1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2007 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/blkdev.h>
7  #include <linux/module.h>
8  #include <linux/fs.h>
9  #include <linux/pagemap.h>
10  #include <linux/highmem.h>
11  #include <linux/time.h>
12  #include <linux/init.h>
13  #include <linux/seq_file.h>
14  #include <linux/string.h>
15  #include <linux/backing-dev.h>
16  #include <linux/mount.h>
17  #include <linux/writeback.h>
18  #include <linux/statfs.h>
19  #include <linux/compat.h>
20  #include <linux/parser.h>
21  #include <linux/ctype.h>
22  #include <linux/namei.h>
23  #include <linux/miscdevice.h>
24  #include <linux/magic.h>
25  #include <linux/slab.h>
26  #include <linux/ratelimit.h>
27  #include <linux/crc32c.h>
28  #include <linux/btrfs.h>
29  #include <linux/security.h>
30  #include <linux/fs_parser.h>
31  #include <linux/swap.h>
32  #include "messages.h"
33  #include "delayed-inode.h"
34  #include "ctree.h"
35  #include "disk-io.h"
36  #include "transaction.h"
37  #include "btrfs_inode.h"
38  #include "direct-io.h"
39  #include "props.h"
40  #include "xattr.h"
41  #include "bio.h"
42  #include "export.h"
43  #include "compression.h"
44  #include "dev-replace.h"
45  #include "free-space-cache.h"
46  #include "backref.h"
47  #include "space-info.h"
48  #include "sysfs.h"
49  #include "zoned.h"
50  #include "tests/btrfs-tests.h"
51  #include "block-group.h"
52  #include "discard.h"
53  #include "qgroup.h"
54  #include "raid56.h"
55  #include "fs.h"
56  #include "accessors.h"
57  #include "defrag.h"
58  #include "dir-item.h"
59  #include "ioctl.h"
60  #include "scrub.h"
61  #include "verity.h"
62  #include "super.h"
63  #include "extent-tree.h"
64  #define CREATE_TRACE_POINTS
65  #include <trace/events/btrfs.h>
66  
67  static const struct super_operations btrfs_super_ops;
68  static struct file_system_type btrfs_fs_type;
69  
btrfs_put_super(struct super_block * sb)70  static void btrfs_put_super(struct super_block *sb)
71  {
72  	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
73  
74  	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
75  	close_ctree(fs_info);
76  }
77  
78  /* Store the mount options related information. */
79  struct btrfs_fs_context {
80  	char *subvol_name;
81  	u64 subvol_objectid;
82  	u64 max_inline;
83  	u32 commit_interval;
84  	u32 metadata_ratio;
85  	u32 thread_pool_size;
86  	unsigned long long mount_opt;
87  	unsigned long compress_type:4;
88  	unsigned int compress_level;
89  	refcount_t refs;
90  };
91  
92  enum {
93  	Opt_acl,
94  	Opt_clear_cache,
95  	Opt_commit_interval,
96  	Opt_compress,
97  	Opt_compress_force,
98  	Opt_compress_force_type,
99  	Opt_compress_type,
100  	Opt_degraded,
101  	Opt_device,
102  	Opt_fatal_errors,
103  	Opt_flushoncommit,
104  	Opt_max_inline,
105  	Opt_barrier,
106  	Opt_datacow,
107  	Opt_datasum,
108  	Opt_defrag,
109  	Opt_discard,
110  	Opt_discard_mode,
111  	Opt_ratio,
112  	Opt_rescan_uuid_tree,
113  	Opt_skip_balance,
114  	Opt_space_cache,
115  	Opt_space_cache_version,
116  	Opt_ssd,
117  	Opt_ssd_spread,
118  	Opt_subvol,
119  	Opt_subvol_empty,
120  	Opt_subvolid,
121  	Opt_thread_pool,
122  	Opt_treelog,
123  	Opt_user_subvol_rm_allowed,
124  	Opt_norecovery,
125  
126  	/* Rescue options */
127  	Opt_rescue,
128  	Opt_usebackuproot,
129  	Opt_nologreplay,
130  
131  	/* Debugging options */
132  	Opt_enospc_debug,
133  #ifdef CONFIG_BTRFS_DEBUG
134  	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
135  #endif
136  #ifdef CONFIG_BTRFS_FS_REF_VERIFY
137  	Opt_ref_verify,
138  #endif
139  	Opt_err,
140  };
141  
142  enum {
143  	Opt_fatal_errors_panic,
144  	Opt_fatal_errors_bug,
145  };
146  
147  static const struct constant_table btrfs_parameter_fatal_errors[] = {
148  	{ "panic", Opt_fatal_errors_panic },
149  	{ "bug", Opt_fatal_errors_bug },
150  	{}
151  };
152  
153  enum {
154  	Opt_discard_sync,
155  	Opt_discard_async,
156  };
157  
158  static const struct constant_table btrfs_parameter_discard[] = {
159  	{ "sync", Opt_discard_sync },
160  	{ "async", Opt_discard_async },
161  	{}
162  };
163  
164  enum {
165  	Opt_space_cache_v1,
166  	Opt_space_cache_v2,
167  };
168  
169  static const struct constant_table btrfs_parameter_space_cache[] = {
170  	{ "v1", Opt_space_cache_v1 },
171  	{ "v2", Opt_space_cache_v2 },
172  	{}
173  };
174  
175  enum {
176  	Opt_rescue_usebackuproot,
177  	Opt_rescue_nologreplay,
178  	Opt_rescue_ignorebadroots,
179  	Opt_rescue_ignoredatacsums,
180  	Opt_rescue_ignoremetacsums,
181  	Opt_rescue_ignoresuperflags,
182  	Opt_rescue_parameter_all,
183  };
184  
185  static const struct constant_table btrfs_parameter_rescue[] = {
186  	{ "usebackuproot", Opt_rescue_usebackuproot },
187  	{ "nologreplay", Opt_rescue_nologreplay },
188  	{ "ignorebadroots", Opt_rescue_ignorebadroots },
189  	{ "ibadroots", Opt_rescue_ignorebadroots },
190  	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
191  	{ "ignoremetacsums", Opt_rescue_ignoremetacsums},
192  	{ "ignoresuperflags", Opt_rescue_ignoresuperflags},
193  	{ "idatacsums", Opt_rescue_ignoredatacsums },
194  	{ "imetacsums", Opt_rescue_ignoremetacsums},
195  	{ "isuperflags", Opt_rescue_ignoresuperflags},
196  	{ "all", Opt_rescue_parameter_all },
197  	{}
198  };
199  
200  #ifdef CONFIG_BTRFS_DEBUG
201  enum {
202  	Opt_fragment_parameter_data,
203  	Opt_fragment_parameter_metadata,
204  	Opt_fragment_parameter_all,
205  };
206  
207  static const struct constant_table btrfs_parameter_fragment[] = {
208  	{ "data", Opt_fragment_parameter_data },
209  	{ "metadata", Opt_fragment_parameter_metadata },
210  	{ "all", Opt_fragment_parameter_all },
211  	{}
212  };
213  #endif
214  
215  static const struct fs_parameter_spec btrfs_fs_parameters[] = {
216  	fsparam_flag_no("acl", Opt_acl),
217  	fsparam_flag_no("autodefrag", Opt_defrag),
218  	fsparam_flag_no("barrier", Opt_barrier),
219  	fsparam_flag("clear_cache", Opt_clear_cache),
220  	fsparam_u32("commit", Opt_commit_interval),
221  	fsparam_flag("compress", Opt_compress),
222  	fsparam_string("compress", Opt_compress_type),
223  	fsparam_flag("compress-force", Opt_compress_force),
224  	fsparam_string("compress-force", Opt_compress_force_type),
225  	fsparam_flag_no("datacow", Opt_datacow),
226  	fsparam_flag_no("datasum", Opt_datasum),
227  	fsparam_flag("degraded", Opt_degraded),
228  	fsparam_string("device", Opt_device),
229  	fsparam_flag_no("discard", Opt_discard),
230  	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
231  	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
232  	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
233  	fsparam_string("max_inline", Opt_max_inline),
234  	fsparam_u32("metadata_ratio", Opt_ratio),
235  	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
236  	fsparam_flag("skip_balance", Opt_skip_balance),
237  	fsparam_flag_no("space_cache", Opt_space_cache),
238  	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
239  	fsparam_flag_no("ssd", Opt_ssd),
240  	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
241  	fsparam_string("subvol", Opt_subvol),
242  	fsparam_flag("subvol=", Opt_subvol_empty),
243  	fsparam_u64("subvolid", Opt_subvolid),
244  	fsparam_u32("thread_pool", Opt_thread_pool),
245  	fsparam_flag_no("treelog", Opt_treelog),
246  	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
247  
248  	/* Rescue options. */
249  	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
250  	/* Deprecated, with alias rescue=nologreplay */
251  	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
252  	/* Deprecated, with alias rescue=usebackuproot */
253  	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
254  	/* For compatibility only, alias for "rescue=nologreplay". */
255  	fsparam_flag("norecovery", Opt_norecovery),
256  
257  	/* Debugging options. */
258  	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
259  #ifdef CONFIG_BTRFS_DEBUG
260  	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
261  #endif
262  #ifdef CONFIG_BTRFS_FS_REF_VERIFY
263  	fsparam_flag("ref_verify", Opt_ref_verify),
264  #endif
265  	{}
266  };
267  
268  /* No support for restricting writes to btrfs devices yet... */
btrfs_open_mode(struct fs_context * fc)269  static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
270  {
271  	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
272  }
273  
btrfs_parse_param(struct fs_context * fc,struct fs_parameter * param)274  static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
275  {
276  	struct btrfs_fs_context *ctx = fc->fs_private;
277  	struct fs_parse_result result;
278  	int opt;
279  
280  	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
281  	if (opt < 0)
282  		return opt;
283  
284  	switch (opt) {
285  	case Opt_degraded:
286  		btrfs_set_opt(ctx->mount_opt, DEGRADED);
287  		break;
288  	case Opt_subvol_empty:
289  		/*
290  		 * This exists because we used to allow it on accident, so we're
291  		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
292  		 * empty subvol= again").
293  		 */
294  		break;
295  	case Opt_subvol:
296  		kfree(ctx->subvol_name);
297  		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
298  		if (!ctx->subvol_name)
299  			return -ENOMEM;
300  		break;
301  	case Opt_subvolid:
302  		ctx->subvol_objectid = result.uint_64;
303  
304  		/* subvolid=0 means give me the original fs_tree. */
305  		if (!ctx->subvol_objectid)
306  			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
307  		break;
308  	case Opt_device: {
309  		struct btrfs_device *device;
310  		blk_mode_t mode = btrfs_open_mode(fc);
311  
312  		mutex_lock(&uuid_mutex);
313  		device = btrfs_scan_one_device(param->string, mode, false);
314  		mutex_unlock(&uuid_mutex);
315  		if (IS_ERR(device))
316  			return PTR_ERR(device);
317  		break;
318  	}
319  	case Opt_datasum:
320  		if (result.negated) {
321  			btrfs_set_opt(ctx->mount_opt, NODATASUM);
322  		} else {
323  			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
324  			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
325  		}
326  		break;
327  	case Opt_datacow:
328  		if (result.negated) {
329  			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
330  			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
331  			btrfs_set_opt(ctx->mount_opt, NODATACOW);
332  			btrfs_set_opt(ctx->mount_opt, NODATASUM);
333  		} else {
334  			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
335  		}
336  		break;
337  	case Opt_compress_force:
338  	case Opt_compress_force_type:
339  		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
340  		fallthrough;
341  	case Opt_compress:
342  	case Opt_compress_type:
343  		/*
344  		 * Provide the same semantics as older kernels that don't use fs
345  		 * context, specifying the "compress" option clears
346  		 * "force-compress" without the need to pass
347  		 * "compress-force=[no|none]" before specifying "compress".
348  		 */
349  		if (opt != Opt_compress_force && opt != Opt_compress_force_type)
350  			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
351  
352  		if (opt == Opt_compress || opt == Opt_compress_force) {
353  			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
354  			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
355  			btrfs_set_opt(ctx->mount_opt, COMPRESS);
356  			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
357  			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
358  		} else if (strncmp(param->string, "zlib", 4) == 0) {
359  			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
360  			ctx->compress_level =
361  				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
362  							 param->string + 4);
363  			btrfs_set_opt(ctx->mount_opt, COMPRESS);
364  			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
365  			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
366  		} else if (strncmp(param->string, "lzo", 3) == 0) {
367  			ctx->compress_type = BTRFS_COMPRESS_LZO;
368  			ctx->compress_level = 0;
369  			btrfs_set_opt(ctx->mount_opt, COMPRESS);
370  			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
371  			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
372  		} else if (strncmp(param->string, "zstd", 4) == 0) {
373  			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
374  			ctx->compress_level =
375  				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
376  							 param->string + 4);
377  			btrfs_set_opt(ctx->mount_opt, COMPRESS);
378  			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
379  			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
380  		} else if (strncmp(param->string, "no", 2) == 0) {
381  			ctx->compress_level = 0;
382  			ctx->compress_type = 0;
383  			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
384  			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
385  		} else {
386  			btrfs_err(NULL, "unrecognized compression value %s",
387  				  param->string);
388  			return -EINVAL;
389  		}
390  		break;
391  	case Opt_ssd:
392  		if (result.negated) {
393  			btrfs_set_opt(ctx->mount_opt, NOSSD);
394  			btrfs_clear_opt(ctx->mount_opt, SSD);
395  			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
396  		} else {
397  			btrfs_set_opt(ctx->mount_opt, SSD);
398  			btrfs_clear_opt(ctx->mount_opt, NOSSD);
399  		}
400  		break;
401  	case Opt_ssd_spread:
402  		if (result.negated) {
403  			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
404  		} else {
405  			btrfs_set_opt(ctx->mount_opt, SSD);
406  			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
407  			btrfs_clear_opt(ctx->mount_opt, NOSSD);
408  		}
409  		break;
410  	case Opt_barrier:
411  		if (result.negated)
412  			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
413  		else
414  			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
415  		break;
416  	case Opt_thread_pool:
417  		if (result.uint_32 == 0) {
418  			btrfs_err(NULL, "invalid value 0 for thread_pool");
419  			return -EINVAL;
420  		}
421  		ctx->thread_pool_size = result.uint_32;
422  		break;
423  	case Opt_max_inline:
424  		ctx->max_inline = memparse(param->string, NULL);
425  		break;
426  	case Opt_acl:
427  		if (result.negated) {
428  			fc->sb_flags &= ~SB_POSIXACL;
429  		} else {
430  #ifdef CONFIG_BTRFS_FS_POSIX_ACL
431  			fc->sb_flags |= SB_POSIXACL;
432  #else
433  			btrfs_err(NULL, "support for ACL not compiled in");
434  			return -EINVAL;
435  #endif
436  		}
437  		/*
438  		 * VFS limits the ability to toggle ACL on and off via remount,
439  		 * despite every file system allowing this.  This seems to be
440  		 * an oversight since we all do, but it'll fail if we're
441  		 * remounting.  So don't set the mask here, we'll check it in
442  		 * btrfs_reconfigure and do the toggling ourselves.
443  		 */
444  		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
445  			fc->sb_flags_mask |= SB_POSIXACL;
446  		break;
447  	case Opt_treelog:
448  		if (result.negated)
449  			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
450  		else
451  			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
452  		break;
453  	case Opt_nologreplay:
454  		btrfs_warn(NULL,
455  		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
456  		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
457  		break;
458  	case Opt_norecovery:
459  		btrfs_info(NULL,
460  "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
461  		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
462  		break;
463  	case Opt_flushoncommit:
464  		if (result.negated)
465  			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
466  		else
467  			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
468  		break;
469  	case Opt_ratio:
470  		ctx->metadata_ratio = result.uint_32;
471  		break;
472  	case Opt_discard:
473  		if (result.negated) {
474  			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
475  			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
476  			btrfs_set_opt(ctx->mount_opt, NODISCARD);
477  		} else {
478  			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
479  			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
480  		}
481  		break;
482  	case Opt_discard_mode:
483  		switch (result.uint_32) {
484  		case Opt_discard_sync:
485  			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
486  			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
487  			break;
488  		case Opt_discard_async:
489  			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
490  			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
491  			break;
492  		default:
493  			btrfs_err(NULL, "unrecognized discard mode value %s",
494  				  param->key);
495  			return -EINVAL;
496  		}
497  		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
498  		break;
499  	case Opt_space_cache:
500  		if (result.negated) {
501  			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
502  			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
503  			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
504  		} else {
505  			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
506  			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
507  		}
508  		break;
509  	case Opt_space_cache_version:
510  		switch (result.uint_32) {
511  		case Opt_space_cache_v1:
512  			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
513  			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
514  			break;
515  		case Opt_space_cache_v2:
516  			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
517  			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
518  			break;
519  		default:
520  			btrfs_err(NULL, "unrecognized space_cache value %s",
521  				  param->key);
522  			return -EINVAL;
523  		}
524  		break;
525  	case Opt_rescan_uuid_tree:
526  		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
527  		break;
528  	case Opt_clear_cache:
529  		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
530  		break;
531  	case Opt_user_subvol_rm_allowed:
532  		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
533  		break;
534  	case Opt_enospc_debug:
535  		if (result.negated)
536  			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
537  		else
538  			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
539  		break;
540  	case Opt_defrag:
541  		if (result.negated)
542  			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
543  		else
544  			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
545  		break;
546  	case Opt_usebackuproot:
547  		btrfs_warn(NULL,
548  			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
549  		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
550  
551  		/* If we're loading the backup roots we can't trust the space cache. */
552  		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
553  		break;
554  	case Opt_skip_balance:
555  		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
556  		break;
557  	case Opt_fatal_errors:
558  		switch (result.uint_32) {
559  		case Opt_fatal_errors_panic:
560  			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
561  			break;
562  		case Opt_fatal_errors_bug:
563  			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
564  			break;
565  		default:
566  			btrfs_err(NULL, "unrecognized fatal_errors value %s",
567  				  param->key);
568  			return -EINVAL;
569  		}
570  		break;
571  	case Opt_commit_interval:
572  		ctx->commit_interval = result.uint_32;
573  		if (ctx->commit_interval == 0)
574  			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
575  		break;
576  	case Opt_rescue:
577  		switch (result.uint_32) {
578  		case Opt_rescue_usebackuproot:
579  			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
580  			break;
581  		case Opt_rescue_nologreplay:
582  			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
583  			break;
584  		case Opt_rescue_ignorebadroots:
585  			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
586  			break;
587  		case Opt_rescue_ignoredatacsums:
588  			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
589  			break;
590  		case Opt_rescue_ignoremetacsums:
591  			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
592  			break;
593  		case Opt_rescue_ignoresuperflags:
594  			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
595  			break;
596  		case Opt_rescue_parameter_all:
597  			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
598  			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
599  			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
600  			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
601  			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
602  			break;
603  		default:
604  			btrfs_info(NULL, "unrecognized rescue option '%s'",
605  				   param->key);
606  			return -EINVAL;
607  		}
608  		break;
609  #ifdef CONFIG_BTRFS_DEBUG
610  	case Opt_fragment:
611  		switch (result.uint_32) {
612  		case Opt_fragment_parameter_all:
613  			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
614  			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
615  			break;
616  		case Opt_fragment_parameter_metadata:
617  			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
618  			break;
619  		case Opt_fragment_parameter_data:
620  			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
621  			break;
622  		default:
623  			btrfs_info(NULL, "unrecognized fragment option '%s'",
624  				   param->key);
625  			return -EINVAL;
626  		}
627  		break;
628  #endif
629  #ifdef CONFIG_BTRFS_FS_REF_VERIFY
630  	case Opt_ref_verify:
631  		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
632  		break;
633  #endif
634  	default:
635  		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
636  		return -EINVAL;
637  	}
638  
639  	return 0;
640  }
641  
642  /*
643   * Some options only have meaning at mount time and shouldn't persist across
644   * remounts, or be displayed. Clear these at the end of mount and remount code
645   * paths.
646   */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)647  static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
648  {
649  	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
650  	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
651  	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
652  }
653  
check_ro_option(const struct btrfs_fs_info * fs_info,unsigned long long mount_opt,unsigned long long opt,const char * opt_name)654  static bool check_ro_option(const struct btrfs_fs_info *fs_info,
655  			    unsigned long long mount_opt, unsigned long long opt,
656  			    const char *opt_name)
657  {
658  	if (mount_opt & opt) {
659  		btrfs_err(fs_info, "%s must be used with ro mount option",
660  			  opt_name);
661  		return true;
662  	}
663  	return false;
664  }
665  
btrfs_check_options(const struct btrfs_fs_info * info,unsigned long long * mount_opt,unsigned long flags)666  bool btrfs_check_options(const struct btrfs_fs_info *info,
667  			 unsigned long long *mount_opt,
668  			 unsigned long flags)
669  {
670  	bool ret = true;
671  
672  	if (!(flags & SB_RDONLY) &&
673  	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
674  	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
675  	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
676  	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
677  	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
678  		ret = false;
679  
680  	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
681  	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
682  	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
683  		btrfs_err(info, "cannot disable free-space-tree");
684  		ret = false;
685  	}
686  	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
687  	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
688  		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
689  		ret = false;
690  	}
691  
692  	if (btrfs_check_mountopts_zoned(info, mount_opt))
693  		ret = false;
694  
695  	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
696  		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
697  			btrfs_info(info, "disk space caching is enabled");
698  			btrfs_warn(info,
699  "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
700  		}
701  		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
702  			btrfs_info(info, "using free-space-tree");
703  	}
704  
705  	return ret;
706  }
707  
708  /*
709   * This is subtle, we only call this during open_ctree().  We need to pre-load
710   * the mount options with the on-disk settings.  Before the new mount API took
711   * effect we would do this on mount and remount.  With the new mount API we'll
712   * only do this on the initial mount.
713   *
714   * This isn't a change in behavior, because we're using the current state of the
715   * file system to set the current mount options.  If you mounted with special
716   * options to disable these features and then remounted we wouldn't revert the
717   * settings, because mounting without these features cleared the on-disk
718   * settings, so this being called on re-mount is not needed.
719   */
btrfs_set_free_space_cache_settings(struct btrfs_fs_info * fs_info)720  void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
721  {
722  	if (fs_info->sectorsize < PAGE_SIZE) {
723  		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
724  		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
725  			btrfs_info(fs_info,
726  				   "forcing free space tree for sector size %u with page size %lu",
727  				   fs_info->sectorsize, PAGE_SIZE);
728  			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
729  		}
730  	}
731  
732  	/*
733  	 * At this point our mount options are populated, so we only mess with
734  	 * these settings if we don't have any settings already.
735  	 */
736  	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
737  		return;
738  
739  	if (btrfs_is_zoned(fs_info) &&
740  	    btrfs_free_space_cache_v1_active(fs_info)) {
741  		btrfs_info(fs_info, "zoned: clearing existing space cache");
742  		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
743  		return;
744  	}
745  
746  	if (btrfs_test_opt(fs_info, SPACE_CACHE))
747  		return;
748  
749  	if (btrfs_test_opt(fs_info, NOSPACECACHE))
750  		return;
751  
752  	/*
753  	 * At this point we don't have explicit options set by the user, set
754  	 * them ourselves based on the state of the file system.
755  	 */
756  	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
757  		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
758  	else if (btrfs_free_space_cache_v1_active(fs_info))
759  		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
760  }
761  
set_device_specific_options(struct btrfs_fs_info * fs_info)762  static void set_device_specific_options(struct btrfs_fs_info *fs_info)
763  {
764  	if (!btrfs_test_opt(fs_info, NOSSD) &&
765  	    !fs_info->fs_devices->rotating)
766  		btrfs_set_opt(fs_info->mount_opt, SSD);
767  
768  	/*
769  	 * For devices supporting discard turn on discard=async automatically,
770  	 * unless it's already set or disabled. This could be turned off by
771  	 * nodiscard for the same mount.
772  	 *
773  	 * The zoned mode piggy backs on the discard functionality for
774  	 * resetting a zone. There is no reason to delay the zone reset as it is
775  	 * fast enough. So, do not enable async discard for zoned mode.
776  	 */
777  	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
778  	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
779  	      btrfs_test_opt(fs_info, NODISCARD)) &&
780  	    fs_info->fs_devices->discardable &&
781  	    !btrfs_is_zoned(fs_info))
782  		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
783  }
784  
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)785  char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
786  					  u64 subvol_objectid)
787  {
788  	struct btrfs_root *root = fs_info->tree_root;
789  	struct btrfs_root *fs_root = NULL;
790  	struct btrfs_root_ref *root_ref;
791  	struct btrfs_inode_ref *inode_ref;
792  	struct btrfs_key key;
793  	struct btrfs_path *path = NULL;
794  	char *name = NULL, *ptr;
795  	u64 dirid;
796  	int len;
797  	int ret;
798  
799  	path = btrfs_alloc_path();
800  	if (!path) {
801  		ret = -ENOMEM;
802  		goto err;
803  	}
804  
805  	name = kmalloc(PATH_MAX, GFP_KERNEL);
806  	if (!name) {
807  		ret = -ENOMEM;
808  		goto err;
809  	}
810  	ptr = name + PATH_MAX - 1;
811  	ptr[0] = '\0';
812  
813  	/*
814  	 * Walk up the subvolume trees in the tree of tree roots by root
815  	 * backrefs until we hit the top-level subvolume.
816  	 */
817  	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
818  		key.objectid = subvol_objectid;
819  		key.type = BTRFS_ROOT_BACKREF_KEY;
820  		key.offset = (u64)-1;
821  
822  		ret = btrfs_search_backwards(root, &key, path);
823  		if (ret < 0) {
824  			goto err;
825  		} else if (ret > 0) {
826  			ret = -ENOENT;
827  			goto err;
828  		}
829  
830  		subvol_objectid = key.offset;
831  
832  		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
833  					  struct btrfs_root_ref);
834  		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
835  		ptr -= len + 1;
836  		if (ptr < name) {
837  			ret = -ENAMETOOLONG;
838  			goto err;
839  		}
840  		read_extent_buffer(path->nodes[0], ptr + 1,
841  				   (unsigned long)(root_ref + 1), len);
842  		ptr[0] = '/';
843  		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
844  		btrfs_release_path(path);
845  
846  		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
847  		if (IS_ERR(fs_root)) {
848  			ret = PTR_ERR(fs_root);
849  			fs_root = NULL;
850  			goto err;
851  		}
852  
853  		/*
854  		 * Walk up the filesystem tree by inode refs until we hit the
855  		 * root directory.
856  		 */
857  		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
858  			key.objectid = dirid;
859  			key.type = BTRFS_INODE_REF_KEY;
860  			key.offset = (u64)-1;
861  
862  			ret = btrfs_search_backwards(fs_root, &key, path);
863  			if (ret < 0) {
864  				goto err;
865  			} else if (ret > 0) {
866  				ret = -ENOENT;
867  				goto err;
868  			}
869  
870  			dirid = key.offset;
871  
872  			inode_ref = btrfs_item_ptr(path->nodes[0],
873  						   path->slots[0],
874  						   struct btrfs_inode_ref);
875  			len = btrfs_inode_ref_name_len(path->nodes[0],
876  						       inode_ref);
877  			ptr -= len + 1;
878  			if (ptr < name) {
879  				ret = -ENAMETOOLONG;
880  				goto err;
881  			}
882  			read_extent_buffer(path->nodes[0], ptr + 1,
883  					   (unsigned long)(inode_ref + 1), len);
884  			ptr[0] = '/';
885  			btrfs_release_path(path);
886  		}
887  		btrfs_put_root(fs_root);
888  		fs_root = NULL;
889  	}
890  
891  	btrfs_free_path(path);
892  	if (ptr == name + PATH_MAX - 1) {
893  		name[0] = '/';
894  		name[1] = '\0';
895  	} else {
896  		memmove(name, ptr, name + PATH_MAX - ptr);
897  	}
898  	return name;
899  
900  err:
901  	btrfs_put_root(fs_root);
902  	btrfs_free_path(path);
903  	kfree(name);
904  	return ERR_PTR(ret);
905  }
906  
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)907  static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
908  {
909  	struct btrfs_root *root = fs_info->tree_root;
910  	struct btrfs_dir_item *di;
911  	struct btrfs_path *path;
912  	struct btrfs_key location;
913  	struct fscrypt_str name = FSTR_INIT("default", 7);
914  	u64 dir_id;
915  
916  	path = btrfs_alloc_path();
917  	if (!path)
918  		return -ENOMEM;
919  
920  	/*
921  	 * Find the "default" dir item which points to the root item that we
922  	 * will mount by default if we haven't been given a specific subvolume
923  	 * to mount.
924  	 */
925  	dir_id = btrfs_super_root_dir(fs_info->super_copy);
926  	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
927  	if (IS_ERR(di)) {
928  		btrfs_free_path(path);
929  		return PTR_ERR(di);
930  	}
931  	if (!di) {
932  		/*
933  		 * Ok the default dir item isn't there.  This is weird since
934  		 * it's always been there, but don't freak out, just try and
935  		 * mount the top-level subvolume.
936  		 */
937  		btrfs_free_path(path);
938  		*objectid = BTRFS_FS_TREE_OBJECTID;
939  		return 0;
940  	}
941  
942  	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
943  	btrfs_free_path(path);
944  	*objectid = location.objectid;
945  	return 0;
946  }
947  
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices,void * data)948  static int btrfs_fill_super(struct super_block *sb,
949  			    struct btrfs_fs_devices *fs_devices,
950  			    void *data)
951  {
952  	struct inode *inode;
953  	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
954  	int err;
955  
956  	sb->s_maxbytes = MAX_LFS_FILESIZE;
957  	sb->s_magic = BTRFS_SUPER_MAGIC;
958  	sb->s_op = &btrfs_super_ops;
959  	sb->s_d_op = &btrfs_dentry_operations;
960  	sb->s_export_op = &btrfs_export_ops;
961  #ifdef CONFIG_FS_VERITY
962  	sb->s_vop = &btrfs_verityops;
963  #endif
964  	sb->s_xattr = btrfs_xattr_handlers;
965  	sb->s_time_gran = 1;
966  	sb->s_iflags |= SB_I_CGROUPWB;
967  
968  	err = super_setup_bdi(sb);
969  	if (err) {
970  		btrfs_err(fs_info, "super_setup_bdi failed");
971  		return err;
972  	}
973  
974  	err = open_ctree(sb, fs_devices, (char *)data);
975  	if (err) {
976  		btrfs_err(fs_info, "open_ctree failed");
977  		return err;
978  	}
979  
980  	inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
981  	if (IS_ERR(inode)) {
982  		err = PTR_ERR(inode);
983  		btrfs_handle_fs_error(fs_info, err, NULL);
984  		goto fail_close;
985  	}
986  
987  	sb->s_root = d_make_root(inode);
988  	if (!sb->s_root) {
989  		err = -ENOMEM;
990  		goto fail_close;
991  	}
992  
993  	sb->s_flags |= SB_ACTIVE;
994  	return 0;
995  
996  fail_close:
997  	close_ctree(fs_info);
998  	return err;
999  }
1000  
btrfs_sync_fs(struct super_block * sb,int wait)1001  int btrfs_sync_fs(struct super_block *sb, int wait)
1002  {
1003  	struct btrfs_trans_handle *trans;
1004  	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1005  	struct btrfs_root *root = fs_info->tree_root;
1006  
1007  	trace_btrfs_sync_fs(fs_info, wait);
1008  
1009  	if (!wait) {
1010  		filemap_flush(fs_info->btree_inode->i_mapping);
1011  		return 0;
1012  	}
1013  
1014  	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1015  
1016  	trans = btrfs_attach_transaction_barrier(root);
1017  	if (IS_ERR(trans)) {
1018  		/* no transaction, don't bother */
1019  		if (PTR_ERR(trans) == -ENOENT) {
1020  			/*
1021  			 * Exit unless we have some pending changes
1022  			 * that need to go through commit
1023  			 */
1024  			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1025  				      &fs_info->flags))
1026  				return 0;
1027  			/*
1028  			 * A non-blocking test if the fs is frozen. We must not
1029  			 * start a new transaction here otherwise a deadlock
1030  			 * happens. The pending operations are delayed to the
1031  			 * next commit after thawing.
1032  			 */
1033  			if (sb_start_write_trylock(sb))
1034  				sb_end_write(sb);
1035  			else
1036  				return 0;
1037  			trans = btrfs_start_transaction(root, 0);
1038  		}
1039  		if (IS_ERR(trans))
1040  			return PTR_ERR(trans);
1041  	}
1042  	return btrfs_commit_transaction(trans);
1043  }
1044  
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1045  static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1046  {
1047  	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1048  	*printed = true;
1049  }
1050  
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1051  static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1052  {
1053  	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1054  	const char *compress_type;
1055  	const char *subvol_name;
1056  	bool printed = false;
1057  
1058  	if (btrfs_test_opt(info, DEGRADED))
1059  		seq_puts(seq, ",degraded");
1060  	if (btrfs_test_opt(info, NODATASUM))
1061  		seq_puts(seq, ",nodatasum");
1062  	if (btrfs_test_opt(info, NODATACOW))
1063  		seq_puts(seq, ",nodatacow");
1064  	if (btrfs_test_opt(info, NOBARRIER))
1065  		seq_puts(seq, ",nobarrier");
1066  	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1067  		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1068  	if (info->thread_pool_size !=  min_t(unsigned long,
1069  					     num_online_cpus() + 2, 8))
1070  		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1071  	if (btrfs_test_opt(info, COMPRESS)) {
1072  		compress_type = btrfs_compress_type2str(info->compress_type);
1073  		if (btrfs_test_opt(info, FORCE_COMPRESS))
1074  			seq_printf(seq, ",compress-force=%s", compress_type);
1075  		else
1076  			seq_printf(seq, ",compress=%s", compress_type);
1077  		if (info->compress_level)
1078  			seq_printf(seq, ":%d", info->compress_level);
1079  	}
1080  	if (btrfs_test_opt(info, NOSSD))
1081  		seq_puts(seq, ",nossd");
1082  	if (btrfs_test_opt(info, SSD_SPREAD))
1083  		seq_puts(seq, ",ssd_spread");
1084  	else if (btrfs_test_opt(info, SSD))
1085  		seq_puts(seq, ",ssd");
1086  	if (btrfs_test_opt(info, NOTREELOG))
1087  		seq_puts(seq, ",notreelog");
1088  	if (btrfs_test_opt(info, NOLOGREPLAY))
1089  		print_rescue_option(seq, "nologreplay", &printed);
1090  	if (btrfs_test_opt(info, USEBACKUPROOT))
1091  		print_rescue_option(seq, "usebackuproot", &printed);
1092  	if (btrfs_test_opt(info, IGNOREBADROOTS))
1093  		print_rescue_option(seq, "ignorebadroots", &printed);
1094  	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1095  		print_rescue_option(seq, "ignoredatacsums", &printed);
1096  	if (btrfs_test_opt(info, IGNOREMETACSUMS))
1097  		print_rescue_option(seq, "ignoremetacsums", &printed);
1098  	if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1099  		print_rescue_option(seq, "ignoresuperflags", &printed);
1100  	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1101  		seq_puts(seq, ",flushoncommit");
1102  	if (btrfs_test_opt(info, DISCARD_SYNC))
1103  		seq_puts(seq, ",discard");
1104  	if (btrfs_test_opt(info, DISCARD_ASYNC))
1105  		seq_puts(seq, ",discard=async");
1106  	if (!(info->sb->s_flags & SB_POSIXACL))
1107  		seq_puts(seq, ",noacl");
1108  	if (btrfs_free_space_cache_v1_active(info))
1109  		seq_puts(seq, ",space_cache");
1110  	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1111  		seq_puts(seq, ",space_cache=v2");
1112  	else
1113  		seq_puts(seq, ",nospace_cache");
1114  	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1115  		seq_puts(seq, ",rescan_uuid_tree");
1116  	if (btrfs_test_opt(info, CLEAR_CACHE))
1117  		seq_puts(seq, ",clear_cache");
1118  	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1119  		seq_puts(seq, ",user_subvol_rm_allowed");
1120  	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1121  		seq_puts(seq, ",enospc_debug");
1122  	if (btrfs_test_opt(info, AUTO_DEFRAG))
1123  		seq_puts(seq, ",autodefrag");
1124  	if (btrfs_test_opt(info, SKIP_BALANCE))
1125  		seq_puts(seq, ",skip_balance");
1126  	if (info->metadata_ratio)
1127  		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1128  	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1129  		seq_puts(seq, ",fatal_errors=panic");
1130  	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1131  		seq_printf(seq, ",commit=%u", info->commit_interval);
1132  #ifdef CONFIG_BTRFS_DEBUG
1133  	if (btrfs_test_opt(info, FRAGMENT_DATA))
1134  		seq_puts(seq, ",fragment=data");
1135  	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1136  		seq_puts(seq, ",fragment=metadata");
1137  #endif
1138  	if (btrfs_test_opt(info, REF_VERIFY))
1139  		seq_puts(seq, ",ref_verify");
1140  	seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1141  	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1142  			btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1143  	if (!IS_ERR(subvol_name)) {
1144  		seq_puts(seq, ",subvol=");
1145  		seq_escape(seq, subvol_name, " \t\n\\");
1146  		kfree(subvol_name);
1147  	}
1148  	return 0;
1149  }
1150  
1151  /*
1152   * subvolumes are identified by ino 256
1153   */
is_subvolume_inode(struct inode * inode)1154  static inline int is_subvolume_inode(struct inode *inode)
1155  {
1156  	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1157  		return 1;
1158  	return 0;
1159  }
1160  
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1161  static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1162  				   struct vfsmount *mnt)
1163  {
1164  	struct dentry *root;
1165  	int ret;
1166  
1167  	if (!subvol_name) {
1168  		if (!subvol_objectid) {
1169  			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1170  							  &subvol_objectid);
1171  			if (ret) {
1172  				root = ERR_PTR(ret);
1173  				goto out;
1174  			}
1175  		}
1176  		subvol_name = btrfs_get_subvol_name_from_objectid(
1177  					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1178  		if (IS_ERR(subvol_name)) {
1179  			root = ERR_CAST(subvol_name);
1180  			subvol_name = NULL;
1181  			goto out;
1182  		}
1183  
1184  	}
1185  
1186  	root = mount_subtree(mnt, subvol_name);
1187  	/* mount_subtree() drops our reference on the vfsmount. */
1188  	mnt = NULL;
1189  
1190  	if (!IS_ERR(root)) {
1191  		struct super_block *s = root->d_sb;
1192  		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1193  		struct inode *root_inode = d_inode(root);
1194  		u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1195  
1196  		ret = 0;
1197  		if (!is_subvolume_inode(root_inode)) {
1198  			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1199  			       subvol_name);
1200  			ret = -EINVAL;
1201  		}
1202  		if (subvol_objectid && root_objectid != subvol_objectid) {
1203  			/*
1204  			 * This will also catch a race condition where a
1205  			 * subvolume which was passed by ID is renamed and
1206  			 * another subvolume is renamed over the old location.
1207  			 */
1208  			btrfs_err(fs_info,
1209  				  "subvol '%s' does not match subvolid %llu",
1210  				  subvol_name, subvol_objectid);
1211  			ret = -EINVAL;
1212  		}
1213  		if (ret) {
1214  			dput(root);
1215  			root = ERR_PTR(ret);
1216  			deactivate_locked_super(s);
1217  		}
1218  	}
1219  
1220  out:
1221  	mntput(mnt);
1222  	kfree(subvol_name);
1223  	return root;
1224  }
1225  
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1226  static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1227  				     u32 new_pool_size, u32 old_pool_size)
1228  {
1229  	if (new_pool_size == old_pool_size)
1230  		return;
1231  
1232  	fs_info->thread_pool_size = new_pool_size;
1233  
1234  	btrfs_info(fs_info, "resize thread pool %d -> %d",
1235  	       old_pool_size, new_pool_size);
1236  
1237  	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1238  	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1239  	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1240  	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1241  	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1242  	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1243  	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1244  	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1245  }
1246  
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long long old_opts,int flags)1247  static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1248  				       unsigned long long old_opts, int flags)
1249  {
1250  	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1251  	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1252  	     (flags & SB_RDONLY))) {
1253  		/* wait for any defraggers to finish */
1254  		wait_event(fs_info->transaction_wait,
1255  			   (atomic_read(&fs_info->defrag_running) == 0));
1256  		if (flags & SB_RDONLY)
1257  			sync_filesystem(fs_info->sb);
1258  	}
1259  }
1260  
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long long old_opts)1261  static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1262  					 unsigned long long old_opts)
1263  {
1264  	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1265  
1266  	/*
1267  	 * We need to cleanup all defragable inodes if the autodefragment is
1268  	 * close or the filesystem is read only.
1269  	 */
1270  	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1271  	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1272  		btrfs_cleanup_defrag_inodes(fs_info);
1273  	}
1274  
1275  	/* If we toggled discard async */
1276  	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1277  	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1278  		btrfs_discard_resume(fs_info);
1279  	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1280  		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1281  		btrfs_discard_cleanup(fs_info);
1282  
1283  	/* If we toggled space cache */
1284  	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1285  		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1286  }
1287  
btrfs_remount_rw(struct btrfs_fs_info * fs_info)1288  static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1289  {
1290  	int ret;
1291  
1292  	if (BTRFS_FS_ERROR(fs_info)) {
1293  		btrfs_err(fs_info,
1294  			  "remounting read-write after error is not allowed");
1295  		return -EINVAL;
1296  	}
1297  
1298  	if (fs_info->fs_devices->rw_devices == 0)
1299  		return -EACCES;
1300  
1301  	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1302  		btrfs_warn(fs_info,
1303  			   "too many missing devices, writable remount is not allowed");
1304  		return -EACCES;
1305  	}
1306  
1307  	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1308  		btrfs_warn(fs_info,
1309  			   "mount required to replay tree-log, cannot remount read-write");
1310  		return -EINVAL;
1311  	}
1312  
1313  	/*
1314  	 * NOTE: when remounting with a change that does writes, don't put it
1315  	 * anywhere above this point, as we are not sure to be safe to write
1316  	 * until we pass the above checks.
1317  	 */
1318  	ret = btrfs_start_pre_rw_mount(fs_info);
1319  	if (ret)
1320  		return ret;
1321  
1322  	btrfs_clear_sb_rdonly(fs_info->sb);
1323  
1324  	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1325  
1326  	/*
1327  	 * If we've gone from readonly -> read-write, we need to get our
1328  	 * sync/async discard lists in the right state.
1329  	 */
1330  	btrfs_discard_resume(fs_info);
1331  
1332  	return 0;
1333  }
1334  
btrfs_remount_ro(struct btrfs_fs_info * fs_info)1335  static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1336  {
1337  	/*
1338  	 * This also happens on 'umount -rf' or on shutdown, when the
1339  	 * filesystem is busy.
1340  	 */
1341  	cancel_work_sync(&fs_info->async_reclaim_work);
1342  	cancel_work_sync(&fs_info->async_data_reclaim_work);
1343  
1344  	btrfs_discard_cleanup(fs_info);
1345  
1346  	/* Wait for the uuid_scan task to finish */
1347  	down(&fs_info->uuid_tree_rescan_sem);
1348  	/* Avoid complains from lockdep et al. */
1349  	up(&fs_info->uuid_tree_rescan_sem);
1350  
1351  	btrfs_set_sb_rdonly(fs_info->sb);
1352  
1353  	/*
1354  	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1355  	 * loop if it's already active.  If it's already asleep, we'll leave
1356  	 * unused block groups on disk until we're mounted read-write again
1357  	 * unless we clean them up here.
1358  	 */
1359  	btrfs_delete_unused_bgs(fs_info);
1360  
1361  	/*
1362  	 * The cleaner task could be already running before we set the flag
1363  	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1364  	 * sure that after we finish the remount, i.e. after we call
1365  	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1366  	 * - either because it was dropping a dead root, running delayed iputs
1367  	 *   or deleting an unused block group (the cleaner picked a block
1368  	 *   group from the list of unused block groups before we were able to
1369  	 *   in the previous call to btrfs_delete_unused_bgs()).
1370  	 */
1371  	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1372  
1373  	/*
1374  	 * We've set the superblock to RO mode, so we might have made the
1375  	 * cleaner task sleep without running all pending delayed iputs. Go
1376  	 * through all the delayed iputs here, so that if an unmount happens
1377  	 * without remounting RW we don't end up at finishing close_ctree()
1378  	 * with a non-empty list of delayed iputs.
1379  	 */
1380  	btrfs_run_delayed_iputs(fs_info);
1381  
1382  	btrfs_dev_replace_suspend_for_unmount(fs_info);
1383  	btrfs_scrub_cancel(fs_info);
1384  	btrfs_pause_balance(fs_info);
1385  
1386  	/*
1387  	 * Pause the qgroup rescan worker if it is running. We don't want it to
1388  	 * be still running after we are in RO mode, as after that, by the time
1389  	 * we unmount, it might have left a transaction open, so we would leak
1390  	 * the transaction and/or crash.
1391  	 */
1392  	btrfs_qgroup_wait_for_completion(fs_info, false);
1393  
1394  	return btrfs_commit_super(fs_info);
1395  }
1396  
btrfs_ctx_to_info(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1397  static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1398  {
1399  	fs_info->max_inline = ctx->max_inline;
1400  	fs_info->commit_interval = ctx->commit_interval;
1401  	fs_info->metadata_ratio = ctx->metadata_ratio;
1402  	fs_info->thread_pool_size = ctx->thread_pool_size;
1403  	fs_info->mount_opt = ctx->mount_opt;
1404  	fs_info->compress_type = ctx->compress_type;
1405  	fs_info->compress_level = ctx->compress_level;
1406  }
1407  
btrfs_info_to_ctx(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1408  static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1409  {
1410  	ctx->max_inline = fs_info->max_inline;
1411  	ctx->commit_interval = fs_info->commit_interval;
1412  	ctx->metadata_ratio = fs_info->metadata_ratio;
1413  	ctx->thread_pool_size = fs_info->thread_pool_size;
1414  	ctx->mount_opt = fs_info->mount_opt;
1415  	ctx->compress_type = fs_info->compress_type;
1416  	ctx->compress_level = fs_info->compress_level;
1417  }
1418  
1419  #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1420  do {										\
1421  	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1422  	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1423  		btrfs_info(fs_info, fmt, ##args);				\
1424  } while (0)
1425  
1426  #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1427  do {									\
1428  	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1429  	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1430  		btrfs_info(fs_info, fmt, ##args);			\
1431  } while (0)
1432  
btrfs_emit_options(struct btrfs_fs_info * info,struct btrfs_fs_context * old)1433  static void btrfs_emit_options(struct btrfs_fs_info *info,
1434  			       struct btrfs_fs_context *old)
1435  {
1436  	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1437  	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1438  	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1439  	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1440  	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1441  	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1442  	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1443  	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1444  	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1445  	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1446  	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1447  	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1448  	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1449  	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1450  	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1451  	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1452  	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1453  	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1454  	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1455  	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1456  	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1457  	btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1458  	btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1459  
1460  	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1461  	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1462  	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1463  	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1464  	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1465  	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1466  	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1467  	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1468  	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1469  
1470  	/* Did the compression settings change? */
1471  	if (btrfs_test_opt(info, COMPRESS) &&
1472  	    (!old ||
1473  	     old->compress_type != info->compress_type ||
1474  	     old->compress_level != info->compress_level ||
1475  	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1476  	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1477  		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1478  
1479  		btrfs_info(info, "%s %s compression, level %d",
1480  			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1481  			   compress_type, info->compress_level);
1482  	}
1483  
1484  	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1485  		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1486  }
1487  
btrfs_reconfigure(struct fs_context * fc)1488  static int btrfs_reconfigure(struct fs_context *fc)
1489  {
1490  	struct super_block *sb = fc->root->d_sb;
1491  	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1492  	struct btrfs_fs_context *ctx = fc->fs_private;
1493  	struct btrfs_fs_context old_ctx;
1494  	int ret = 0;
1495  	bool mount_reconfigure = (fc->s_fs_info != NULL);
1496  
1497  	btrfs_info_to_ctx(fs_info, &old_ctx);
1498  
1499  	/*
1500  	 * This is our "bind mount" trick, we don't want to allow the user to do
1501  	 * anything other than mount a different ro/rw and a different subvol,
1502  	 * all of the mount options should be maintained.
1503  	 */
1504  	if (mount_reconfigure)
1505  		ctx->mount_opt = old_ctx.mount_opt;
1506  
1507  	sync_filesystem(sb);
1508  	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1509  
1510  	if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1511  		return -EINVAL;
1512  
1513  	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1514  	if (ret < 0)
1515  		return ret;
1516  
1517  	btrfs_ctx_to_info(fs_info, ctx);
1518  	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1519  	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1520  				 old_ctx.thread_pool_size);
1521  
1522  	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1523  	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1524  	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1525  		btrfs_warn(fs_info,
1526  		"remount supports changing free space tree only from RO to RW");
1527  		/* Make sure free space cache options match the state on disk. */
1528  		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1529  			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1530  			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1531  		}
1532  		if (btrfs_free_space_cache_v1_active(fs_info)) {
1533  			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1534  			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1535  		}
1536  	}
1537  
1538  	ret = 0;
1539  	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1540  		ret = btrfs_remount_ro(fs_info);
1541  	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1542  		ret = btrfs_remount_rw(fs_info);
1543  	if (ret)
1544  		goto restore;
1545  
1546  	/*
1547  	 * If we set the mask during the parameter parsing VFS would reject the
1548  	 * remount.  Here we can set the mask and the value will be updated
1549  	 * appropriately.
1550  	 */
1551  	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1552  		fc->sb_flags_mask |= SB_POSIXACL;
1553  
1554  	btrfs_emit_options(fs_info, &old_ctx);
1555  	wake_up_process(fs_info->transaction_kthread);
1556  	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1557  	btrfs_clear_oneshot_options(fs_info);
1558  	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1559  
1560  	return 0;
1561  restore:
1562  	btrfs_ctx_to_info(fs_info, &old_ctx);
1563  	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1564  	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1565  	return ret;
1566  }
1567  
1568  /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)1569  static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1570  {
1571  	const struct btrfs_device_info *dev_info1 = a;
1572  	const struct btrfs_device_info *dev_info2 = b;
1573  
1574  	if (dev_info1->max_avail > dev_info2->max_avail)
1575  		return -1;
1576  	else if (dev_info1->max_avail < dev_info2->max_avail)
1577  		return 1;
1578  	return 0;
1579  }
1580  
1581  /*
1582   * sort the devices by max_avail, in which max free extent size of each device
1583   * is stored.(Descending Sort)
1584   */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1585  static inline void btrfs_descending_sort_devices(
1586  					struct btrfs_device_info *devices,
1587  					size_t nr_devices)
1588  {
1589  	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1590  	     btrfs_cmp_device_free_bytes, NULL);
1591  }
1592  
1593  /*
1594   * The helper to calc the free space on the devices that can be used to store
1595   * file data.
1596   */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1597  static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1598  					      u64 *free_bytes)
1599  {
1600  	struct btrfs_device_info *devices_info;
1601  	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1602  	struct btrfs_device *device;
1603  	u64 type;
1604  	u64 avail_space;
1605  	u64 min_stripe_size;
1606  	int num_stripes = 1;
1607  	int i = 0, nr_devices;
1608  	const struct btrfs_raid_attr *rattr;
1609  
1610  	/*
1611  	 * We aren't under the device list lock, so this is racy-ish, but good
1612  	 * enough for our purposes.
1613  	 */
1614  	nr_devices = fs_info->fs_devices->open_devices;
1615  	if (!nr_devices) {
1616  		smp_mb();
1617  		nr_devices = fs_info->fs_devices->open_devices;
1618  		ASSERT(nr_devices);
1619  		if (!nr_devices) {
1620  			*free_bytes = 0;
1621  			return 0;
1622  		}
1623  	}
1624  
1625  	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1626  			       GFP_KERNEL);
1627  	if (!devices_info)
1628  		return -ENOMEM;
1629  
1630  	/* calc min stripe number for data space allocation */
1631  	type = btrfs_data_alloc_profile(fs_info);
1632  	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1633  
1634  	if (type & BTRFS_BLOCK_GROUP_RAID0)
1635  		num_stripes = nr_devices;
1636  	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1637  		num_stripes = rattr->ncopies;
1638  	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1639  		num_stripes = 4;
1640  
1641  	/* Adjust for more than 1 stripe per device */
1642  	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1643  
1644  	rcu_read_lock();
1645  	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1646  		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1647  						&device->dev_state) ||
1648  		    !device->bdev ||
1649  		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1650  			continue;
1651  
1652  		if (i >= nr_devices)
1653  			break;
1654  
1655  		avail_space = device->total_bytes - device->bytes_used;
1656  
1657  		/* align with stripe_len */
1658  		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1659  
1660  		/*
1661  		 * Ensure we have at least min_stripe_size on top of the
1662  		 * reserved space on the device.
1663  		 */
1664  		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1665  			continue;
1666  
1667  		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1668  
1669  		devices_info[i].dev = device;
1670  		devices_info[i].max_avail = avail_space;
1671  
1672  		i++;
1673  	}
1674  	rcu_read_unlock();
1675  
1676  	nr_devices = i;
1677  
1678  	btrfs_descending_sort_devices(devices_info, nr_devices);
1679  
1680  	i = nr_devices - 1;
1681  	avail_space = 0;
1682  	while (nr_devices >= rattr->devs_min) {
1683  		num_stripes = min(num_stripes, nr_devices);
1684  
1685  		if (devices_info[i].max_avail >= min_stripe_size) {
1686  			int j;
1687  			u64 alloc_size;
1688  
1689  			avail_space += devices_info[i].max_avail * num_stripes;
1690  			alloc_size = devices_info[i].max_avail;
1691  			for (j = i + 1 - num_stripes; j <= i; j++)
1692  				devices_info[j].max_avail -= alloc_size;
1693  		}
1694  		i--;
1695  		nr_devices--;
1696  	}
1697  
1698  	kfree(devices_info);
1699  	*free_bytes = avail_space;
1700  	return 0;
1701  }
1702  
1703  /*
1704   * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1705   *
1706   * If there's a redundant raid level at DATA block groups, use the respective
1707   * multiplier to scale the sizes.
1708   *
1709   * Unused device space usage is based on simulating the chunk allocator
1710   * algorithm that respects the device sizes and order of allocations.  This is
1711   * a close approximation of the actual use but there are other factors that may
1712   * change the result (like a new metadata chunk).
1713   *
1714   * If metadata is exhausted, f_bavail will be 0.
1715   */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1716  static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1717  {
1718  	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1719  	struct btrfs_super_block *disk_super = fs_info->super_copy;
1720  	struct btrfs_space_info *found;
1721  	u64 total_used = 0;
1722  	u64 total_free_data = 0;
1723  	u64 total_free_meta = 0;
1724  	u32 bits = fs_info->sectorsize_bits;
1725  	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1726  	unsigned factor = 1;
1727  	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1728  	int ret;
1729  	u64 thresh = 0;
1730  	int mixed = 0;
1731  
1732  	list_for_each_entry(found, &fs_info->space_info, list) {
1733  		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1734  			int i;
1735  
1736  			total_free_data += found->disk_total - found->disk_used;
1737  			total_free_data -=
1738  				btrfs_account_ro_block_groups_free_space(found);
1739  
1740  			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1741  				if (!list_empty(&found->block_groups[i]))
1742  					factor = btrfs_bg_type_to_factor(
1743  						btrfs_raid_array[i].bg_flag);
1744  			}
1745  		}
1746  
1747  		/*
1748  		 * Metadata in mixed block group profiles are accounted in data
1749  		 */
1750  		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1751  			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1752  				mixed = 1;
1753  			else
1754  				total_free_meta += found->disk_total -
1755  					found->disk_used;
1756  		}
1757  
1758  		total_used += found->disk_used;
1759  	}
1760  
1761  	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1762  	buf->f_blocks >>= bits;
1763  	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1764  
1765  	/* Account global block reserve as used, it's in logical size already */
1766  	spin_lock(&block_rsv->lock);
1767  	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1768  	if (buf->f_bfree >= block_rsv->size >> bits)
1769  		buf->f_bfree -= block_rsv->size >> bits;
1770  	else
1771  		buf->f_bfree = 0;
1772  	spin_unlock(&block_rsv->lock);
1773  
1774  	buf->f_bavail = div_u64(total_free_data, factor);
1775  	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1776  	if (ret)
1777  		return ret;
1778  	buf->f_bavail += div_u64(total_free_data, factor);
1779  	buf->f_bavail = buf->f_bavail >> bits;
1780  
1781  	/*
1782  	 * We calculate the remaining metadata space minus global reserve. If
1783  	 * this is (supposedly) smaller than zero, there's no space. But this
1784  	 * does not hold in practice, the exhausted state happens where's still
1785  	 * some positive delta. So we apply some guesswork and compare the
1786  	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1787  	 *
1788  	 * We probably cannot calculate the exact threshold value because this
1789  	 * depends on the internal reservations requested by various
1790  	 * operations, so some operations that consume a few metadata will
1791  	 * succeed even if the Avail is zero. But this is better than the other
1792  	 * way around.
1793  	 */
1794  	thresh = SZ_4M;
1795  
1796  	/*
1797  	 * We only want to claim there's no available space if we can no longer
1798  	 * allocate chunks for our metadata profile and our global reserve will
1799  	 * not fit in the free metadata space.  If we aren't ->full then we
1800  	 * still can allocate chunks and thus are fine using the currently
1801  	 * calculated f_bavail.
1802  	 */
1803  	if (!mixed && block_rsv->space_info->full &&
1804  	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1805  		buf->f_bavail = 0;
1806  
1807  	buf->f_type = BTRFS_SUPER_MAGIC;
1808  	buf->f_bsize = fs_info->sectorsize;
1809  	buf->f_namelen = BTRFS_NAME_LEN;
1810  
1811  	/* We treat it as constant endianness (it doesn't matter _which_)
1812  	   because we want the fsid to come out the same whether mounted
1813  	   on a big-endian or little-endian host */
1814  	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1815  	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1816  	/* Mask in the root object ID too, to disambiguate subvols */
1817  	buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1818  	buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1819  
1820  	return 0;
1821  }
1822  
btrfs_fc_test_super(struct super_block * sb,struct fs_context * fc)1823  static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1824  {
1825  	struct btrfs_fs_info *p = fc->s_fs_info;
1826  	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1827  
1828  	return fs_info->fs_devices == p->fs_devices;
1829  }
1830  
btrfs_get_tree_super(struct fs_context * fc)1831  static int btrfs_get_tree_super(struct fs_context *fc)
1832  {
1833  	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1834  	struct btrfs_fs_context *ctx = fc->fs_private;
1835  	struct btrfs_fs_devices *fs_devices = NULL;
1836  	struct block_device *bdev;
1837  	struct btrfs_device *device;
1838  	struct super_block *sb;
1839  	blk_mode_t mode = btrfs_open_mode(fc);
1840  	int ret;
1841  
1842  	btrfs_ctx_to_info(fs_info, ctx);
1843  	mutex_lock(&uuid_mutex);
1844  
1845  	/*
1846  	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1847  	 * either a valid device or an error.
1848  	 */
1849  	device = btrfs_scan_one_device(fc->source, mode, true);
1850  	ASSERT(device != NULL);
1851  	if (IS_ERR(device)) {
1852  		mutex_unlock(&uuid_mutex);
1853  		return PTR_ERR(device);
1854  	}
1855  
1856  	fs_devices = device->fs_devices;
1857  	fs_info->fs_devices = fs_devices;
1858  
1859  	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1860  	mutex_unlock(&uuid_mutex);
1861  	if (ret)
1862  		return ret;
1863  
1864  	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1865  		ret = -EACCES;
1866  		goto error;
1867  	}
1868  
1869  	bdev = fs_devices->latest_dev->bdev;
1870  
1871  	/*
1872  	 * From now on the error handling is not straightforward.
1873  	 *
1874  	 * If successful, this will transfer the fs_info into the super block,
1875  	 * and fc->s_fs_info will be NULL.  However if there's an existing
1876  	 * super, we'll still have fc->s_fs_info populated.  If we error
1877  	 * completely out it'll be cleaned up when we drop the fs_context,
1878  	 * otherwise it's tied to the lifetime of the super_block.
1879  	 */
1880  	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1881  	if (IS_ERR(sb)) {
1882  		ret = PTR_ERR(sb);
1883  		goto error;
1884  	}
1885  
1886  	set_device_specific_options(fs_info);
1887  
1888  	if (sb->s_root) {
1889  		btrfs_close_devices(fs_devices);
1890  		if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1891  			ret = -EBUSY;
1892  	} else {
1893  		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1894  		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1895  		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1896  		ret = btrfs_fill_super(sb, fs_devices, NULL);
1897  	}
1898  
1899  	if (ret) {
1900  		deactivate_locked_super(sb);
1901  		return ret;
1902  	}
1903  
1904  	btrfs_clear_oneshot_options(fs_info);
1905  
1906  	fc->root = dget(sb->s_root);
1907  	return 0;
1908  
1909  error:
1910  	btrfs_close_devices(fs_devices);
1911  	return ret;
1912  }
1913  
1914  /*
1915   * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1916   * with different ro/rw options") the following works:
1917   *
1918   *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1919   *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1920   *
1921   * which looks nice and innocent but is actually pretty intricate and deserves
1922   * a long comment.
1923   *
1924   * On another filesystem a subvolume mount is close to something like:
1925   *
1926   *	(iii) # create rw superblock + initial mount
1927   *	      mount -t xfs /dev/sdb /opt/
1928   *
1929   *	      # create ro bind mount
1930   *	      mount --bind -o ro /opt/foo /mnt/foo
1931   *
1932   *	      # unmount initial mount
1933   *	      umount /opt
1934   *
1935   * Of course, there's some special subvolume sauce and there's the fact that the
1936   * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1937   * it's very close and will help us understand the issue.
1938   *
1939   * The old mount API didn't cleanly distinguish between a mount being made ro
1940   * and a superblock being made ro.  The only way to change the ro state of
1941   * either object was by passing ms_rdonly. If a new mount was created via
1942   * mount(2) such as:
1943   *
1944   *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1945   *
1946   * the MS_RDONLY flag being specified had two effects:
1947   *
1948   * (1) MNT_READONLY was raised -> the resulting mount got
1949   *     @mnt->mnt_flags |= MNT_READONLY raised.
1950   *
1951   * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1952   *     made the superblock ro. Note, how SB_RDONLY has the same value as
1953   *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1954   *
1955   * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1956   * subtree mounted ro.
1957   *
1958   * But consider the effect on the old mount API on btrfs subvolume mounting
1959   * which combines the distinct step in (iii) into a single step.
1960   *
1961   * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1962   * is issued the superblock is ro and thus even if the mount created for (ii) is
1963   * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1964   * to rw for (ii) which it did using an internal remount call.
1965   *
1966   * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1967   * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1968   * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1969   * passed by mount(8) to mount(2).
1970   *
1971   * Enter the new mount API. The new mount API disambiguates making a mount ro
1972   * and making a superblock ro.
1973   *
1974   * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1975   *     fsmount() or mount_setattr() this is a pure VFS level change for a
1976   *     specific mount or mount tree that is never seen by the filesystem itself.
1977   *
1978   * (4) To turn a superblock ro the "ro" flag must be used with
1979   *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1980   *     in fc->sb_flags.
1981   *
1982   * But, currently the util-linux mount command already utilizes the new mount
1983   * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
1984   * btrfs or not, setting the whole super block RO.  To make per-subvolume mounting
1985   * work with different options work we need to keep backward compatibility.
1986   */
btrfs_reconfigure_for_mount(struct fs_context * fc)1987  static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1988  {
1989  	struct vfsmount *mnt;
1990  	int ret;
1991  	const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1992  
1993  	/*
1994  	 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1995  	 * super block, so invert our setting here and retry the mount so we
1996  	 * can get our vfsmount.
1997  	 */
1998  	if (ro2rw)
1999  		fc->sb_flags |= SB_RDONLY;
2000  	else
2001  		fc->sb_flags &= ~SB_RDONLY;
2002  
2003  	mnt = fc_mount(fc);
2004  	if (IS_ERR(mnt))
2005  		return mnt;
2006  
2007  	if (!ro2rw)
2008  		return mnt;
2009  
2010  	/* We need to convert to rw, call reconfigure. */
2011  	fc->sb_flags &= ~SB_RDONLY;
2012  	down_write(&mnt->mnt_sb->s_umount);
2013  	ret = btrfs_reconfigure(fc);
2014  	up_write(&mnt->mnt_sb->s_umount);
2015  	if (ret) {
2016  		mntput(mnt);
2017  		return ERR_PTR(ret);
2018  	}
2019  	return mnt;
2020  }
2021  
btrfs_get_tree_subvol(struct fs_context * fc)2022  static int btrfs_get_tree_subvol(struct fs_context *fc)
2023  {
2024  	struct btrfs_fs_info *fs_info = NULL;
2025  	struct btrfs_fs_context *ctx = fc->fs_private;
2026  	struct fs_context *dup_fc;
2027  	struct dentry *dentry;
2028  	struct vfsmount *mnt;
2029  
2030  	/*
2031  	 * Setup a dummy root and fs_info for test/set super.  This is because
2032  	 * we don't actually fill this stuff out until open_ctree, but we need
2033  	 * then open_ctree will properly initialize the file system specific
2034  	 * settings later.  btrfs_init_fs_info initializes the static elements
2035  	 * of the fs_info (locks and such) to make cleanup easier if we find a
2036  	 * superblock with our given fs_devices later on at sget() time.
2037  	 */
2038  	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2039  	if (!fs_info)
2040  		return -ENOMEM;
2041  
2042  	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2043  	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2044  	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2045  		btrfs_free_fs_info(fs_info);
2046  		return -ENOMEM;
2047  	}
2048  	btrfs_init_fs_info(fs_info);
2049  
2050  	dup_fc = vfs_dup_fs_context(fc);
2051  	if (IS_ERR(dup_fc)) {
2052  		btrfs_free_fs_info(fs_info);
2053  		return PTR_ERR(dup_fc);
2054  	}
2055  
2056  	/*
2057  	 * When we do the sget_fc this gets transferred to the sb, so we only
2058  	 * need to set it on the dup_fc as this is what creates the super block.
2059  	 */
2060  	dup_fc->s_fs_info = fs_info;
2061  
2062  	/*
2063  	 * We'll do the security settings in our btrfs_get_tree_super() mount
2064  	 * loop, they were duplicated into dup_fc, we can drop the originals
2065  	 * here.
2066  	 */
2067  	security_free_mnt_opts(&fc->security);
2068  	fc->security = NULL;
2069  
2070  	mnt = fc_mount(dup_fc);
2071  	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2072  		mnt = btrfs_reconfigure_for_mount(dup_fc);
2073  	put_fs_context(dup_fc);
2074  	if (IS_ERR(mnt))
2075  		return PTR_ERR(mnt);
2076  
2077  	/*
2078  	 * This free's ->subvol_name, because if it isn't set we have to
2079  	 * allocate a buffer to hold the subvol_name, so we just drop our
2080  	 * reference to it here.
2081  	 */
2082  	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2083  	ctx->subvol_name = NULL;
2084  	if (IS_ERR(dentry))
2085  		return PTR_ERR(dentry);
2086  
2087  	fc->root = dentry;
2088  	return 0;
2089  }
2090  
btrfs_get_tree(struct fs_context * fc)2091  static int btrfs_get_tree(struct fs_context *fc)
2092  {
2093  	/*
2094  	 * Since we use mount_subtree to mount the default/specified subvol, we
2095  	 * have to do mounts in two steps.
2096  	 *
2097  	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2098  	 * wrapper around fc_mount() to call back into here again, and this time
2099  	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2100  	 * everything to open the devices and file system.  Then we return back
2101  	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2102  	 * from there we can do our mount_subvol() call, which will lookup
2103  	 * whichever subvol we're mounting and setup this fc with the
2104  	 * appropriate dentry for the subvol.
2105  	 */
2106  	if (fc->s_fs_info)
2107  		return btrfs_get_tree_super(fc);
2108  	return btrfs_get_tree_subvol(fc);
2109  }
2110  
btrfs_kill_super(struct super_block * sb)2111  static void btrfs_kill_super(struct super_block *sb)
2112  {
2113  	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2114  	kill_anon_super(sb);
2115  	btrfs_free_fs_info(fs_info);
2116  }
2117  
btrfs_free_fs_context(struct fs_context * fc)2118  static void btrfs_free_fs_context(struct fs_context *fc)
2119  {
2120  	struct btrfs_fs_context *ctx = fc->fs_private;
2121  	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2122  
2123  	if (fs_info)
2124  		btrfs_free_fs_info(fs_info);
2125  
2126  	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2127  		kfree(ctx->subvol_name);
2128  		kfree(ctx);
2129  	}
2130  }
2131  
btrfs_dup_fs_context(struct fs_context * fc,struct fs_context * src_fc)2132  static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2133  {
2134  	struct btrfs_fs_context *ctx = src_fc->fs_private;
2135  
2136  	/*
2137  	 * Give a ref to our ctx to this dup, as we want to keep it around for
2138  	 * our original fc so we can have the subvolume name or objectid.
2139  	 *
2140  	 * We unset ->source in the original fc because the dup needs it for
2141  	 * mounting, and then once we free the dup it'll free ->source, so we
2142  	 * need to make sure we're only pointing to it in one fc.
2143  	 */
2144  	refcount_inc(&ctx->refs);
2145  	fc->fs_private = ctx;
2146  	fc->source = src_fc->source;
2147  	src_fc->source = NULL;
2148  	return 0;
2149  }
2150  
2151  static const struct fs_context_operations btrfs_fs_context_ops = {
2152  	.parse_param	= btrfs_parse_param,
2153  	.reconfigure	= btrfs_reconfigure,
2154  	.get_tree	= btrfs_get_tree,
2155  	.dup		= btrfs_dup_fs_context,
2156  	.free		= btrfs_free_fs_context,
2157  };
2158  
btrfs_init_fs_context(struct fs_context * fc)2159  static int btrfs_init_fs_context(struct fs_context *fc)
2160  {
2161  	struct btrfs_fs_context *ctx;
2162  
2163  	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2164  	if (!ctx)
2165  		return -ENOMEM;
2166  
2167  	refcount_set(&ctx->refs, 1);
2168  	fc->fs_private = ctx;
2169  	fc->ops = &btrfs_fs_context_ops;
2170  
2171  	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2172  		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2173  	} else {
2174  		ctx->thread_pool_size =
2175  			min_t(unsigned long, num_online_cpus() + 2, 8);
2176  		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2177  		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2178  	}
2179  
2180  #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2181  	fc->sb_flags |= SB_POSIXACL;
2182  #endif
2183  	fc->sb_flags |= SB_I_VERSION;
2184  
2185  	return 0;
2186  }
2187  
2188  static struct file_system_type btrfs_fs_type = {
2189  	.owner			= THIS_MODULE,
2190  	.name			= "btrfs",
2191  	.init_fs_context	= btrfs_init_fs_context,
2192  	.parameters		= btrfs_fs_parameters,
2193  	.kill_sb		= btrfs_kill_super,
2194  	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2195   };
2196  
2197  MODULE_ALIAS_FS("btrfs");
2198  
btrfs_control_open(struct inode * inode,struct file * file)2199  static int btrfs_control_open(struct inode *inode, struct file *file)
2200  {
2201  	/*
2202  	 * The control file's private_data is used to hold the
2203  	 * transaction when it is started and is used to keep
2204  	 * track of whether a transaction is already in progress.
2205  	 */
2206  	file->private_data = NULL;
2207  	return 0;
2208  }
2209  
2210  /*
2211   * Used by /dev/btrfs-control for devices ioctls.
2212   */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2213  static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2214  				unsigned long arg)
2215  {
2216  	struct btrfs_ioctl_vol_args *vol;
2217  	struct btrfs_device *device = NULL;
2218  	dev_t devt = 0;
2219  	int ret = -ENOTTY;
2220  
2221  	if (!capable(CAP_SYS_ADMIN))
2222  		return -EPERM;
2223  
2224  	vol = memdup_user((void __user *)arg, sizeof(*vol));
2225  	if (IS_ERR(vol))
2226  		return PTR_ERR(vol);
2227  	ret = btrfs_check_ioctl_vol_args_path(vol);
2228  	if (ret < 0)
2229  		goto out;
2230  
2231  	switch (cmd) {
2232  	case BTRFS_IOC_SCAN_DEV:
2233  		mutex_lock(&uuid_mutex);
2234  		/*
2235  		 * Scanning outside of mount can return NULL which would turn
2236  		 * into 0 error code.
2237  		 */
2238  		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2239  		ret = PTR_ERR_OR_ZERO(device);
2240  		mutex_unlock(&uuid_mutex);
2241  		break;
2242  	case BTRFS_IOC_FORGET_DEV:
2243  		if (vol->name[0] != 0) {
2244  			ret = lookup_bdev(vol->name, &devt);
2245  			if (ret)
2246  				break;
2247  		}
2248  		ret = btrfs_forget_devices(devt);
2249  		break;
2250  	case BTRFS_IOC_DEVICES_READY:
2251  		mutex_lock(&uuid_mutex);
2252  		/*
2253  		 * Scanning outside of mount can return NULL which would turn
2254  		 * into 0 error code.
2255  		 */
2256  		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2257  		if (IS_ERR_OR_NULL(device)) {
2258  			mutex_unlock(&uuid_mutex);
2259  			ret = PTR_ERR(device);
2260  			break;
2261  		}
2262  		ret = !(device->fs_devices->num_devices ==
2263  			device->fs_devices->total_devices);
2264  		mutex_unlock(&uuid_mutex);
2265  		break;
2266  	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2267  		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2268  		break;
2269  	}
2270  
2271  out:
2272  	kfree(vol);
2273  	return ret;
2274  }
2275  
btrfs_freeze(struct super_block * sb)2276  static int btrfs_freeze(struct super_block *sb)
2277  {
2278  	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2279  
2280  	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2281  	/*
2282  	 * We don't need a barrier here, we'll wait for any transaction that
2283  	 * could be in progress on other threads (and do delayed iputs that
2284  	 * we want to avoid on a frozen filesystem), or do the commit
2285  	 * ourselves.
2286  	 */
2287  	return btrfs_commit_current_transaction(fs_info->tree_root);
2288  }
2289  
check_dev_super(struct btrfs_device * dev)2290  static int check_dev_super(struct btrfs_device *dev)
2291  {
2292  	struct btrfs_fs_info *fs_info = dev->fs_info;
2293  	struct btrfs_super_block *sb;
2294  	u64 last_trans;
2295  	u16 csum_type;
2296  	int ret = 0;
2297  
2298  	/* This should be called with fs still frozen. */
2299  	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2300  
2301  	/* Missing dev, no need to check. */
2302  	if (!dev->bdev)
2303  		return 0;
2304  
2305  	/* Only need to check the primary super block. */
2306  	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2307  	if (IS_ERR(sb))
2308  		return PTR_ERR(sb);
2309  
2310  	/* Verify the checksum. */
2311  	csum_type = btrfs_super_csum_type(sb);
2312  	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2313  		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2314  			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2315  		ret = -EUCLEAN;
2316  		goto out;
2317  	}
2318  
2319  	if (btrfs_check_super_csum(fs_info, sb)) {
2320  		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2321  		ret = -EUCLEAN;
2322  		goto out;
2323  	}
2324  
2325  	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2326  	ret = btrfs_validate_super(fs_info, sb, 0);
2327  	if (ret < 0)
2328  		goto out;
2329  
2330  	last_trans = btrfs_get_last_trans_committed(fs_info);
2331  	if (btrfs_super_generation(sb) != last_trans) {
2332  		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2333  			  btrfs_super_generation(sb), last_trans);
2334  		ret = -EUCLEAN;
2335  		goto out;
2336  	}
2337  out:
2338  	btrfs_release_disk_super(sb);
2339  	return ret;
2340  }
2341  
btrfs_unfreeze(struct super_block * sb)2342  static int btrfs_unfreeze(struct super_block *sb)
2343  {
2344  	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2345  	struct btrfs_device *device;
2346  	int ret = 0;
2347  
2348  	/*
2349  	 * Make sure the fs is not changed by accident (like hibernation then
2350  	 * modified by other OS).
2351  	 * If we found anything wrong, we mark the fs error immediately.
2352  	 *
2353  	 * And since the fs is frozen, no one can modify the fs yet, thus
2354  	 * we don't need to hold device_list_mutex.
2355  	 */
2356  	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2357  		ret = check_dev_super(device);
2358  		if (ret < 0) {
2359  			btrfs_handle_fs_error(fs_info, ret,
2360  				"super block on devid %llu got modified unexpectedly",
2361  				device->devid);
2362  			break;
2363  		}
2364  	}
2365  	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2366  
2367  	/*
2368  	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2369  	 * above checks failed. Since the fs is either fine or read-only, we're
2370  	 * safe to continue, without causing further damage.
2371  	 */
2372  	return 0;
2373  }
2374  
btrfs_show_devname(struct seq_file * m,struct dentry * root)2375  static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2376  {
2377  	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2378  
2379  	/*
2380  	 * There should be always a valid pointer in latest_dev, it may be stale
2381  	 * for a short moment in case it's being deleted but still valid until
2382  	 * the end of RCU grace period.
2383  	 */
2384  	rcu_read_lock();
2385  	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2386  	rcu_read_unlock();
2387  
2388  	return 0;
2389  }
2390  
btrfs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)2391  static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2392  {
2393  	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2394  	const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2395  
2396  	trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2397  
2398  	/*
2399  	 * Only report the real number for DEBUG builds, as there are reports of
2400  	 * serious performance degradation caused by too frequent shrinks.
2401  	 */
2402  	if (IS_ENABLED(CONFIG_BTRFS_DEBUG))
2403  		return nr;
2404  	return 0;
2405  }
2406  
btrfs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)2407  static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2408  {
2409  	const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2410  	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2411  
2412  	/*
2413  	 * We may be called from any task trying to allocate memory and we don't
2414  	 * want to slow it down with scanning and dropping extent maps. It would
2415  	 * also cause heavy lock contention if many tasks concurrently enter
2416  	 * here. Therefore only allow kswapd tasks to scan and drop extent maps.
2417  	 */
2418  	if (!current_is_kswapd())
2419  		return 0;
2420  
2421  	return btrfs_free_extent_maps(fs_info, nr_to_scan);
2422  }
2423  
2424  static const struct super_operations btrfs_super_ops = {
2425  	.drop_inode	= btrfs_drop_inode,
2426  	.evict_inode	= btrfs_evict_inode,
2427  	.put_super	= btrfs_put_super,
2428  	.sync_fs	= btrfs_sync_fs,
2429  	.show_options	= btrfs_show_options,
2430  	.show_devname	= btrfs_show_devname,
2431  	.alloc_inode	= btrfs_alloc_inode,
2432  	.destroy_inode	= btrfs_destroy_inode,
2433  	.free_inode	= btrfs_free_inode,
2434  	.statfs		= btrfs_statfs,
2435  	.freeze_fs	= btrfs_freeze,
2436  	.unfreeze_fs	= btrfs_unfreeze,
2437  	.nr_cached_objects = btrfs_nr_cached_objects,
2438  	.free_cached_objects = btrfs_free_cached_objects,
2439  };
2440  
2441  static const struct file_operations btrfs_ctl_fops = {
2442  	.open = btrfs_control_open,
2443  	.unlocked_ioctl	 = btrfs_control_ioctl,
2444  	.compat_ioctl = compat_ptr_ioctl,
2445  	.owner	 = THIS_MODULE,
2446  	.llseek = noop_llseek,
2447  };
2448  
2449  static struct miscdevice btrfs_misc = {
2450  	.minor		= BTRFS_MINOR,
2451  	.name		= "btrfs-control",
2452  	.fops		= &btrfs_ctl_fops
2453  };
2454  
2455  MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2456  MODULE_ALIAS("devname:btrfs-control");
2457  
btrfs_interface_init(void)2458  static int __init btrfs_interface_init(void)
2459  {
2460  	return misc_register(&btrfs_misc);
2461  }
2462  
btrfs_interface_exit(void)2463  static __cold void btrfs_interface_exit(void)
2464  {
2465  	misc_deregister(&btrfs_misc);
2466  }
2467  
btrfs_print_mod_info(void)2468  static int __init btrfs_print_mod_info(void)
2469  {
2470  	static const char options[] = ""
2471  #ifdef CONFIG_BTRFS_DEBUG
2472  			", debug=on"
2473  #endif
2474  #ifdef CONFIG_BTRFS_ASSERT
2475  			", assert=on"
2476  #endif
2477  #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2478  			", ref-verify=on"
2479  #endif
2480  #ifdef CONFIG_BLK_DEV_ZONED
2481  			", zoned=yes"
2482  #else
2483  			", zoned=no"
2484  #endif
2485  #ifdef CONFIG_FS_VERITY
2486  			", fsverity=yes"
2487  #else
2488  			", fsverity=no"
2489  #endif
2490  			;
2491  	pr_info("Btrfs loaded%s\n", options);
2492  	return 0;
2493  }
2494  
register_btrfs(void)2495  static int register_btrfs(void)
2496  {
2497  	return register_filesystem(&btrfs_fs_type);
2498  }
2499  
unregister_btrfs(void)2500  static void unregister_btrfs(void)
2501  {
2502  	unregister_filesystem(&btrfs_fs_type);
2503  }
2504  
2505  /* Helper structure for long init/exit functions. */
2506  struct init_sequence {
2507  	int (*init_func)(void);
2508  	/* Can be NULL if the init_func doesn't need cleanup. */
2509  	void (*exit_func)(void);
2510  };
2511  
2512  static const struct init_sequence mod_init_seq[] = {
2513  	{
2514  		.init_func = btrfs_props_init,
2515  		.exit_func = NULL,
2516  	}, {
2517  		.init_func = btrfs_init_sysfs,
2518  		.exit_func = btrfs_exit_sysfs,
2519  	}, {
2520  		.init_func = btrfs_init_compress,
2521  		.exit_func = btrfs_exit_compress,
2522  	}, {
2523  		.init_func = btrfs_init_cachep,
2524  		.exit_func = btrfs_destroy_cachep,
2525  	}, {
2526  		.init_func = btrfs_init_dio,
2527  		.exit_func = btrfs_destroy_dio,
2528  	}, {
2529  		.init_func = btrfs_transaction_init,
2530  		.exit_func = btrfs_transaction_exit,
2531  	}, {
2532  		.init_func = btrfs_ctree_init,
2533  		.exit_func = btrfs_ctree_exit,
2534  	}, {
2535  		.init_func = btrfs_free_space_init,
2536  		.exit_func = btrfs_free_space_exit,
2537  	}, {
2538  		.init_func = extent_state_init_cachep,
2539  		.exit_func = extent_state_free_cachep,
2540  	}, {
2541  		.init_func = extent_buffer_init_cachep,
2542  		.exit_func = extent_buffer_free_cachep,
2543  	}, {
2544  		.init_func = btrfs_bioset_init,
2545  		.exit_func = btrfs_bioset_exit,
2546  	}, {
2547  		.init_func = extent_map_init,
2548  		.exit_func = extent_map_exit,
2549  	}, {
2550  		.init_func = ordered_data_init,
2551  		.exit_func = ordered_data_exit,
2552  	}, {
2553  		.init_func = btrfs_delayed_inode_init,
2554  		.exit_func = btrfs_delayed_inode_exit,
2555  	}, {
2556  		.init_func = btrfs_auto_defrag_init,
2557  		.exit_func = btrfs_auto_defrag_exit,
2558  	}, {
2559  		.init_func = btrfs_delayed_ref_init,
2560  		.exit_func = btrfs_delayed_ref_exit,
2561  	}, {
2562  		.init_func = btrfs_prelim_ref_init,
2563  		.exit_func = btrfs_prelim_ref_exit,
2564  	}, {
2565  		.init_func = btrfs_interface_init,
2566  		.exit_func = btrfs_interface_exit,
2567  	}, {
2568  		.init_func = btrfs_print_mod_info,
2569  		.exit_func = NULL,
2570  	}, {
2571  		.init_func = btrfs_run_sanity_tests,
2572  		.exit_func = NULL,
2573  	}, {
2574  		.init_func = register_btrfs,
2575  		.exit_func = unregister_btrfs,
2576  	}
2577  };
2578  
2579  static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2580  
btrfs_exit_btrfs_fs(void)2581  static __always_inline void btrfs_exit_btrfs_fs(void)
2582  {
2583  	int i;
2584  
2585  	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2586  		if (!mod_init_result[i])
2587  			continue;
2588  		if (mod_init_seq[i].exit_func)
2589  			mod_init_seq[i].exit_func();
2590  		mod_init_result[i] = false;
2591  	}
2592  }
2593  
exit_btrfs_fs(void)2594  static void __exit exit_btrfs_fs(void)
2595  {
2596  	btrfs_exit_btrfs_fs();
2597  	btrfs_cleanup_fs_uuids();
2598  }
2599  
init_btrfs_fs(void)2600  static int __init init_btrfs_fs(void)
2601  {
2602  	int ret;
2603  	int i;
2604  
2605  	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2606  		ASSERT(!mod_init_result[i]);
2607  		ret = mod_init_seq[i].init_func();
2608  		if (ret < 0) {
2609  			btrfs_exit_btrfs_fs();
2610  			return ret;
2611  		}
2612  		mod_init_result[i] = true;
2613  	}
2614  	return 0;
2615  }
2616  
2617  late_initcall(init_btrfs_fs);
2618  module_exit(exit_btrfs_fs)
2619  
2620  MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2621  MODULE_LICENSE("GPL");
2622  MODULE_SOFTDEP("pre: crc32c");
2623  MODULE_SOFTDEP("pre: xxhash64");
2624  MODULE_SOFTDEP("pre: sha256");
2625  MODULE_SOFTDEP("pre: blake2b-256");
2626