1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 ** ccio-dma.c:
4 ** DMA management routines for first generation cache-coherent machines.
5 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
6 **
7 ** (c) Copyright 2000 Grant Grundler
8 ** (c) Copyright 2000 Ryan Bradetich
9 ** (c) Copyright 2000 Hewlett-Packard Company
10 **
11 ** "Real Mode" operation refers to U2/Uturn chip operation.
12 ** U2/Uturn were designed to perform coherency checks w/o using
13 ** the I/O MMU - basically what x86 does.
14 **
15 ** Drawbacks of using Real Mode are:
16 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
17 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
18 ** o Ability to do scatter/gather in HW is lost.
19 ** o Doesn't work under PCX-U/U+ machines since they didn't follow
20 ** the coherency design originally worked out. Only PCX-W does.
21 */
22
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/pci.h>
31 #include <linux/reboot.h>
32 #include <linux/proc_fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/dma-map-ops.h>
35 #include <linux/scatterlist.h>
36 #include <linux/iommu-helper.h>
37 #include <linux/export.h>
38
39 #include <asm/byteorder.h>
40 #include <asm/cache.h> /* for L1_CACHE_BYTES */
41 #include <linux/uaccess.h>
42 #include <asm/page.h>
43 #include <asm/dma.h>
44 #include <asm/io.h>
45 #include <asm/hardware.h> /* for register_module() */
46 #include <asm/parisc-device.h>
47
48 #include "iommu.h"
49
50 /*
51 ** Choose "ccio" since that's what HP-UX calls it.
52 ** Make it easier for folks to migrate from one to the other :^)
53 */
54 #define MODULE_NAME "ccio"
55
56 #undef DEBUG_CCIO_RES
57 #undef DEBUG_CCIO_RUN
58 #undef DEBUG_CCIO_INIT
59 #undef DEBUG_CCIO_RUN_SG
60
61 #ifdef CONFIG_PROC_FS
62 /* depends on proc fs support. But costs CPU performance. */
63 #undef CCIO_COLLECT_STATS
64 #endif
65
66 #ifdef DEBUG_CCIO_INIT
67 #define DBG_INIT(x...) printk(x)
68 #else
69 #define DBG_INIT(x...)
70 #endif
71
72 #ifdef DEBUG_CCIO_RUN
73 #define DBG_RUN(x...) printk(x)
74 #else
75 #define DBG_RUN(x...)
76 #endif
77
78 #ifdef DEBUG_CCIO_RES
79 #define DBG_RES(x...) printk(x)
80 #else
81 #define DBG_RES(x...)
82 #endif
83
84 #ifdef DEBUG_CCIO_RUN_SG
85 #define DBG_RUN_SG(x...) printk(x)
86 #else
87 #define DBG_RUN_SG(x...)
88 #endif
89
90 #define WRITE_U32(value, addr) __raw_writel(value, addr)
91 #define READ_U32(addr) __raw_readl(addr)
92
93 #define U2_IOA_RUNWAY 0x580
94 #define U2_BC_GSC 0x501
95 #define UTURN_IOA_RUNWAY 0x581
96 #define UTURN_BC_GSC 0x502
97
98 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
99 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
100 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
101
102 struct ioa_registers {
103 /* Runway Supervisory Set */
104 int32_t unused1[12];
105 uint32_t io_command; /* Offset 12 */
106 uint32_t io_status; /* Offset 13 */
107 uint32_t io_control; /* Offset 14 */
108 int32_t unused2[1];
109
110 /* Runway Auxiliary Register Set */
111 uint32_t io_err_resp; /* Offset 0 */
112 uint32_t io_err_info; /* Offset 1 */
113 uint32_t io_err_req; /* Offset 2 */
114 uint32_t io_err_resp_hi; /* Offset 3 */
115 uint32_t io_tlb_entry_m; /* Offset 4 */
116 uint32_t io_tlb_entry_l; /* Offset 5 */
117 uint32_t unused3[1];
118 uint32_t io_pdir_base; /* Offset 7 */
119 uint32_t io_io_low_hv; /* Offset 8 */
120 uint32_t io_io_high_hv; /* Offset 9 */
121 uint32_t unused4[1];
122 uint32_t io_chain_id_mask; /* Offset 11 */
123 uint32_t unused5[2];
124 uint32_t io_io_low; /* Offset 14 */
125 uint32_t io_io_high; /* Offset 15 */
126 };
127
128 /*
129 ** IOA Registers
130 ** -------------
131 **
132 ** Runway IO_CONTROL Register (+0x38)
133 **
134 ** The Runway IO_CONTROL register controls the forwarding of transactions.
135 **
136 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
137 ** | HV | TLB | reserved | HV | mode | reserved |
138 **
139 ** o mode field indicates the address translation of transactions
140 ** forwarded from Runway to GSC+:
141 ** Mode Name Value Definition
142 ** Off (default) 0 Opaque to matching addresses.
143 ** Include 1 Transparent for matching addresses.
144 ** Peek 3 Map matching addresses.
145 **
146 ** + "Off" mode: Runway transactions which match the I/O range
147 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
148 ** + "Include" mode: all addresses within the I/O range specified
149 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
150 ** forwarded. This is the I/O Adapter's normal operating mode.
151 ** + "Peek" mode: used during system configuration to initialize the
152 ** GSC+ bus. Runway Write_Shorts in the address range specified by
153 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
154 ** *AND* the GSC+ address is remapped to the Broadcast Physical
155 ** Address space by setting the 14 high order address bits of the
156 ** 32 bit GSC+ address to ones.
157 **
158 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
159 ** "Real" mode is the poweron default.
160 **
161 ** TLB Mode Value Description
162 ** Real 0 No TLB translation. Address is directly mapped and the
163 ** virtual address is composed of selected physical bits.
164 ** Error 1 Software fills the TLB manually.
165 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
166 **
167 **
168 ** IO_IO_LOW_HV +0x60 (HV dependent)
169 ** IO_IO_HIGH_HV +0x64 (HV dependent)
170 ** IO_IO_LOW +0x78 (Architected register)
171 ** IO_IO_HIGH +0x7c (Architected register)
172 **
173 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
174 ** I/O Adapter address space, respectively.
175 **
176 ** 0 ... 7 | 8 ... 15 | 16 ... 31 |
177 ** 11111111 | 11111111 | address |
178 **
179 ** Each LOW/HIGH pair describes a disjoint address space region.
180 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
181 ** with both sets of LOW/HIGH registers. If the address is in the range
182 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
183 ** for forwarded to the respective GSC+ bus.
184 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
185 ** an address space region.
186 **
187 ** In order for a Runway address to reside within GSC+ extended address space:
188 ** Runway Address [0:7] must identically compare to 8'b11111111
189 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
190 ** Runway Address [12:23] must be greater than or equal to
191 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
192 ** Runway Address [24:39] is not used in the comparison.
193 **
194 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
195 ** as follows:
196 ** GSC+ Address[0:3] 4'b1111
197 ** GSC+ Address[4:29] Runway Address[12:37]
198 ** GSC+ Address[30:31] 2'b00
199 **
200 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
201 ** is interrogated and address space is defined. The operating system will
202 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
203 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW
204 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
205 **
206 ** Writes to both sets of registers will take effect immediately, bypassing
207 ** the queues, which ensures that subsequent Runway transactions are checked
208 ** against the updated bounds values. However reads are queued, introducing
209 ** the possibility of a read being bypassed by a subsequent write to the same
210 ** register. This sequence can be avoided by having software wait for read
211 ** returns before issuing subsequent writes.
212 */
213
214 struct ioc {
215 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
216 u8 *res_map; /* resource map, bit == pdir entry */
217 __le64 *pdir_base; /* physical base address */
218 u32 pdir_size; /* bytes, function of IOV Space size */
219 u32 res_hint; /* next available IOVP -
220 circular search */
221 u32 res_size; /* size of resource map in bytes */
222 spinlock_t res_lock;
223
224 #ifdef CCIO_COLLECT_STATS
225 #define CCIO_SEARCH_SAMPLE 0x100
226 unsigned long avg_search[CCIO_SEARCH_SAMPLE];
227 unsigned long avg_idx; /* current index into avg_search */
228 unsigned long used_pages;
229 unsigned long msingle_calls;
230 unsigned long msingle_pages;
231 unsigned long msg_calls;
232 unsigned long msg_pages;
233 unsigned long usingle_calls;
234 unsigned long usingle_pages;
235 unsigned long usg_calls;
236 unsigned long usg_pages;
237 #endif
238 unsigned short cujo20_bug;
239
240 /* STUFF We don't need in performance path */
241 u32 chainid_shift; /* specify bit location of chain_id */
242 struct ioc *next; /* Linked list of discovered iocs */
243 const char *name; /* device name from firmware */
244 unsigned int hw_path; /* the hardware path this ioc is associatd with */
245 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
246 struct resource mmio_region[2]; /* The "routed" MMIO regions */
247 };
248
249 static struct ioc *ioc_list;
250 static int ioc_count;
251
252 /**************************************************************
253 *
254 * I/O Pdir Resource Management
255 *
256 * Bits set in the resource map are in use.
257 * Each bit can represent a number of pages.
258 * LSbs represent lower addresses (IOVA's).
259 *
260 * This was copied from sba_iommu.c. Don't try to unify
261 * the two resource managers unless a way to have different
262 * allocation policies is also adjusted. We'd like to avoid
263 * I/O TLB thrashing by having resource allocation policy
264 * match the I/O TLB replacement policy.
265 *
266 ***************************************************************/
267 #define IOVP_SIZE PAGE_SIZE
268 #define IOVP_SHIFT PAGE_SHIFT
269 #define IOVP_MASK PAGE_MASK
270
271 /* Convert from IOVP to IOVA and vice versa. */
272 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
273 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
274
275 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
276 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
277 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
278
279 /*
280 ** Don't worry about the 150% average search length on a miss.
281 ** If the search wraps around, and passes the res_hint, it will
282 ** cause the kernel to panic anyhow.
283 */
284 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
285 for (; res_ptr < res_end; ++res_ptr) { \
286 int ret;\
287 unsigned int idx;\
288 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
289 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
290 if ((0 == (*res_ptr & mask)) && !ret) { \
291 *res_ptr |= mask; \
292 res_idx = idx;\
293 ioc->res_hint = res_idx + (size >> 3); \
294 goto resource_found; \
295 } \
296 }
297
298 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
299 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
300 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
301 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
302 res_ptr = (u##size *)&(ioc)->res_map[0]; \
303 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
304
305 /*
306 ** Find available bit in this ioa's resource map.
307 ** Use a "circular" search:
308 ** o Most IOVA's are "temporary" - avg search time should be small.
309 ** o keep a history of what happened for debugging
310 ** o KISS.
311 **
312 ** Perf optimizations:
313 ** o search for log2(size) bits at a time.
314 ** o search for available resource bits using byte/word/whatever.
315 ** o use different search for "large" (eg > 4 pages) or "very large"
316 ** (eg > 16 pages) mappings.
317 */
318
319 /**
320 * ccio_alloc_range - Allocate pages in the ioc's resource map.
321 * @ioc: The I/O Controller.
322 * @dev: The PCI device.
323 * @size: The requested number of bytes to be mapped into the
324 * I/O Pdir...
325 *
326 * This function searches the resource map of the ioc to locate a range
327 * of available pages for the requested size.
328 */
329 static int
ccio_alloc_range(struct ioc * ioc,struct device * dev,size_t size)330 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
331 {
332 unsigned int pages_needed = size >> IOVP_SHIFT;
333 unsigned int res_idx;
334 unsigned long boundary_size;
335 #ifdef CCIO_COLLECT_STATS
336 unsigned long cr_start = mfctl(16);
337 #endif
338
339 BUG_ON(pages_needed == 0);
340 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
341
342 DBG_RES("%s() size: %zu pages_needed %d\n",
343 __func__, size, pages_needed);
344
345 /*
346 ** "seek and ye shall find"...praying never hurts either...
347 ** ggg sacrifices another 710 to the computer gods.
348 */
349
350 boundary_size = dma_get_seg_boundary_nr_pages(dev, IOVP_SHIFT);
351
352 if (pages_needed <= 8) {
353 /*
354 * LAN traffic will not thrash the TLB IFF the same NIC
355 * uses 8 adjacent pages to map separate payload data.
356 * ie the same byte in the resource bit map.
357 */
358 #if 0
359 /* FIXME: bit search should shift it's way through
360 * an unsigned long - not byte at a time. As it is now,
361 * we effectively allocate this byte to this mapping.
362 */
363 unsigned long mask = ~(~0UL >> pages_needed);
364 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
365 #else
366 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
367 #endif
368 } else if (pages_needed <= 16) {
369 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
370 } else if (pages_needed <= 32) {
371 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
372 #ifdef __LP64__
373 } else if (pages_needed <= 64) {
374 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
375 #endif
376 } else {
377 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
378 __FILE__, __func__, pages_needed);
379 }
380
381 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
382 __func__);
383
384 resource_found:
385
386 DBG_RES("%s() res_idx %d res_hint: %d\n",
387 __func__, res_idx, ioc->res_hint);
388
389 #ifdef CCIO_COLLECT_STATS
390 {
391 unsigned long cr_end = mfctl(16);
392 unsigned long tmp = cr_end - cr_start;
393 /* check for roll over */
394 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
395 }
396 ioc->avg_search[ioc->avg_idx++] = cr_start;
397 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
398 ioc->used_pages += pages_needed;
399 #endif
400 /*
401 ** return the bit address.
402 */
403 return res_idx << 3;
404 }
405
406 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
407 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
408 BUG_ON((*res_ptr & mask) != mask); \
409 *res_ptr &= ~(mask);
410
411 /**
412 * ccio_free_range - Free pages from the ioc's resource map.
413 * @ioc: The I/O Controller.
414 * @iova: The I/O Virtual Address.
415 * @pages_mapped: The requested number of pages to be freed from the
416 * I/O Pdir.
417 *
418 * This function frees the resouces allocated for the iova.
419 */
420 static void
ccio_free_range(struct ioc * ioc,dma_addr_t iova,unsigned long pages_mapped)421 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
422 {
423 unsigned long iovp = CCIO_IOVP(iova);
424 unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
425
426 BUG_ON(pages_mapped == 0);
427 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
428 BUG_ON(pages_mapped > BITS_PER_LONG);
429
430 DBG_RES("%s(): res_idx: %d pages_mapped %lu\n",
431 __func__, res_idx, pages_mapped);
432
433 #ifdef CCIO_COLLECT_STATS
434 ioc->used_pages -= pages_mapped;
435 #endif
436
437 if(pages_mapped <= 8) {
438 #if 0
439 /* see matching comments in alloc_range */
440 unsigned long mask = ~(~0UL >> pages_mapped);
441 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
442 #else
443 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
444 #endif
445 } else if(pages_mapped <= 16) {
446 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
447 } else if(pages_mapped <= 32) {
448 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
449 #ifdef __LP64__
450 } else if(pages_mapped <= 64) {
451 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
452 #endif
453 } else {
454 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
455 __func__);
456 }
457 }
458
459 /****************************************************************
460 **
461 ** CCIO dma_ops support routines
462 **
463 *****************************************************************/
464
465 typedef unsigned long space_t;
466 #define KERNEL_SPACE 0
467
468 /*
469 ** DMA "Page Type" and Hints
470 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
471 ** set for subcacheline DMA transfers since we don't want to damage the
472 ** other part of a cacheline.
473 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
474 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
475 ** data can avoid this if the mapping covers full cache lines.
476 ** o STOP_MOST is needed for atomicity across cachelines.
477 ** Apparently only "some EISA devices" need this.
478 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
479 ** to use this hint iff the EISA devices needs this feature.
480 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
481 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
482 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
483 ** device can be fetched and multiply DMA streams will thrash the
484 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
485 ** and Invalidation of Prefetch Entries".
486 **
487 ** FIXME: the default hints need to be per GSC device - not global.
488 **
489 ** HP-UX dorks: linux device driver programming model is totally different
490 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
491 ** do special things to work on non-coherent platforms...linux has to
492 ** be much more careful with this.
493 */
494 #define IOPDIR_VALID 0x01UL
495 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
496 #ifdef CONFIG_EISA
497 #define HINT_STOP_MOST 0x04UL /* LSL support */
498 #else
499 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
500 #endif
501 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
502 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
503
504
505 /*
506 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
507 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
508 ** when it passes in BIDIRECTIONAL flag.
509 */
510 static u32 hint_lookup[] = {
511 [DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
512 [DMA_TO_DEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
513 [DMA_FROM_DEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
514 };
515
516 /**
517 * ccio_io_pdir_entry - Initialize an I/O Pdir.
518 * @pdir_ptr: A pointer into I/O Pdir.
519 * @sid: The Space Identifier.
520 * @vba: The virtual address.
521 * @hints: The DMA Hint.
522 *
523 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
524 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
525 * entry consists of 8 bytes as shown below (MSB == bit 0):
526 *
527 *
528 * WORD 0:
529 * +------+----------------+-----------------------------------------------+
530 * | Phys | Virtual Index | Phys |
531 * | 0:3 | 0:11 | 4:19 |
532 * |4 bits| 12 bits | 16 bits |
533 * +------+----------------+-----------------------------------------------+
534 * WORD 1:
535 * +-----------------------+-----------------------------------------------+
536 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
537 * | 20:39 | | Enable |Enable | |Enable|DMA | |
538 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
539 * +-----------------------+-----------------------------------------------+
540 *
541 * The virtual index field is filled with the results of the LCI
542 * (Load Coherence Index) instruction. The 8 bits used for the virtual
543 * index are bits 12:19 of the value returned by LCI.
544 */
545 static void
ccio_io_pdir_entry(__le64 * pdir_ptr,space_t sid,unsigned long vba,unsigned long hints)546 ccio_io_pdir_entry(__le64 *pdir_ptr, space_t sid, unsigned long vba,
547 unsigned long hints)
548 {
549 register unsigned long pa;
550 register unsigned long ci; /* coherent index */
551
552 /* We currently only support kernel addresses */
553 BUG_ON(sid != KERNEL_SPACE);
554
555 /*
556 ** WORD 1 - low order word
557 ** "hints" parm includes the VALID bit!
558 ** "dep" clobbers the physical address offset bits as well.
559 */
560 pa = lpa(vba);
561 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
562 ((u32 *)pdir_ptr)[1] = (u32) pa;
563
564 /*
565 ** WORD 0 - high order word
566 */
567
568 #ifdef __LP64__
569 /*
570 ** get bits 12:15 of physical address
571 ** shift bits 16:31 of physical address
572 ** and deposit them
573 */
574 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
575 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
576 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
577 #else
578 pa = 0;
579 #endif
580 /*
581 ** get CPU coherency index bits
582 ** Grab virtual index [0:11]
583 ** Deposit virt_idx bits into I/O PDIR word
584 */
585 asm volatile ("lci %%r0(%1), %0" : "=r" (ci) : "r" (vba));
586 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
587 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
588
589 ((u32 *)pdir_ptr)[0] = (u32) pa;
590
591
592 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
593 ** PCX-U/U+ do. (eg C200/C240)
594 ** PCX-T'? Don't know. (eg C110 or similar K-class)
595 **
596 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
597 **
598 ** "Since PCX-U employs an offset hash that is incompatible with
599 ** the real mode coherence index generation of U2, the PDIR entry
600 ** must be flushed to memory to retain coherence."
601 */
602 asm_io_fdc(pdir_ptr);
603 asm_io_sync();
604 }
605
606 /**
607 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
608 * @ioc: The I/O Controller.
609 * @iovp: The I/O Virtual Page.
610 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
611 *
612 * Purge invalid I/O PDIR entries from the I/O TLB.
613 *
614 * FIXME: Can we change the byte_cnt to pages_mapped?
615 */
616 static void
ccio_clear_io_tlb(struct ioc * ioc,dma_addr_t iovp,size_t byte_cnt)617 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
618 {
619 u32 chain_size = 1 << ioc->chainid_shift;
620
621 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
622 byte_cnt += chain_size;
623
624 while(byte_cnt > chain_size) {
625 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
626 iovp += chain_size;
627 byte_cnt -= chain_size;
628 }
629 }
630
631 /**
632 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
633 * @ioc: The I/O Controller.
634 * @iova: The I/O Virtual Address.
635 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
636 *
637 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
638 * TLB entries.
639 *
640 * FIXME: at some threshold it might be "cheaper" to just blow
641 * away the entire I/O TLB instead of individual entries.
642 *
643 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
644 * PDIR entry - just once for each possible TLB entry.
645 * (We do need to maker I/O PDIR entries invalid regardless).
646 *
647 * FIXME: Can we change byte_cnt to pages_mapped?
648 */
649 static void
ccio_mark_invalid(struct ioc * ioc,dma_addr_t iova,size_t byte_cnt)650 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
651 {
652 u32 iovp = (u32)CCIO_IOVP(iova);
653 size_t saved_byte_cnt;
654
655 /* round up to nearest page size */
656 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
657
658 while(byte_cnt > 0) {
659 /* invalidate one page at a time */
660 unsigned int idx = PDIR_INDEX(iovp);
661 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
662
663 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
664 pdir_ptr[7] = 0; /* clear only VALID bit */
665 /*
666 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
667 ** PCX-U/U+ do. (eg C200/C240)
668 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
669 */
670 asm_io_fdc(pdir_ptr);
671
672 iovp += IOVP_SIZE;
673 byte_cnt -= IOVP_SIZE;
674 }
675
676 asm_io_sync();
677 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
678 }
679
680 /****************************************************************
681 **
682 ** CCIO dma_ops
683 **
684 *****************************************************************/
685
686 /**
687 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
688 * @dev: The PCI device.
689 * @mask: A bit mask describing the DMA address range of the device.
690 */
691 static int
ccio_dma_supported(struct device * dev,u64 mask)692 ccio_dma_supported(struct device *dev, u64 mask)
693 {
694 if(dev == NULL) {
695 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
696 BUG();
697 return 0;
698 }
699
700 /* only support 32-bit or better devices (ie PCI/GSC) */
701 return (int)(mask >= 0xffffffffUL);
702 }
703
704 /**
705 * ccio_map_single - Map an address range into the IOMMU.
706 * @dev: The PCI device.
707 * @addr: The start address of the DMA region.
708 * @size: The length of the DMA region.
709 * @direction: The direction of the DMA transaction (to/from device).
710 *
711 * This function implements the pci_map_single function.
712 */
713 static dma_addr_t
ccio_map_single(struct device * dev,void * addr,size_t size,enum dma_data_direction direction)714 ccio_map_single(struct device *dev, void *addr, size_t size,
715 enum dma_data_direction direction)
716 {
717 int idx;
718 struct ioc *ioc;
719 unsigned long flags;
720 dma_addr_t iovp;
721 dma_addr_t offset;
722 __le64 *pdir_start;
723 unsigned long hint = hint_lookup[(int)direction];
724
725 BUG_ON(!dev);
726 ioc = GET_IOC(dev);
727 if (!ioc)
728 return DMA_MAPPING_ERROR;
729
730 BUG_ON(size <= 0);
731
732 /* save offset bits */
733 offset = ((unsigned long) addr) & ~IOVP_MASK;
734
735 /* round up to nearest IOVP_SIZE */
736 size = ALIGN(size + offset, IOVP_SIZE);
737 spin_lock_irqsave(&ioc->res_lock, flags);
738
739 #ifdef CCIO_COLLECT_STATS
740 ioc->msingle_calls++;
741 ioc->msingle_pages += size >> IOVP_SHIFT;
742 #endif
743
744 idx = ccio_alloc_range(ioc, dev, size);
745 iovp = (dma_addr_t)MKIOVP(idx);
746
747 pdir_start = &(ioc->pdir_base[idx]);
748
749 DBG_RUN("%s() %px -> %#lx size: %zu\n",
750 __func__, addr, (long)(iovp | offset), size);
751
752 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
753 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
754 hint |= HINT_SAFE_DMA;
755
756 while(size > 0) {
757 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
758
759 DBG_RUN(" pdir %p %08x%08x\n",
760 pdir_start,
761 (u32) (((u32 *) pdir_start)[0]),
762 (u32) (((u32 *) pdir_start)[1]));
763 ++pdir_start;
764 addr += IOVP_SIZE;
765 size -= IOVP_SIZE;
766 }
767
768 spin_unlock_irqrestore(&ioc->res_lock, flags);
769
770 /* form complete address */
771 return CCIO_IOVA(iovp, offset);
772 }
773
774
775 static dma_addr_t
ccio_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction,unsigned long attrs)776 ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
777 size_t size, enum dma_data_direction direction,
778 unsigned long attrs)
779 {
780 return ccio_map_single(dev, page_address(page) + offset, size,
781 direction);
782 }
783
784
785 /**
786 * ccio_unmap_page - Unmap an address range from the IOMMU.
787 * @dev: The PCI device.
788 * @iova: The start address of the DMA region.
789 * @size: The length of the DMA region.
790 * @direction: The direction of the DMA transaction (to/from device).
791 * @attrs: attributes
792 */
793 static void
ccio_unmap_page(struct device * dev,dma_addr_t iova,size_t size,enum dma_data_direction direction,unsigned long attrs)794 ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
795 enum dma_data_direction direction, unsigned long attrs)
796 {
797 struct ioc *ioc;
798 unsigned long flags;
799 dma_addr_t offset = iova & ~IOVP_MASK;
800
801 BUG_ON(!dev);
802 ioc = GET_IOC(dev);
803 if (!ioc) {
804 WARN_ON(!ioc);
805 return;
806 }
807
808 DBG_RUN("%s() iovp %#lx/%zx\n",
809 __func__, (long)iova, size);
810
811 iova ^= offset; /* clear offset bits */
812 size += offset;
813 size = ALIGN(size, IOVP_SIZE);
814
815 spin_lock_irqsave(&ioc->res_lock, flags);
816
817 #ifdef CCIO_COLLECT_STATS
818 ioc->usingle_calls++;
819 ioc->usingle_pages += size >> IOVP_SHIFT;
820 #endif
821
822 ccio_mark_invalid(ioc, iova, size);
823 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
824 spin_unlock_irqrestore(&ioc->res_lock, flags);
825 }
826
827 /**
828 * ccio_alloc - Allocate a consistent DMA mapping.
829 * @dev: The PCI device.
830 * @size: The length of the DMA region.
831 * @dma_handle: The DMA address handed back to the device (not the cpu).
832 * @flag: allocation flags
833 * @attrs: attributes
834 *
835 * This function implements the pci_alloc_consistent function.
836 */
837 static void *
ccio_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)838 ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
839 unsigned long attrs)
840 {
841 void *ret;
842 #if 0
843 /* GRANT Need to establish hierarchy for non-PCI devs as well
844 ** and then provide matching gsc_map_xxx() functions for them as well.
845 */
846 if(!hwdev) {
847 /* only support PCI */
848 *dma_handle = 0;
849 return 0;
850 }
851 #endif
852 ret = (void *) __get_free_pages(flag, get_order(size));
853
854 if (ret) {
855 memset(ret, 0, size);
856 *dma_handle = ccio_map_single(dev, ret, size, DMA_BIDIRECTIONAL);
857 }
858
859 return ret;
860 }
861
862 /**
863 * ccio_free - Free a consistent DMA mapping.
864 * @dev: The PCI device.
865 * @size: The length of the DMA region.
866 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
867 * @dma_handle: The device address returned from the ccio_alloc_consistent.
868 * @attrs: attributes
869 *
870 * This function implements the pci_free_consistent function.
871 */
872 static void
ccio_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)873 ccio_free(struct device *dev, size_t size, void *cpu_addr,
874 dma_addr_t dma_handle, unsigned long attrs)
875 {
876 ccio_unmap_page(dev, dma_handle, size, 0, 0);
877 free_pages((unsigned long)cpu_addr, get_order(size));
878 }
879
880 /*
881 ** Since 0 is a valid pdir_base index value, can't use that
882 ** to determine if a value is valid or not. Use a flag to indicate
883 ** the SG list entry contains a valid pdir index.
884 */
885 #define PIDE_FLAG 0x80000000UL
886
887 #ifdef CCIO_COLLECT_STATS
888 #define IOMMU_MAP_STATS
889 #endif
890 #include "iommu-helpers.h"
891
892 /**
893 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
894 * @dev: The PCI device.
895 * @sglist: The scatter/gather list to be mapped in the IOMMU.
896 * @nents: The number of entries in the scatter/gather list.
897 * @direction: The direction of the DMA transaction (to/from device).
898 * @attrs: attributes
899 *
900 * This function implements the pci_map_sg function.
901 */
902 static int
ccio_map_sg(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction direction,unsigned long attrs)903 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
904 enum dma_data_direction direction, unsigned long attrs)
905 {
906 struct ioc *ioc;
907 int coalesced, filled = 0;
908 unsigned long flags;
909 unsigned long hint = hint_lookup[(int)direction];
910 unsigned long prev_len = 0, current_len = 0;
911 int i;
912
913 BUG_ON(!dev);
914 ioc = GET_IOC(dev);
915 if (!ioc)
916 return -EINVAL;
917
918 DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
919
920 /* Fast path single entry scatterlists. */
921 if (nents == 1) {
922 sg_dma_address(sglist) = ccio_map_single(dev,
923 sg_virt(sglist), sglist->length,
924 direction);
925 sg_dma_len(sglist) = sglist->length;
926 return 1;
927 }
928
929 for(i = 0; i < nents; i++)
930 prev_len += sglist[i].length;
931
932 spin_lock_irqsave(&ioc->res_lock, flags);
933
934 #ifdef CCIO_COLLECT_STATS
935 ioc->msg_calls++;
936 #endif
937
938 /*
939 ** First coalesce the chunks and allocate I/O pdir space
940 **
941 ** If this is one DMA stream, we can properly map using the
942 ** correct virtual address associated with each DMA page.
943 ** w/o this association, we wouldn't have coherent DMA!
944 ** Access to the virtual address is what forces a two pass algorithm.
945 */
946 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
947
948 /*
949 ** Program the I/O Pdir
950 **
951 ** map the virtual addresses to the I/O Pdir
952 ** o dma_address will contain the pdir index
953 ** o dma_len will contain the number of bytes to map
954 ** o page/offset contain the virtual address.
955 */
956 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
957
958 spin_unlock_irqrestore(&ioc->res_lock, flags);
959
960 BUG_ON(coalesced != filled);
961
962 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
963
964 for (i = 0; i < filled; i++)
965 current_len += sg_dma_len(sglist + i);
966
967 BUG_ON(current_len != prev_len);
968
969 return filled;
970 }
971
972 /**
973 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
974 * @dev: The PCI device.
975 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
976 * @nents: The number of entries in the scatter/gather list.
977 * @direction: The direction of the DMA transaction (to/from device).
978 * @attrs: attributes
979 *
980 * This function implements the pci_unmap_sg function.
981 */
982 static void
ccio_unmap_sg(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction direction,unsigned long attrs)983 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
984 enum dma_data_direction direction, unsigned long attrs)
985 {
986 struct ioc *ioc;
987
988 BUG_ON(!dev);
989 ioc = GET_IOC(dev);
990 if (!ioc) {
991 WARN_ON(!ioc);
992 return;
993 }
994
995 DBG_RUN_SG("%s() START %d entries, %p,%x\n",
996 __func__, nents, sg_virt(sglist), sglist->length);
997
998 #ifdef CCIO_COLLECT_STATS
999 ioc->usg_calls++;
1000 #endif
1001
1002 while (nents && sg_dma_len(sglist)) {
1003
1004 #ifdef CCIO_COLLECT_STATS
1005 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1006 #endif
1007 ccio_unmap_page(dev, sg_dma_address(sglist),
1008 sg_dma_len(sglist), direction, 0);
1009 ++sglist;
1010 nents--;
1011 }
1012
1013 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1014 }
1015
1016 static const struct dma_map_ops ccio_ops = {
1017 .dma_supported = ccio_dma_supported,
1018 .alloc = ccio_alloc,
1019 .free = ccio_free,
1020 .map_page = ccio_map_page,
1021 .unmap_page = ccio_unmap_page,
1022 .map_sg = ccio_map_sg,
1023 .unmap_sg = ccio_unmap_sg,
1024 .get_sgtable = dma_common_get_sgtable,
1025 .alloc_pages_op = dma_common_alloc_pages,
1026 .free_pages = dma_common_free_pages,
1027 };
1028
1029 #ifdef CONFIG_PROC_FS
ccio_proc_info(struct seq_file * m,void * p)1030 static int ccio_proc_info(struct seq_file *m, void *p)
1031 {
1032 struct ioc *ioc = ioc_list;
1033
1034 while (ioc != NULL) {
1035 unsigned int total_pages = ioc->res_size << 3;
1036 #ifdef CCIO_COLLECT_STATS
1037 unsigned long avg = 0, min, max;
1038 int j;
1039 #endif
1040
1041 seq_printf(m, "%s\n", ioc->name);
1042
1043 seq_printf(m, "Cujo 2.0 bug : %s\n",
1044 (ioc->cujo20_bug ? "yes" : "no"));
1045
1046 seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1047 total_pages * 8, total_pages);
1048
1049 #ifdef CCIO_COLLECT_STATS
1050 seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1051 total_pages - ioc->used_pages, ioc->used_pages,
1052 (int)(ioc->used_pages * 100 / total_pages));
1053 #endif
1054
1055 seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1056 ioc->res_size, total_pages);
1057
1058 #ifdef CCIO_COLLECT_STATS
1059 min = max = ioc->avg_search[0];
1060 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1061 avg += ioc->avg_search[j];
1062 if(ioc->avg_search[j] > max)
1063 max = ioc->avg_search[j];
1064 if(ioc->avg_search[j] < min)
1065 min = ioc->avg_search[j];
1066 }
1067 avg /= CCIO_SEARCH_SAMPLE;
1068 seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1069 min, avg, max);
1070
1071 seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1072 ioc->msingle_calls, ioc->msingle_pages,
1073 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1074
1075 /* KLUGE - unmap_sg calls unmap_page for each mapped page */
1076 min = ioc->usingle_calls - ioc->usg_calls;
1077 max = ioc->usingle_pages - ioc->usg_pages;
1078 seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1079 min, max, (int)((max * 1000)/min));
1080
1081 seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1082 ioc->msg_calls, ioc->msg_pages,
1083 (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1084
1085 seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1086 ioc->usg_calls, ioc->usg_pages,
1087 (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1088 #endif /* CCIO_COLLECT_STATS */
1089
1090 ioc = ioc->next;
1091 }
1092
1093 return 0;
1094 }
1095
ccio_proc_bitmap_info(struct seq_file * m,void * p)1096 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1097 {
1098 struct ioc *ioc = ioc_list;
1099
1100 while (ioc != NULL) {
1101 seq_hex_dump(m, " ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1102 ioc->res_size, false);
1103 seq_putc(m, '\n');
1104 ioc = ioc->next;
1105 break; /* XXX - remove me */
1106 }
1107
1108 return 0;
1109 }
1110 #endif /* CONFIG_PROC_FS */
1111
1112 /**
1113 * ccio_find_ioc - Find the ioc in the ioc_list
1114 * @hw_path: The hardware path of the ioc.
1115 *
1116 * This function searches the ioc_list for an ioc that matches
1117 * the provide hardware path.
1118 */
ccio_find_ioc(int hw_path)1119 static struct ioc * ccio_find_ioc(int hw_path)
1120 {
1121 int i;
1122 struct ioc *ioc;
1123
1124 ioc = ioc_list;
1125 for (i = 0; i < ioc_count; i++) {
1126 if (ioc->hw_path == hw_path)
1127 return ioc;
1128
1129 ioc = ioc->next;
1130 }
1131
1132 return NULL;
1133 }
1134
1135 /**
1136 * ccio_get_iommu - Find the iommu which controls this device
1137 * @dev: The parisc device.
1138 *
1139 * This function searches through the registered IOMMU's and returns
1140 * the appropriate IOMMU for the device based on its hardware path.
1141 */
ccio_get_iommu(const struct parisc_device * dev)1142 void * ccio_get_iommu(const struct parisc_device *dev)
1143 {
1144 dev = find_pa_parent_type(dev, HPHW_IOA);
1145 if (!dev)
1146 return NULL;
1147
1148 return ccio_find_ioc(dev->hw_path);
1149 }
1150
1151 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1152
1153 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1154 * to/from certain pages. To avoid this happening, we mark these pages
1155 * as `used', and ensure that nothing will try to allocate from them.
1156 */
ccio_cujo20_fixup(struct parisc_device * cujo,u32 iovp)1157 void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1158 {
1159 unsigned int idx;
1160 struct parisc_device *dev = parisc_parent(cujo);
1161 struct ioc *ioc = ccio_get_iommu(dev);
1162 u8 *res_ptr;
1163
1164 ioc->cujo20_bug = 1;
1165 res_ptr = ioc->res_map;
1166 idx = PDIR_INDEX(iovp) >> 3;
1167
1168 while (idx < ioc->res_size) {
1169 res_ptr[idx] |= 0xff;
1170 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1171 }
1172 }
1173
1174 #if 0
1175 /* GRANT - is this needed for U2 or not? */
1176
1177 /*
1178 ** Get the size of the I/O TLB for this I/O MMU.
1179 **
1180 ** If spa_shift is non-zero (ie probably U2),
1181 ** then calculate the I/O TLB size using spa_shift.
1182 **
1183 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1184 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1185 ** I think only Java (K/D/R-class too?) systems don't do this.
1186 */
1187 static int
1188 ccio_get_iotlb_size(struct parisc_device *dev)
1189 {
1190 if (dev->spa_shift == 0) {
1191 panic("%s() : Can't determine I/O TLB size.\n", __func__);
1192 }
1193 return (1 << dev->spa_shift);
1194 }
1195 #else
1196
1197 /* Uturn supports 256 TLB entries */
1198 #define CCIO_CHAINID_SHIFT 8
1199 #define CCIO_CHAINID_MASK 0xff
1200 #endif /* 0 */
1201
1202 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1203 static const struct parisc_device_id ccio_tbl[] __initconst = {
1204 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1205 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1206 { 0, }
1207 };
1208
1209 static int ccio_probe(struct parisc_device *dev);
1210
1211 static struct parisc_driver ccio_driver __refdata = {
1212 .name = "ccio",
1213 .id_table = ccio_tbl,
1214 .probe = ccio_probe,
1215 };
1216
1217 /**
1218 * ccio_ioc_init - Initialize the I/O Controller
1219 * @ioc: The I/O Controller.
1220 *
1221 * Initialize the I/O Controller which includes setting up the
1222 * I/O Page Directory, the resource map, and initalizing the
1223 * U2/Uturn chip into virtual mode.
1224 */
1225 static void __init
ccio_ioc_init(struct ioc * ioc)1226 ccio_ioc_init(struct ioc *ioc)
1227 {
1228 int i;
1229 unsigned int iov_order;
1230 u32 iova_space_size;
1231
1232 /*
1233 ** Determine IOVA Space size from memory size.
1234 **
1235 ** Ideally, PCI drivers would register the maximum number
1236 ** of DMA they can have outstanding for each device they
1237 ** own. Next best thing would be to guess how much DMA
1238 ** can be outstanding based on PCI Class/sub-class. Both
1239 ** methods still require some "extra" to support PCI
1240 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1241 */
1242
1243 iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
1244
1245 /* limit IOVA space size to 1MB-1GB */
1246
1247 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1248 iova_space_size = 1 << (20 - PAGE_SHIFT);
1249 #ifdef __LP64__
1250 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1251 iova_space_size = 1 << (30 - PAGE_SHIFT);
1252 #endif
1253 }
1254
1255 /*
1256 ** iova space must be log2() in size.
1257 ** thus, pdir/res_map will also be log2().
1258 */
1259
1260 /* We could use larger page sizes in order to *decrease* the number
1261 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1262 **
1263 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1264 ** since the pages must also be physically contiguous - typically
1265 ** this is the case under linux."
1266 */
1267
1268 iov_order = get_order(iova_space_size << PAGE_SHIFT);
1269
1270 /* iova_space_size is now bytes, not pages */
1271 iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1272
1273 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1274
1275 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1276
1277 /* Verify it's a power of two */
1278 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1279
1280 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1281 __func__, ioc->ioc_regs,
1282 (unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1283 iova_space_size>>20,
1284 iov_order + PAGE_SHIFT);
1285
1286 ioc->pdir_base = (__le64 *)__get_free_pages(GFP_KERNEL,
1287 get_order(ioc->pdir_size));
1288 if(NULL == ioc->pdir_base) {
1289 panic("%s() could not allocate I/O Page Table\n", __func__);
1290 }
1291 memset(ioc->pdir_base, 0, ioc->pdir_size);
1292
1293 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1294 DBG_INIT(" base %p\n", ioc->pdir_base);
1295
1296 /* resource map size dictated by pdir_size */
1297 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1298 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1299
1300 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1301 get_order(ioc->res_size));
1302 if(NULL == ioc->res_map) {
1303 panic("%s() could not allocate resource map\n", __func__);
1304 }
1305 memset(ioc->res_map, 0, ioc->res_size);
1306
1307 /* Initialize the res_hint to 16 */
1308 ioc->res_hint = 16;
1309
1310 /* Initialize the spinlock */
1311 spin_lock_init(&ioc->res_lock);
1312
1313 /*
1314 ** Chainid is the upper most bits of an IOVP used to determine
1315 ** which TLB entry an IOVP will use.
1316 */
1317 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1318 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1319
1320 /*
1321 ** Initialize IOA hardware
1322 */
1323 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1324 &ioc->ioc_regs->io_chain_id_mask);
1325
1326 WRITE_U32(virt_to_phys(ioc->pdir_base),
1327 &ioc->ioc_regs->io_pdir_base);
1328
1329 /*
1330 ** Go to "Virtual Mode"
1331 */
1332 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1333
1334 /*
1335 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1336 */
1337 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1338 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1339
1340 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1341 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1342 &ioc->ioc_regs->io_command);
1343 }
1344 }
1345
1346 static void __init
ccio_init_resource(struct resource * res,char * name,void __iomem * ioaddr)1347 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1348 {
1349 int result;
1350
1351 res->parent = NULL;
1352 res->flags = IORESOURCE_MEM;
1353 /*
1354 * bracing ((signed) ...) are required for 64bit kernel because
1355 * we only want to sign extend the lower 16 bits of the register.
1356 * The upper 16-bits of range registers are hardcoded to 0xffff.
1357 */
1358 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1359 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1360 res->name = name;
1361 /*
1362 * Check if this MMIO range is disable
1363 */
1364 if (res->end + 1 == res->start)
1365 return;
1366
1367 /* On some platforms (e.g. K-Class), we have already registered
1368 * resources for devices reported by firmware. Some are children
1369 * of ccio.
1370 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1371 */
1372 result = insert_resource(&iomem_resource, res);
1373 if (result < 0) {
1374 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1375 __func__, (unsigned long)res->start, (unsigned long)res->end);
1376 }
1377 }
1378
ccio_init_resources(struct ioc * ioc)1379 static int __init ccio_init_resources(struct ioc *ioc)
1380 {
1381 struct resource *res = ioc->mmio_region;
1382 char *name = kmalloc(14, GFP_KERNEL);
1383 if (unlikely(!name))
1384 return -ENOMEM;
1385 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1386
1387 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1388 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1389 return 0;
1390 }
1391
new_ioc_area(struct resource * res,unsigned long size,unsigned long min,unsigned long max,unsigned long align)1392 static int new_ioc_area(struct resource *res, unsigned long size,
1393 unsigned long min, unsigned long max, unsigned long align)
1394 {
1395 if (max <= min)
1396 return -EBUSY;
1397
1398 res->start = (max - size + 1) &~ (align - 1);
1399 res->end = res->start + size;
1400
1401 /* We might be trying to expand the MMIO range to include
1402 * a child device that has already registered it's MMIO space.
1403 * Use "insert" instead of request_resource().
1404 */
1405 if (!insert_resource(&iomem_resource, res))
1406 return 0;
1407
1408 return new_ioc_area(res, size, min, max - size, align);
1409 }
1410
expand_ioc_area(struct resource * res,unsigned long size,unsigned long min,unsigned long max,unsigned long align)1411 static int expand_ioc_area(struct resource *res, unsigned long size,
1412 unsigned long min, unsigned long max, unsigned long align)
1413 {
1414 unsigned long start, len;
1415
1416 if (!res->parent)
1417 return new_ioc_area(res, size, min, max, align);
1418
1419 start = (res->start - size) &~ (align - 1);
1420 len = res->end - start + 1;
1421 if (start >= min) {
1422 if (!adjust_resource(res, start, len))
1423 return 0;
1424 }
1425
1426 start = res->start;
1427 len = ((size + res->end + align) &~ (align - 1)) - start;
1428 if (start + len <= max) {
1429 if (!adjust_resource(res, start, len))
1430 return 0;
1431 }
1432
1433 return -EBUSY;
1434 }
1435
1436 /*
1437 * Dino calls this function. Beware that we may get called on systems
1438 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1439 * So it's legal to find no parent IOC.
1440 *
1441 * Some other issues: one of the resources in the ioc may be unassigned.
1442 */
ccio_allocate_resource(const struct parisc_device * dev,struct resource * res,unsigned long size,unsigned long min,unsigned long max,unsigned long align)1443 int ccio_allocate_resource(const struct parisc_device *dev,
1444 struct resource *res, unsigned long size,
1445 unsigned long min, unsigned long max, unsigned long align)
1446 {
1447 struct resource *parent = &iomem_resource;
1448 struct ioc *ioc = ccio_get_iommu(dev);
1449 if (!ioc)
1450 goto out;
1451
1452 parent = ioc->mmio_region;
1453 if (parent->parent &&
1454 !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1455 return 0;
1456
1457 if ((parent + 1)->parent &&
1458 !allocate_resource(parent + 1, res, size, min, max, align,
1459 NULL, NULL))
1460 return 0;
1461
1462 if (!expand_ioc_area(parent, size, min, max, align)) {
1463 __raw_writel(((parent->start)>>16) | 0xffff0000,
1464 &ioc->ioc_regs->io_io_low);
1465 __raw_writel(((parent->end)>>16) | 0xffff0000,
1466 &ioc->ioc_regs->io_io_high);
1467 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1468 parent++;
1469 __raw_writel(((parent->start)>>16) | 0xffff0000,
1470 &ioc->ioc_regs->io_io_low_hv);
1471 __raw_writel(((parent->end)>>16) | 0xffff0000,
1472 &ioc->ioc_regs->io_io_high_hv);
1473 } else {
1474 return -EBUSY;
1475 }
1476
1477 out:
1478 return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1479 }
1480
ccio_request_resource(const struct parisc_device * dev,struct resource * res)1481 int ccio_request_resource(const struct parisc_device *dev,
1482 struct resource *res)
1483 {
1484 struct resource *parent;
1485 struct ioc *ioc = ccio_get_iommu(dev);
1486
1487 if (!ioc) {
1488 parent = &iomem_resource;
1489 } else if ((ioc->mmio_region->start <= res->start) &&
1490 (res->end <= ioc->mmio_region->end)) {
1491 parent = ioc->mmio_region;
1492 } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1493 (res->end <= (ioc->mmio_region + 1)->end)) {
1494 parent = ioc->mmio_region + 1;
1495 } else {
1496 return -EBUSY;
1497 }
1498
1499 /* "transparent" bus bridges need to register MMIO resources
1500 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1501 * registered their resources in the PDC "bus walk" (See
1502 * arch/parisc/kernel/inventory.c).
1503 */
1504 return insert_resource(parent, res);
1505 }
1506
1507 /**
1508 * ccio_probe - Determine if ccio should claim this device.
1509 * @dev: The device which has been found
1510 *
1511 * Determine if ccio should claim this chip (return 0) or not (return 1).
1512 * If so, initialize the chip and tell other partners in crime they
1513 * have work to do.
1514 */
ccio_probe(struct parisc_device * dev)1515 static int __init ccio_probe(struct parisc_device *dev)
1516 {
1517 int i;
1518 struct ioc *ioc, **ioc_p = &ioc_list;
1519 struct pci_hba_data *hba;
1520
1521 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1522 if (ioc == NULL) {
1523 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1524 return -ENOMEM;
1525 }
1526
1527 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1528
1529 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1530 (unsigned long)dev->hpa.start);
1531
1532 for (i = 0; i < ioc_count; i++) {
1533 ioc_p = &(*ioc_p)->next;
1534 }
1535 *ioc_p = ioc;
1536
1537 ioc->hw_path = dev->hw_path;
1538 ioc->ioc_regs = ioremap(dev->hpa.start, 4096);
1539 if (!ioc->ioc_regs) {
1540 kfree(ioc);
1541 return -ENOMEM;
1542 }
1543 ccio_ioc_init(ioc);
1544 if (ccio_init_resources(ioc)) {
1545 iounmap(ioc->ioc_regs);
1546 kfree(ioc);
1547 return -ENOMEM;
1548 }
1549 hppa_dma_ops = &ccio_ops;
1550
1551 hba = kzalloc(sizeof(*hba), GFP_KERNEL);
1552 /* if this fails, no I/O cards will work, so may as well bug */
1553 BUG_ON(hba == NULL);
1554
1555 hba->iommu = ioc;
1556 dev->dev.platform_data = hba;
1557
1558 #ifdef CONFIG_PROC_FS
1559 if (ioc_count == 0) {
1560 struct proc_dir_entry *runway;
1561
1562 runway = proc_mkdir("bus/runway", NULL);
1563 if (runway) {
1564 proc_create_single(MODULE_NAME, 0, runway,
1565 ccio_proc_info);
1566 proc_create_single(MODULE_NAME"-bitmap", 0, runway,
1567 ccio_proc_bitmap_info);
1568 }
1569 }
1570 #endif
1571 ioc_count++;
1572 return 0;
1573 }
1574
1575 /**
1576 * ccio_init - ccio initialization procedure.
1577 *
1578 * Register this driver.
1579 */
ccio_init(void)1580 static int __init ccio_init(void)
1581 {
1582 return register_parisc_driver(&ccio_driver);
1583 }
1584 arch_initcall(ccio_init);
1585