC_MSG_USER_CONTROL_RELEASED:
2084 /* Wrong addressing mode: don't process */
2085 if (is_broadcast || from_unregistered)
2086 goto skip_processing;
2087 break;
2088
2089 case CEC_MSG_REPORT_PHYSICAL_ADDR:
2090 /*
2091 * This message is always processed, regardless of the
2092 * passthrough setting.
2093 *
2094 * Exception: don't process if wrong addressing mode.
2095 */
2096 if (!is_broadcast)
2097 goto skip_processing;
2098 break;
2099
2100 default:
2101 break;
2102 }
2103
2104 cec_msg_set_reply_to(&tx_cec_msg, msg);
2105
2106 switch (msg->msg[1]) {
2107 /* The following messages are processed but still passed through */
2108 case CEC_MSG_REPORT_PHYSICAL_ADDR: {
2109 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
2110
2111 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
2112 cec_phys_addr_exp(pa), init_laddr);
2113 break;
2114 }
2115
2116 case CEC_MSG_USER_CONTROL_PRESSED:
2117 if (!(adap->capabilities & CEC_CAP_RC) ||
2118 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2119 break;
2120
2121 #ifdef CONFIG_MEDIA_CEC_RC
2122 switch (msg->msg[2]) {
2123 /*
2124 * Play function, this message can have variable length
2125 * depending on the specific play function that is used.
2126 */
2127 case CEC_OP_UI_CMD_PLAY_FUNCTION:
2128 if (msg->len == 2)
2129 rc_keydown(adap->rc, RC_PROTO_CEC,
2130 msg->msg[2], 0);
2131 else
2132 rc_keydown(adap->rc, RC_PROTO_CEC,
2133 msg->msg[2] << 8 | msg->msg[3], 0);
2134 break;
2135 /*
2136 * Other function messages that are not handled.
2137 * Currently the RC framework does not allow to supply an
2138 * additional parameter to a keypress. These "keys" contain
2139 * other information such as channel number, an input number
2140 * etc.
2141 * For the time being these messages are not processed by the
2142 * framework and are simply forwarded to the user space.
2143 */
2144 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2145 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2146 case CEC_OP_UI_CMD_TUNE_FUNCTION:
2147 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2148 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2149 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2150 break;
2151 default:
2152 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2153 break;
2154 }
2155 #endif
2156 break;
2157
2158 case CEC_MSG_USER_CONTROL_RELEASED:
2159 if (!(adap->capabilities & CEC_CAP_RC) ||
2160 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2161 break;
2162 #ifdef CONFIG_MEDIA_CEC_RC
2163 rc_keyup(adap->rc);
2164 #endif
2165 break;
2166
2167 /*
2168 * The remaining messages are only processed if the passthrough mode
2169 * is off.
2170 */
2171 case CEC_MSG_GET_CEC_VERSION:
2172 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2173 return cec_transmit_msg(adap, &tx_cec_msg, false);
2174
2175 case CEC_MSG_GIVE_PHYSICAL_ADDR:
2176 /* Do nothing for CEC switches using addr 15 */
2177 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2178 return 0;
2179 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2180 return cec_transmit_msg(adap, &tx_cec_msg, false);
2181
2182 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2183 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2184 return cec_feature_abort(adap, msg);
2185 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2186 return cec_transmit_msg(adap, &tx_cec_msg, false);
2187
2188 case CEC_MSG_ABORT:
2189 /* Do nothing for CEC switches */
2190 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2191 return 0;
2192 return cec_feature_refused(adap, msg);
2193
2194 case CEC_MSG_GIVE_OSD_NAME: {
2195 if (adap->log_addrs.osd_name[0] == 0)
2196 return cec_feature_abort(adap, msg);
2197 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2198 return cec_transmit_msg(adap, &tx_cec_msg, false);
2199 }
2200
2201 case CEC_MSG_GIVE_FEATURES:
2202 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2203 return cec_feature_abort(adap, msg);
2204 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2205 return cec_transmit_msg(adap, &tx_cec_msg, false);
2206
2207 default:
2208 /*
2209 * Unprocessed messages are aborted if userspace isn't doing
2210 * any processing either.
2211 */
2212 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2213 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2214 return cec_feature_abort(adap, msg);
2215 break;
2216 }
2217
2218 skip_processing:
2219 /* If this was a reply, then we're done, unless otherwise specified */
2220 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2221 return 0;
2222
2223 /*
2224 * Send to the exclusive follower if there is one, otherwise send
2225 * to all followers.
2226 */
2227 if (adap->cec_follower)
2228 cec_queue_msg_fh(adap->cec_follower, msg);
2229 else
2230 cec_queue_msg_followers(adap, msg);
2231 return 0;
2232 }
2233
2234 /*
2235 * Helper functions to keep track of the 'monitor all' use count.
2236 *
2237 * These functions are called with adap->lock held.
2238 */
cec_monitor_all_cnt_inc(struct cec_adapter * adap)2239 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2240 {
2241 int ret;
2242
2243 if (adap->monitor_all_cnt++)
2244 return 0;
2245
2246 ret = cec_adap_enable(adap);
2247 if (ret)
2248 adap->monitor_all_cnt--;
2249 return ret;
2250 }
2251
cec_monitor_all_cnt_dec(struct cec_adapter * adap)2252 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2253 {
2254 if (WARN_ON(!adap->monitor_all_cnt))
2255 return;
2256 if (--adap->monitor_all_cnt)
2257 return;
2258 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
2259 cec_adap_enable(adap);
2260 }
2261
2262 /*
2263 * Helper functions to keep track of the 'monitor pin' use count.
2264 *
2265 * These functions are called with adap->lock held.
2266 */
cec_monitor_pin_cnt_inc(struct cec_adapter * adap)2267 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2268 {
2269 int ret;
2270
2271 if (adap->monitor_pin_cnt++)
2272 return 0;
2273
2274 ret = cec_adap_enable(adap);
2275 if (ret)
2276 adap->monitor_pin_cnt--;
2277 return ret;
2278 }
2279
cec_monitor_pin_cnt_dec(struct cec_adapter * adap)2280 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2281 {
2282 if (WARN_ON(!adap->monitor_pin_cnt))
2283 return;
2284 if (--adap->monitor_pin_cnt)
2285 return;
2286 WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
2287 cec_adap_enable(adap);
2288 }
2289
2290 #ifdef CONFIG_DEBUG_FS
2291 /*
2292 * Log the current state of the CEC adapter.
2293 * Very useful for debugging.
2294 */
cec_adap_status(struct seq_file * file,void * priv)2295 int cec_adap_status(struct seq_file *file, void *priv)
2296 {
2297 struct cec_adapter *adap = dev_get_drvdata(file->private);
2298 struct cec_data *data;
2299
2300 mutex_lock(&adap->lock);
2301 seq_printf(file, "enabled: %d\n", adap->is_enabled);
2302 seq_printf(file, "configured: %d\n", adap->is_configured);
2303 seq_printf(file, "configuring: %d\n", adap->is_configuring);
2304 seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2305 cec_phys_addr_exp(adap->phys_addr));
2306 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2307 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2308 if (adap->cec_follower)
2309 seq_printf(file, "has CEC follower%s\n",
2310 adap->passthrough ? " (in passthrough mode)" : "");
2311 if (adap->cec_initiator)
2312 seq_puts(file, "has CEC initiator\n");
2313 if (adap->monitor_all_cnt)
2314 seq_printf(file, "file handles in Monitor All mode: %u\n",
2315 adap->monitor_all_cnt);
2316 if (adap->monitor_pin_cnt)
2317 seq_printf(file, "file handles in Monitor Pin mode: %u\n",
2318 adap->monitor_pin_cnt);
2319 if (adap->tx_timeout_cnt) {
2320 seq_printf(file, "transmit timeout count: %u\n",
2321 adap->tx_timeout_cnt);
2322 adap->tx_timeout_cnt = 0;
2323 }
2324 if (adap->tx_low_drive_cnt) {
2325 seq_printf(file, "transmit low drive count: %u\n",
2326 adap->tx_low_drive_cnt);
2327 adap->tx_low_drive_cnt = 0;
2328 }
2329 if (adap->tx_arb_lost_cnt) {
2330 seq_printf(file, "transmit arbitration lost count: %u\n",
2331 adap->tx_arb_lost_cnt);
2332 adap->tx_arb_lost_cnt = 0;
2333 }
2334 if (adap->tx_error_cnt) {
2335 seq_printf(file, "transmit error count: %u\n",
2336 adap->tx_error_cnt);
2337 adap->tx_error_cnt = 0;
2338 }
2339 data = adap->transmitting;
2340 if (data)
2341 seq_printf(file, "transmitting message: %*ph (reply: %*ph, timeout: %ums)\n",
2342 data->msg.len, data->msg.msg,
2343 data->match_len, data->match_reply,
2344 data->msg.timeout);
2345 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2346 list_for_each_entry(data, &adap->transmit_queue, list) {
2347 seq_printf(file, "queued tx message: %*ph (reply: %*ph, timeout: %ums)\n",
2348 data->msg.len, data->msg.msg,
2349 data->match_len, data->match_reply,
2350 data->msg.timeout);
2351 }
2352 list_for_each_entry(data, &adap->wait_queue, list) {
2353 seq_printf(file, "message waiting for reply: %*ph (reply: %*ph, timeout: %ums)\n",
2354 data->msg.len, data->msg.msg,
2355 data->match_len, data->match_reply,
2356 data->msg.timeout);
2357 }
2358
2359 call_void_op(adap, adap_status, file);
2360 mutex_unlock(&adap->lock);
2361 return 0;
2362 }
2363 #endif
2364